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Abstract— This paper attends to the problem of a mecha-
nism designer seeking to influence the outcome of a strategic
game based on her creditability. The mechanism designer
offers additional payments to the players depending on
their mutual choice of strategies in order to steer them to
certain decisions. If the players trust her, they will select a
newly profitable strategy. Of course, the mechanism designer
aims at spending as little as possible and yet implement
her desired outcome. We present several algorithms for
this optimization problem both for optimal solutions and
approximations thereof. We analyze singleton target strategy
profiles and target strategy profile sets. Furthermore, the
paper shows how a bankrupt mechanism designer can decide
efficiently whether strategy profiles can be implemented at
no cost at all. Finally risk-averse players and dynamic games
are examined.

I. INTRODUCTION

The quest for a deeper understanding of our world
and its highly interconnected systems and processes often
requires a huge amount of computational resources which
can only be obtained by connecting thousands of com-
puters. Similarly to agents in socio-economic systems, the
computers in such networks often operate on a decentral-
ized control regime, and represent different stake-holders
with different objectives. Therefore, in addition to mere
technical challenges, a system designer often has to take
into account sociological and economic aspects as well
when reasoning about protocols for maximizing system
performance.

Game theory is a powerful tool for analyzing deci-
sion making in systems with autonomous and rational
(or selfish) participants. It is used in a wide variety of
fields such as biology, economics, politics, or computer
science. A major achievement of game theory is the insight
that networks of self-interested agents often suffer from
inefficiency due to effects of selfishness. The concept
of the price of anarchy allows to quantify these effects:
The price of anarchy compares the performance of a
distributed system consisting of selfish participants to
the performance of an optimal reference system where
all participants collaborate perfectly. If a game theoretic
analysis of a distributed computing system reveals that the
system has a large price of anarchy, this indicates that the
protocol should be extended by a mechanism encouraging
cooperation. The field of mechanism design is also subject
to active research.

In many distributed systems, a mechanism designer
cannot change the rules of interactions. However, she
may be able to influence the agents’ behavior by offer-
ing payments for certain outcomes. On this account, we
consider a mechanism designer whose power is to some
extent based on her monetary assets, primarily, though, on
her creditability. That is, the players trust her to pay the
promised payments. Thus, a certain subset of outcomes is
implemented in a given game if, by expecting additional
non-negative payments, rational players will necessarily
choose one of the desired outcomes. A designer faces
the following optimization problem: How can the desired
outcome be implemented at minimal cost? Surprisingly,
it is sometimes possible to improve the performance of a
given system merely by creditability, that is, without any
payments at all.

This paper presents several results for this problem.
The first correct algorithm for finding an exact, incentive
compatible implementation of a desired set of outcomes is
given. We also show how a bankrupt mechanism designer
can decide in polynomial time if a set of outcomes can
be implemented at no costs at all, and an interesting
connection to best response graphs is established. We pro-
pose and analyze efficient approximation algorithms and
demonstrate their performance. Additionally, we extend
our analysis for risk-averse behavior and study dynamic
games where the mechanism designer offers payments
each round.

The remainder of this paper is organized as follows.
Section II reviews related work. Our model and some
basic game theory definitions are introduced in Section III.
In Section IV, algorithms for computing exact and non-
exact implementations are proposed. Section V presents
simulation results. Risk-averse players and dynamic games
are studied in Section VI. Finally, Section VII concludes
the paper.

II. RELATED WORK

The mathematical tools of game theory have become
popular in computer science recently as they allow to gain
deeper insights into the socio-economic complexity of to-
day’s distributed systems. Game theory combines algorith-
mic ideas with concepts and techniques from mathematical
economics. Popular problems in computer science studied
from a game theoretic point of view include congestion



[3], network creation [7], or virus propagation [1], among
many others.

The observation that systems often perform poorly in
the presence of selfish players has sparked research for
countermeasures [6], [8]. For example, Cole et al. [4],
[5] have studied how incentive mechanisms can influence
selfish behavior in a routing system where the latency
experienced by the network traffic on an edge of the
network is a function of the edge congestion, and where
the network users are assumed to selfishly route traf-
fic on minimum-latency networks. They show that by
pricing network edges the inefficiency of selfish routing
can always be eradicated, even for heterogeneous traffic
in single-commodity networks and propose algorithms
solving these problems.

In [9], Monderer and Tennenholtz consider an interested
third party who attempts to lead selfish players to act in a
desired way. The third party can neither enforce behavior
nor change the system, she can only influence the game’s
outcome by announcing non-negative monetary transfers
conditioned on the behavior of the agents. They show
that the interested third party might be able to induce a
desired outcome at very low costs. In particular, they prove
that any pure Nash equilibrium of a game with complete
information has a zero-implementation, i.e., it can be
transformed into a dominant strategy profile at zero cost.
Similar results hold for any given ex-post equilibrium of
a frugal VCG mechanism. Moreover, the authors address
the question of the hardness of computing the minimal
cost. They provide a proof that deciding whether there
exists an implementation of cost k for a game is NP-hard
and propose an algorithm to compute an optimal exact
implementation.

This paper extends [9] in various respects. Several
new algorithms are provided, for instance a polynomial
time algorithm for deciding whether a set of strategy
profiles has a 0-implementation. In addition, we suggest
polynomial-time approximation algorithms and simulate
their performance. Connections to graph-theoretic con-
cepts are pointed out and we generalize the theorem by
Monderer and Tennenholtz theorem on the cost of Nash
equilibria. Their algorithm for computing an optimal exact
implementation is corrected, and we provide evidence
that their NP-hardness proof of deciding whether a k-
implementation exists is wrong. Furthermore, the concept
of implementation is generalized for other game theoretic
models. We introduce players aiming at maximizing the
average payoff and show how the mechanism designer
can find such implementations. As another contribution,
this paper considers the case of risk-averse players as
well as the resulting complexity of computing the optimal
implementation cost, and initiates the study of mechanism
design by creditability in round based dynamic games.

Our work is also related to Stackelberg theory [10]
where a fraction of the entire population is orchestrated

by a global leader. In contrast to our paper, the leader is
not bound to offer any incentives to follow her objectives.
Finally, in the recent research thread of combinatorial
agencies [2], a setting is studied where a mechanism
designer seeks to influence the outcome of a game by
contracting the players individually; however, as she is
not able to observe the players’ actions, the contracts can
only depend on the overall outcome.

III. MODEL

This section first reviews some basic definitions and
formalisms from game theory. Subsequently, the concept
of mechanism design by creditability is introduced.

A. Game Theory
A strategic game can be described by a tuple G =

(N,X,U). N = {1, 2, . . . , n} is the set of players and
each player i ∈ N can choose a strategy (action) from the
set Xi. The product of all the individual players’ strategies
is denoted by X := X1×X2× . . .×Xn. In the following,
a particular outcome x ∈ X is called strategy profile and
we refer to the set of all other players’ strategies of a given
player i by X−i = X1× . . .×Xi−1×Xi+1× . . .×Xn. An
element of Xi is denoted by xi, and similarly, x−i ∈ X−i;
hence x−i is a vector consisting of the strategy profiles of
xi. Finally, U = (U1, U2, . . . , Un) is an n-tuple of payoff
functions, where Ui : X 7→ < determines player i’s payoff
arising from the game’s outcome.

Let xi, x
′
i ∈ Xi be two strategies available to player i.

We say that xi dominates x′i iff Ui(xi, x−i) ≥ Ui(x′i, x−i)
for every x−i ∈ X−i and there exists at least one x−i

for which a strict inequality holds. xi is the dominant
strategy for player i if it dominates every other strategy
x′i ∈ Xi\{xi}. xi is a non-dominated strategy if no other
strategy dominates it. By X∗ = X∗

1×X∗
2×. . .×X∗

n we will
denote the set of non-dominated strategy profiles, where
X∗

i is the set of non-dominated strategies available to the
individual player i. We assume that players are rational
and always choose non-dominated strategies; furthermore
players cannot collude or make contracts to choose certain
profiles beforehand.

The set of best responses Bi(x−i) for player i given
the other players’ actions is defined as Bi(x−i) :=
{arg maxxi∈Xi

(Ui(xi, x−i))}. A Nash equilibrium is a
strategy profile x ∈ X such that for all i ∈ N , xi ∈
Bi(x−i).

B. Mechanism Design by Creditability
This paper makes the classic assumption that players

are rational and always choose a non-dominated strategy.
We examine the impact of payments to players offered
by a mechanism designer (an interested third party) who
seeks to influence the outcome of a game. These payments
are described by a tuple of non-negative payoff functions
V = (V1, V2, . . . , Vn), where Vi : X 7→ <, i.e. the



payments depend on the strategies player i selects as well
as on the choices of all other players. The original game
G = (N,X,U) is modified to G(V ) := (N,X, [U + V ])
by these payments, where [U + V ]i(x) = Ui(x) + Vi(x),
that is, each player i obtains the payoff of Vi in addition
to the payoffs of Ui. The players’ choice of strategies
changes accordingly: Each player now selects a non-
dominated strategy in G(V ). Henceforth, the set of non-
dominated strategy profiles of G(V ) is denoted by X∗(V ).
A strategy profile set – also called strategy profile region
– O ⊆ X of G is a subset of all strategy profiles X ,
i.e., a region in the payoff matrix consisting of one or
multiple strategy profiles. Similarly to Xi and X−i, we
define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈ O} and
O−i := {x−i|∃xi ∈ Xi s.t. (xi, x−i) ∈ O}.

The mechanism designer’s main objective is to force
the players to choose a certain strategy profile or a set
of strategy profiles, without having to spend too much.
Concretely, for a desired strategy profile region O, we
say that payments V implement O if ∅ ⊂ X∗(V ) ⊆
O. V is called k-implementation – a mechanism design
by credibility with cost at most k – if, in addition∑n

i=1 Vi(x) ≤ k ∀x ∈ X∗(V ). That is, the players’
non-dominated strategies are within the desired strategy
profile, and the payments do not exceed k for any possible
outcome. Moreover, V is an exact k-implementation of
O if X∗(V ) = O and

∑n
i=1 Vi(x) ≤ k ∀x ∈ X∗(V ).

The costs k(O) of implementing O is the lowest of
all non-negative numbers q for which there exists a q-
implementation. If an implementation meets this lower
bound, it is optimal, i.e., V is an optimal implementation
of O if V implements O and maxx∈X∗(V )

∑n
i=1 Vi(x) =

k(O). The cost k∗(O) of implementing O exactly is the
smallest non-negative numbers q for which there exists an
exact q-implementation of O. V is an optimal exact imple-
mentation of O if it implements O exactly and requires the
costs k∗(O). The set of all implementations of O will be
denoted by V(O), and the set of all exact implementations
of O by V∗(O). Finally, a strategy profile region O = {z}
of cardinality one – consisting of only one strategy profile
– is called a singleton. Clearly, for singletons it holds that
non-exact and exact k-implementations are equivalent. For
simplicity’s sake we often write z instead of {z} and V (z)
instead of

∑
i∈N Vi(z). Observe, that only subsets of X

which are in 2X1 × 2X2 × . . . × 2Xn ⊂ 2X1×X2×...×Xn

can be implemented exactly. We call such a subset of X
a convex strategy profile region.1

IV. ALGORITHMS AND ANALYSIS

This section presents our main results. First, we study
exact implementations where the mechanism designer
aims at implementing an entire strategy profile region

1These regions define a convex area in the payoff matrix, provided
that the strategies are depicted such that all oi are next to each other.

based on her creditability. Subsequently, we examine gen-
eral k-implementations.

A. Exact Implementation
Recall that the matrix V is an exact k-implementation

of a strategy region O iff X∗(V ) = O and
∑n

i=1 Vi(x) ≤
k ∀x ∈ X∗(V ), i.e. each strategy Oi is part of the set of
player i’s non-dominated strategies for all players i. We
present the first correct algorithm to find such implementa-
tions. Then we show that a bankrupt mechanism designer
can determine in polynomial time whether a given region
is implementable at zero cost. We will also establish an
interesting connection between zero cost implementations
and best response graphs.

1) Algorithm and Complexity: Recall that in our model
each player classifies the strategies available to her as
either dominated or non-dominated. Thereby, each domi-
nated strategy xi ∈ Xi\X∗

i is dominated by at least one
strategy x∗i ∈ X∗

i among the non-dominated strategies.
In other words, a game determines for each player i a
relation MG

i from dominated to non-dominated strategies
MG

i : Xi\X∗
i → X∗

i , where MG
i (xi) = x∗i states that

xi ∈ Xi\X∗
i is dominated by x∗i ∈ X∗

i . See Fig. 1 for an
example.
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Fig. 1. Game from a single player’s point of view with corresponding
relation of dominated (Xi\X∗

i = {a, b, c}) to non-dominated strategies
(X∗

i = {d∗, e∗, f∗}).

When implementing a strategy profile region O exactly,
the mechanism designer creates a modified game G(V )
with a new relation MV

i : Xi \ Oi → Oi such that all
strategies outside Oi map to at least one strategy in Oi.
Therewith, the set of all newly non-dominated strategies
of player i must constitute Oi. As every V ∈ V∗(O)
determines a set of relations MV := {MV

i : i ∈ N}, there
must be a set MV for every V implementing O optimally
as well. If we are given such an optimal relation set MV ,
but not the corresponding optimal exact implementation,
we can compute a V with minimal payments and the
same relation MV , i.e., given an optimal relation we can
find an optimal exact implementation. As an illustrating
example, assume an optimal relation set for G with
MG

i (x∗i1) = oi and MG
i (x∗i2) = oi. Thus, we can compute

V such that oi must dominate x∗i1 and x∗i2 in G(V ).
To attain this, the condition Ui(oi, o−i) + Vi(oi, o−i) ≥
maxs∈{x∗i1,x∗i2} (Ui(s, o−i) + Vi(s, o−i)) must hold for all
o−i ∈ O−i. In an optimal implementation, player i is



not offered payments for strategy profiles of the form
(ōi, x−i) where ōi ∈ Xi\Oi, x−i ∈ X−i. Hence,
the condition above can be simplified to Vi(oi, o−i) =
max

{
0,maxs∈{x∗i1,x∗i2} (Ui(s, o−i))

}
− Ui(oi, o−i). Let

Si(oi):={s ∈ Xi\Oi|MV
i (s) = oi} be the set of strategies

where MV corresponds to an optimal exact implementa-
tion of O. Then, an implementation V with Vi(ōi, x−i) =
0, Vi(oi, ō−i) = ∞ for any player i, and Vi(oi, o−i) =
max

{
0,maxs∈Si(oi) (Ui(s, o−i))

}
− Ui(oi, o−i) is an op-

timal exact implementation of O as well. Therefore, the
problem of finding an optimal exact implementation V of
O corresponds to the problem of finding an optimal set of
relations MV

i : Xi\Oi → Oi.
Our algorithm ALGexact (cf Algorithm 1) makes use

of this fact and constructs an implementation V for
all possible relation sets, checks the cost that V would
produce and returns the lowest cost found.

Algorithm 1 Exact k-Implementation (ALGexact)
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: k∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: return ExactK(V , 1);

ExactK(V , i):
Input: payments V , current player i
Output: minimal r s.t. ∃ exact r-implementation

W ∈ {W |W (x) ≥ V (x) ∀x ∈ X}
1: if |X∗

i (V )\Oi| > 0 then
2: s := any strategy in X∗

i (V )\Oi; kbest := ∞;
3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: W (oi, o−i):=max{0, Ui(s, o−i)−

(Ui(oi, o−i) + V (oi, o−i))};
6: k := ExactK(V + W , i);
7: if k < kbest then
8: kbest := k;
9: for all o−i ∈ O−i do

10: W (oi, o−i) := 0;
11: return kbest;
12: else if i < n then
13: return ExactK(V , i + 1);
14: else
15: return maxo∈O

∑
i Vi(o);

Theorem 4.1: ALGexact computes a strategy profile
region’s optimal exact implementation cost in time
O

(
n |X|+ n

(
maxi∈N |Oi|n maxi∈N |X∗

i |
))

.
PROOF. ALGexact is correct as it checks all possible
relations in relation set MV = {MV

i : X∗
i (V )\Oi 7→

Oi ∀i ∈ N} recursively by calling the subroutine ExactK
in Line 6. Therefore, it must find the relation set which
corresponds to an implementation with optimal cost.

In order to analyze ALGexact’s runtime, we first ex-
amine the complexity of subroutine ExactK. Observe that
ExactK is called |Oi| times per recursion step. In each

recursion step there is at least one non-dominated strategy,
namely s ∈ X∗

i \Oi, which is dominated in the next
call to ExactK. As there are s =

∑n
i=1 |X∗

i \Oi| ≤
n maxi∈N |X∗

i \Oi| ≤ n maxi∈N |X∗
i | strategies to be

dominated, there are at most s recursion steps. Hence,
we get the following recursive formula for the runtime
of ExactK T (s) = |Oi| [|O−i|+ T (s− 1) + 1 + |O−i|] =
|Oi| (1 + 2 |O−i|) + |Oi| [T (s− 1)] where T (0) = |O|n.
Telescoping yields T (s) =

∑s
k=1 (1 + 2 |O−i|) |Oi|k

+T (0) |Oi|s=
∑s

k=1 (1 + 2 |O−i|) |Oi|k +n |O| |Oi|s ∈
O(n |O| |Oi|s). The initialization phase (Lines 1 & 2)
takes time Tinit = O(n |X|+

∑n
i=1 |Oi| |O−i|) =

O(n |X|+ n |O|). Therefore, the over-
all time complexity Tinit + T (s) is in
O

(
n |X|+ n

(
maxi∈N |Oi|n maxi∈N |X∗

i |
))

. 2

Note that ALGexact has a large time complexity. In
fact, a faster algorithm for this problem, called Opti-
mal Perturbation Algorithm has been presented in [9].
In a nutshell, this algorithm proceeds as follows: After
initializing V similarly to our algorithm, the values of
the region O in the matrix V are increased slowly for
every player, i.e., by all possible differences between
an agent’s payoffs in the original game. The algorithm
terminates as soon as all strategies in X∗ are dominated.
Unfortunately, this algorithm does not always return an
optimal implementation. Sometimes, as we will show in
Appendix A, the optimal perturbation algorithm increases
the values too much. In fact, we even conjecture that
deciding whether an k-exact implementation exists is NP-
hard.

Conjecture 4.1: Finding an optimal exact implementa-
tion of a strategy region is NP-hard in general.

2) Bankrupt Mechanism Designers: Imagine a mecha-
nism designer who is broke. At first sight, it seems that
without any money, she will hardly be able to influence
the outcome of a game. However, this intuition ignores the
power of creditability: a game can have 0-implementable
regions.

Let V be an exact implementation of O with exact costs
k∗(O). It holds that if k∗(O) = 0, V cannot contain any
payments larger than 0 in O. Consequently, for an region
O to be 0-implementable exactly, any strategy s outside
Oi must be dominated within the range of O−i by a oi,
or there must be one oi for which no payoff Ui(s, o−i) is
larger than Ui(oi, o−i). In the latter case, the strategy oi

can still can dominate s by using a payment V (oi, x−i)
with x−i ∈ X−i\O−i outside O. Note that this is only
possible under the assumption that O−i ⊂ X−i∀i ∈ N .
ALGbankrupt (cf Algorithm 2) describes how a bankrupt

designer can decide in polynomial time whether a certain
region is 0-implementable. It proceeds by checking for
each player i if the strategies in X∗

i \Oi are dominated or
“almost” dominated within the range of O−i by at least
one strategy inside Oi. If there is one strategy without such



a dominating strategy, O is not 0-implementable exactly.
On the other hand, if for every strategy s ∈ X∗

i \Oi such
a dominating strategy is found, O can be implemented
exactly without expenses.

Algorithm 2 Exact 0-Implementation (ALGbankrupt)
Input: Game G, convex region O with O−i ⊂ X−i∀i
Output: true if k∗(O) = 0, false otherwise

1: for all i ∈ N do
2: for all s ∈ X∗

i \Oi do
3: dZero := false;
4: for all oi ∈ Oi do
5: b := true;
6: for all o−i ∈ O−i do
7: b := b ∧ (Ui(s, o−i) ≤ Ui(oi, o−i));
8: dZero := dZero ∨ b;
9: if !dZero then

10: return false;
11: return true;

Theorem 4.2: Given a convex strategy profile region O
with O−i ⊂ X−i∀i, ALGbankrupt decides whether O has
an exact 0-implementation in time O(|X∗| |O|).
PROOF. ALGbankrupt is correct because it checks for each
yet to be dominated strategy s ∈ X∗

i \Oi whether it
can be dominated by one oi ∈ Oi at zero cost. This is
the property that makes O exactly 0-implementable. The
algorithm’s runtime is maximal if X∗ does not intersect
with O, and if O is indeed 0-implementable, summing up
to O

(∑
i∈N |X∗

i | · |Oi| · |O−i|
)

= O
(∑

i∈N |X∗
i | · |O|

)
=

O(|X∗| · |O|). 2

3) Best Response Graphs: Best response strategies
maximize the payoff for a player given the other players’
decisions are x−i. For now, let us restrict our analysis to
games where the sets of best response strategies consist
of only one strategy for each x−i∀i ∈ N . Given a game
G, we can construct a directed best response graph GG

as follows: A strategy profile x ∈ X is represented as a
vertex vx in GG iff x is a best response for at least one
player, i.e., if ∃i ∈ N such that xi ∈ Bi(x−i). There
is a directed edge e = (vx, vy) iff ∃i ∈ N such that
x−i = y−i and {yi} = Bi(y−i). In other words, if there is
an edge from vx to vy, this means that for one player, it is
better to play yi than xi given that for the other players’
strategies x−i = y−i. A strategy profile region O ⊂ X has
a corresponding subgraph GG,O containing the vertices
{vx|x ∈ O} and the edges which both start and end in
a vertex of the subgraph. We say GG,O has an outgoing
edge e = (vx, vy) if x ∈ O and y /∈ O. Note that outgoing
edges are not in the edge set of GG,O. Clearly, it holds
that if a singleton x’s corresponding subgraph GG,{x} has
no outgoing edges then x is a Nash equilibrium. More
generally, we make the following observation.

Theorem 4.3: Let G be a game and |Bi(x−i)| = 1 ∀i ∈
N,x−i ∈ X−i. If a convex region O has an exact 0-

implementation, then the corresponding subgraph GG,O in
the game’s best response graph has no outgoing edges.
PROOF. Let V be an exact 0-implementation of O. Note
that V (o) = 0 ∀o ∈ O, otherwise the cost induced by V
are larger than 0. Assume for the sake of contradiction that
GG,O has an outgoing edge. Let x ∈ O be a strategy profile
for which its corresponding vertex vx has an outgoing edge
e to vy, y ∈ X\O. Since V (x) is 0, GG(V ),O still has the
same outgoing edge e. This means that for one player j it
is better to play strategy yj in G(V ) than to play xj given
that x−j = y−j . Hence, since yj is not dominated by any
strategy in Oj , player j will choose also strategies outside
Oj and therefore V is not a correct implementation of O
thus contradicting our assumption. 2

In order to expand best response graphs to games
with multiple best responses, we construct GG such that
Theorem 4.3 still holds. We modify the edge construction
as follows: In the general best response graph GG of a
game G there is a directed edge e = (vx, vy) iff ∃i ∈ N
s.t. x−i = y−i, yi ∈ Bi(y−i) and |Bi(y−i)| = 1.

Corollary 4.1: Theorem 4.3 holds for general games.
Note that Theorem 4.3 is a generalization of Monderer

and Tennenholtz’ Corollary 1 in [9]. They discovered that
for a singleton x, it holds that x has a 0-implementation
if and only if x is a Nash equilibrium. While their
observation covers the special case of singleton-regions,
our theorem holds for any strategy profile region. Unfortu-
nately, for general regions, one direction of the equivalence
holding for singletons does not hold anymore due to
the fact that 0-implementable regions O must contain a
player’s best response to any o−i but they need not contain
best responses exclusively.
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Fig. 2. Sample game G with best response graph GG. The Nash
equilibrium in the bottom left corner has no outgoing edges. The dotted
arrows do not belong to the edge set of GG as the row has multiple
best responses.

B. Non-Exact Implementation
In contrast to exact implementations, where the com-

plete set of strategy profiles O must be non-dominated,
the additional payments in non-exact implementations
only have to ensure that a subset of O is the newly
non-dominated region. Obviously, it matters which subset
this is. Knowing that a subset o′ ⊆ O bears optimal
costs one, we could find k(O) by computing k∗(O′).
Thus, when solving the problem of finding an optimal
implementation V of a region O, the problem of finding
among all subsets of O a subset with minimal exact cost is



solved as well. Apart from the fact that finding an optimal
implementation includes solving the – believed to be NP-
hard – optimal exact implementation cost problem for at
least one subregion of O, finding this subregion might
be NP-hard since there are exponentially many possible
subregions in O. In fact, a proof is given in [9] showing
that the problem is NP-hard by a reduction from the
SAT problem. The authors show how to construct a 2-
person game in polynomial time given a CNF formula
such that the game has a 2-implementation if and only
if the formula has a satisfying assignment. However,
their proof is not correct: While there indeed exists a
2-implementation for every satisfiable formula, it can be
shown that 2-implementations also exist for non-satisfiable
formulas. E.g., strategy profiles (xi, xi) ∈ O are always 1-
implementable. Unfortunately, we were not able to correct
their proof. However, we are strongly believe that the
problem is NP-hard and we assume that no algorithm can
do much better than performing a brute force computation
of the exact implementation costs (cf Algorithm 1) of all
possible subsets, unless NP = P.

Conjecture 4.2: Finding an optimal implementation of
a strategy region is NP-hard in general.

Although the optimization problem of finding a strat-
egy profile region’s cost seems to be hard, the special
case of zero cost regions allows a statement related to
best response graphs. From the fact that if V is a 0-
implementation, V is also an exact 0-implementation of
O′ = X∗(V ), Theorem 4.3 implies Corollary 4.2.

Corollary 4.2: If a strategy profile region O has zero
implementation cost then the corresponding subgraph
GG,O in the game’s best response graph contains a sub-
graph GG,O′ , O′ ⊆ O, with no outgoing edges.
This could be useful to a bankrupt mechanism designer
since searching the game’s best response graph for sub-
graphs without outgoing edges helps her spot candidates
for regions which can be implemented by mere creditabil-
ity.

In general though, the fact that finding optimal imple-
mentations seems computationally hard raises the question
whether there are polynomial time algorithms achieving
good approximations. As mentioned in Section IV-A, each
V implementing a region O defines a domination relation
MV

i : Xi \ Oi → Oi. This observation leads to the
idea of designing approximation algorithms that find a
correct implementation by establishing a corresponding
relation set {M1,M2, . . . ,Mn},Mi : X∗

i \Oi 7→ Oi where
each x∗i ∈ X∗

i \Oi maps to at least one oi ∈ Oi. These
algorithms are guaranteed to find a correct implementation
of O, however, these implementations are not guaranteed
to be cost-optimal.2

2Admitting approximation algorithms to slightly deviate from the
desired region might open another class of algorithms. However, such
considerations are beyond the scope of this paper.

Our greedy algorithm ALGgreedy (cf Algorithm
3) associates each strategy x∗i yet to be domi-
nated with the oi with minimal distance ∆G to x∗i ,
i.e., the maximum value that have to be added to
Ui(x′i, x−i) such that x′i dominates xi: ∆G(xi, x

′
i) :=

maxx−i∈X−i
max {0, Ui(xi, x−i)− Ui(x′i, x−i)}.

Similarly to the greedy approximation algorithm for the
set cover problem [?], [?] which chooses in each step the
subset covering the most elements not covered already,
ALGgreedy selects a pair of x∗i ,oi such that by dominating
x∗i with oi, the number of strategies in X∗

i \Oi that will be
dominated therewith is maximal. Thus, in each step there
will be an oi assigned to dominate x∗i which has minimal
dominating cost. Additionally, if there is the chance of
dominating multiple strategies, ALGgreedy takes it.
ALGgreedy is described in detail in Algorithm 3. Note

that it returns an implementation V of O. To determine
V ’s cost, one can compute maxx∗∈X∗(V )

∑
i∈N Vi(x∗).

Algorithm 3 Greedy Algorithm ALGgreedy

Input: Game G, convex target region O
Output: Implementation V of O

1: Vi(x) := 0;Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: for all i ∈ N do
3: Vi(oi, ō−i) := ∞ ∀oi ∈ Oi , ō−i ∈ X−i\O−i;
4: while X∗

i (V ) * Oi do
5: cbest := 0; mbest :=null; sbest :=null;
6: for all s ∈ X∗

i (V )\Oi do
7: m := arg minoi∈Oi

[
∆G(V )(s, oi)

]
;

8: for all o−i ∈ O−i do
9: W (m, o−i):=max{0, Ui(s, o−i)−

(Ui(m, o−i) + V (m, o−i))};
10: c := 0;
11: for all x ∈ X∗

i do
12: if m dominates x in G(V + W ) then
13: c + +;
14: if c > cbest then
15: cbest := c ; mbest := m ; sbest := s;
16: for all o−i ∈ O−i do
17: V (mbest, o−i)+=max{0, Ui(sbest, o−i)−

(Ui(mbest, o−i) + V (mbest, o−i))};
18: return V ;

Theorem 4.4: ALGgreedy returns an implementation of
O in O

(
n |X|+ n |O|maxi∈N

[
|X∗

i \Oi|3 |O−i|2
])

.
PROOF. ALGgreedy terminates since in every iteration
of the while-loop, there is at least one newly dominated
strategy. The payment matrix V returned is an
implementation of O because the while-condition
X∗

i (V ) * Oi turned false for all i ∈ N and thus,
it holds that X∗

i (V ) ⊆ Oi ∀i ∈ N . The algorithm’s
initialization phase (Line 1) takes time Tinit ∈ O(|X|n).
Setting the payments Vi(oi, ō−i) to infinity (Line
3) for all players takes Tinf ∈ O(n |X\O|). One
iteration of the while loop (Lines 4-17) takes Twhile ∈
O([|X∗

i (V )\Oi| |O| |O−i| |X∗
i (V )| |O−i|+ |O−i|]) =



Algorithm 4 Reduction Algorithm ALGred

Input: Game G, convex target region O
Output: Implementation V of O

1: [k, V ] := greedy(G, O);
2: ktemp := −1; ci := ⊥ ∀i; Ti := {};
3: while (k > 0) ∧ (∃i : |Oi| > 1) ∧ (∃i : Oi * Ti) do
4: for all i ∈ N do
5: xi := arg minoi∈Oi

[
maxo−i∈O−i Ui(oi, o−i)

]
;

6: if (Oi * Ti) ∧ ¬(∀j: |Tj | = 0 ∨ cj) ∧ (xi ∈ Ti) then
7: xi:=arg minoi∈Oi\{xi}

[
maxo−i∈O−i Ui(oi, o−i)

]
;

8: if |Oi| > 1 then
9: Oi := Oi \ {xi};

10: [ktemp, V ] := greedy(G, O);
11: if ktemp ≥ k then
12: Oi := Oi ∪ {xi}; Ti := Ti ∪ {xi}; ci := ⊥;
13: else
14: k := ktemp; Ti := {} ∀i; ci := >;
15: return V ;

O
(
|O| |X∗

i \Oi|2 |O−i|2
)

. Consequently, the total time
is O

(
Tinit + Tinf +

∑
i∈N (|X∗

i (V )\Oi|Twhile)
)

∈
O

(
n |X|+ n |O|maxi∈N

[
|X∗

i \Oi|3 |O−i|2
])

. 2

ALGred (cf Algorithm 4) is a more sophisticated ver-
sion of our greedy algorithm. Instead of terminating when
the payment matrix V implements O, this algorithm
continues to search for a payment matrix inducing even
less cost. It uses a greedy algorithm to approximate the
cost repeatedly, varying the region to be implemented.
As ALGgreedy leaves the while loop if X∗

i (V ) ⊆ Oi, it
might miss out on cheap implementations where X∗

i (V ) ⊆
Qi, Qi ⊂ Oi. ALGred examines some of these subsets
as well by calling a greedy algorithm for some Qi, see
Lines 5-10. If we manage to reduce the cost (Lines 13-
20), we continue with Oi := Qi until neither the cost can
be reduced anymore nor any strategies can be deleted from
any Oi. Moreover, ALGred loops over all i ∈ N in every
execution of the while loops and thus profits even more
from the removal of strategies.

Theorem 4.5: ALGred returns an implementation of O
in time O

(
Tgn maxi∈N |Oi|

∑
i∈N |Oi|

)
, where Tg de-

notes the runtime of a greedy algorithm.
PROOF. ALGred terminates because the condition of the
while loop does not hold anymore if there are no more
strategies to be removed. By using ALGgreedy the cor-
rectness of the algorithm follows from Theorem 4.4. Let
Tg denote the runtime of the greedy algorithm called
in Line 1 and 10. A worst case instance requires the
algorithm to remove all but one strategy profiles, at least
one in every maxi∈N |Oi|th iteration of the while loop.
As looping over all i in Line 4 takes n · Tg and there are∑

i∈N |Oi| distinct strategy profiles the total runtime is in
O

(
nTg maxi∈N |Oi|

∑
i∈N |Oi|

)
2

A much simpler approximation algorithm for
computing a region O’s implementation cost retrieves

the region’s cheapest singleton, i.e., mino∈O k(o).
As proven in [9], there is a simple formula for
a singleton’s implementation cost, namely k(o) =
mino∈O

∑
i∈N maxxi∈Xi

(Ui(xi, o−i)− Ui(oi, o−i)).
Thus, implementing a best singleton approximation
algorithm is straight forward and it performs quite well
with randomly generated games – as our simulations
show (cf Section V). However, this approach can result
in an arbitrarily large k for certain games. Fig. 3 depicts
such a game where each singleton o in the region O
consisting of the four bottom left profiles has cost
k(o) = 11 whereas V implements O with cost 2.
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Fig. 3. 2-player game where O ’s optimal implementation V yields
a non-singleton region |X∗(V )| > 1.

This raises the following question: What characteristics
are stringent for a game and a corresponding desired
strategy profile region O such that only non-singleton
subregions bear the optimal implementation cost? Clearly,
we have to consider games where at least one player has
four or more strategies, at least two of which must not be
in Oi. Moreover, it must cost less to dominate them with
two strategies in Oi than with just one strategy in Oi.

V. SIMULATION

All our algorithms return correct implementations of the
desired strategy profile sets and – apart from the recursive
algorithm ALGexact for the optimal exact implementation
– run in polynomial time. In order to study the quality
of the resulting implementations, we performed several
simulations comparing the implementation costs computed
by the different algorithms. We have focused on bima-
trix games, i.e., two-person games, using random game
tables where for each strategy profile, both players have
a random payoff chosen uniformly at random from the
interval [0,max], for some constant max. We have also
studied generalized scissors, rock, paper games (a.k.a., Jan
Ken Pon games), that is, symmetric zero-sum games with
payoff values chosen uniformly at random from an interval
[0,max]. We find that – for the same interval and the same
number of strategies – the average implementation cost of
random symmetric zero-sum games, random symmetric
games, and completely random games hardly deviate. This
is probably due to the fact that in all examined types of



random games virtually all strategies are non-dominated.
Therefore, in the following, we present our results on
symmetric random games only.

Our simulations give several interesting insights. Let us
attend to non-exact implementations first. We observe that
implementing the best singleton often yields low costs.
In other words, especially when large sets have to be
implemented, our greedy algorithms tend to implement too
many strategy profiles and consequently incur unnecessar-
ily high costs. However, while this is often true in random
games, there are counter examples where the cheapest
singleton is costly compared to the implementation found
by the greedy algorithms; Fig. 3 depicts a situation where
the greedy algorithm computes a better solution. We
presume that the ALGred might improve relatively to the
best singleton approximation algorithm for larger player
sets.

Fig. 4 plots the implementation costs determined by
the greedy algorithm ALGgreedy, the reduction algorithm
ALGred, and the singleton algorithm as a function of the
number of strategies involved. On average, the singleton
algorithm performed much better than the other two, with
ALGgreedy being the worst of the candidates. In the second
plot we can see the implementation costs the algorithms
compute for different payoff value intervals [0,max]. As
expected, the implementation cost increases for larger
intervals.
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Fig. 4. The average implementation cost k of sets O where |Oi| =
bn/3c. Top: utility values chosen uniformly at random from [0, 20].
For different intervals we obtain approximately the same result when
normalizing k with the maximal possible value. Bottom: eight strategies
are used; other numbers of strategies bear similar results.

The observation that the greedy algorithm ALGgreedy im-
plements rather large subregions of O suggests that it may
achieve good results for exact implementations. Indeed,
we can modify an implementation V of O, which yields
a subset of O, without modifying any entry Vi(o), o ∈ O,
such that the resulting V implements O exactly.

Theorem 5.1: Let V implement O. If ∀i ∈ N , O−i ⊂
X−i, it holds that k∗(O) ≤ maxo∈O V (o).
PROOF. If V is a non-exact implementation of O, there
are some strategies Oi dominated by other strategies in Oi.
A dominated strategy oi can be made non-dominated by
adding payments to the existing Vi for profiles of the form
(oi, ō−i), where ō−i ∈ X−i\O−i. Let a ∈ Oi dominate
b ∈ Oi in G(V ). The interested party can annihilate this
relation of a dominating b by choosing payment Vi(b, ō−i)
such that player i’s resulting payoff Ui(b, ō−i)+Vi(b, ō−i)
is larger than Ui(a, ō−i)+Vi(a, ō−i) and therefore a does
not dominate b anymore. As such, all dominations inside
Oi can be neutralized even if |O−i ⊂ X−i| = 1. To see
this one must realize that the relation of domination is
irreflexive and transitive and therefore establishes a strict
order among the strategies. Let ō−i ∈ X−i\O−i be one
column in player i’s payoff matrix outside O. By choosing
the payments Vi(oi, ō−i) such that the resulting payoffs
Ui(oi, ō−i) + Vi(oi, ō−i) establish the same order with
the less-than relation (<) as the strategies oi with the
domination relation, all oi ∈ Oi will be non-dominated.
Thus, a V ′ can be constructed from V which implements
O exactly without modifying any entry Vi(o), o ∈ O. 2

Theorem 5.1 enables us to use ALGgreedy for an exact
cost approximation by simply computing maxo∈O V (o)
instead of maxx∈X∗(V ) V (x).

Fig. 5 depicts the exact implementation costs deter-
mined by the greedy algorithm ALGgreedy and the optimal
algorithm ALGexact. The first figure plots k as a function
of the number of strategies, whereas the second figure
demonstrates the effects of varying the size of the payoff
interval. Due to the large runtime of ALGexact, we were
only able to compute k for a small number of strategies.
However, for these cases, our simulations reveals that
ALGgreedy often finds implementations which are close
to optimal. For different payoff value intervals [0,max],
we observe a faster increase in k than in the non-exact
implementation case. This suggests that implementing a
smaller region entails lower costs for random games on
average .

Finally, we tested different options to choose the next
strategy in Line 7 of ALGgreedy and in Line 8 of ALGred.
However, none of the alternatives we tested performed
better than the ones described in Section IV.

In conclusion, our simulations have shown that for
the case of non-exact implementations, there are inter-
esting differences between the algorithms proposed in
Section IV. In particular, the additional reductions made
be ALGred are beneficial. However, while it seems that
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finding good approximations is hard, there may still be
ways to improve on the existing approximations. For
the case of exact implementations, our modified greedy
algorithm yields good results.

VI. VARIATIONS

Mechanism design by creditability offers many inter-
esting extensions. In this section, two alternative models
of rationality are introduced. If we assume that players
do not just select any non-dominated strategy, but have
other parameters influencing their decision process, our
model has to be adjusted. In many (real world) games,
players typically do not know which strategies the other
players will choose. In this case, a player cannot do better
than assume that the other players select a strategy at
random. If a player wants to maximize her game under this
assumption, she can take the average payoff of strategies
into account. We study the consequences of this process
of decision making. In a second part of this section, risk-
averse players are examined. Finally, we take a brief look
at the dynamics of repeated games with an interested third
party offering payments in each round.

A. Average Payoff Model

As a player may choose any non-dominated strategy,
it is reasonable for a player i to compute the payoff
which each of her strategy will bring on average. Thus,
assuming no knowledge on the payoffs of the other play-
ers, each strategy xi has an average payoff of pi(xi) :=

1
|X−i|

∑
x−i∈X−i

Ui(xi, x−i) for player i. The player i will
then choose the strategy s ∈ Xi with the largest pi(s),
i.e., s = arg maxs∈Xi

pi(s). If multiple strategies have
the same average payoff, she plays one of them uniformly
at random. For such average strategy games, we say that
xi dominates x′i iff pi(xi) > pi(x′i). Note that with
this modified meaning of domination, the region of non-
dominated strategies, X∗, differs as well.

The average payoff model has interesting properties.
It can be shown that singleton profiles can always be
implemented for free.

Theorem 6.1: If players maximize their average payoff,
singleton strategy profiles are always 0-implementable if
there are at least two players with at least two strategies.
PROOF. Let z be the strategy profile to be implemented.
In order to make player i choose strategy zi, the interested
party may offer payments for any strategy profile (zi, z̄−i)
where z̄−i ∈ X−i\ {z−i} such that pi(zi) becomes player
i’s largest average payoff in G(V ). Since each player has
at least two strategies to choose from, there is at least
one z̄−i, and by making Vi(zi, z̄−i) large enough (e.g.,
Vi(zi, z̄−i) := maxxi∈Xi

∑
x−i∈X−i

Ui(xi, x−i) + ε) this
can always be achieved. Therefore, z can be implemented
without promising any payments for z. 2

Clearly, Theorem 6.1 implies that also entire strategy
profile regions O are 0-implementable: We can simply
implement any singleton inside O.

Corollary 6.1: In average strategy games where every
player has at least two strategies, each strategy profile
region can be implemented for free.

Not only non-exact implementations, but also exact
implementations can be implemented at no costs.

Theorem 6.2: In average strategy games where ∀i :
O−i ⊂ X−i, each strategy profile region has an exact 0-
implementation.
PROOF. The mechanism designer can proceed as fol-
lows. For player i, let µi := maxxi∈Xi

{pi(xi)}. We set
Vi(oi, ō−i):=|X−i|(µi−pi(xi))−Ui(xi, x−i)+ε, ∀oi ∈ Oi,
ō−i ∈ X−i \ O−i. Consequently, it holds that for each
player i and two strategies xi ∈ Oi and x′i /∈ Oi, pi(xi) >
pi(x′i); moreover, no strategy xi ∈ Oi is dominated by any
other strategy. As payments in Vi(oi, ō−i) with oi ∈ Oi and
ō−i ∈ X−i \O−i do not contribute to the implementation
cost, Theorem 6.2 follows. 2

B. Risk-Averse Players
Instead of striving for a high payoff on average, the

players might be cautious or risk-averse. To account
for such behavior, we adapt our model by assuming
that the players seek to minimize the risk on miss-
ing out on benefits. In order to achieve this objective,
they select strategies where the minimum gain is not
less than any other strategy’s minimum gain. If there
is more than one strategy with this property, the risk-
averse player can choose a strategy among these, where



the average of the benefits is maximal. More formally,
let mini := maxxi∈Xi

(minx−i∈X−i
(Ui(xi, x−i))) and

∅X f(x) := 1
|X| ·

∑
x∈X f(x). Then Pi selects a strategy m

satisfying m = arg maxm∈M (∅X−i
Ui(m,x−i)), where

M = {xi|∀x−i Ui(xi, x−i) = mini}.
Theorem 6.3: The implementation cost of a singleton

z ∈ X is k =
∑N

i=1 max(0,mini−Ui(z)) for risk-averse
players.
PROOF. We show how to construct V implementing z
with cost k and then prove that we cannot reduce the
payments of V (z). Since in this model every player i
makes her decision without taking into account the benefits
other players might or might not obtain, it suffices to
consider each Vi separately. To ensure that player i selects
zi we have to set Vi(zi, x−i) to a value such that mini is
reached in G(U+V ) for each x−i. Consequently we assign
Vi(zi, x−i) = max(0,mini − Ui(zi, x−i)). We have to
satisfy a second condition such that zi is chosen, namely,
zi = arg maxm∈M (∅X−i

Ui(m, x−i)). This is achieved
by setting Vi(zi, x−i) = ∞ ∀x−i 6= z−i. We repeat
these steps for all players i. Clearly V constructed in this
manner implements z. Since the cost k only comprises the
additional payments in V (z) and lowering Vi(z) for any
i results in player i choosing a different strategy, we can
deduce the statement of the theorem. 2

For desired regions, the situation with risk-averse play-
ers differs from the standard model considerably.

Theorem 6.4: For risk-averse players the cost of O ⊂
X is k(O)=mino∈O

∑N
i=1 max(0,mini − Ui(o)) .

PROOF. Since we have to add up the cost to reach the
required minimum for every strategy profile in X∗(V )
it cannot cost less to exactly implement more than one
strategy profile, i.e., find V such that |X∗(V )| = 1. Thus
V implementing the “cheapest” singleton in O provides an
optimal implementation for O, and the claim follows. 2

In Section IV, we conjecture the problem of computing
k(O) to be NP-complete for both general and exact
implementations. Risk-averse players change the situation,
as the following theorem states.

Theorem 6.5: The complexity of computing k for risk-
averse agents is in P.
PROOF. For the non-exact case this theorem follows
directly from Theorem 6.4. In order to prove Theorem
6.5 for exact implementations we demonstrate how to
compute Vi(o) such that V implements the entire region
O optimally. For a player i and a set of strategies Yi ⊆ Xi,
we define τ(Yi):=maxxi∈Yi

(∅X−i
((U + V )i(xi, x−i))) to

be the maximum of the average benefits over all
strategies. For each strategy of a player i, we define
δ(xi):=max(τ(Oi), τ(X∗

i )) − ∅X−i
((U + V )i(xi, x−i))),

for xi ∈ Xi, to be the difference of the averages.
Algorithm 5 constructs V if the target region O and X∗

are disjoint. Analogously to the proofs above we can deal
with each player i individually. It computes for all cases

how much the interested party has to offer at least for
strategy profiles in O and sets Vi(xi, x−i) to infinity for
all xi ∈ Oi, x−i ∈ X−i \ O−i (Line 3). Then, for each
player i, strategies Oi have to reach the minimum payoff
of strategies in X∗

i (Line 4). This suffices for an exact
implementation if Oi ⊂ Xi, i.e. if there exists at least one
strategy xi /∈ Oi. Otherwise, we determine whether it costs
more to exceed the minimum constraint or the average
constraint for all Oi if Oi covers whole columns (Lines 7
and 8) and adjust Vi accordingly (average in Lines 8 and
13, minimum in Lines 10 and 15). Thus the algorithm
ensures that only strategies in O are chosen while all
strategies in O are selected.

Algorithm 5 Risk-averse Players: Exact Implementation
Input: Game G, target region O, Oi ∩X∗

i = ∅ ∀i ∈ N
Output: V

1: Vi(z) = 0 for all i ∈ N, z ∈ X;
2: for all i ∈ N do
3: Vi(xi, x−i):=∞ ∀xi ∈ Oi, x−i ∈ X−i \O−i;
4: Vi(xi, x−i) := max(0,mini − Ui(xi, x−i)) ∀xi ∈ Oi,

x−i ∈ X−i;
5: if O−i = X−i then
6: if τ(Oi) > τ(X∗

i ) then
7: if |Xi|+ ε|Oi| > |Xi|+

∑
oi

δ(oi) then
8: Vi(oi, x−i):=Vi(oi, x−i) + δ(oi) ∀oi, x−i;
9: else

10: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
11: else
12: if ε|Oi| >

∑
oi

[ε + δ(oi)] then
13: Vi(oi, x−i):=Vi(oi, x−i) + ε + δ(oi)∀oi, x−i;
14: else
15: Vi(oi, x−i):=Vi(oi, x−i) + ε ∀oi, x−i;
16: return V ;

The algorithm can be extended easily to work for
instances where X∗

i ⊂ Oi. As the extension is straight-
forward and does not provide any new insights, we omit
it. The run time of the algorithm can be determined
to be O(N maxi∈N (|Oi||X−i|)), thus we can compute
k∗(O) = maxo∈O V (o) in polynomial time. 2

C. Round-based Mechanisms
The previous sections deal with a static model. Now,

we extend our analysis to dynamic, round-based games,
where the designer offers payments to the players after
each round in order to make them change strategies. This
opens many questions: For example, imagine a concrete
game such as a network creation game [7] where all
players are stuck in a costly Nash equilibrium. The goal of
a mechanism designer could then be to guide the players
into another Nash equilibrium with lower costs. Many such
extensions are reasonable; due to space constraints, we
present only one model.

In a dynamic game, we regard a strategy profile as
a state in which the participants find themselves. In a



network context, each x ∈ X could represent one par-
ticular network topology. We presume to find the game
in an initial starting state sT=0 ∈ X and that, in state
sT=t, each player i only sees the states she can reach by
changing her strategy given the other players remain with
their chosen strategies. Thus player i sees only strategy
profiles in XT=t

visible,i = Xi × {sT=t
−i } in round t. In every

round t, the mechanism designer offers the players a
payment matrix V T=t (in addition to the game’s static
payoff matrix U ). Then all players switch to their best
visible strategy (which is any best response Bi(sT=t

−i )), and
the game’s state changes to sT=t+1. Before the next round
starts, the mechanism designer disburses the payments
V T=t(sT=t+1) offered for the newly reached state. The
same procedure is repeated until the mechanism designer
decides to stop the game.

We prove that a mechanism designer can guide the
players to any strategy profile at zero costs in two rounds.

Theorem 6.6: Starting in an arbitrary strategy profile, a
dynamic mechanism can be designed to lead the players
to any strategy profile without any expenses in at most
two rounds if |Xi| ≥ 3 ∀i ∈ N .
In order to simplify the proof of Theorem 6.6, we begin
with a helper lemma. Let XT=t

visible denote the visible
strategy profile region in round t, that is, XT=t

visible =⋃n
i=1 XT=t

visible,i.
Lemma 6.1: The third party can lead the players of a

dynamic game to any strategy profile outside the visible
strategy profile region without any expenses in one round.
PROOF. Let s ∈ X be the starting strategy profile and e
the desired end strategy profile in the non-visible region
of s. The designer can implement e in just one round by
offering each player i an infinite amount Vi(x) for the
strategy profile x = (ei, s−i) and zero for any other. Thus
each player will switch to ei. Since Vi((ei, s−i)) are the
only positive payments offered and since all x = (ei, s−i)
are visible and e is non-visible from s which implies e 6=
x, hence e is implemented at no cost. 2

PROOF OF THEOREM 6.6. Consider an arbitrary starting
strategy profile s and a desired strategy profile e. If e is
not visible from s, e is implementable at no cost in one
round, as seen in Lemma 6.1. If e is visible from s, the
interested party can still implement e for free by taking a
detour to a strategy profile d which is neither in s’ visible
region nor in e’s visible region. Such a strategy profile
d exists if the player i who sees e from s has at least 3
strategies to choose from and |X−i| ≥ 2. See Fig. 6 for
an illustration of such a configuration. 2

VII. CONCLUSION

Rendering distributed systems robust to non-cooperative
behavior has become an important research topic. This pa-
per has studied the fundamental question: Which outcomes
can be implemented by promising players money while the
eventual payments are bounded? As a first contribution,

e

s

e

s

e

s

d

T=0 T=1 T=2

Fig. 6. A dynamic game: Starting in s, strategy profile e can be
implemented at zero cost within two rounds by taking a detour to d.
The colored region marks the visible strategy profiles at each step.

we have presented algorithms for various objectives. In
addition, efficient algorithms have been suggested yielding
implementations of low cost. We have found that for
the case of exact implementations, a greedy algorithm
performs quite well for random games. Finally, we have
introduced the study of round-based games and risk-averse
players. We believe that our extensions raise some exciting
questions for future research.
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APPENDIX

Non-Optimality of the Perturbation Algorithm

In this section, we give an example demonstrating that
the optimal perturbation algorithm presented in [9] is not
correct. The algorithm computes the payoff matrix V for
the following game G, see Fig. 7.

G =

2
0

0
0

0
0

2
3

4
0

0
0

V1 =

2
0

5
0

0
3

5
0

0
5

0
0

V2 =

2
3

5
0

2
3

5
0

0
5

0
0

Fig. 7. Game G with X∗ and O , payoff matrices V 1, V 2.

As can be verified easily, V1 implements O with cost
k = 3. The payoff matrix V2 computed by the optimal
perturbation algorithm implements O as well, however, it
has cost k = 5. The set of possible differences between
an agent’s payoffs in the original game for G is E =
{0, 2, 3, 4}. We execute Lines 2 and 3 and obtain a matrix
of perturbation G′ of

G′ =

0
0

5
0

0
0

5
0

0
5

0
0

We have to go through the Lines 4 to 8 for player
1 twice, for e1 = 0 and e2 = 2, generating
G′(Player1, e1), G′(Player1, e2) respectively, such that
afterwards (G + G′)∗1 coincides with O1.

G′(Player1, e1) =

0
0

5
0

0
0

5
0

0
5

0
0

G′(Player1, e2) =

2
0

5
0

2
0

5
0

0
5

0
0

Executing Lines 9 to 13 until the condition in Line 13
is satisfied and hence (G + G′)∗2 ≡ O2 results in

G′(Player2, e1) = G′(Player1, e2)

G′(Player2, e2) =

2
2

5
0

0
2

5
0

0
5

0
0

G′(Player1, e3) =

2
3

5
0

0
3

5
0

0
5

0
0

Thus, the perturbation algorithm returns the payoff matrix
V = G′.
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Abstract— This paper introduces the notion of potential
in games which captures the extent to which the social
welfare can be improved or worsened within economic
reason, i.e., by taking the implementation cost into account.
We prove that there are games where it is worth spending
money on influencing the players’ decisions. Often a mali-
cious mechanism designer can corrupt games and worsen
the players’ situation to a by far larger extent than the
amount of money she invests. Surprisingly, she sometimes
even needs no money at all. We provide an optimal
implementation algorithm for this problem, extend the
research on implementation mechanisms by creditability
with an expected cost analysis, give a NP-hardness proof,
and present a greedy algorithm. Finally, two interesting
variations of our models are discussed: Average payoff
decision-making and round-based implementation mecha-
nisms.

I. INTRODUCTION

Algorithmic game theory and mechanism design has
become a popular tool to gain insights into the socio-
logical, economical and political complexities of today’s
distributed systems such as politics, global markets or
the Internet. Typically, when a game-theoretic analysis
reveals that a system may suffer from selfish behavior,
appropriate countermeasures have to be taken in order
to enforce a desired behavior.

As it is often infeasible in a distributed system for a
mechanism designer to influence the rules according to
which the players act, he has to resort to other measure-
ments. One way of manipulating the players’ decision-
making is to offer them money for a certain behavior. At
first sight, such a mechanism does not sound promising
since a self-interested agent will simply do whatever
brings him the most money. However, Monderer and
Tennenholtz [5] have come up with a trick to outwit
selfish agents whereby in some cases no money is needed
at all to implement a certain behavior. They propose to
offer the players money depending on how the game
turns out. Thus, the question of which monetary offers
the designer – also referred to as interested party –
has to eventually disburse depends on the other players’

decisions. Nevertheless, there is no information hidden
and every decision is made on a rational basis.

Consider the following extension of the well-known
prisoner’s dilemma game (cf G(U) in Figure 1) where
two bank robbers, both members of the Capone clan, are
arrested by the police. Unfortunately, the policemen have
insufficient evidence for convicting them of robbing the
bank. However they could charge them a minor crime,
since both of them are well-known small-time crimi-
nals. Cleverly, the policemen interrogate each subject
separately and offer both of them the same deal. If one
testifies to the fact that his accomplice has participated
in the bank robbery they do not charge him for the minor
crime.

3 3 0 4 0 0 1 1 2 0 4 4 2 4 0 0

4 0 1 1 0 0 0 2 4 2 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 5 3 3 0 4 0 5

0 2 4 0 1 1 0 2

5 0 2 0 5 0 2 0 0 0

VBPOT G(U+VBPOT)

VPOTG(U) G(U+VPOT)

Fig. 1. Prisoners’ Dilemma. The left bimatrix shows the prisoners’
initial payoffs, where payoff values equal saved years. The first
strategy is to remain silent (s), the second to testify (t) and the third
to confess (c). Nash equilibrias are colored yellow. Non-dominated
strategy profiles have a thick border. The center bimatrix V shows Mr.
Capone’s offered payments which modify G to the game G(V ) on
the right. Implementing the upper left corner strategy profile (s, s)
costs 2 and improves the players welfare by 4. Hence (s, s) has
potential=2.

Thus the following scenarios arise. If one testifies and
the other remains silent, the former goes free and the
latter receives a three-year sentence for robbing the bank
and a one-year sentence for committing the minor crime.
If both betray the other they both get three years for
the bank robbery. If none betrays the other, the police
can convict them only for the minor crime, they get one
year each. There is another option, of course, to confess
to the entire bank robbery and thus supply the police
with evidence to convict both criminals for a four-year
sentence. In standard game theoretic decision-making,
each prisoner has to decide for a strategy, either he
remains silent (s) or he testifies against the other (t) or



he confesses that they robbed the bank together (c). It
shows that it is always the best strategy, no matter what
the accomplice does, to choose t. Thus the prisoners
would betray each other and both get charged a three-
year sentence. This is very much to the dislike of Mr.
Capone who would loose two of his best men for the
next three years. Luckily enough, he gets a chance to
take influence on his employees’ decisions since the
policemen give the robbers some more decision-taking
time and put them on remand. Before they take their
decision, Mr. Capone calls each of them and promises
that if they both remain silent, he will pay each one of
them money worth going to jail one year1 and moreover,
if one remains silent and the other betrays him he will
pay the former money worthy of two years in prison
(cf V in Figure 1). By offering these payments, Mr.
Capone creates a new situation for the two criminals
where remaining silent is now the most rational behavior.
Indeed, neither one of the bank robbers betrays the other
and they both get charged a one-year sentence. One year
later, they are released and Mr. Capone disburses them
the promised amount of money. Obviously, he is not
happy about the fact that his men got arrested, but he
prefers to pay them extra money for one year than to do
without them for another two years. Thus, he has saved
his clan an accumulated two years in jail.

3 3 0 4 0 0 1 1 2 0 4 4 2 4 0 0

4 0 1 1 0 0 0 2 4 2 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 5 3 3 0 4 0 5

0 2 4 0 1 1 0 2

5 0 2 0 5 0 2 0 0 0

VBPOT G(U+VBPOT)

VPOTG(U) G(U+VPOT)

Fig. 2. Prisoners’ Dilemma. By offering payments VBPOT in game
G of Figure 1, the police implements the right bottom corner strategy
profile (c, c). As V1(c, c) = V2(c, c) = 0, payments V implement
(c, c) for free. The players’ welfare is worsened by 2. Hence, strategy
profile (c, c) has a Byzantine Potential of 2.

Let us consider a slightly different scenario where
after the police officers proposed their offer to the pris-
oners, their commander-in-chief comes up with an even
more promising deal. He offers each criminal to drop
two years of the four-year sentence in case he confesses
the entire bank robbery and his accomplice betrays him.
Moreover, if he confesses all and the accomplice remains
silent they would let him go free and even reward his
honesty with a share of the booty (worth going to prison
for one year). However, if both suspects confess the
entire coup, they will both go to prison for four years.

1For this scenario, we presume that time really is money!

In this new situation it is most rational for a prisoner to
confess. Thus, since both are presented the same deal,
they will both confess and therefore be charged a four
year-sentence. With this trick, the commander-in-chief
accomplishes to implement the best outcome in his point
of view without dropping any sentence and he increases
the accumulated years in prison by two.

From Mr. Capone’s point of view, implementing the
outcome where both prisoners keep quiet brings the
Capone Clan two years. Thus, the strategy profile where
both prisoners play s has a potential of two. From
the police’s point of view, the strategy profile where
both prisoners play c has a potential of two. Since
implementing c worsens the player’s payoff, we say the
strategy profile where both play c has Byzantine potential
of two.

In the described scenario, Mr. Capone and the
commander-in-chief solve the optimization problem of
finding the game’s strategy profile(s) which bear largest
(Byzantine) potential and therewith the problem of im-
plementing the corresponding outcome at optimal cost.
This paper analyzes these problems’ complexity and
presents algorithms for finding the potential of games in
different models. We show that while some tasks can be
solved in polynomial time by the mechanism designer,
some tasks are NP-hard. We believe that our notion of
potentials raises interesting algorithmic questions in a
variety of models beyond standard game theory, some
of which are presented briefly in this paper as well.

The remainder of this paper is organized as follows.
In the next section (Section II), related literature is
reviewed and compared to our work. We introduce some
formalism and our model in Section III. Section IV then
presents various algorithms for computing the potential
of a game. The subsequent section, Section V studies the
case of less risk averse players and shows how so-called
expected implementation cost is computed. Section VI
introduces expected potential analysis and presents al-
gorithms for finding a game’s expected potential. Two
interesting extensions of our model are presented in
Section VII, namely average payoff and dynamic games,
before Section VIII concludes the paper.

II. RELATED WORK

Research in the area of algorithmic mechanism design
and game theory is very active and it is impossible to
give a complete overview. For good introductions to
game theory and microeconomic theory see [6] and [4],
respectively.



The notion of game potential is related to the notion of
k-implementation tossed by Monderer and Tennenholtz
[5]. They consider an interested third party who cannot
enforce behaviors and cannot change the system, and
who attempts to lead agents to adopt desired behaviors
in a given multi-agent setting. The only way the third
party can influence the outcome of the game is by
promising non-negative monetary transfers conditioned
on the observed behavior of the agents. They show that
surprisingly, the interested third party might be able to
induce a desired outcome at very low costs (cf also [8]).
The authors provide algorithms for computing the min-
imal cost required for implementing a certain outcome
of the game. However, these cost are not compared to
the corresponding changes of the social cost they entail.
We aim at filling this gap by introducing the notion of
game potential.

Eidenbenz et al. [2] have continued the analysis of [5]
and have provided deeper insights about the possibilities
and algorithmic complexities of mechanisms based on
creditability. They provide algorithms for computing a
strategy profile region’s implementation cost and ex-
tended the notion of k-implementation to round-based
games, risk-averse player games and average payoff
games.

Our work is also related to Stackelberg theory [7]
which studies games of selfish player, but where a frac-
tion of the entire population is orchestrated by a global
leader. However, in contrast to our paper, the leader is
not bound to offer any incentives (or credits) to follow
his objectives. Moreover, in the recent research thread of
combinatorial agencies [1], a setting is studied where a
mechanism designer seeks to influence the outcome of a
game by contracting the players individually; however,
he is not able to observe the player’s individual actions
but the contracts can only depend on the overall outcome.

III. MODEL

This section first reviews some basic definitions and
formalisms from game theory which are needed for our
analysis. Subsequently, the concept of mechanism design
with creditability is introduced.

A. Game Theory

A strategic game can be described by a tuple G =
(N,X,U). N = {1, 2, . . . , n} is the set of players and
each player i ∈ N can choose a strategy (action) from
the set Xi. The product of all the individual players’
strategies is denoted by X := X1 × X2 × . . . × Xn.
In the following, a particular outcome x ∈ X is called

strategy profile and we refer to the set of all other
players’ strategies of a given player i by X−i = X1 ×
. . . × Xi−1 × Xi+1 × . . . × Xn. An element of Xi is
denoted by xi, and similarly, x−i ∈ X−i; hence x−i is a
vector consisting of the strategy profiles of xi. Finally,
U = (U1, U2, . . . , Un) is an n-tuple of payoff functions,
where Ui : X 7→ R determines player i’s payoff arising
from the game’s outcome.

The social gain of a game’s outcome is given by the
sum of the individual players’ payoffs at the correspond-
ing strategy profile x, i.e. gain(x) :=

∑n
i=1 Ui(x). Let

xi, x
′
i ∈ Xi be two strategies available to player i. We

say that xi dominates x′i iff Ui(xi, x−i) ≥ Ui(x′i, x−i)
for every x−i ∈ X−i and there exists at least one x−i

for which a strict inequality holds. xi is the dominant
strategy for player i if it dominates every other strategy
x′i ∈ Xi\{xi}. xi is a non-dominated strategy if no other
strategy dominates it. By X∗ = X∗

1 × X∗
2 × . . . × X∗

n

we will denote the set of non-dominated strategy profiles,
where X∗

i is the set of non-dominated strategies available
to the individual player i.

The set of best responses Bi(x−i) for player i given
the other players’ actions is defined as Bi(x−i) :=
{arg maxxi∈Xi

Ui(xi, x−i)}. A Nash equilibrium is a
strategy profile x ∈ X such that for all i ∈ N , xi ∈
Bi(x−i).

B. k-Implementation

We use the standard assumption that players are ra-
tional and always choose a non-dominated strategy. We
examine the impact of payments to players offered by a
mechanism designer (an interested third party) who seeks
to influence the outcome of a game. These payments
V = (V1, V2, . . . , Vn) are described by a tuple of non-
negative payoff functions, where Vi : X 7→ <, i.e.
they depend on the strategies player i selects as well
as on the choices of all other players. The original game
G = (N,X,U) is modified to GV := (N,X, [U + V ])
by these payments, where [U +V ]i(x) = Ui(x)+Vi(x),
hence each player i obtains the payoff of Vi in addition
to the payoffs of Ui. The players’ choice of strategies
changes accordingly: Each player now selects a non-
dominated strategy in GV . Henceforth, the set of non-
dominated strategy profiles of GV is denoted by X∗(V ).
A strategy profile set — also called strategy profile
region — O ⊆ X of G is a subset of all strategy profiles
X , i.e., a region in the payoff matrix consisting of one
or multiple strategy profiles. Similarly to Xi and X−i,
we define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈ O}
and O−i := {x−i|∃xi ∈ Xi s.t. (xi, x−i) ∈ O}.



The mechanism designer’s main objective is to force
the players to choose a certain strategy profile or a set
of strategy profiles, without having to spend too much.
Concretely, for a desired strategy profile region O, we
say that payments V implement O if ∅ ⊂ X∗(V ) ⊆ O. V
is called k-implementation if, in addition

∑n
i=1 Vi(x) ≤

k ∀x ∈ X∗(V ). That is, the players’ non-dominated
strategies are within the desired strategy profile, and the
payments do not exceed k for any possible outcome.
Moreover, V is an exact k-implementation of O if
X∗(V ) = O and

∑n
i=1 Vi(x) ≤ k ∀x ∈ X∗(V ).

The costs k(O) of implementing O is the lowest of
all non-negative numbers q for which there exists a q-
implementation. If an implementation meets this lower
bound, it is optimal, i.e., V is an optimal implementation
of O if V implements O and maxx∈X∗(V )

∑n
i=1 Vi(x) =

k(O). The cost k∗(O) of implementing O exactly is the
smallest non-negative numbers q for which there exists
an exact q-implementation of O. V is an optimal exact
implementation of O if it implements O exactly and
requires the costs k∗(O). The set of all implementations
of O will be denoted by V(O), and the set of all exact
implementations of O by V∗(O). Finally, a strategy
profile region O = {z} of cardinality one — consisting
of only one strategy profile — is called a singleton.
For simplicity’s sake we often write z instead of {z}
and V (z) instead of

∑
i∈N Vi(z). Clearly it holds for

singletons that non-exact and exact k-implementations
are equivalent. Moreover, observe, that only subsets of
X which are in 2X1 ×2X2 × . . .×2Xn ⊂ 2X1×X2×...×Xn

can be implemented exactly. We call such a subset of X
a convex strategy profile region.2

C. (Byzantine) Potential

k-implementation provides a tool for mechanism de-
signers to implement desired outcomes in games. How-
ever, the question remains for which games it makes
sense to take influence at all and if it does, which
outcome is worth implementing. For that matter we
look at two diametrically opposed kinds of interested
parties. One being benevolent towards the participants
of the game, the other being malicious. We presume that
the former is interested in increasing a game’s social
gain whereas the latter wants the players’ welfare to
be as low as possible, preferably negative! For both,
we define a measure aimed to indicate whether the
mechanism of implementation enables them to modify

2because these regions define a convex area in the payoff matrix,
provided that the strategies are depicted such that all oi are next to
each other.

a game in such a favorable way that their gain exeeds
the manipulation’s cost. We call this measure potential
and Byzantine potential respectively. We define a single
strategy profile’s potential first.

Definition 3.1 ((Byzantine) Singleton Potential): A
strategy profile z ∈ X has a singleton potential

POT (z) := gain(z)− max
x∗∈X∗

gain(x∗)− k(z)

and a Byzantine singleton potential

BPOT (z) := min
x∗∈X∗

gain(x∗)− gain(z)− k(z) .

If a singleton z has a (Byzantine) potential of p, this
means that by implementing z, a (Byzantine) interested
party gains p more than she pays. If z’s (Byzantine)
potential is larger than 0, this indicates that z is worth
implementing for the respective interested party.

Note that if the original game has several non-
dominated outcomes (|X∗| > 1) we assume the worst
case, namely that the players would choose, the non-
dominated strategy profile with maximal gain for POT
and the one with minimal gain for BPOT .

As it is not only possible to implement singletons but
also sets of strategy profiles, we define a potential for
sets as well.

Definition 3.2 ((Byzantine) Set Potential):
A strategy profile region O has a potential

POT (O) := maxV ∈V(O)

[
minz∈X∗(V ) [gain(z)− V (z)]

]
−maxx∗∈X∗ gain(x∗)

and a Byzantine potential

BPOT (O) := minx∗∈X∗ gain(x∗)
−minV ∈V(O)

[
maxz∈X∗(V ) [gain(z) + V (z)]

]
.

Note that we slightly misuse notation by reusing
the POT− , BPOT−Function for singletons, strategy
profile regions and entire games.

Definition 3.3 ((Byzantine) Game Potential):
A game G = (N,X,U) has a potential
POT (G) := maxO⊆X POT (O) and a Byzantine
potential BPOT (G) := maxO⊆X BPOT (O)
We sometimes refer to a game G with POT (G) ≤ 0
(BPOT (G) ≤ 0) as a game which has no (Byzantine)
potential.

Similar to the concept of exact implementation, we
define an exact potential POT ∗(O) and an exact Byzan-
tine potential BPOT ∗(O) by simply adapting V(O) to
V∗(O) in the definition of POT (O) and BPOT (O).
Thus, exact (Byzantine) potential measures a region’s
potential if the interested party may only use payments
V which implement O exactly.



IV. STANDARD POTENTIAL

This section studies potential and Byzantine potential
in games. We start the analysis with singleton (Byzan-
tine) potential and then proceed to the potential of entire
sets. Finally, we state an exponential correct algorithm
for finding a strategy profile region’s (Byzantine) poten-
tial and present polynomial approximation algorithms.

A. Singletons

Consider an interested party who has to be sure
about which specific strategy profile will rise from
the game. More formally speaking, we presume
her to be interested only in implementing single-
ton regions. Recall the formula for singleton poten-
tial, POT (z) = gain(z) − maxx∗∈X∗ gain(x∗) −
k(z). As Monderer and Tennenholtz found in [5],
there is a polynomial formula for a singleton’s cost,
k(z) =

∑n
i=1 maxxi∈Xi

(Ui(xi, z−i)− Ui(zi, z−i)).
Thus the complexity of computing singleton potential
(and Byzantine singleton potential) is polynomial. A log-
ical task for the benevolent mechanism designer would
be to find a game’s best singleton, i.e. the strategy profile
with the highest singleton potential. Whereas the dual
task for a malicious designer would be to find the profile
with the highest Byzantine potential. We propose an
algorithm that computes two arrays, POT and BPOT ,
containing all (Byzantine) singleton potentials within
a strategy profile region O. By setting O = X , the
algorithm computes all singleton (Byzantine) potentials
of an entire game.

Algorithm 1 initializes the POT -array with the nega-
tive value of the original game’s maximal social gain in
the non-dominated region and the BPOT -array with its
minimal social gain. In the remainder, the algorithm then,
for each player and strategy profile, adds up the player’s
contribution to the profiles’ (Byzantine) potential. In any
field z of the potential array POT , we add the amount
that player i would contribute to the social gain if z was
played and subtract the cost we had to pay him, namely
Ui(xi, x−i) − (m − Ui(xi, x−i)) = 2Ui(xi, x−i) − m .
For any entry z in the Byzantine potential array BPOT ,
we subtract player i’s contribution to the social gain and
also the amount we would have to pay if z was played,
−Ui(xi, x−i)− (m−Ui(xi, x−i)) = −m . At the end of
the algorithm, POT and BPOT contain all singleton
potentials, resp. singleton Byzantine potentials in O.
The interested party may then find the best singleton
by searching the maximal entry in the respective array
which takes O(|O|) time.

Algorithm 1 Compute Singleton (Byzantine) Potentials
Input: Game G, Region O ⊆ X
Output: Matrices POT and BPOT

1: for all strategy profiles x ∈ O do
2: POT [x] := −maxx∗∈X∗ gain(x∗);
3: BPOT [x] := minx∗∈X∗ gain(x∗);
4: for all players i ∈ N do
5: for all x−i ∈ O−i do
6: m := maxxi∈Xi

Ui(xi, x−i);
7: for all strategies zi ∈ Oi do
8: POT [zi, x−i] += 2 ∗ Ui(zi, x−i)−m;
9: BPOT [zi, x−i] -= m;

Theorem 4.1: For a game where every player has at
least two strategies, Algorithm 1 computes all singleton
(Byzantine) potentials within a strategy profile region O
in O(n |X|) time.

PROOF. Algorithm 1 is correct because it applies
the (Byzantine) singleton potential formula in order
to compute POT and BPOT . Finding the non-
dominated strategies in the original game is exactly
the task the players do in order to determine their
strategy. That is why we do not consider this task
in the algorithm’s runtime analysis. Finding the max-
imal, resp. minimal gain amongst the possible out-
comes X∗ of the original game can be done in
O(n |X∗|). Computing m takes O(|Xi|). Updating POT
and BPOT is done in constant time. Adding up
over all foreach clauses, we get for this algorithm’s

runtime:O

n |X∗|+
∑

i∈N [|O−i| ∗ (|Xi|+ |Oi|)︸ ︷︷ ︸
=|O−i||Xi|+|O|

]

 =

O(n |X∗|+ n maxi∈N (|O−i| |Xi|) + n |O|) ∈ O(n |X|)
�

When Algorithm 1 is used for computing all (Byzan-
tine) singleton potentials throughout the game, i.e. O =
X , the input consists of |X| strategy profiles which each
bear n independent payoffs (one for each player). Thus,
the presented algorithm is linear with respect to its input.

Corollar 4.1: Algorithm 1 computes all (Byzantine)
singleton potentials in linear time.

B. Sets

Implementing only singletons might often be of no
disadvantage to the interested party, namely in games
where the strategy profile region yielding the largest
(Byzantine) potential is of cardinality 1. In general, how-
ever, in order to find a subregion of X yielding maximal
(Byzantine) potential the designer must consider regions



consisting of more than one strategy profile as well. We
can construct games where the difference between the
best (Byzantine) set potential and the best (Byzantine)
singleton potential gets arbitrarily large. Figure 3 depicts
such a game for the case of potential. A similar game
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Fig. 3. 2-player Game where region O bears the largest potential.
Implementation V yields |X∗(V )| = O. By offering payments V , a
benevolent mechanism designer has cost 2, no matter which o ∈ O
will be played. However, she improves the social welfare by (10 +
19) − (10 + 10) = 9. Thus O has a potential of 7 whereas any
singleton o ∈ O has a potential of 29− 20− 11 = −2. By reducing
player 2’s payoffs in the upper game half and player 1’s payoffs in
the right game half, O ’s potential gets arbitrarily large.

can be used to show an arbitrarily large difference in
Byzantine potentials: E.g. set the payoffs in the four
upper right strategy profiles of the game G in Figure 3
to 100 instead of 10. V still implements O but switching
to O now decreases the social gain tremendously.

Although many factors and parameters have an influ-
ence on a strategy profile region’s (Byzantine) potential,
there are a few observations one can make when looking
at some examples. The first is the fact that if rational
players already choose strategies such that the strategy
profile with the highest social gain is non-dominated, a
designer will not be able to ameliorate the game. Just as
well, a malicious interested party will have nothing to
corrupt if a game already yields the lowest social gain
possible.

Fact 4.2:
(i) If a game G’s social optimum xopt :=

arg maxx∈X gain(x) is in X∗ then G has
potential.

(ii) If a game G’s social worst xwrst :=
arg minx∈X gain(x) is in X∗ then G has no
Byzantine potential.

A class of games where both properties (i) and (ii) of
Fact 4.2 always hold is the class of equal sum games.
Equal sum games are games where every strategy profile
yields the same gain, this is gain(x) = c ∀x ∈ X, c :

constant.
Fact 4.3 (Equal Sum Games): An equal sum game

has neither potential nor Byzantine potential.
A well-known example of an equal sum game is Match-
ing Pennies, depicted in Figure 4. This example game
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Fig. 4. Matching Pennies. Both players toss a penny, if both show
the same face, player 2 gives his penny to player 1, if the pennies do
not match, player 2 gets the pennies. This game has neither potential
nor Byzantine potential.

features another special property: There is no dominated
strategy. Therefore an interested party could only imple-
ment strategy profile regions O which are subsets of X∗.
This raises the question whether a region O ⊆ X∗ can
ever have (Byzantine) potential. We find that the answer
is no and moreover:

Theorem 4.4: A strategy profile region O ⊆ X in-
tersecting with the region of non-dominated strategy
profiles X∗ has neither potential nor Byzantine potential.
PROOF. Assume that |O ∩X∗| > 0 and let z
be a strategy profile in the intersection of O and
X∗. Let x∗max := arg maxx∗∈X∗ gain(x∗) and
x∗min := arg minx∗∈X∗ gain(x∗) . We get for the
potential POT (O) = mino∈O

[
gain(o)− kO(o)

]
−

gain(x∗max) ≤
[
gain(z)− kO(z)

]
− gain(x∗max) ≤

gain(x∗max) − kO(z) − gain(x∗max) = −kO(z) ≤ 0,
and for the Byzantine potential BPOT (O) =
gain(x∗min) − maxo∈O

[
gain(o) + kO(o)

]
≤

gain(x∗min) −
[
gain(z) + kO(z)

]
≤ gain(z) −

gain(z)− kO(z) = −kO(z) ≤ 0 . �
In general, though, the problem of computing a strat-

egy profile region’s (Byzantine) potential seems compu-
tationally hard. As it is very much related to the problem
of computing a region’s implementation cost, which is
(unfortunately not proved, but) conjectured in [2] to be
NP-hard, we also conjecture the problem of finding
POT (O) or BPOT (O) to be NP-hard in general. We
can in fact, show that computing Byzantine potential has
at least the same complexity as computing a region’s
cost.

Theorem 4.5: The problem of computing a strategy
profile region’s Byzantine potential is at least as hard as
the problem of computing the region’s implementation
cost.

PROOF. We show Theorem 4.5 by reducing the prob-
lem of computing k(O) to the problem of computing



BPOT (O). Theorem 4.4 allows us to assume O and X∗

do not intersect since |O ∩X∗| implies BPOT (O) = 0
anyway. A strategy profile region’s cost are by def-
inition k(O) = minV ∈V(O)

(
maxz∈X∗(V ) V (z)

)
and

from the Byzantine potential’s definition (Definition 3.2),
we have minV ∈(V )

(
maxz∈X∗(V ) [gain(z) + V (z)]

)
=

minx∗∈X∗ gain(x∗)−BPOT (O). We see that the latter
equation’s left hand side almost matches the formula for
k(O) if not for the term gain(z). If we can manage
to modify the given game such that all strategy profiles
inside X∗(V ) ⊆ O have a gain of 0 without modifying
O’s cost, we will be able to reduce O’s cost to k(O) =
minx∗∈X∗ gain(x∗) − BPOT (O). This is achieved by
the following transformation of a cost problem instance
(G, O) into a BPOT problem instance (G′, O): Add an
additional player n+1 with one strategy a and a payoff
function Un+1(x) equal to −gain(x) if x ∈ O and 0
otherwise. Thus, a strategy profile x in G′ has social gain
equal to 0 if it is in O and equal to gain(x) in the original
game if it is outside O. As player n + 1 has only one
strategy available, G′ has the same number of strategy
profiles as G and furthermore, there will be no payments
Vn+1 needed in order to implement O. Player (n + 1)’s
payoffs impact only on the profiles’ gain. They have no
effect on how the other players decide their tactics. Thus,
the non-dominated region in G′ is the same as in G and it
does not intersect with O. Since the transformation does
not affect the term minx∗∈X∗ gain(x∗), the region’s cost
in G are equal to minx∗∈X∗ gain(x∗) − BPOT (O) in
G′. �

C. Algorithms

The task of finding a strategy profile region’s potential
is computationally hard. Recall that we have to find
an implementation V of O which maximizes the term
minz∈X∗(V ) [gain(z)− V (z)]. Thus, there is at least
one implementation V ∈ V(O) bearing O’s potential.
Since this V implements a subregion of O exactly, it is
also valid to compute O’s potential by searching among
all subregions O′ of O the one with the largest exact
potential POT ∗(O′). 3

In the following we provide an algorithm which com-
putes a convex strategy profile region’s exact potential.
It makes use of the fact that if X∗(V ) is supposed to be

3Note that we do not provide algorithms for computing Byzantine
potential but rather potential only. This is not because we decide to
support only benevolent designers but because we consider a villain
– or a reader interested in how a villain might corrupt a game –
capable of transforming the potential algorithms into their Byzantine
versions.

a subset of O, each strategy ōi /∈ Oi must be dominated
by at least one strategy oi in the resulting game G(V ).
Algorithm 1 in [2] which computes a region’s exact
cost is based on the same property. We will not give
an explicit algorithm for computing POT (O) because
we cannot provide a more efficient way to solve this
problem if not by computing all convex subregions’
exact potential with Algorithm 2 and returning the largest
potential found.

Algorithm 2 Exact Potential
Input: Game G, convex region O with O−i ⊂ X−i∀ i
Output: POT ∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: return ExactPOT(V , 1)−maxx∗∈X∗ gain(x∗);

ExactPOT(V , i):
Input: payments V , current player i
Output: maxW∈{W |W (x)≥V (x) ∀x∈X} mino∈O (gain(o)−W (o))

1: if |X∗
i (V )\Oi| > 0 then

2: s := any strategy in X∗
i (V )\Oi; potbest := 0;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: W (oi, o−i):=max{0, Ui(s, o−i)−

(Ui(oi, o−i) + V (oi, o−i))};
6: pot := ExactPOT(V + W , i);
7: if pot > potbest then
8: potbest := pot;
9: for all o−i ∈ O−i do

10: W (oi, o−i) := 0;
11: return potbest;
12: else if i < n then
13: return ExactPOT (V , i + 1);
14: else
15: return mino∈O (gain(o)− V (o));

Theorem 4.6: Algorithm 2 computes a
strategy profile region’s exact potential in time
O

(
n |X|+ n

(
maxi∈N |Oi|n maxi∈N |X∗

i |
))

.
PROOF. The algorithm is correct because it recursively
searches all possibilities of a strategy in Xi\Oi to be
dominated by a strategy in Oi. For further explanations
on correctness and a proof of the algorithm’s runtime
see the proof of Algorithm 1 in [2]. �

Note that Algorithm 2 has a non-polynomial time
complexity which we presume to be inavoidable for a
correct algorithm.

However, there are polynomial algorithms which
approximate POT (O), POT ∗(O), BPOT (O) or



BPOT ∗(O). We present a number of algorithms which
all provide a lower bound of POT (O). A rather simple
lower bound is found when searching for the maximal
singleton (Byzantine) potential inside the target region.
Therefore, Algorithm 1 provides one possibility of ap-
proximating a region’s (Byzantine) potential. One has
it compute all singleton (Byzantine) potentials inside O
and then searches the returned arrays for the largest entry.
Unfortunately, the game depicted in Figure 3 describes a
game configuration which allows the difference between
the best (Byzantine) singleton potential and the best
(Byzantine) set potential to be arbitrarily large. Thus, a
best singleton approximation is arbitrarily bad in general.

We present a greedy algortihm (cf Algorithm 3)
which associates each strategy x∗i ∈ X∗

i \Oi yet
to be dominated with strategy oi ∈ Oi maximiz-
ing the term mino−i∈O−i

(gain(oi, o−i) − V (oi, o−i) −
max{0, Ui(s, o−i)− Ui(oi, o−i)− V (oi, o−i)}). This is,
in each step we choose to dominate a non-dominated
strategy with a strategy such that in the worst case,i.e.
if X∗(V ) gets to be the entire region O, the potential is
maximized. Similarly to the SETCOVER greedy algo-
rithm [3] which chooses in each step the subset covering
the most elements not covered already, Algorithm 3
selects a pair of x∗i ,oi such that by dominating x∗i with oi,
the number of strategies in X∗

i \Oi that will be dominated
therewith is maximal. Thus, in each step there will be
an oi assigned to dominate x∗i which is locally worst
case optimal. Additionally, if there is the chance of
dominating multiple strategies, the algorithm takes it.

Theorem 4.7: Algorithm 3 returns
a lower bound of POT ∗(O) in
O

(
n |X|+ n |O|maxi∈N

[
|X∗

i \Oi|3 |O−i|2
])

.
PROOF. The algorithm is correct, since it finds a correct
implementation V of O and computes the improvement
V brings. Any improvement induced by a correct im-
plementation is at most as large as O’s potential. For a
proof of the algorithm’s runtime we refer to the proof of
Algorithm 3 in [2]. �

V. EXPECTED IMPLEMENTATION COST

In the previous section, we always assumed the worst
case to happen for the interested party. In particular, we
defined the costs of an implementation V to be equal
to the costs of the strategy profile in X∗(V ) with the
highest payments. Now, this seems to be a point of view
of a risk averse interested party. One might also think
of an interested party which takes some risk and would
like to influence the game even if in the worst case the
costs are much higher than in the average case. In order

Algorithm 3 Greedy Computation of Potential
Input: Game G, convex target region O
Output: Approximation(Lower Bound) of POT (O)

1: Vi(x) := 0; Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: for all i ∈ N do
3: Vi(oi, ō−i) := ∞ ∀oi ∈ Oi , ō−i ∈ X−i\O−i;
4: while X∗

i (V ) * Oi do
5: cbest := 0; mbest :=null; sbest :=null;
6: for all s ∈ X∗

i (V )\Oi do
7: m := arg minoi∈Oi

MinPot(s, oi);
8: for all o−i ∈ O−i do
9: W (m, o−i):=max{0, Ui(s, o−i)−

(Ui(m, o−i) + V (m, o−i))};
10: c := 0 ;
11: for all x ∈ X∗

i do
12: if m dominates x in G(V + W ) then
13: c + +;
14: if c > cbest then
15: cbest := c ; mbest := m ; sbest := s ;
16: for all o−i ∈ O−i do
17: V (mbest, o−i)+=max{0, Ui(sbest, o−i)−

(Ui(mbest, o−i) + V (mbest, o−i))};
18: return minx∈X∗(V ) [gain(x)− V (x)] −

maxx∗∈X∗ gain(x∗);
MinPot(s, oi):

1: return mino−i∈O−i
(gain(o) − V (o) −

max{0, Ui(s, o−i)− Ui(o)− V (o)});

to come up to a less risk averse mechanism designer’s
needs, we define the cost of an implementation V as the
average of all strategy profiles’ possible cost in X∗(V ).
By doing so, we assume all non-dominated strategy
profiles x ∈ X∗(V ) to have the same probability.

Definition 5.1 (Expected Cost): A strategy profile re-
gion O has expected implementation cost kEXP (O) :=
minV ∈V(O)

[
∅z∈X∗(V ) V (z)

]
where ∅ is the average

operator, meaning that ∅x∈X f(x) := 1
|X| ∗

∑
x∈X f(x)

and V (z) :=
∑n

i=1 Vi(z) .
Similar to the worst case cost, we can define the

expected cost for exactly implementing a strategy profile
region as follows:

Definition 5.2 (Exact Expected Cost): A strategy
profile region O has exact expected implementation cost
k∗EXP (O) := minV ∈V∗(O)

[
∅z∈X∗(V ) V (z)

]
A. Exact

Since the set of all exact implementations for a re-
gion O is a subset of all implementations for O, i.e.



V∗(O) ⊆ V(O), it seems easier to have a look at exact
implementations first.

Note that for strategy profile regions O with
k∗EXP (O) = 0 any exact implementation V must have
zero payments for any profile inside O, i.e. Vi(o) =
0∀ i ∈ N, o ∈ O, because otherwise, the interested party
would risk paying something. Thus, for 0-implementable
strategy profiles regions, the concepts of worst case exact
cost and expected exact cost coincide, i.e., k∗EXP (O) = 0
iff k∗(O) = 0. Therefore, Algorithm 4 decides not only
if O has worst case exact cost of 0, but if it has expected
exact cost of 0 as well. Corresponding to Theorem 4.2
in [2], the following holds:

Theorem 5.1: Algorithm 4 decides for a convex strat-
egy profile region whether its expected implementation
cost are equal to 0 or larger in O(|X∗| |O|) time.

Algorithm 4 Expected Exact Zero Cost
Input: Game G, convex region O with O−i ⊂ X−i∀i
Output: true if k∗EXP (O) = 0, false otherwise

1: for all i ∈ N do
2: for all s ∈ X∗

i \Oi do
3: dZero := false;
4: for all oi ∈ Oi do
5: b := true;
6: for all o−i ∈ O−i do
7: b := b ∧ (Ui(s, o−i) ≤ Ui(oi, o−i));
8: dZero := dZero ∨ b;
9: if !dZero then

10: return false;
11: return true;

For cases where k∗EXP (O) > 0, we can show that the
problem of computing k∗EXP (O) is NP-hard.

Theorem 5.2: The problem of finding a strategy pro-
file region’s expected exact implementation cost is NP-
hard unless k∗EXP (O) = 0.
PROOF. In order to prove Theorem 5.2 we reduce
the optimization version of the SETCOVER problem
shown to be NP-hard by Karp in [3], to the prob-
lem of computing k∗EXP (O). The SETCOVER prob-
lem is the problem of finding, for a given universe
U of n elements {e1, e2, . . . , en} and m subsets S =
{S1, S2, . . . , Sm}, Si ⊂ U the minimal collection of
Si’s which contains each element ei ∈ U . Karp proved
SETCOVER to be NP-complete in his seminal work
[3]. Given a SETCOVER problem instance SC =
(U ,S), we can construct a game G = (N,X,U) where
N = {1, 2}, X1 = {u1, u2, . . . , un, s1, s2, . . . , sm},
X2 = {u1, u2, . . . , un, d, r}. A strategy uj correspond

to element ej ∈ U , strategy sj corresponds to a set Sj .
Player 1’s payoff function U1 is defined as follows:

U1(ui, uj) :=
{

m + 1 if i = j
0 otherwise

U1(si, uj) :=
{

m + 1 if ej ∈ Si

0 otherwise
U1(ui, d) := 1

U1(si, d) := 0

U1(x1, r) := 0 ∀x1 ∈ X1

Player 2 has a payoff of 0 when she plays r and 1 oth-
erwise. In this game, strategies uj are not dominated for
player 1 because in column d, U1(uj , d) > U1(si, d)∀i ∈
{1, . . . m}. The region O we would like to implement is
{(x1, x2)|x1 = si ∧ (x2 = ui ∨ x2 = d)}. See Figure 5
for an example.
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Fig. 5. Payoff matrix for player 1 in game which reduces
the SETCOVER problem instance SC = (U ,S) where U =
{e1, e2, e3, e4, e5}, S = {S1, S2, S3, S4}, S1 = {e1, e4}, S2 =
{e2, e4}, S3 = {e2, e3, e5}, S4 = {e1, e2, e3} to the problem of
computing k∗EXP ( O ). The optimal exact implementation V of O
in this example game adds a payment V1 of 1 to the strategy profile
(s1, d) and (s3, d). This indicates that the two sets S1 and S3 cover
U optimally.

We claim that if Q = {Q1, Q2, . . . , Qk}, where each
Qj corresponds to an Si, is an optimal covering set for a
SETCOVER problem, an optimal exact implementation
V of O in the corresponsing game has payments

V1(si, d) :=
{

1 if Qi ∈ Q
0 otherwise

V1(si, uj) := 0

Such a payment matrix makes all strategies ui of
player 1 dominated since any strategy ui representing



element ei is dominated by the strategies sj correspond-
ing to Sj which cover ei in the minimal covering set.4 If
there are any strategies si dominated by other strategies
sj , we can make them non-dominated by setting the
payments V1(si, r) in the extra column r accordingly.5

It remains to show that such an implementation is
optimal indeed and there are no other optimal imple-
mentations not corresponding to a minimal covering set.

Note that by setting V1(si, d) = 1 and V1(si, r) > 0
for all si, all strategies uj are guaranteed to be domi-
nated and V implements O exactly with expected cost
∅o∈O V (o) = m

|O| . If an implementation had a positive
payment for any strategy profile of the form (si, uj) it
would have to be of an amount of at least m+1 to have
an effect. A positive payment ≤ m + 1 would already
yield larger cost, namely m+1

|O| , than the above mentioned
implementation which sets all V1(si, d) to 1. Thus, an
optimal V has positive payments inside region O only in
column d. Due to our construction, by setting V1(si, d)
to 1, si dominates the strategies uj which correspond
to the elements in Si. An optimal implementation has
a minimal number of 1’s in column d. This can be
achieved by selecting those strategies si, i.e. by setting
V1(si, d) := 1, which form a minimal covering set. �

B. General

Having proved that computing a strategy profile region
O’s expected exact implementation cost is NP-hard,
one expects the general problem of computing expected
implementation cost to be NP-hard as well. However,
we need to come up with a rather sophisticated game
configuration which reduces SETCOVER to the problem
of finding an implementation of a strategy profile region
with optimal expected cost. With this reduction, we can
prove the following:

Theorem 5.3: The problem of finding a strategy pro-
file region’s expected implementation cost is NP-hard.

PROOF. We give a similar reduction of the SET-
COVER problem to the problem of computing kEXP (O)
by extending the setup we used for proving Theorem
5.2. Given a SETCOVER problem instance SC =
(U ,S), we can construct a game G = (N,X,U) where
N = {1, 2, 3}, X1 = {u1, u2, . . . , un, s1, s2, . . . , sm},
X2 = {u1, u2, . . . , un, s1, s2, . . . , sm, d, r}, X3 =
{a, b}. Again, a strategy uj corresponds to element

4If |Sj | = 1 sj gives only equal payoffs in G(V ) to those of ui

in the range of O2. However, sj can be made dominating ui easily
by increasing sj’s payoff V1(sj , r) in the extra column r.

5In [2], the proof of Theorem 5.1 shows that one column is enough
to attain a game where no strategy dominates any other.

ej ∈ U , strategy sj corresponds to a set Sj . In the
following, when we use ” ” in profile vectors we thereby
mean profiles where can be any of the current player’s
possible strategies. Player 1’s payoff function U1 is
defined as follows:

U1(ui, uj , ) :=
{

(m + n)2 if i = j
0 otherwise

U1(ui, sj , ) := 0

U1(si, uj , ) :=
{

(m + n)2 if ej ∈ Si

0 otherwise

U1(si, sj , ) :=
{

0 if i = j
(m + n)2 otherwise

U1(ui, d, ) := 1

U1(si, d, ) := 0

U1( , r, ) := 0

Player 2 has a payoff of (m + n)2 for any strategy
profile of the form (si, si, ), a payoff of 0 for when
she plays r and 1 for any other strategy profile. Player
3 has a payoff of (m + n)2 for strategy profiles of the
form (si, si, b), a payoff of 2 for profiles (si, ui, b) and
profiles (si, sj , b), i 6= j and a payoff of 0 for any other
profile. The region O we would like to implement is
{(x1, x2, x3)|x1 = si and (x2 = ui,x2 = si or x2 = d)
and (x3 = a)}. See Figure 6 for an example.

First, note the fact that any implementation of O
will have V3(o1, o2, a) ≥ U3(o1, o2, b), in order to
leave player 3 no advantage playing b instead of a.
In fact, setting V3(o1, o2, a) = U3(o1, o2, b) suffices.6

Analogously to the proceeding in Theorem 5.2’s proof,
we claim that if Q = {Q1, Q2, . . . , Qk}, where each Qj

corresponds to an Si, is an optimal covering set for a
SETCOVER problem, an optimal exact implementation
V of O in the corresponsing game selects a row si, i.e. it
has payments V1(si, d, a) = 1, if Qi ∈ Q and it does not
select it (V1(si, d, a) = 0) otherwise. All other payments
V1 inside O are 0. Player 2’s payments V2(o) are 0 for
all o ∈ O and player 3’s payoffs are set V3(o1, o2, a) =
U3(o1, o2, b). A selected row si contributes expected cost
of costsi

= 1
n+m+1(n+m)·2+n+m+1. A non-selected

row sj contributes costsj
= 1

n+m+1(n+m)·2+n+m <
costsi

. Thus it is worth including also non-selected rows
in X∗(V ). When selecting all rows si the expected cost
are costallrows = ∅m

i=1 costsi
= 1

n+m+13(n+m)+1 < 3
In fact, the constructed game’s payoffs are chosen such
that it is not worth implementing any region smaller than

6Make it worthier for player 3 playing a in a profile outside O and
thus convince her to choose a
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Fig. 6. Payoff matrix for player 1 and player 2 given player 3
choses a and payoff matrix for player 3 when she plays strategy
b in game which reduces the SETCOVER problem instance SC =
(U ,S) where U = {e1, e2, e3, e4, e5}, S = {S1, S2, S3, S4}, S1 =
{e1, e4}, S2 = {e2, e4}, S3 = {e2, e3, e5}, S4 = {e1, e2, e3} to the
problem of computing kEXP ( O ). Every implementation V of O
in a game thus constructed needs to add any positive payment in the
second matrix to V3, i.e. V3(x1, x2, a) = U3(x1, x2, b), in order to
convince player 3 of playing strategy a. An optimal implementation
adds a payment V1 of 1 to the strategy profile (s1, d, a) and (s3, d, a),
indicating that the two sets S1 and S3 cover U optimally in the
corresponding SETCOVER problem.

O. If an implementation V yields a subset X∗(O) ⊂ O
with a profile in row si, X∗(V ) must contain player 2’s
best response for this row, namely si, because otherwise,
we would have to offer a payment of U2(si, si, a) =
(n + m)2 which is already more than costallrows and
thus too much for V to be optimal. Hence, X∗(V ) must
contain (si, si, a). However, if (si, si, a) is in X∗(V )
then V3(si, si, a) ≥ U3(si, si, b) = n + m + 2 is part
of the cost as well. The only way for a row si not to
contribute too much to the cost is by compensating the

costly profile (si, si) with other, cheaper profiles 7. As
all other profiles of this row cost only V3(si, , b) = 2
– except for (si, d, a) which costs 1 or 0 – it makes
no sense not to implement the whole row. Therefore,
an optimal implementation yields X∗(V ) = O with the
inalienable payments to player 3 and a minimal number
of 1-payments to player 1 for strategy profiles (si, d, a)
such that every uj is dominated by at least one si. The
number of 1-payments is minimal if the selected rows
correspond to a minimal covering set. �

VI. EXPECTED POTENTIAL

How does it affect the (Byzantine) potential if we use
the same model of an interested party doing average-
case computation as in the previous section? Again, we
assume the mechanism designer to be willing to take
some risk if, in expectation, she improves the game,
or worsens the game in case she is malicious. A such
designer will offer payments yielding a non-dominated
region which maximizes the average difference between
social gain and disbursed payments. We introduce the
concept of expected (Byzantine) Potential.

Definition 6.1 (Expected (Byzantine) Potential):
A strategy profile region O has ex-
pected Potential POTEXP (O) :=
maxV ∈V(O)

[
∅z∈X∗(V ) (gain(z)− V (z))

]
−

∅x∗∈X∗(V ) gain(x∗) and expected Byzantine
potential BPOTEXP (O) := ∅x∗∈X∗(V ) [gain(x∗)] −
minV ∈V(O)

[
∅z∈X∗(V ) (gain(z) + V (z))

]
where

∅x∈X f(x) := 1
|X|

∑
x∈X f(x).

Note that the proposed interested party does not expect
the worst case to happen in the original game either, but
she rather calculates with the average social gain of the
non-dominated region X∗.

A. Expected Potential and Worst-Case Potential

The point of view of a mechanism designer calculating
with the average case is more optimistic than the one of
a risk averse designer who ever presumes the worst case
to happen. Thus the observation stating that the expected
(Byzantine) potential is always at least as large as the
normal (Byzantine) potential does not surprise.

Theorem 6.1: A region’s expected (Byzantine) po-
tential is always larger or equal the region’s (Byzan-
tine) potential, i.e. POTEXP (O) ≥ POT (O) and
BPOTEXP (O) ≥ BPOT (O).

7Compensating here means to choose payments V such that the
resulting X∗(V ) is extended with strategy profiles causing less cost
than (si, si) and therefore, the implementation’s average cost is
diminished



PROOF. POTEXP (O) :=
maxV ∈V(O)[∅z∈X∗(V ) (gain(z)− V (z))] −
∅x∗∈X∗(V ) gain(x∗) ≥
maxV ∈V(O)[minz∈X∗(V ) (gain(z)− V (z))] −
maxx∗∈X∗(V ) gain(x∗) = POT (O).
BPOTEXP (O) := ∅x∗∈X∗(V ) [gain(x∗)] −
minV ∈V(O)[∅z∈X∗(V ) (gain(z) + V (z))] ≥
minx∗∈X∗(V ) [gain(x∗)] −
minV ∈V(O)[maxz∈X∗(V ) (gain(z) + V (z))] =
BPOT (O) �
Note that in the special case of expected singleton
(Byzantine) potential, it holds that POTEXP (x) ≤
POT (x) and BPOTEXP (x) ≤ BPOT (x) where
x ∈ X .

B. Exact

Analogous to the cost definition in the last section,
we can define an exact expected potential POT ∗

EXP

and an exact expected Byzantine potential BPOT ∗
EXP

by simply adapting V(O) to V∗(O) in the definition of
POTEXP and BPOTEXP .

Theorem 6.2:
(i) Computing a strategy profile’s exact expected po-

tential is NP-hard.
(ii) Computing a strategy profile’s exact expected

Byzantine potential is NP-hard.
PROOF. In order to proof Theorem 6.2 we will show
that when POT ∗

EXP (O) is found, we immediately
find k∗EXP (O) which we already proved to be NP-
hard in Theorem 5.2. This reduction is possible
for the exact case only because any z ∈ O is also
in X∗(V ) for any V ∈ V∗(O). POTEXP (O) =
maxV ∈V∗(O)

(
∅z∈X∗(V ) [gain(z)− V (z)]

)
−

∅z∈X∗(V ) [gain(x∗)] =
maxV ∈V∗(O)

(
∅z∈X∗(V ) [gain(z)]−∅z∈X∗(V ) [V (z)]

)
−

∅x∗∈X∗ [gain(x∗)] = ∅z∈X∗(V ) [gain(z)] −
minV ∈V∗(O)

(
∅z∈X∗(V ) [V (z)]

)
− ∅x∗∈X∗ [gain(x∗)] =

∅z∈X∗(V ) [gain(z)]− k∗EXP(O)−∅x∗∈X∗ [gain(x∗)]
BPOTEXP (O) := ∅x∗∈X∗ [gain(x∗)] −
minV ∈V∗(O)

(
∅z∈X∗(V ) [gain(z) + V (z)]

)
=

∅x∗∈X∗ [gain(x∗)] − ∅z∈X∗(V ) [gain(z)] −
minV ∈V∗(O)

(
∅z∈X∗(V ) [V (z)]

)
= ∅x∗∈X∗ [gain(x∗)]−

∅z∈X∗(V ) [gain(z)]− k∗EXP(O) �

C. General

The general problem of finding a strategy profile
region’s expected (Byzantine) potential seems harder or
at least as hard as computing the exact (Byzantine)
potential since (B)POT ∗

EXP (O) maximizes (minimizes)
over all V ∈ V∗(0) and (B)POTEXP (O) over all

V ∈ V(O) where V∗(0) is contained in V(0). Indeed
we find that the following holds:

Theorem 6.3: The problem of computing a strategy
profile region’s expected Byzantine potential is NP-
hard.
PROOF. Theorem 6.3 can be proved by reducing the NP-
hard problem of computing kEXP (O) to the problem
of computing BPOTEXP (O). This reduction uses the
same polynomial game transformation as the proof of
Theorem 4.5. By ensuring gain(z) = 0 ∀z ∈ O in the
transformed game we obtain a formula for kEXP (O)
depending only on O’s Byzantine potential and the aver-
age social gain, namely kEXP (O) = ∅x∗∈X∗ gain(x∗)−
BPOTEXP (O). Thus, computing BPOTEXP (O) com-
putes kEXP (O) and therefore finding the expected
Byzantine is NP-hard as well. �

D. Algorithms

To round off our analysis of expected (Byzantine)
potential, we would like to provide the less risk averse
mechanism designer with some useful algorithms. Recall
the interested party in Section IV which only cares
for implementing singletons. For her it does not matter
whether she is pessimistic or optimistic in her assump-
tions about how the game turns out since in the case
of implementing singletons the concepts of (Byzantine)
potential and expected (Byzantine) potential coincide.
She can therefore use Algorithm 1 without adapting
anything to compute which singleton is an optimal means
for her end.

A less risk averse benevolent mechanism designer
with immense computational power might want to adapt
Algorithm 2 which correctly computes POT ∗(O) in
order to compute POT ∗

EXP (O). For that matter she only
has to change ‘max’ in Line 3 to ‘∅’ and ‘min’ in Line
15 to ‘∅’. She can then use this algorithm for computing
POTEXP (O) if she calls it for any O′ ⊆ O and thus
finds the subregion of O maximizing POT ∗

EXP (O′).
Since the mentioned algorithm has exponential time

complexity, we should also provide polynomial approx-
imation algorithms. Once more, the simplest method
to find a lower bound for POTEXP (O) is to search
the singleton in O with the largest expected potential.
Unfortunately, there are games (cf Figure 3) where this
lower bound gets arbitrarily bad in the average analysis
just as well as in the worst case analysis.

The greedy algorithm (Algorithm 3) can be adapted
by changing ‘min’ in Line 18 and in the subroutine
MinPot(s, oi) Line 1 and ‘max’ in Line 18 to ‘∅’.



VII. VARIATIONS

As the mechanism of implementation offers many
interesting extensions where the notion of potential and
Byzantine potential is similarly applicable and useful,
this section examines two additional models of ratio-
nality. If we assume that players do not just select
any non-dominated strategy, but have other parameters
influencing their decision process, our model has to
be adjusted. Furthermore, in many (real world) games,
players typically do not know which strategies the other
players will choose. In this case, a player cannot do
better than assume that the other players select a strategy
at random. If a player wants to maximize her game
under this assumption, she can take the average payoff
of strategies into account. We study the consequences of
this process of decision making. In a second part of this
section, take a look at the dynamics of repeated games
with an interested third party offering payments in each
round.

A. Average Payoff

As a player may choose any non-dominated strategy,
it is reasonable for a player i to compute the payoff
which each of her strategy will bring on average. We
assume that player i considers each combination of the
other player’s strategies x−i ∈ X−i to be of the same
likelihood. When determining her strategy, player i then
computes what payoff each of her strategy will bring in
expectation. Thus, each strategy xi has an expected pay-
off of pi(xi) := 1

|X−i|
∑

x−i∈X−i
Ui(xi, x−i) for player i.

She will then choose the strategy s ∈ Xi with the largest
pi(s), i.e. s = arg maxs∈Xi

pi(s). If multiple strategies
have the same expected payoff, player i mixes these
strategies and plays each uniformly at random. 8 For
average payoff strategy games, we say that xi dominates
yi iff pi(xi) > pi(yi). Note that with this modified
meaning of domination, the region of non-dominated
strategies, X∗, differs just as well.

Theorem 6.1 in [2] has some convenient consequences
on the concept of (Byzantine) potential in average pay-
off strategy games. Applying Definition 3.1 to average
payoff strategy games, we get for the average payoff
singleton potential

POT∅(z) = gain(z)− max
x∗∈X∗

gain(x∗)− k(z)︸︷︷︸
=0

= gain(z)− max
x∗∈X∗

gain(x∗)

8Note that this is not the same model of mixed strategy games
used by many other works on game theory.

and for the average payoff Byzantine singleton potential

BPOT∅(z) = min
x∗∈X∗

gain(x∗)− gain(z)− k(z)︸︷︷︸
=0

= min
x∗∈X∗

gain(x∗)− gain(z)

Applying Definition 3.2, we get for the average payoff
set potential

POT∅(O) = max
V ∈V(O)

[
min

z∈X∗(V )
[gain(z)− V (z)]

]
−

max
x∗∈X∗

gain(x∗)

= max
V ∈VM (O)

gain(x∗(V ))− max
x∗∈X∗

gain(x∗)

= max
o∈O

gain(o)− max
x∗∈X∗

gain(x∗)

and for the average payoff Byzantine singleton potential

BPOT∅(O) = min
x∗∈X∗

gain(x∗)−

min
V ∈V(O)

[
max

z∈X∗(V )
[gain(z) + V (z)]

]
= min

x∗∈X∗
gain(x∗)−

min
V ∈VM (O)

gain(x∗(V ))

= min
x∗∈X∗

gain(x∗)−min
o∈O

gain(o) ,

where VM (O) is the set of all implementations V of
O with |X∗(V )| = 1 and where x∗(V ) is such an
implementation’s unique non-dominated strategy profile.

To see that these simplifications are valid, one must
realize that when computing the (Byzantine) potential
of a strategy profile region, for any V ∈ V(O), there
is only one strategy profile which actually determines
V ’s (Byzantine) potential. Let Vopt be an implemen-
tation of O which bears O’s optimal (Byzantine) po-
tential. Let opicked be the strategy profile in O for
which gain(opicked) ∓ Vopt(opicked) is minimal (max-
imal). Since in average payoff strategy games, every
singleton is 0-implementable, by simply implementing
the singleton opicked, O’s (Byzantine) potential is at-
tained. Thus, there is an implementation V ∈ VM (O)
which reaches O’s (Byzantine) potential and {opicked} =
X∗(V ), V (opicked) = 0.

Fact 7.1:
(i) If a game’s social maximum is outside X∗

then its average payoff game potential is > 0.
Moreover, POT (G) = gain(xsocialOpt) −
maxx∗∈X∗ gain(x∗), where xsocialOpt =
arg maxx∈X gain(x)

(ii) If a game’s social worst is outside X∗

then its average payoff Byzantine game



potential is > 0. Moreover, BPOT (G) =
minx∗∈X∗ gain(x∗) − gain(xsocialWorst), where
xsocialWorst = arg minx∈X gain(x).

Fact 7.2: For a game G = (N,X,U) and a strategy
profile region O ⊆ X , it holds that
(i) POT∅(O) ≥ POT (O), POT∅(G) ≥ POT (G)

(ii) BPOT∅(O) ≥ BPOT (O), BPOT∅(G) ≥
BPOT (G) .

B. Round-based Mechanisms

We extend our analysis to dynamic, round-based
games, where in each turn, one player can change his
strategy. The interested party may offer payments to the
current player if she chooses a certain strategy and thus
influence her decision. Among many imaginable models
we present a dynamic game which is comparable to
the real world example of stock exchange, where the
players hold and trade stocks, ever trying to increase their
portfolio’s valuation. In this model, the current strategy
profile represents the current market situation – indicated
by the actual stock quotation – in which the participants
find themselves. We then think of a mechanism designer
as a broker who has access to insider information. She
takes advantage of this knowledge by reassuring her
stockholding customers that if in the next round, they
want to stop engaging her as their broker, she will
pay them a certain amount of money depending on
what strategy the chose. If, however, they would like
to continue their collaboration, the broker’s offer expires
and she reoffers new payments.

More formally, we presume to find the game in an ini-
tial starting configuration cT=1 = (s0, p1) where s0 ∈ X
is the initial state and p1 ∈ N the player who is to choose
a strategy this turn. Note that in state st, each player
i only sees the states she can reach by changing her
strategy given the other players remain with their chosen
strategies. This is, in round t, player i sees only strategy
profiles in Xt

visible,i = Xi×{st
−i}. In every round t, the

mechanism designer offers player pt insurances V t for
the strategy profiles she can see. We assume the smallest
additional payment the mechanism designer can offer to
be ε > 0. Player pt then adds up payments V t to the
game’s static payoff matrix U and chooses a strategy
with the largest resulting payoff which is actually a best
response to the current situation Bpt(st

−pt) in G(V t).
Next is player pt+1 = pt (mod n) + 1 to choose a
strategy. We assume the players to be quite loyal towards
the interested party such that they only disengage from
her if they realize they are stuck in a configuration, i.e.
cT=t+n = cT=t, or stuck in a sequence of configurations,

i.e. cT=t+αn = cT=t, α ∈ N. If a player i finds herself
in a situation in which she has already been before, she
lets the interested party offer her insurance once more,
decides for a best response strategy and immediately
collects the payoff Ui(st+1) and the insurance V t

i (st+1).
Subsequently, all other players make a final decision and
quit the game as well.

Thus, a mechanism designer can guide the players to a
desired strategy profile or an entire strategy profile region
without disbursing any payments. In order to keep them
inside the desired region, however, she has to eventually
disburse the offered payments. We call the sequence
of payments V T = V 0V 1 . . . dynamic implementation
of O if by sequentially offering these payoffs, all
players encash their payoffs at a time when the game
is in a state inside O. A dynamic implementation V T

yields a social gain gain(V T ) :=
∑

i∈N Ui(st(i)) and
implementation cost cost(V T ) :=

∑
i∈N V t(i)(st(i)+1),

where t(i) is the round in which player i encashes
her payoff. A strategy profile region O has dynamic
cost kdyn(O) := minV T∈Vdyn(O) cost(V T ) where
Vdyn(O) denotes the set of all dynamic implementations
of O. Further, a region O has dynamic potential
POTdyn(O) := max{V T∈Vdyn(O)}[gain(V T ) −
cost(V T ) − maxx∗∈X∗ gain(x∗)] and Byzan-
tine dynamic potential BPOTdyn(O) :=
max{V T∈Vdyn(O)}[minx∗∈X∗ gain(x∗) − gain(V T ) −
cost(V T )]

Theorem 7.3: A single strategy profile z ∈ X can
be dynamically implemented from a random starting
configuration in 3n rounds with cost equal to kdyn(z).
PROOF. We prove Theorem 7.3 by introducing a dynamic
implementation which always implements z in 3n rounds
at kdyn(z) cost. Figure 7 depicts such an implementation
for a two-player game.

Let the initial configuration cT=1 = (s0, 1) and
z ∈ X the desired strategy profile. In a first phase,
the interested party offers payments V t such that the
current state st = (st

t, s
t
−t) changes to (zt, s

t
−t). This

can be achieved by setting V t(zt, s
t
−t) large enough, e.g.

V t(zt, s
t
−t) = ∞. Thus, in round T = n, the payments

V n guide player n to choosing strategy zn and the game
gets to state z. Phase two starts with the configuration
cT=n+1 = (z, 1). Now, the mechanism designer chooses
payments such that the game remains in z, i.e. V t(z) =
maxxpt∈Xpt (Upt(xpt , z−pt) − Upt(z)) + ε where ε > 0
and V t(x) = 0 for x 6= z. Round 2n+1 is the beginning
of phase three, when player 1 realizes that the game is in
the same configuration as in round n+1. The interested
party offers the same payments as in round n + 1,
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Fig. 7. Dynamic Implementation of strategy profile e starting from
s. The regions visible to the current player are colored gray. The
dynamic mechanism designer finds this two-player game in a starting
configuration cT=1 = (s, 1), i.e. the currently played strategy profile
is s and player 1 is next to choose a strategy. The interested party
now offers player 1 payments V 1 such that it is rational for her to
change her strategy to e1. Thus the game arrives at state s1 = d. In
the second round, it is player 2’s turn. She is offered payments V 2 –
which are forged such that e2 is player 2’s unique best response to
d1 in the game G(V 2) – she decides to quit playing strategy s2 and
instead chooses e2. The game arrives at profile e. Now the second
phase begins. In round 3, the interested party convinces player 1
with payments V 3 to stay in e. She does the same for player 2 in
round 4. In the third phase, starting with round 5, the game arrives at
the same configuration as in round 3 and therefore player 1 chooses
her strategy to be e1 once more, has the interested party disburse
the offered payments V 5(e) and quits the game. Player 2 follows in
round 6.

player 1 chooses to stay with z and encashes U1(z) +
V 2n+1(z) = U1(z)+maxx1∈X1(U1(x1, z−1)−U1(z))+ε.
In the next round, the interested party offers payments
V 2n+2 = V n+2 and player 2 gets U2(z) + V 2n+2(z) =
U2(z) + maxx2∈X2(U2(x2, z−2)−U2(z)) + ε. The game
ends when in round 3n, player n is the last to cash in
Un(z) + V 3n(z). Note that this scenario describes an
optimal dynamic implementation of z if the start profile
s0 is 6= z. If the game starts at z, the mechanism designer
can immediately begin phase two. It remains to show that
this implementation’s cost cost(V T ) equals z’s dynamic
cost kdyn(z). Let us sum up all payments a mechanism
designer disburses when implementing z as described.
This is

∑n
i=1 maxxi∈Xi

(Ui(xi, z−i) − Ui(z)) + ε. No
dynamic implementation of z can have smaller cost since
in order to implement z, in round t(i), the game configu-
ration must be cT=t(i) = ((xi, z−i), i) and V t(i) must be
such that strategy zi is a unique best response to z−i for
player i. This can only be achieved by offering a payment
V t(i)(z) of at least maxxi∈Xi

(Ui(xi, z−i) − Ui(z)) + ε
where ε can be 0 if zi is the unique best response anyway.
Therefore, the described dynamic implementation’s cost
are optimal. �

The dynamic implementation we just explained in

Theorem 7.3’s proof gives us a concrete formula for
single strategy profiles’s dynamic cost.

Theorem 7.4: A singleton’s dynamic implementation
cost are kdyn(x) =

∑n
i=1 maxxi∈Xi

(Ui(xi, z−i) −
Ui(z)) + ε

PROOF. Theorem 7.3’s proof shows that each dynamic
implementation V T ∈ Vdyn(z) needs to make payments
of at least

∑n
i=1 maxxi∈Xi

(Ui(xi, z−i)−Ui(z))+ ε. The
given scenario also shows that this amount is sufficient
for any x ∈ X to be implemented dynamically. �

Theorem 7.4 points to an interesting observation one
makes when comparing dynamic implementation mecha-
nisms to static implementation. We find that the dynamic
mechanism designer has to spend only ε more on imple-
menting a singleton region than his static counterpart.

Corollar 7.1: A singleton’s dynamic implementation
cost kdyn(x) is equal to its static implementation cost
k(x) plus ε.

Therefore, a singleton has almost equal static and dy-
namic (Byzantine) potential.

Corollar 7.2:
(i) POTdyn(x) = POT (x) + ε

(ii) BPOTdyn(x) = BPOT (x) + ε

If a dynamic mechanism designer does not need all
players to end up in the same strategy profile, but rather
in a target region, she might profit from the fact that there
is only one player choosing her strategy each round. The
game might come by a strategy profile from where a
certain player might see a very profitable state to her
but she cannot get there because another player may
choose first and thus makes this state invisible again.
Note that for the cost of an implementation only the last
n payments are taken into account. For a dynamic imple-
mentation of O, the last n states must be in O. Knowing
the last n configurations in an optimal implementation is
sufficient to derive the payments disbursed, since in order
to have player i choose a strategy oi given o−i she must
be offered a payment of maxxi∈Xi

Ui(xi, o−i)− Ui(o).
Therefore the problem of finding an optimal dynamic
implementation of O coincides with the problem of
finding a sequence of n game configurations c =
(x, i) where x ∈ O. There are n |O| (maxi∈N |Oi|)n−1

possible sequences as there are n |O| possible starting
configurations and after that, each round, the mechanism
designer has |Oi| possibilities to guide the player to.
We immediately see that if the number of players is
bounded, one can compute a region’s dynamic cost and
its (Byzantine) dynamic potential in polynomial time.



VIII. CONCLUSION

Today’s computer systems can no longer be assumed
to consist of perfectly collaborating participants. Rather,
different stakeholders may be involved who aim at max-
imizing their individual profits, and some players may
even be malicious. This paper has introduced the study
of the effect of a benevolent or malicious contractor
whose goal is to change the game’s outcome if the
improvement (or worsening) in social welfare exceeds
the cost. We have presented several insights for this
problem and we have provided concrete algorithms for a
worst-case model as well as for an average-case model.
Additionally we have applied the concept of potential to
games where players maximize their average payoff and
to a dynamic game model. Our models still pose many
interesting questions which have to be tackled in future
research, including the quest for better approximation al-
gorithms or for game classes which allow better potential
approximation algorithms. Furthermore, we believe that
the concept of potential and Byzantine potential shall
be applied and analyzed in many other research areas
dealing with agent based systems.
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