ICT AUSTRALIA
Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich

Andri Toggenburger

Modular Network Router for Microkernel-
Based Embedded Systems

Master Thesis
November 7, 2006 to May 6, 2007

NICTA’s Embedded, Real-Time, and Operating Systems Research Program, Sydney
Supervisor at NICTA Sydney: Dr. Ihor Kuz
Supervisor at ETH Zurich: Prof. Roger Wattenhofer

Abstract

Embedded systems are now ubiquitous and can be found in an abundance of application areas
ranging from mobile phones to cars. To increase the reliability and thrustworthiness of these in-
creasingly complex embedded systems, microkernel-based operating systems and component-
based software engineering techniques are being used. CAmkES, a project of NICTA’s ERTOS
research program, has recently developed a component architecture for the microkernel-based
operating system L4.

This report describes the design and implementation of a modular router for the L4 microker-
nel based on CAmKES. On the one hand, this included the proposition of a low overhead yet
extensible and flexible CAmKES-based router architecture. On the other hand, patterns of how
to apply CAmKES and its novel features to the development of embedded systems were re-
searched.

The resulting modular router’s performance depends on the configured level of protection be-
tween its components. The router induced delay as compared to a similar monolithic system
is less than 5% if no protection between the different modules is desired. However, the perfor-
mance penalty to pay for full protection between all modules is significantly higher.

Contents

1

Introduction
1.1 Motivation e
1.2 Task e e e e
1.3 Overview e
1.4 Terminology e
1.5 L4 o e
1.6 lguana
1.7 CAMKES e
1.71 The CAmKES Project
1.7.2 Development of CAmkES-based Embedded Systems
1.7.3 CAmKES Component Architecture
1.7.4 An Example Applicationin CAmkES
1.8 IwlP Network Stack e
1.9 UsedHardware e
1.9.1 Gumstix Connex 400xmboard
1.9.2 SMC91C111 Network Interface Controller and Driver
Design and Implementation of the Component Based Network Router

2.1 Routerrequirements
2.1.1 Functional requirements
2.1.2 Non-functional requirements L.
2.1.3 Hardware requirements
2.1.4 Decisions leading to the stated requirements

2.2 TheRoutersComponents e
2.2.1 Network Driver e
222 ARP/IP . . e
223 UDP . . . e
2.2.4 Memory Allocator e
2.2.5 Bidirectional Queue / Copying Bidirectional Queue
226 DHCP e
227 NATADmMIn
228 NAT . .. e

2.3 Assembly ofthe Router

2.4 Connecting the Components Together
241 Connectors e
2.4.2 Different patterns of how to connect the router’s components together . .

2.5 Patterns Used in the Final Router's Design

2.6 Implementation of the Router's Components
2.6.1 Network Stack Components
2.6.2 Network Driver Component
2.6.3 NAT Component e

2.7 Discussion of the Router’s Design and Implementation
2.7.1 Implementation of the Defined Functional Requirements by the Router . .
2.7.2 Extensibility and Configurability of the Router
2.7.3 Security and Robustness of the Router
2.7.4 Suitability of the Router for Embedded Systems

O© O 0o NOTLOrLorO,

CONTENTS

M m O O W

2.7.5 Relation to other Component Based Router Architectures (Click, XORP

and Scout) e e 34
Performance Evaluation of the Router 38
3.1 TestEnvironment 38
3.2 Network Stack Delay Benchmarks, . 39
3.2.1 UDP Echo Delay as Measured from a Remote Machine 39
3.2.2 Echo Delay Measured in Stack’s Components 41

3.3 NATBenchmarks e 43
3.3.1 NAT Delay Benchmarks 43
3.3.2 NAT Throughput Benchmarks Introduction 45
3.3.3 TCP Throughput Benchmark 45
3.3.4 UDP Throughput Quality Benchmark 46
3.3.5 UDP Throughput Quality Benchmark: Overhead of Components in Differ-

ent Protection Domains L. 47

3.4 Discussion of the Performance Measurements 50
3.4.1 Overhead of the Modular Network Stack 50
3.4.2 Network Address Translation Performance 50
3.4.3 Trade-off Between Speed and Security 51
3.4.4 Driver Components as Bottlenecks 52
3.4.5 Comparison with the Stated Performance Requirements 54

CAmMKES as a Component Architecture for the Development of a Modular Router 55

4.1 Adding Support for User Defined Connectors 55
411 Motivation 55
41.2 Benefits 56
4.1.3 Design of the Support for User Defined Connectors 56
4.1.4 Implementing a User Defined Connector. 59

4.2 Evaluation of Overhead Induced by CAmMKES Connectors 60
4.2.1 Performance Comparison of 3 Different CAmKES Connectors 60
4.2.2 Examination of the Overhead of the IguanaRPC Connector 60

4.3 Influence of CAmKES induced overhead on Router’s Performance 61

4.4 Assessment of the CAmMKES Component Architecture 62
4.4.1 Positive and Negative Properties as Seen from a Developer's View 62
4.4.2 Generality of the Mechanisms Provided by CAmKES 63
4.4.3 Proposed Additional Features for CAmkES 64
4.4.4 CAmMKES to Build a Microkernel-Based Embedded System 64

Conclusions 65

5.1 Self-Assessment 65

5.2 Future Work L e 67

5.3 Thanks e 67

Thesis Project 70

A1 ProjectDescription e 70

A2 ProjectPlan e 70

Version History 72

NatAdminConsole 73

Gumstix - How To 74

UDP Echo Clients and Servers 76

IDL and ADL Files of the Router Application 77

Chapter 1

Introduction

1.1 Motivation

Embedded systems are now ubiquitous and can be found in an abundance of application areas
ranging from mobile phones to cars. To increase the reliability and thrustworthiness of these in-
creasingly complex embedded systems, microkernel-based operating systems and component-
based software engineering techniques are being used. CAmkES, a project of NICTA’s ERTOS
research program, has recently developed a component architecture for the microkernel-based
operating system L4. It allows the application of component-based software engineering to the
development of embedded systems software.

Routers are embedded systems dedicated to the task of forwarding network packets as fast as
possible from one network interface to another. A modular router architecture has the advantage
of being extensible and flexible by providing support for the addition of new modules or the
alteration of existing configurations. Furthermore, the robustness of modular routers benefits
from the re-use of well-tested components reducing the amount of new, insufficiently tested
code.

1.2 Task

The work presented in this report was conducted as part of a master’s thesis. The primary
goal of this master’s thesis was the design and implementation of a modular router based on
the CAMKES component architecture for embedded systems. On the one hand, this involved
the development of network drivers, network stacks and any other required (operating system)
functionality as reusable components. On the other hand, different approaches to building the
modularized router were researched. This included investigating patterns of how to assemble
the different components, experimenting with different types of connections between them and
evaluating the resulting router by executing performance measurements on an embedded hard-
ware platform.

As the described router is the first significant system based on the CAmKES architecture, an-
other part of the research comprised of analysing the architecture’s features and properties and
proposing and implementing changes or extensions to it.

1.3 Overview

This report is organized in the following way: This chapter provides information about the back-
ground of this thesis project. This includes the different other projects that this project is based
on, and the embedded hardware platform used to run the developed router. The design and
the implementation of the modularized router for embedded systems is presented in Chapter
2 including a discussion of the designed architecture and how the resulting router relates to

6 CHAPTER 1. INTRODUCTION

other modular router projects. Chapter 3 analyzes and discusses the results of a variety of
benchmarks carried out using the implemented router. As CAmKES forms an important part of
the presented project, Chapter 4 discusses the suitability of CAmKES for a project like this and
proposes additional features. Furthermore, features designed and implemented in CAmMKES as
part of this project are also explained. Finally, conclusions including feature work can be found
in Chapter 5.

1.4 Terminology 7

1.4 Terminology

e Microkernel: A microkernel is a minimal computer operating system kernel providing
only basic operating system services (system calls), while other services (commonly pro-
vided by kernels) are provided by user-space programs called servers.

e Embedded System: An embedded system is a special-purpose system in which the
computer is completely encapsulated by or dedicated to the device or system it controls.
Unlike a general-purpose computer, such as a personal computer, an embedded system
performs one or a few pre-defined tasks, usually with very specific requirements.

e NAT: Network address translation as defined in RFC 3022[31]. lts features include IP
address translation, TCP/UDP port translation and ICMP query ID translation. Another
feature is the translation of TCP/IP and UDP/IP packets embedded in ICMP error mes-
sages. These features enable multiple machines on the local network to access the global
network at the same time by transparently sharing one global IP address. Consequently,
the topology of the local network is hidden to the global network. Furthermore, the NAT
component acts as a firewall by preventing all network traffic that originated on the global
network, and was not requested from a local machine, from entering the local network.

e NAT Router: This expression refers to a system performing network address translation
as defined in RFC 3022[31].

e Access Router: This expression refers to a NAT Router which is connected to the In-
ternet through an ADSL or Cable connection. Access routers are embedded systems as
they are completely dedicated to providing broadband access to the internet. Their field
of application is home use.

e 1PC: Inter-Process Communication is a set of techniques for the exchange of data be-
tween two or more processes. IPC techniques are divided into methods for message
passing, synchronization, shared memory, and remote procedure calls.

e N1C: Network Interface Controller.
e RX queue: Queue where received network packets are queued.
e TX queue: Queue where network packets ready for transmission are queued.

e Symbols used in the component and interface figures (see Figure 1.1).

Zl— Event consumer .— RPC provider
.—Dataport If one interface is called, the
G— Event emiter component calls the other.
RPC user

Figure 1.1: Symbols used in the component and interface figures: The captions refer to the
description of the 3 CAmKES interface types in 1.7.3.

e DMA: Direct Memory Access. A dedicated controller supports the CPU by independently
transferring data from the hardware over the bus to the main memory. The CPU is there-
fore available for other tasks at the same time. After a DMA transfer is complete, the CPU
can access the transferred data at a previously defined memory location.

e PI0: Programmed Input/Output. In PIO mode, the CPU itself has to transfer the data from
the hardware over the bus. This means, the CPU is not available for other tasks when it
executes PIO transfers. The CPU becomes a bottleneck in a system using PIO especially
if the hardware is slow and the CPU therefore has to waste cycles.

e ADL: Architecture Description Language: Used to describe a software architecture as a
set of connected components in CAmKES.

8 CHAPTER 1. INTRODUCTION

1.5 L4

L4[23] is a family of second-generation microkernels, which is characterized by high perfor-
mance, more than an order of magnitude better than its predecessors.
L4 is characterized by:

Small size.

Low IPC overhead.

e A small number of abstractions and fundamental mechanisms, and almost complete ab-
sence of kernel-defined policies. Memory management, protection management and pro-
cess management are the responsibility of user-level servers.

Interrupt handlers and device drivers at user level.

As such, L4 is almost a true microkernel. It violates the strict definition of a microkernel by con-
taining a scheduler (and some scheduling policy) and typically drivers for serial ports and timers.

L4-embedded is the L4 version that was used for this thesis project. It is a L4 kernel that
is especially tailored to the needs of embedded systems. More information about how L4-
embedded supports the design of embedded systems and L4-embedded internals can be found
in [11] and on the L4-embedded project’s homepage[5].

1.6 Iguana

Iguana[18] is designed as a base for the provision of operating system (OS) services for em-
bedded systems. Iguana runs in user space on top of the L4 microkernel and complements
the underlying L4 API. It provides services virtually every OS environment requires, such as
memory and protection management, thread management and a device driver framework.
Special features include:

e The memory and cache footprints of Iguana are kept small.

Single address space layout to ease the sharing of data and to support fast address space
switching on the ARM architecture widely used in embedded systems.

Per-process protection domains. Every access of data in another protection domain is
subject to access control.

Capability-based protection management.

Enables OO-style use of the L4 primitives.

Figure 1.2 shows an L4/Iguana based system. The L4 kernel runs in privileged mode in the
kernel space while the services provided by Iguana, device drivers and applications run in un-
privileged mode in the user space. Different applications and operating system servers, their
data and threads are encapsulated by protection domains (PD). All accesses between different
protection domains are subject to access control. Threads of a particular protection domain
can access the ressources of another protection domain only if they hold the required capabil-
ities. Capabilities to access a certain ressource can be explicitely passed from one protection
domain to the other in order to grant access rights. The different protection domains’ threads
communicate via different IPC mechanisms provided by L4/Iguana including message passing
and shared memory areas.

1.7 CAmMkKES

The CAmMKES project[20] provides a component architecture for microkernel-based embedded
systems. The router application described in this report represents the first major application
designed and implemented using CAmKES. On the one hand, the features and properties of

1.7 CAmKES 9

unprivileged

Applications

Iguana

L4—embedded '”

privileged

Figure 1.2: Iguana and applications running in unprivileged mode on top of the L4-embedded
microkernel. Operating system components and applications are encapsulated by protection
domains.

CAmMKES shaped the resulting router in a major way. On the other hand, the insights gained
during the router’s development also led to the development of new features for CAmMKES. This
section describes the major features and properties of the CAmKES architecture. More infor-
mation about the CAmKES design and how it relates to L4 and Iguana can be found in [21].

1.7.1 The CAmKES Project

The purpose of CAmKES is to provide support for developing embedded systems on top of mi-
crokernels. Since the underlying philosophy of microkernel-based operating systems is to com-
ponentised the OS by implementing its services as servers running at user level, it makes sense
to apply component-based software engineering techniques to the design and development of
these systems. The CAmMKES approach to doing this involves providing a component architec-
ture that supports the modeling of microkernel-based systems as collections of interconnected
components. This architecture provides a component model, libraries of standard interfaces and
component definitions, standard component implementations, standard services, and support
for various architectural patterns and styles specifically suited for embedded systems.

1.7.2 Development of CAmkKES-based Embedded Systems

As with general component-based software development, the development of CAmKES-based
systems has four stages: design, implementation, deployment, and runtime. These are shown
in Figure 1.3

IDL Compiler
CDL Compiler

Initialization,
Configuration
Code Generation

Component Assembly i Deploy
(Stub, Initilization, Config)

Loading
(Boot Image
Generation)

Figure 1.3: CAmkES Development Stages

At design time a CAmMKES based system is defined using an interface definition language (IDL)
and an architecture description language (ADL). The IDL is used to define interfaces through

10 CHAPTER 1. INTRODUCTION

which components communicate with one another. The ADL specifies the actual components,
including which interfaces they provide and which interfaces they use. The ADL is also used
to specify a complete component-based system, that is, the set of components in the system
and the connections between the components. Finally, the ADL also provides configuration pa-
rameters to the defined components. Once all the components have been specified, a compiler
generates header files and stub code from the IDL and ADL.

At the implementation stage the actual component code is written. The code makes use of the
headers and stubs generated in the previous step.

At deployment time all of the code (both hand-crafted and generated) is compiled, linked and
combined with the core runtime, the operating system and any non-CAmKES services to form a
system boot image.

Finally, at run time, the boot image is loaded onto hardware (or a simulator), the component
instances are created, connections between the components are initialised and the system is
started running.

1.7.3 CAmKES Component Architecture

A component is a basic unit of encapsulated behavior. It is used to organize operations and data
into interfaces that have well defined semantics and behaviors. During run-time, a CAmKES
component maps to an Iguana protection domain. Thus components cannot access function-
ality provided by each other if not specified so at design time. Components expose interfaces
that allow applications and other components to access their features. A component must also
specify which external interfaces, that is, interfaces provided by other components, it will use.

CAmMKES supports three types of interfaces:

e RPC interface: An RPC interface defines synchronous communication between compo-
nents through remote procedure calls (RPC). A component can provide functionality as
an RPC server or use functionality as an RPC client.

e Eventinterface: Used for asynchronous notifications between components. A component
can emit (produce) an event or consume it.

e Dataport interface: Represents an interface that allows components to transfer data be-
tween each other (e.g. implemented as shared memory areas).

The CAmMKES component model encapsulates communication between components in explicit
architectural elements called connectors and connections. A connector defines the runtime in-
teraction between a set of interfaces belonging to two or more components. A connection is an
instance of a connector and connects the components together during runtime; it executes the
functionality defined in the corresponding connector’s implementation.

Connectors can be defined by the user and therefore the overhead of communication to be
optimized since they can be tailored to a specific problem or scenario.

1.7.4 An Example Application in CAmKES

This section presents a simple example application that features two components based on the
CAmkES component architecture. A server component implements the functionality to add two
integer variables while a client component invokes the provided implementation.

During the design stage, the interface through which the components communicate is defined
using the IDL:

interface Addition({
int add(in int x, in int vy)

}

1.7 CAmKES 11

Furthermore, the actual components using this interface are declared in the ADL declaration
part. Components that are active, which means that they have their own thread of control, are
declared as control components:

import "Addition_interface.idl4";
component Server {

provides Addition add;
}

component Client{

control;

uses Addition add;
}

In the ADL assembly parts, the instances of the components are defined. To assemble the whole
system out of these instances, connections between the instances’ interfaces are declared. A
connection declaration consists of a connector to be used for this connection (e.g. IguanaRPC)
and of the declaration of the two components’ interfaces to be connected.

assembly{
composition{
component Server cx;
component Client cl;
connection IguanaRPC conl (from cl.add, to cx.add);

}

At the implementation stage, the actual code for the server and the client components is written.
This code makes use of the header and stub files that were generated out of the ADL and IDL
specifications in the previous step.

The client component’s code imports the generated header file <Client_add.h> that contains
the functions declared by the corresponding IDL interface definition. The client’s control thread
can call these functions while the generated client stub code transparently communicates with
the server providing the implementation.

#include <Client_add.h>

void run(void xargs) {
int r = add_add(1,2);
}

On the server side, the server’'s code imports the header file <Server_add.h> that contains the
function headers (as stated in the IDL declaration) to be implemented by the server.

#include <Server_add.h>

int add_add(int x, int y) {
return x + y;

}

At this stage, the definition and the implementation of the CAmKES bases application is com-
plete. The code is compiled, linked and combined with the core runtime and operating system
to form a system boot image.

At runtime, the system contains two components as shown in Figure 1.4. The client component
calls the implementation of the interface Addition by using its generated client stub. The
logic implemented by the TguanaRPC connector is executed when the client and the server
component communicate with each other via the declared connection con1.

12 CHAPTER 1. INTRODUCTION

unprivileged

Applications

IguanaRPC
conl

L4-embedded

privileged

Figure 1.4: The defined application during run-time.

1.8 IwlP Network Stack

The IwIP Network Stack is a small independent implementation of the TCP/IP protocol suite
that has been developed by Adam Dunkels at the Computer and Networks Architectures (CNA)
lab at the Swedish Institute of Computer Science (SICS)[13]. The focus of the lwIP TCP/IP
implementation is to reduce resource usage while still having a full scale IP stack. This makes
IwlP highly suitable for use in embedded systems like the embedded router presented in this
report.

1.9 Used Hardware

As a part of this project, an embedded hardware platform had to be chosen in order to run the
router implementation. A Gumstix[3] machine was chosen due to the good experiences that
several members of ERTOS program previously had made with it. As the goal of this project is
to build a router, it is furthermore crucial that the chosen hardware can be extended with at least
two NICs. A Gumstix extension board sporting two SMC91C111 ethernet controllers had come
out shortly before the project commenced. Furthermore, a network driver for the SMC91C111
NIC had already been partially ported to L4/Iguana.

1.9.1 Gumstix Connex 400xm board

The Gumstix Connex 400xmboard provides 64MiB of RAM and sports an Intel XScale/PXA255
processor that runs at clock rates of 200MHz, 300MHz or 400MHz. Intels XScale/PXA255 pro-
cessor is compliant with the 5th generation of the ARM Architecture. The ARM Architecture is

a 32-bit RISC processor architecture developed by ARM Limited[1] that is widely used in em-
bedded systems due to its power saving features. The ARM architecture supports fast address
space switching as implemented by L4/Iguana. It also provides a timer register that can be used
to measure the execution time of critical program sections, such as e.g. interrupt handlers, to
locate a bottleneck in a system.

A property that facilitates the development of an application for a Gumstix board is the possi-
bility to upload boot images via Ethernet. This speeds up the process of deploying and testing
software on this embedded platform. Furthermore, it is simple to connect a Gumstix machine to
the serial port of a PC in order to print out debugging information.

1.9.2 SMC91C111 Network Interface Controller and Driver

Basic Gumstix machines can be extended by adding Gumstix extension boards. The Gumstix
extension board netDUO-mmc contains two SMC91C111 network controllers.

1.9 Used Hardware 13

The SMC91C111 network interface driver currently used in the router is based on a Linux imple-
mentation of a driver for NICs of the SMC91x family by Nicolas Pitre[25]. It was partially ported
to L4/Iguana before this thesis commenced, however, features like controller initialization and
DMA were still missing. There was also no support to run two network interface controllers at
the same time in L4/Iguana.

Due to L4’s microkernel architecture, drivers run in user-space like other servers. Interrupts are
delivered to drivers as IPC messages (see [11]). A driver first must be registered with L4 in
order to be notified if a certain interrupt was triggered. The hardware’s I/O registers need to be
mapped to the driver's memory area so that the driver is allowed to read the status registers of
the device or write to the control registers.

Chapter 2

Design and Implementation of the
Component Based Network Router

2.1 Router requirements

This section states the requirements for the component based network router. The router is
targeted for embedded systems, so there are special requirements relating to the properties
and challenges of these systems.

2.1.1 Functional requirements

The router’s end-user functionality will be similar to the functionality of Access Routers (see 1.4).
This means that the main function of the router will be to multiplex a single, global IP Address to
several local IP Addresses. It can be used to share a modem connected to the internet between
different machines.

The functional requirements are:

e Network address translation. The router will allow to share a single (global) IP Address
transparently between multiple machines on the local network.

¢ Port forwarding, which allows a machine on the internet to connect to a specified port on
a local machine by bypassing the dynamic network address translation.

e Administration interface to remotely configure router’s settings. The interface will also
allow querying of the router’s status.

e DHCP client to automatically obtain IP Address, Default Gateway and Subnet Mask for
the network interface, which is connected to the Internet.

2.1.2 Non-functional requirements
Security requirements:

o Complete protection between trusted and untrusted components by supporting memory
protection between them. A trusted component could be e.g. a network stack compo-
nent. An untrusted component could be e.g. a (downloaded) third party router extension
component.

Flexibility requirements:

o Ability to upgrade parts of the router. This means new versions of single components can
be installed without having to upgrade other components at the same time.

o Ability to add new functionality to the router by adding additional components to the sys-
tem.

14

2.1 Router requirements 15

o Ability to reuse the existing router components in another application or configuration.
Performance requirements:

e The router induced delay has to be small enough so that the router can be used as a
convenient access device to the internet. The targeted field of application is the same as
the field of application of an Access Router.

e The router’s throughput has to be high enough to support broadband internet connections.
At the time this thesis was written, the fastest ADSL plan of the swiss internet provider
Bluewin supported upload speeds of up to 0.5Mib/s and download speeds of up to 5Mib/s

Configurability requirements:
e The router’s composition has to be configurable offline by editing its CAmMKES ADL file.

e The router's NAT functionality has to be configurable online by using an Administration
Console.

Compeatibility requirements:

e The router has to be compatible with the standard internet protocols IP (RFC 791[28]),
TCP (RFC 793[29]), UDP (RFC 768[30] and ICMP (RFC 792[27]).

Special requirements of Embedded Systems:

e The footprint of the router has to be small as embedded systems have limited memory.

e The functionality has to be implemented as efficiently as possible as embedded systems
have limited processing power and power supplies.

2.1.3 Hardware requirements

e The router implementation will run on a Gumstix[3] board (Gumstix Connex 400xm:
ARM XScale processor, 64MB RAM, 16MB Flash Memory, 400MHz).

e The network interface card used is a Gumstix net DUO-MMC card. It features two sMCc91Cc1111
Network Interface Controllers (10-100baseT) and two Ethernet ports.

2.1.4 Decisions leading to the stated requirements
Functional requirements

There was no purpose built router hardware available (including multiple NIC, fast bus/switching
architecture and multiple processors). Given the available Gumstix machine, it was more ap-
propriate to run NAT than a high performance routing algorithm. On the one hand, the Gumstix
machine has only two network interfaces, which makes it impossible to reasonally test routing
algorithms, which were designed for machines with multiple network interfaces. On the other
hand, in a high performance router implementation, the bus of the Gumstix machine would pose
a major bottleneck.

Furthermore, since the target hardware platforms for L4/Iguana and CAmKES are embedded
systems and one kind of embedded system many people deal with on a daily basis is an Access
Router, it was interesting to turn a (very small) Gumstix machine into such a device.

Hardware requirements

There are currently no L4/Iguana network drivers available for other hardware platforms than the
chosen Gumstix machines. It would have taken a relatively long time to port network interface
drivers of other hardware to L4/Iguana, which would have distracted from the actual focus of the
thesis. Consequently, the stated Gumestix platform was chosen as a target system.
Furthermore, the Gumstix machine is very small, even smaller than most current Access Routers.
This means that the router could be used in real life e.g., to replace an old desktop machine
used as a NAT Router.

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
16 ROUTER

Non functional requirements

These requirements were chosen to cover as many of CAmKES’ features and properties as pos-
sible. On the one hand, this leads to a router taking advantage of all the the mechanisms pro-
vided by CAmKES. On the other hand, it means that flaws and missing features in the CAmKES
architecture will be discovered during design and implementation of the router.

2.2 The Router’s Components

The router’s main functionality is the forwarding, including NAT, of network packets either from
the global NIC to the local NIC or vice versa. Other functionality includes providing an admin-
istration service for the NAT that is accessible through the network and a DHCP client. This
divides the router into two planes. There is a forwarding plane that supports the fast forwarding
of packets from one NIC to the other and provides a network stack to other components. The
other plane is the application plane that interacts with the forwarding plane by querying and
configuring the forwarding plane’s components. Components of the application plane may also
use the forwarding plane’s network stack to consume network packets that are directed to the
router itself and send out network packets on one of the router’s NICs.

The router forwarding plane’s components are based on the main OSI[33] network layers. These
are physical layer, data link layer, network layer and transport layer. Each component represents
one or more protocols of a certain OSI layer and is connected to components forming part of the
upper OSI layer, the lower OSI layer or the same OSI layer. Some components might be part
of different OSI layers at the same time as, for example a component implementing NAT needs
to have access to network headers and transport headers at the same time. For reliability and
protection management reasons, each NIC has its own set of components representing its local
network stack. The router application planes’s components form part of the OSI application
layer and are clients of the forwarding plane’s transport layer components. In addition to the
implementation of certain networking protocols, the components also contain forwarding logic
to forward network packets, by using CAMKES’ communication infrastructure, to other compo-
nents for further processing.

For an overview of the router’'s components and the two planes see Figure 2.1. The forwarding
plane and the application plane containing the different components are colored in grey. The
small boxes represent instances of the router’s components and are arranged according to the
OSI layer to which they belong. Arrows indicate the paths that network packets take between
the components; they either are passed directly from one component to the other or are buffered
in queues between the components. There are two NICs at the bottom of the network stack,
one is part of the global network and one is part of the local network. The NAT component
translates network packets in transit between the global network and the local network.

This strategy to divide the network stack into coarse grained components is beneficial to the
component’s communication overhead as the functionality each component executes becomes
relatively expensive compared to the cost of the inter-component communication. Other ap-
proaches to component based routers, such as Click[19], use a very fine grained division of
their functionality into components. However, the underlying CAmkES component architecture
is geared towards components similar to servers in the microkernel context rather than towards
support of library like components. Thus it primarily supports the design of software systems
based on coarse grained components providing complex functionality and interfaces as op-
posed to fine grained components with very limited functionality. Despite its composition of
coarse grained components, the resulting system is still configurable in a natural way by adding,
removing or replacing certain network stack protocols, routing protocols or applications. For ex-
ample, to extend the current router to a full scale router, more sophisticated routing algorithms
and routing/forwarding tables could be added as application layer components. The forwarding
plane’s components could then query the routing table components in order to find the appro-
priate NIC to send out a network packet it is currently processing.

2.2 The Router’s Components 17

As shown in Figure 2.1, the flow of the network packets through the components of the router is
in the order of the OSI Layers. This approach has the advantage that it helps define the basic
interfaces between the components. A component of the network layer will expect to receive
Ethernet frames from the data link layer components (e.g. network drivers), IP packets from
other network layer components (e.g. routing components) and transport packets from trans-
port layer components (e.g. UDP component).

The following subsections describe the functionality of the router’s components and the CAmMKES
interfaces they provide and use. In addition to the components depicted in Figure 2.1, there are
also helper components present in the router. These mainly consist of queues to buffer streams
of network packets and memory allocators to manage memory areas shared by multiple com-
ponents.

Application Plane

DHCP bATAdmm

V.

$7 Forwarding Plane

|
UDP 1

NAT

orA| ARP/IP

Swsy

ARP/IP {%ﬂ

5
>

Driver Driver

= g

Global Network Local Network

Figure 2.1: The modular design of the NAT router.

2.2.1 Network Driver

The Network Driver resides at the OSI data link and physical layers. It initializes and configures
the underlying NIC’s hardware and communication link depending on the parameters provided
in the router’s CAmkES ADL file.

The network driver handles interrupts delivered by L4 as IPC messages and calls the corre-
sponding code in the driver implementation. When packets arrive from the network, the re-
ceived Ethernet frames are enqueued in a reception queue (RX Queue). If Ethernet frames are
available for transmission, it dequeues them from a transmission queue (TX Queue) and sends
them to the hardware. The interfaces dealing with the queue are shown in Figure 2.2, 1.

Another role of this component is to provide an interface to other components, which allows
them to query or set driver specific information. This information includes the associated NIC’s
MAC address, IP address, netmask and default gateway address. The actually network related
IP information is stored in the driver for simplicity reasons. If this information changes during
run-time, the network driver emits an event. This allows other network stack components to re-
fresh their information about the associated NIC. To set up the NIC and network driver in a well
defined way, a function to set up this driver from another component is also available. These
interfaces are shown in Figure 2.2, 2.

In order to allocate memory to copy the Ethernet frame out of the NIC’'s memory to, a mem-
ory allocator service is used. This allocator service (see Section 2.2.4 allocates or deallocates
chunks of memory in a (shared) memory section and makes them available to this component

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
18 ROUTER

(and other components if the memory is shared between them). Figure 2.2, 3 shows the com-
ponent’s memory allocation interfaces.

enqueue RX packet network info changed _D
| BidirQueue.push_up E DriverEvent
) dequeue TX packet] - i —
| Biﬁi,Queue puﬁ S read/write driver info @
@ . o | Driver.get¥/set*
Zl_ TX packet ready set up .
E PacketArrivedEvent | Driver.setup

memory allocation @
| Malloc

Network Driver

Figure 2.2: The network driver component and its CAMKES interfaces. Legend: see Figure 1.1

2.2.2 ARP/IP

The ARP/IP component implements the ARP and IP protocols of the OSI network layer (see
ARP RFC 826[26]). ARP and IP are actually two separate protocols. However, as the IP proto-
col has to query the ARP component for each Ethernet frame to be sent to the network, these
protocols were combined in one component. This increases the forwarding performance of the
router by avoiding the overhead of an RPC invocation for each ARP query.

This component handles Ethernet frames after dequeuing them from the driver's RX queue us-
ing the interfaces shown in Figure 2.3, 1. Depending on the type of the network packet (ARP or
IP) it is then fed to either the ARP protocol implementation or the IP protocol implementation.

The ARP protocol implementation maintains the ARP database and sends out ARP replies and
queries to the corresponding network driver component by enqueuing Ethernet frames in the
driver's TX queue whose interface is shown in Figure 2.3, 1. The ARP database is used to find
out the MAC address that belongs to a certain IP address; this information is needed to create
Ethernet frames out of IP packets.

The IP part of the component is connected to other components (except the network driver) by
an RPC interface. This means that arriving packets do not have to be fetched actively by this
component but are received as parameters of an RPC interface invocation. The same principle
is used for packets that arrived on other NICs and were routed to the current network stack for
delivery. The interface where these packets arrive (Figure 2.3, 5) is called the gateway interface
as it is used to communicate with other networks.

If a received network packet’s destination IP address belongs to the local network, an Ethernet
frame is created (using the ARP database to look up the MAC Address) and the frame is en-
queued to the driver’s TX queue. However, if the packet’s destination IP address is the address
associated with this network stack itself, it is forwarded to the local transport layer components
using the interface shown in 2.3, 5. Finally, if the packet's destination address is not part of
the local network, it is sent to the gateway interface in order to be handled by the routing in-
frastructure of the router. This interface is shown in Figure 2.3, 4. Depending on the source
and destination of the network packets, IP headers will be added or stripped and certain header
fields may need to be edited or recalculated.

The ARP/IP component needs to know about data associated with the network driver (like IP
Address, MAC address etc.). Therefore, it receives a notification if the driver changes its pa-
rameters during run-time. On reception of such a notification, the component can refresh the
information it needs by calling the appropriate RPC interface shown in Figure 2.3, 2.

To allocate or deallocate memory, a memory allocator service is used. This allocator service
allocates or deallocates chunks of memory in a (shared) memory section and makes them

2.2 The Router’s Components 19

available to this component (and other components if the memory is shared between them)
through the dataport interface in Figure 2.3, 3.

ldequeue RX packet network info changed _K
) | BidirQueue.pull_up E DriverEvent
enqueue TX packet _J’ - @
@ 1 BidirQueue.push_down read d.rlver info
T | Driver.get*
Z'_ RX packet ready
E PacketArrivedEvent

| PacketCallback.callback @
@ memory allocation (
Push packet to Gateway| fitalloc

| PacketCallback.callback

Callback for UDP Callback for Gateway

.— packet arrival packet arrival —.
| PacketCallback.callback | PacketCallback.callback
ARP/IP

Figure 2.3: The ARP/IP component and its CAMKES interfaces. Legend: see Figure 1.1

2.2.3 UDP

The UDP component implements the UDP protocol at the OSI transport layer.

Applications using the UDP component can bind themselves to a specific IP:port combination
by invoking the corresponding RPC interface provided shown in Figure 2.4, 5. If an application
is bound to a certain IP:port combination, the UDP component enqueues all arriving packets
matching this combination into the corresponding application’s RX queue (each application has
its own RX queue). Packets from the ARP/IP component are received by the UDP component
as parameters of RPC interface invocations using the interface shown in Figure 2.4, 4.

If packets from an application arrive to be processed by the UDP component, they are dequeued
from the appropriate application’s TX queue (Figure 2.4, 1) before processing and forwarding
them to the ARP/IP component (Figure 2.4, 4). Processing includes adding a UDP header and
calculating the UDP checksum.

The UDP component needs to know about data associated with the network driver (IP address).
Therefore, it receives a notification if the driver changes its parameters during run-time. Upon
reception of such a notification, the component can refresh the information it needs by calling
the appropriate RPC interface as shown in Figure 2.4, 2.

To allocate or deallocate memory, a memory allocator service is used. This allocator service
allocates or deallocates chunks of memory in a (shared) memory section and makes them
available to this component (and other components if the memory is shared between them).
(Figure 2.4, 3).

2.2.4 Memory Allocator

The memory allocator component is used to manage (shared) memory areas forming part of
a memory section provided to other components through a CAmKES dataport interface (Fig-
ure 2.5, 1).

It provides an RPC interface to other components so they can allocate and deallocate memory
in the associated dataport (Figure 2.5, 2). Due to Iguana’s protection domains, this is only possi-
ble if the client component using this functionality explicitely shares the corresponding managed

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
20 ROUTER

network info changed
E DriverEvent _Z
]
read driver info _C)

| Driver.get*

>_

Zl |Epp TX packet ready;
Push packet to ARP/IP memory allocation @
| PacketCallback.callback | Malloc

@ Callback for network

.— packet arrival from ARP/IP
| PacketCallback.callback

Bind application to IP:PORT

@._ or unbind application

| UDP

UDP

Figure 2.4: The UDP component and its CAmKES interfaces. Legend: see Figure 1.1

memory section with this component (has read/write rights to it).

The algorithms used for the memory allocation can be different depending on the compo-
nent’s implementation. A possible implementation divides the memory section into pre-allocated
buffers of a fixed size. Another implementation supports the allocation of memory chunks of ar-
bitrary size by using the K&R Malloc algorithm used in the L4/Iguana ANSI C library’s memory
allocation implementation. This allows for application-tailored optimization of the memory allo-
cation algorithm used in a system simply by replacing an existing memory allocator component

by an optimized one.
[

memory allocation
| Malloc _‘ @

Memory Allocator

Figure 2.5: The memory allocator component and its CAmKES interfaces. Legend: see Fig-
ure 1.1

2.2.5 Bidirectional Queue / Copying Bidirectional Queue

A bidirectional queue component contains two FIFO queues queuing packets travelling in oppo-
site directions. One queue enqueues packets flowing in the direction from the top of the network
stack to the bottom of the network stack; it is called the TX queue (also referred to as the down-
queue). Packets flowing in the direction from the bottom of the network stack to the top of the
network stack are enqueued in the RX queue (also referred to as the up-queue). Components
can enqueue and dequeue packets in either queue by making calls to the corresponding inter-
faces exposed by this component. (Figure 2.6,1).

A network packet is enqueued by passing its reference to one of the FIFO queues, which then
stores the reference in its internal data structures. If the corresponding FIFO queue was empty
before inserting the new packet, an event is emitted to notify the consumer component of the
packet arrival by using the interfaces shown in Figure 2.6, 2 and 3. A component dequeuing
a network packet from a queue receives the reference to the dequeued network packet. Since
network packets are looked at as references to the memory area where their payload is stored,

2.2 The Router’s Components 21

a consuming component needs to have access rights to the memory area where the actual data
resides. This means that the producer and consumer of a bidirectional queue need to share an
appropriate memory area by defining a dataport connection in the application’s ADL file.

Using the bidirectional queue, it is not possible to support total memory protection between con-
sumer and producer components (as they need to share the memory area where the packets
reside). To obtain total memory protection, a copying bidirectional queue is introduced. This
component shares memory with both the consumer and the producer component through two
separate dataport interfaces shown in Figure 2.7, 4 and 5. However, the producer and con-
sumer components do not share any memory between each other. If the consumer dequeues a
network packet, the copying bidirectional queue copies the network packet’s payload from one
dataport memory section (the producer’s) to the other (the consumer’s) and returns a pointer to
the copy to the consumer. During this process, the copying bidirectional queue needs to allocate
memory in the consumer’s memory section and deallocate memory in the producer’s memory
section. This is accomplished by calling the allocation or deallocation functions of the mem-
ory allocator component managing the appropriate memory section by invoking the interfaces
shown in Figure 2.6, 4 and 5.

Enqueue or dequeue packet in direction up
@ ._ packets to down-queue |,| the stack available —D @
or up-queue E PacketArrivedEvent
| BidirQueue

!

packet in direction down

@ G— the stack available

E PacketArrivedEvent

Bidirectional Queue

Figure 2.6: The bidirectional queue component and its CAMKES interfaces. Legend: see Fig-
ure 1.1

Enqueue or dequeue packet in direction up
@ ‘_ packets to down-queue P the stack available —D @
or up-queue E PacketArrivedEvent
| BidirQueue

packet in direction down -. @

@ C'— the stack available memory allocation (

E PacketArrivedEvent | Malloc

memory allocation @
| Malloc

Copying Bidirectional Queue

Figure 2.7: The copying bidirectional queue component and its CAmKES interfaces. Legend:
see Figure 1.1

2.2.6 DHCP

The DHCP component is part of the application plane and implements DHCP Client functional-
ity as defined in RFC 2131[12].

The DHCP component communicates with DHCP servers by enqueuing datagrams to be trans-
ferred to the network in its TX queue and by dequeuing received datagrams from its RX queue
(Figure 2.8, 1). DHCP’s transport protocol is UDP, so the DHCP component is a client of the
UDP component, which enqueues packets directed to the DHCP component in the correspond-
ing RX queue. In order to receive the appropriate network packets, the DHCP client uses its

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
22 ROUTER

UDP interface to bind to a specific IP:port combination using the interface shown in Figure 2.8, 3.

To allocate or deallocate memory, a memory allocator service is used. This allocator service
allocates and deallocates chunks of memory in a (shared) memory section and makes them
available to this component (and other components if the memory is shared between them)
through the inferfaces in Figure 2.8, 4.

The DHCP protocol must knwo the MAC address of the NIC it is currently assigning an IP
address to. In order to obtain this information, the DHCP component needs to be able to read
the network driver’s associated data. Furthermore, the DHCP component has to be able to
set the IP address, the netmask and the gateway address of the corresponding network driver
as it is the role of a DHCP client to automatically request network configuration data from a
DHCP server and to alter the configuration of the network driver accordingly. The interface that
is invoked during this process is shown in Figure 2.8, 2.

dequeue RX packet network info changed _K
j | BidirQueue.pull_up E DriverEvent
enqueue TX packet v — @
@ | BidirQueue.push_down set/get driver info
T | Driver.set*/get*
Zl_ RX packet ready
E PacketArrivedEvent

bind/unbind IP:port _—.
@)— at UDP component @
1 UDP memory allocation
| Malloc

DHCP

Figure 2.8: The DHCP component and its CAmKES interfaces. Legend: see Figure 1.1

2.2.7 NAT Admin

The NAT Admin component is part of the application plane and provides server functionality to
configure the NAT component during run-time from a remote machine. Additionally, remote ma-
chines can query the status of the NAT component and request information about NAT statistics
and NAT tables by using the NAT Admin component. A Java client was implemented in order to
use this functionality (see appendix C).

This component implements a custom protocol running on top of UDP to communicate with an
UDP client running on a remote machine. Request datagrams arriving from the client applica-
tion are enqueued in the NAT Admin’s RX queue and can be processed by using the interface
shown in Figure 2.9, 1.

After processing a dequeued request datagram, the appropriate function provided by the NAT
component is called by using the corresponding CAmkKES RPC interface shown in Figure 2.9,
5. These functions are exposed by the NAT component to provide an interface for run-time con-
figuration. The NAT Admin component then generates a reply datagram containing the results
of the configuration method invocation to be sent back to the remote client. Finally, the reply
packet is enqueued in the component’s TX queue for delivery to the network.

Note that CAmKES does not support return types with variable lengths (e.g. arrays). The only
way to return types of a variable length is to create a shared memory area between the caller
and the callee by defining a dataport interface as shown in Figure 2.9, 5. The result of the
function call therefore is copied to the shared memory by the callee and returned to the caller
as a reference to the result data structure.

To allocate or deallocate memory, a memory allocator service is used. This allocator service
allocates and deallocates chunks of memory in a (shared) memory section and makes them
available to this component (and other components if the memory is shared between them).

2.2 The Router’s Components 23

(Figure 2.9, 4).

During this project, a Java client for the NAT Admin component was developed. It allows its user
to configure and query the NAT component from the command line of any networked machine
supporting Java.

dequeue RX packet network info changed _|Z
| BidirQueue.pull_up E DriverEvent
) enqueue TX packet x @
@ | BidirQueue.push_down get driver info
T | Driver.get*
ZI_ RX packet ready
E PacketArrivedEvent

bind/unbind IP:port _—-
@ >— at UDP component @
1 UDP memory allocation (
1 Malloc
call admin functions in
>— NAT component
@ | NatAdmin

Admin Service

Figure 2.9: The NAT Admin component and its CAmMKES interfaces. Legend: see Figure 1.1

2.2.8 NAT

The task of the NAT component is to translate the IP addresses and other data contained in IP
packets in transit between the local network and the global network (as described in Section
1.4).

The NAT component receives IP packets from the local and global network stacks’ gateway
interfaces, which are shown in the overview of the rounter’'s components in Figure 2.1. These
packets are received by the NAT component as parameters passed by reference in RPC inter-
face invocations of the interfaces shown in Figure 2.10, 1 and 2. This usually happens when
an IP packet’s destination address is not part of the network stack’s local network or if the net-
work stack is configured to forward all packets to its gateway. Upon IP packet arrival, the NAT
component alters the necessary fields in the IP header and the headers of the transport layer
protocol packets (UDP, TCP, ICMP) contained in the IP packet’'s payload. Finally, the processed
IP packets are sent to the gateway to the other network.

The NAT component needs to replace the source IP address of local packets bound to the global
network by the IP address assigned to the global NIC. Consequently, it needs to be notified if
the IP address of the global NIC changes in order to refresh it. (Figure 2.10, 3).

As opposed to other components, the NAT component does not have to allocate memory for
packet headers as it only changes fields in already allocated IP packets. However, the NAT
component needs to free the memory of packets that have to be dropped (e.g. packets from the
global network that do not match any NAT table entries). Hence, the NAT component still needs
to have an interface connecting it to a memory allocator component as shown in Figure 2.10, 4.

In order to allow other components to configure the NAT component during run-time and to
query status information, it has to expose an appropriate RPC interface. The CAmMKES imple-
mentation does not support types of variable length (e.g. arrays, strings) at the moment, so
a dataport interface (shared memory) is used to pass these types between the caller and the
callee by reference. (Figure 2.10, 5).

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK

24 ROUTER
Push packet to local network info changed _K
network's stack E DriverEvent
| PacketCallback.callback * @
get driver info
Callback for local | Driver.get* _C

gateway packet arrival
(bound to global net)
| PacketCallback.callback

i A

memory allocation
1 Malloc

Push packet to global
network's stack

| PacketCallback.callback

Callback for global -
gateway packet arrival mterface L7 (.r emot'e)
run-time configuration

(bound to local net) R
| PacketCallback.callback @

" 0"y
o ~

NAT

Figure 2.10: The NAT component and its CAmMKES interfaces. Legend: see Figure 1.1

2.3 Assembly of the Router

This section explains in detail how the presented CAMKES components are assembled to form
the router. A coarse overview was already given with Figure 2.1. However, Figure 2.1 does not
include helper components like queues or memory allocators, nor does it specify the interfaces
each component provides or uses and the connections between these interfaces.

In Figure 2.11, a detailed overview of the whole router is given. It includes all important compo-
nents in the router including the interfaces they provide and the connections between pairs of
these interfaces.

e Green lines refer to CAmKES event connections. The arrowheads on these lines point
from the emitter of an event to its consumer.

e Red lines refer to CAmKES dataport connections. A dataport interface is usually used in
conjuction with an RPC interface connected to a memory allocator component (managing
the shared memory), hence there is only one line drawn for such a pair (for simplicity).
The arrowheads point from the component using the memory allocator’s functionality to
the associated memory allocator component itself.

o Blue lines refer to CAmMKES RPC connections. The arrowheads point from the component
calling the interface’s functions to the component providing their implementation.

Only the interface types and the pairs of interfaces that are connected together are defined at
this point. The implementation of a particular connection in the actual system depends on the
chosen connector for the according connection as explained in Section 1.7.3).

The dashed lines on Figure 2.11 divide the router into the forwarding plane and into the applica-
tion plane (see 2.2). In between these planes are the copying bidirectional queue components
(Figure 2.11, 3) which separate the two planes (to provide memory protection) and act as packet
buffers between the network stacks and the applications.

All of the components of the forwarding plane share a managed memory section. A memory
allocator component is used to allocate and free memory in this memory pool. Network packet
related data is allocated in this memory pool and can be passed by reference from component
to component. This allows for fast zero copy forwarding of network packets between the com-
ponents of the forwarding plane (except for the copy out from the NIC’s memory and the copy
into the NIC’s memory). (Figure 2.11, 2).

2.4 Connecting the Components Together 25

In order to buffer network packets that arrived from the NIC or that are bound to be sent to the
NIC, there are bidirectional queues between the driver components and the rest of the system.
(Figure 2.11, 1).

The application plane’s application components are mutually protected from each other as each
CAmKES component resides in its own protection domain. Each of the application components
is connected to its own memory allocator component to allocate memory for outgoing packets
or to deallocate the memory occupied by incoming packets (Figure 2.11, 4). This architecture
easily allows one to connect an application component closer to the forwarding plane by con-
necting it to the forwarding plane’s memory allocator component instead of to its own (so there
are no more memory copies required between this application component and the forwarding
plane). This will increase the speed of the system but decrease its security as a misbehaving
application component could trash the shared memory of the forwarding plane.

2.4 Connecting the Components Together

The previous section showed how the different component’s interfaces are linked together to
assemble the router. This section explores how different implementations of these connections
shape the actual router. The code implementing a connection is generated automatically by
CAmKES depending on the connector that is chosen for it in the application’s ADL file.

2.4.1 Connectors

A connector defines the semantics of a connection, i.e., how the two connected interfaces ac-
tually exchange their data. These are the connectors used in the router’'s ADL file:

e IguanaRPC: This is an RPC connector. The caller component sends its marshaled pa-
rameters to the callee component by L4 IPC. The callee implements a service loop thread
that receives the IPC, unmarshals the parameters, calls the corresponding implementa-
tion, marshals the results and sends them back to the caller by L4 IPC.

e DirectCall: This is an RPC connector. The caller component has access to the function
pointers of the connected interface’s implementation in the callee component. The caller
then calls the function directly through its function pointer. This is only possible if the callee
component provides the caller access to the memory section where the actual function
implementation resides, for example if both components reside in the same protection
domain.

e IguanaSharedData: This is a dataport connector. It enables zero copy memory sharing
between the connected components by allocating an Iguana memory section and giving
all of the components read and write rights to it.

e IguanaAsynchEvent: This is an event connector. If a component emits an event to an
event consumer, an L4 asynchronous IPC call is made to the consumer component. The
consumer component implements a service loop thread that handles the asynchronous
IPC message and delivers it as an event to the component’s implementation.

Direct method invocations are significantly faster than L4 IPC calls. This means that RPC inter-
face invocations through connections of type DirectCall are a lot faster compared to connec-
tions of type TguanaRPC. Consequently, IguanaAsynchEvent connections are also relatively
slow compared to direct method invocations as there is an asynchronous L4 IPC call involved
during the event delivery.

When choosing connectors, there seems to be a general trade-off between security and per-
formance. For example, DirectCall is faster than IguanaRPC but there is less memory
protection between the two connected components. This poses a security risk. More in-depth
discussion of the different connectors’ performance and their influence on the system’s perfor-
mance can be found in Section 4.2 and Chapter 3.

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
26 ROUTER

E
i
osce Application Plane

=

packet in direction up
the stack available |- >,
E PacketAmivedEvent

packet in direction »
the stack available

E PacketArivedEvent

®

Copying Bidirectional Queue Copying Bidirectional Queue

Demarcation between planes

d
€ Driverevent
:
€ DriverEvent
—
T >
]
[
ARP/IP NaT ARP/IP

‘packet in direction up
the stack available | >
E PacketArrivedEvent

[packet in direction down
the stack available
€ PacketarivedEvent
Bidirectional Queue

L L

@ o | —

network info changed
E DriverEvent

Network Driver

Network Driver

Forwarding Plane

Figure 2.11: The assembled modular router. Legend: see Figure 1.1

It is not always straightforward to replace one connector type with another, for example, to re-
place DirectCall connectors with TguanaRPC connectors. As the TguanaRPC connector
invokes calls via the kernel’s IPC mechanisms, systems connected with this type of connector
tend to be highly multi threaded. This is because every component has to implement its own

2.4 Connecting the Components Together 27

service loop thread to receive and handle the RPC related IPC messages arriving from the ker-
nel rather than allowing the functions to be called directly. This is illustrated in Figure 2.12.

On the other hand, systems whose components are connected via DirectCall tend to be
more monolithic as the thread making the interface invocation actually executes the provided
implementation itself as illustrated in Figure 2.13.

As such, if there is a chain of method invocations across several components, this can lead to
a redirection of the calling component’s thread across multiple other components before return-
ing. It is therefore not straightforward to replace IguanaRPC with DirectCall connectors as
the possibility of deadlocks is high if we switch from a system using TguanaRPC to a system
using DirectCall. However, the possibility of race conditions between multiple threads is
high if we switch from DirectCall to IguanaRPC. Precautions like placing semaphores and
mutexes at appropriate locations must be taken during the design and implementation time of a
system, to ensure that replacing TguanaRPC by DirectCall and vice versa is possible as in
the presented router.

Cl C2

'l/_-‘ _C
\ J

i >
IPC y

.
Kernel

Figure 2.12: IguanaRPC connection. The function provided by C2 is executed by C2’s thread
(blue) while C1’s thread (red) only marshals the parameters and unmarshals the results.

Cl Cc2

Py . .
(, _(function pointer ._ impl
\

Figure 2.13: DirectCall connection. C1’s thread (red) executes the function provided by C2 itself.

2.4.2 Different patterns of how to connect the router’s components to-
gether

There are different patterns of how to connect the router’s components together so that network
packets can flow between them. The main patterns are:

Forwarding pattern: One way components can pass network packets to other components
is by invoking a function provided by the consumer component. The packet is passed by
reference as a function parameter (see Figure 2.14). Another pattern used to pass packets
from one component to the other is the well known consumer/producer pattern using a
queue between the consumer and the producer component. The consumer enqueues
a network packet in a queue by invoking a push function. The queue emits an event to
notify the consumer about packet arrival if it was empty before. The consumer’s control
thread can then dequeue (pull) a packet from the queue when it is ready as illustrated
in Figure 2.15. The first approach to passing packets is more similar to synchronous
communication between the components while the second approach is asynchronous and
allows the producer thread to schedule packet dequeuing. Because of the indirection of
the consumer/producer pattern, passing packets directly from one component to the other
is much faster.

Cl HRush, o M2

Figure 2.14: Method call to pass a packet from component C1 to component C2.

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
28 ROUTER

notify)m
c1 (Rush tm%mma«—p”” p

Figure 2.15: Consumer/producer pattern to pass a packet from component C1 to component
C2. The queue is also a component.

Memory Sharing pattern: Components can share a memory area by defining a data sharing
relation with each other using a dataport interface. This allows for zero copy passing of
packets between two components by simply passing a reference to the network packet re-
siding in the shared memory area as shown in Figure 2.16. If no memory sharing between
two components is desired for security reasons, a network packet can be copied from the
producer's memory area to the consumer’s. A component separating the consumer and
the producer does the copying between the two memory areas. It needs to have data
sharing relationships defined with both the consumer and the producer component in or-
der to be allowed to access their memory areas. This is shown in Figure 2.17. Zero copy
passing of network packets is much faster than copying packets from one memory section
to the other. However, it may pose a security risk to let two components share a memory
area. This especially applies if one of the components is an untrusted component, for
example, one that was downloaded from the Internet.

c1 - —P—el 2

Figure 2.16: C1 and C2 share a common memory area. This supports zero copy passing of
packets between the components.

!

e lal o

Figure 2.17: C1 and C2 do not share a common memory area. A third component in between
them has to copy the data from one memory area to the other.

Connector induced patterns: Depending on the chosen connector, the semantics of a resulting
system may change (see Section 2.4.1). Connectors are very powerful abstractions and
replacing existing connectors by different ones can lead to changed communication pat-
terns in the system. If DirectCall connectors are used, the resulting system and its ADL
definition seem to be more control flow focuses. If IguanaRPC connectors are used, the
resulting system and its ADL definition seem to be more data flow focused. DirectCall
connectors explicitely transfer the control to the implementation of a called function while
IguanaRPC connectors transfer parameters to the component that implements a called
function.

A system’s properties may differ depending on the patterns chosen to forward packets. There
are two extreme systems:

e Queues between all components, no shared memory, only IguanaRPC connectors. This
system will be very slow because of the indirection caused by the queues, the various

2.5 Patterns Used in the Final Router’s Design 29

memory copies required and by using the kernel's IPC mechanisms to invoke RPC inter-
faces. However, the components are completely protected from each other as they do
not share any data and use the kernel’s IPC mechanisms to communicate. The result-
ing system is highly threaded and asynchronous as every component has its own thread
of control and is able to independently schedule when to process (dequeue) a network
packet.

e Interface invocation to pass packets directly to consumer, shared memory between all
components, only DirectCall connectors. This system will be fast as the packets are
passed directly to the consumer component, there are zero copies when passing a packet,
and the components use function pointers to execute the functionality provided by another
component. The components are not protected from each other as they share memory
areas where the network packets reside and give each other access to the memory areas
where the provided functions reside. The resulting system is single threaded because the
use of function pointer invocations requires that the thread at the beginning of a chain of
invocations executes everything.

2.5 Patterns Used in the Final Router’s Design

The goal of the router’s forwarding plane is to forward network packets as quickly as possible.
Therefore, it was decided to let the components of the forwarding plane pass their packets di-
rectly by method invocations instead of using a consumer/producer pattern. Only the drivers are
connected by queues to the rest of the forwarding plane because of the asynchronity caused
by the interrupts they have to process. The DirectCall connector is used as it is significantly
faster than IguanaRPC. All of the forwarding plane’s components are in the same Iguana pro-
tection domain.

To protect the forwarding plane from potentially misbehaving applications or extensions, the
border between the forwarding plane and the application plane completely separates compo-
nents of the one plane from components of the other plane. This is accomplished by not having
shared memory between application and forwarding plane components, by using IguanaRPC
as a connector, and by putting queues in between both planes to enable asynchronous, indirect
communication.

2.6 Implementation of the Router’s Components

This section contains some more details about the implementation of the router's components.

2.6.1 Network Stack Components

The IwIP[13] network stack was used as the basis for the implementation of the different net-
work stack components. It is tailored to embedded systems and promised to yield good results.
Also, a small Iguana application using it was already present and running.

As the IwlP network stack is a monolithic library, some changes had to be made in order to
be able to use it from within CAmMKES components in a modular way. These changes mainly
affected the calls to upper or lower network layers in the IwIP implementation. In a compo-
nentised network stack, the communication mechanisms provided by the framework have to be
used. The modularization of the IwlIP network stack mainly involved replacing the calls to upper
or lower network layers in its implementation by function pointer calls. A component then sets
these function pointers in the IwlP implementation to point to the methods that communicate
with the corresponding other components.

A component receives a network packet either by dequeuing it from a queue or by receiving it
as parameter of an interface invocation. The packet is then passed to a function of the IwlIP
implementation corresponding to the component (e.g., the receive function of a certain proto-
col). At the point in the IwIP implementation where the processed packet must be passed to an

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
30 ROUTER

upper or lower network layer, IwlIP invokes the previously set function pointer, which causes the
appropriate component method to be invoked. This method then normally passes the packet to
the next network stack component using the CAmKES communication mechanisms.
Consequently, most of the network stack components contain a loop to service their input
queues and a switching architecture to send the packets out to the appropriate next network
stack component.

2.6.2 Network Driver Component

The Linux SMC91C111 network driver (as described in Section 1.9.2) was used as the basis for
the network driver component.

Necessary modifications included porting the driver’s physical interface initialization functions
to L4/Iguana. Furthermore, the driver had to be extended to be general enough to support
two NIC’s in the system. This involved removing hard coded memory and I/O addresses from
the code and adding support to initialize these fields from a CAmMKES component. Also, the
hardware details like the interrupt number and 1/0O memory area of the second NIC had to be
retrieved.

During the first tests of the router, some bugs in the ported version of the driver were discovered.
These mainly had to do with the fact that there was no more thread synchronization present in
the driver implementation that was used as a starting point. The original Linux driver had to be
consulted to add synchronization primitives at the right places in the L4/Iguana port.

Unfortunately, the current driver does not support DMA but only runs in PIO mode. This means
that the CPU has to copy a network packet byte by byte out of the NIC’'s memory. The same
also applies to data copied to the NIC’s memory before being sent out to the network. Every
such copy involves the overhead of configuring a data transaction and transferring the data over
the bus.

2.6.3 NAT Component

The NAT component was implemented from scratch. It supports the translation of IP packets
and their payload: TCP, UDP and ICMP packets. (ICMP translation is not explained in this sec-
tion as it uses a similar principle as TCP/UDP translation).

Upon arrival of a network packet from the local or the global network, information consisting
of the packet’s source and destination IP addresses and source and destination ports are ex-
tracted. This information later is used to query or update the NAT lookup database whose data
structures are shown in Figure 2.18. This database is composed of two (layered) hashtables
and a set of NAT entries describing the translations the NAT currently has installed.

On the local side of the NAT, a 2-layered hashtable is used to look up translation information be-
cause two keys have to be considered for packets travelling from the local network to the global
network. On the one hand, the source IP addresses of the hosts in the local network are the
keys for the first hashtable layer as packets from different hosts have to be distinguished. On the
other hand, the local source port address of the network packet is the key for the second layer
hashtable. Both keys together identify a communication channel created by a specific machine
in the local network. Upon arrival from a packet from the local gateway, the NAT component
retrieves the NAT entry belonging to the corresponding keys. If no NAT entry is present, a new
entry is allocated and inserted into the hash table.

An important field for the NAT translation is the unique global NAT port associated with each
combination <local source IP:local source port>. This global port is used to multiplex the single
global IP address of the router. When a new NAT entry is created, a new unique global NAT port
is assigned and stored in the corresponding NAT entry. This unique port identifies the communi-
cation channel initiated by the machine on the local network. The destination IP address of the

2.7 Discussion of the Router’s Desigh and Implementation 31

packet (that is an address belonging to the global network) is also stored. In order support the
inverse translation of packets received as a reply for the packet currently beeing sent out to the
global network, the new NAT entry is also inserted into the global hashtable using the unique
global NAT port as a key.

The translation process from packets in transit form the local network to the global network
replaces the source IP of the network packet by the IP address of the router’s global network
interface. On the transport layer, the source port is replaced by the assigned unique global NAT
port looked up in the corresponding NAT entry retrieved from the local hashtables. The transla-
tion process also involves a recalculation of the IP and transport layer checksums.

For packets in transit from the global network to the local network, the global hashtable is
queried. If the destination port of the packet matches a key in the global hashtable, the cor-
responding NAT entry is retrieved. Only if the source IP address of the global packet matches
the previously stored IP address of the global host is the packet forwarded to the local network.
This prevents packets sent by global machines to random ports on the global router interface
from entering the local network if they match a previously assigned unique global NAT port by
chance. The translation process from the global network involves replacing the destination ad-
dress and the source address with the previously stored information contained in the NAT entry
as well as recalculating the checksums.

Machines on the global network can not initiate a connection to a machine on the local network
hidden behind the NAT. In order to support local machines to provide server functionality acces-
sible by machines on the global network, the port forwarding feature of NAT routers is used. A
port forwarding declaration consists of a global port (e.g. port 80 for a web server) and a local IP
address. Consider the port forwarding example 80->192.168.0.1. If a network packet directed
to port 80 arrives on the global side of the NAT, it bypasses the usual NAT translation. Only
the destination IP address is replaced by the address defined in the port forwarding declaration
(192.168.0.1 in this example). This allows the local host 192.168.0.1 to provide web server
functionality that can be accessed from the global network.

2.7 Discussion of the Router’s Desigh and Implementation

2.7.1 Implementation of the Defined Functional Requirements by the Router

The NAT component presented in Section 2.2 implements the functionality required to share a
single global IP address between machines on the local network. The NAT component also sup-
ports the forwarding of global packets sent to a given global port to a prespecified local machine.

The NAT Admin component provides server functionality to remote machines to configure the
NAT component and query its state. This can be used e.g. to forward certain ports, retrieve the
number of packets that were dropped by the router or to disable the network address translation.

To dynamically obtain an IP address in the global network, the DHCP component implements
the DHCP client protocol and assigns the values obtained from the DHCP server to the corre-
sponding components.

2.7.2 Extensibility and Configurability of the Router

As defined in the functional requirements (see Section 2.1), the router’s architecture has to be
flexible and configurable in different ways.

Note that CAMKES does not support dynamic creation of components and thus all router con-
figurations are static and require recompilation, reload and a reboot. However, the addition of
support for dynamic components will be added to CAmKES in the near feature.

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
32 ROUTER

local lookup hashtables

key: local src IP address

IP1 P2
key: local src p/orf key: local src port
24 04 81
\\ \NAT entries

-local src IP

-local src port

-global dest IP

-unigue global
NAT port

key: global desf\port
0 1(2

global lookup hashtable

A

Figure 2.18: The hashtables used to look up a NAT entry containing the information for the
network address translation.

The current design supports the upgrade or replacement of existing components. This is possi-
ble by implementing a CAmKES component that provides and uses the same interfaces as the
old component. If a new component matches the interfaces of the old component, the compo-
nent type in the application’s ADL file can simply be replaced by the new type in order to get an
updated router version. An example of such a component replacement would be to replace a
NIC driver component by another driver implementation to support different NIC hardware.

It is straightforward to add additional functionality to the existing router. The application plane
has specially been designed to enable the addition of untrusted applications or components. By
defining the corresponding connections to other components in the application’s ADL file, a new
application component can be integrated into the system. If the new component is a trusted
component, it can also be integrated into the forwarding plane to speed up the communication
process with other components in the forwarding plane.

A special kind of extension component is a component that is actually added to the data path
in the router. This means that network packets traverse the extension component on their way
through the router. As a concrete example, a component implementing stateful packet inspec-
tion (SPI) could be added on the global side of the router between the ARP/IP component and
the NAT component. This SPI component would block certain traffic from entering the local net-
work by observing the traffic and detecting certain prohibited patterns in it. Another extension
would be to add a component that provides TCP functionality.

Finally, all of the components are general enough to use them in a different setup. Especially
the network stack components could be reused in other CAMKES based applications needing
network support. The interfaces of the components are easy to use and a developer should
have an application-tailored network stack based on the developed components up and running
in a short time.

2.7 Discussion of the Router’s Desigh and Implementation 33

The router's NAT component is configurable online by using an administration service running
as an application on it using UDP as a transport protocol. This service could easily be extended
to also configure other components (like firewalls) online as well.

Also, by using appropriate attributes in the application’s ADL file, the memory area, interrupts
etc. associated to a NIC can be configured offline. Furthermore, it is possible to configure the
behavior of the ARP/IP component by editing the appropriate attributes.

Another type of configuration refers to the security and performance trade off in the system.
Faster (less secure) connections can be replaced by slower (more secure) connections between
the components and vice versa. This is simply achieved by changing the connector definition in
a particular connection declaration in the application’s ADL file.

2.7.3 Security and Robustness of the Router

The router’s architecture distinguishes between trusted and untrusted components. Untrusted
components can be put into the router’s application plane. If they crash, they can not crash
other components in the system as each component in the application plane resides in its own
protection domain. Components containing confidential information like passwords can also be
put into the application plane so that no other component has access to the confidential data.
The only way to communicate with such a component is to use the kernel's IPC mechanisms
(as implemented in the TguanaRPC connector) and well defined RPC interfaces declared in the
application’s ADL file.

Security in the application plane is achieved by reusing the well-tested IwIP network stack rather
than implementing an own network stack. A new network stack implementation would be more
likely to crash as the implementation would contain more bugs than the mature IwlP code. Fur-
thermore, existing 14/Iguana libraries were used whenever possible to reduce the amount of
untested code in the system.

During execution of benchmarks and tests, the router’s implementation seemed to be very stable
despite its early development state.

2.7.4 Suitability of the Router for Embedded Systems

The router benefits of all of the properties features of CAMKES and L4/Iguana related to em-
bedded systems. Furthermore, it also makes it possible to deploy the router on a variety of
embedded platforms supported by L4/Iguana. The used network stack is a light weight imple-
mentation of the TCP/IP stack specially aimed at embedded systems. The implemented NAT
component was designed to be light weight as well. This helps save memory and CPU load in
the resulting router.

Memory Requirements of the Router

The memory requirements of the whole router application were investigated as part of this
project. As a first part, the minimal amount of memory to load the router application (including
L4/Iguana) is presented. As a second part, the run-time memory needs of the router are dis-
cussed.

The pie chart on Figure 2.19 shows the relative memory usage (including the text, data and
bss segments) of the different router components and the L4/Iguana related code in the sys-
tem. Note that some of the components occur multiple times in the assembled system. The
slices representing L4/Iguana related code are pulled out.

The total memory usage of the whole system is approximately 2.2MiB. The router related code
including all components occupies around 80% of these 2.2MiB (see Figure 2.19). The code

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
34 ROUTER

of the complete system can be stored in read-only memory (ROM) as no write access to it is
necessary.

[Driver [[ig_init

W uDP [Mig_serial

B NAT [ig_naming |
B NAT Admin M ig_trace

Il Memory Allocator [l ig_timer
Bidirectional

Queue
[] Copying Bidirec-
tional Queue
[DHCP
W kernel
[]ig_server

Figure 2.19: Code memory used by the router’s different components (also shown is L4/Iguana
related code).

|
///// [T Router
[Jos

Figure 2.20: L4/Iguana related code uses about 20% of the 2.2MiB totally required for code.

To get an estimate of the amount of dynamic memory used during run-time, the functions
morecore and malloc were instrumented. The memory that the router’s and the system’s
components reserve during the startup of the router is about 41KiB. However, only about 7KiB
of this memory finally is actually allocated by calls to malloc. Depending on how many pack-
ets are buffered in the router at a particular time (depends on the configured maximum queue
lengths), this memory amount increases. If no packets have to be buffered in the router, this
memory amount stays constant. Not included in these 41KiB is the memory used for local vari-
ables and other data allocated on the stacks.

The minimum hardware platform therefore needs to provide at least 2.2MiB of ROM and hun-
dreds of kilobytes of RAM in order to be able to run the router.

2.7.5 Relation to other Component Based Router Architectures (Click,
XORP and Scout)

There are no modular router architectures aimed especially at embedded systems. However,
there are many different projects that address the general problem of designing and implement-
ing an extensible yet fast modular router. Depending on the targeted environment and use of
these routers, they sport different properties and features.

2.7 Discussion of the Router’s Desigh and Implementation 35

The Click Modular Router

The Click Modular Router architecture[19] is based on composing many very fine grained ele-
ments to produce a router that implements desired behavior. Packets are pushed by the device
driver through a set of elements until they hit a queue where they wait until they are pulled from
the queue by the next component. There are two main interfaces: a push interface to push
packets to another element and a pull interface to retrieve packets from another element. This
is similar to the components in the CAmMKES based router that either forward packets directly
from component to component (push) or dequeue packets buffered in queues (pull).

As the Click architecture uses very fine grained components (e.g., an element only increasing
a single counter), it is different from the coarse grained design of the router presented in this
thesis. The CAmMKES component architecture is geared towards components that are similar
to servers in the microkernel context and provide complex functionality. It is not appropriate
to incorporate single Click elements in a CAmMKES based application. However, it would make
sense to wrap a whole Click system composed of several elements (e.g. implementing a certain
network protocol) into a CAMKES component and be included in our router.

Click resides in the Linux kernel. A kernel thread runs the Click’s router driver, which processes
a task queue and executes each pending task in the router’s components. Consequently, there
is no protection between the different components; this means that the whole router crashes if
a single component does. The security level for each component can not be configured in Click.

XORP - eXtensible Open Router Platform

The goal of XORP is to develop an open source router platform that is stable and sophisticated
enough for production use, and flexible and extensible enough to enable network research.

The XORP[17] [32] design philosophy stresses extensibility, performance and robustness. For
routing and management modules, the primary goals are extensibility and robustness. These
goals are achieved by separating functionality into independent UNIX processes with well de-
fined IPC interfaces between them.

For the forwarding path, the primary goals are extensibility and performance. Robustness here
is achieved through simplicity and a modular design that re-uses well-tested components.

These XORP architecture goals share many similarities with the current CAmKES router’s de-
sign.

First, the XORP components are relatively coarse grained. They provide complex functionality
(like routing protocols) and are similar to servers in a microkernel context as they run in user
space and communicate with the rest of the system by IPC. It should therefore be possible
and rewarding to port XOPR components to CAMKES components and integrate them with the
existing router components.

Applications (routing and management modules) run in different UNIX processes that commu-
nicate via well-defined IPC interfaces between each other and the part of the router that does
the actual packet forwarding. This is similar to CAmMKES components which run in separate
protection domains and communicate using RPC.

As opposed to XORP, the actual routing process of the CAmKES router is also part of the
forwarding path. The NAT component includes both routing and forwarding of packets at the
same place for performance reasons. For more sophisticated routing protocols, like the ones
implemented in XORP, this functionality could easily be moved to the application layer.

In the forwarding plane of our router, robustness is achieved in a way similar to that in XORP:
simplicity and a modular design based on the well-tested IwIP network stack.

Another interesting fact is that the XORP project implemented a novel inter-process commu-
nication mechanism (called XRL) that allows processes on one machine to communicate with
processes on other machines (similar to RPC). This enables the XORP router’s processes to
run in a distributed way on multiple machines. By implementing and using a special user defined

CHAPTER 2. DESIGN AND IMPLEMENTATION OF THE COMPONENT BASED NETWORK
36 ROUTER

connector in CAmMKES, this feature could also be enabled in a transparent way in the presented
CAmKES router.

Finally, it is also possible to compile most of the XORP modules that normally run in different
UNIX processes together to run them in a single UNIX process. Such a XORP router is faster
but the crash of a single component then would crash the whole router. The process of moving
all of the XORP modules into one process is equal to the process of replacing all IguanaRPC
connectors between the application plane and the forwarding plane of the CAmMKES based router
by DirectCall connectors.

Scout

Scout[24] is a modular, communication-oriented operating system. lts major abstraction is the
path: a linear flow of data that starts at a source device and ends at destination device. Paths
are composed of stages, which are instances of modules. Each Scout module implements a
well understood protocol, such as IP or TCP. Before a packet is sent through the router, Scout
looks up the path for the packet by running a classification function in each module. The clas-
sification function decides to which subsequent module a packet has to be sent. Only after
the whole path has been looked up, is a packet scheduled to run along the path. This allows
Scout to manage all of the ressources that are used along a path. These include CPU, 1/0O bus,
memory buffers and TLB.

Scout modules wrap single protocols in different modules. A packet is then forwarded along a
path through these modules. This is similar to the CAmKES router. The main difference be-
tween Scout and the CAmKES based router is, that in Scout a complete path for a packet is
looked up before the packet actually is sent. In the CAmKES router, the forwarding decision
from component to component is made online, when a packet is in the system.

Scout seems to be more of an experimental platform as compared to Click and XORP. It is not
clear how stages (instances of modules) relate to operating system abstractions like protection
domains and processes and how the modules exchange data with each other.

A Model for Modular Router Architectures and how the CAmKES Router Relates to it

A comparison of different modular router architectures (including Scout and Click) is presented
in [15]. This comparison is based on a simple model.

This model includes three different types of components in a system. All of these component
types can change the state of the router.

e classifiers: forward packets to different modules depending on packet’s properties

e scheduler: decides which packet to process next if there are several possibilities available
(e.g. two queues to service)

o forwarder: simply forwards a packet from its single input to its single output
The main components in the CAmKES router fit to this model as follows:

e Driver: forwarder, as it forwards packets from the network to the RX queue and packets
from the TX queue to the network

o ARP/IP: classifier, as it forwards packets either to the local stack or to the gateway. It is no
scheduler as only one queue is serviced.

e UDP: classifier and scheduler. It forwards UDP datagrams to different clients depending
on the destination UDP port. It also schedules processing of UDP datagrams arriving in
different queues form different applications.

o NAT: forwarder. The NAT component forwards packets from one gateway to the other.

2.7 Discussion of the Router’s Desigh and Implementation 37

Generally, the current router’s architecture does not pose any restrictions on how a component is
composed of the three different types of the model. To generalize, a CAmkES router component
can be a scheduler, a forwarder and a classifier at once. If we analize the UDP component we
find that there is actually scheduler logic (decide on which packet to dequeue), forwarding logic
(forward a dequeued packet to the next step inside the component itself) and classification logic
(decide to which other component has the packet to be forwarded) in the one component.

Chapter 3

Performance Evaluation of the
Router

This chapter presents and compares performance measurements of different router configura-
tions. The first Section addresses the performance of the componentised network stack while
the further Sections investigate the performance of the routing process including the NAT trans-
lation.

Standard benchmarks for routers include measuring the router induced delay as well as the
achieved throughputs. The CPU load of the router during these benchmarks represents an-
other important variable; it shows wether the CPU is the bottleneck during a test or if other
aspects of the system may cause the results. Furthermore, a program that uses less CPU time
is more energy efficient, which is important for embedded systems with limited power supplies.

3.1 Test Environment

In all of the following benchmarks, the router software was running on the following hardware
(see also Figure 3.1):

Gumstix Connex 400xm, ARM XScale/PXA255, 400MHz, 64MB RAM, netDUO-mmc extension
board (10/100 Mib/s).

Figure 3.1: Gumstix Connex 400xm and netDUO-mmc extension board connected to a switch

Note: as stated in Section 2.6.2, the network driver used unfortunately does not support DMA
and data sent from/to the NIC has to be byte-wise copied over the bus by the CPU. Also, there
seem to be some /O related problems in the network driver used as discussed in Section 3.4).

Depending on the actual benchmark scenario, different measuring tools were used. These tools
are further explained in the Sections discussing the actual tests.

There is no practical built-in way to directly measure the CPU load in the L4/Iguana based
router. To be able to still measure the CPU loads during the execution of the tests, we used the

38

3.2 Network Stack Delay Benchmarks 39

following approach. A thread with the lowest priority is started at boot time of the router. The
thread executes a loop where a counter in a register is increased. As the thread running the
loop has the lowest priority, it is only executed if there are no other ready threads in the system.
Consequently, the counter value is not increased if the CPU load generated by higher priority
threads is 100%. To get an estimate for 0% CPU load, the rate at which the counter increases
when no other threads are running in the system was measured.

During the benchmarks themselves, the value by which the counter increased during the test
was divided by the test’s duration to get the rate at which the counter increased. To finally
receive the CPU load, this rate was divided by the pre-calculated rate for 0% CPU load and
subtracted from 100%.

A useful feature of the XScale/PXA255 processor is its timer register. The value of this register is
increased by one after a defined number of CPU cycles have passed. To measure the execution
time of an interesting code Section, the value of the timer register is stored in a variable before
the Section begins. After the code Section to be measured, the difference to the current timer
register’s value is calculated. By using the clock frequency at which the CPU was running during
the measurement, the execution time of the measured code Section can be calculated.

3.2 Network Stack Delay Benchmarks

In this Section, measurements of the delay induced by the componentised network stack are
presented. The delay is measured by using an UDP echo service on top of the router’s network
stack (see Figure 3.2). It works similar to the ICMP echo service (ping) but resides in the appli-
cation layer and uses UDP as a transport protocol. The echo service receives UDP datagrams
(echo requests) and sends them back to the sender (echo replies).

Figure 3.2: Network stack components with echo service running on top.

3.2.1 UDP Echo Delay as Measured from a Remote Machine

An UDP echo client sends UDP echo request packets to the router and measures the time until
the echo reply arrives. This data shows the total echo delay including the delay caused by the
router’s network stack and the delay caused by the transmission over the LAN. As the delay
depends on the network packet’s size, measurements using different UDP packet sizes were
carried out. As design under test, different versions of the router were used.

To compare these measurements to other network stacks, the same echo service was also im-
plemented on top of a monolithic IwIP stack (Version STABLE-1_1_1) and as a Linux program
(running on Linux for Gumstix as part of the Gumstix Buildroot[4], based on the Linux Kernel
2.6.18).

The results are plotted in Figure 3.3. For an explanation of the version numbers see the version
history at appendix B. The data series shown in the graph are:

1. Router Version 0.9. All components are connected by queues. A network packet is copied
when passed from component to component. Only IguanaRPC connectors are used.

40 CHAPTER 3. PERFORMANCE EVALUATION OF THE ROUTER

2. Based on Router Version 0.9. There are only queues between the Driver and the APR/IP
components and between the Echo and the UDP components. A network packet is copied
when passed from component to component. Only IguanaRPC connectors are used.

3. Router Version 0.98. Design as described in Section 2.5. However, all DirectCall connec-
tions are replaced by IguanaRPC connections.

4. Router Version 0.98. The final design as described in Section 2.5.

5. Router Version 0.96. There are queues between the Driver and the ARP/IP components
as well as between the Echo and the UDP component. There are no memory copies when
passing a network packet up/down the stack and only DirectCall connectors are used.

6. Monolithic IwlP network stack. This is the standard IwIP network stack running as an
L4/Iguana server. The NIC driver runs as a separate L4/Iguana server and passes packets
by reference to the IwlP server. The UDP echo service runs on top of the IwlP stack in the
same protection domain.

7. Linux for Gumstix (driver uses DMA).

o
o

\

\

|
|

Delay [ms]

|
|

3 / L —
25
/ “‘;
2 B
/ <
1.5 g . =
S X
I e _ =
r, e emesmana =
0.5 T T T T T T T T T T
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Packet size [B]

Figure 3.3: UDP echo delay (Return Trip Time).

Data series 5 is very close to the implementation using a monolithic IwlP stack (Data series 6)
as it is optimized by not using IPC. Data series 4 shows that for a relatively small performance
penalty, the system can be made more secure by implementing the final router design as de-
scribed in Section 2.5. Data series 1-3 show that the delay caused by the system increases
if DirectCall connectors are replaced by IguanaRPC connectors, network packets have to be
copied from component to component, and queues are added in between the components. The
echo service implementation running on Linux (Data series 7) is the fastest.

Since the network stack in the router is modular, it is expected that it would use more CPU time

because of the overhead induced by the component architecture (such as marshaling/unmarshaling

and too general code). To get an idea if the CPU is a bottleneck in the current router’s network
stack and is the cause of the increasing gap between data series 4 (final router design) and
data series 7 (Linux echo service), the average CPU load during the echo service tests was
measured. Figure 3.4) shows the CPU usage related to data series 4 and 7.

Data series plotted in Figure 3.4.

1. Router Version 0.98. Average CPU load while executing echo delay measurements.

2. Linux for Gumstix (Kernel 2.6.18). Average CPU load while executing echo delay
measurements.

This plot shows that the cause for the increasing echo delay for larger packet sizes is not the
router's CPU since the CPU usage decreases while the echo delay increases. Compared to
Linux on Gumstix, the router has a lower CPU load for most of the packet sizes; Linux for
Gumstix can process echos at full CPU load while the router’s processor is not fully loaded.

3.2 Network Stack Delay Benchmarks 41

100.00%
90.00% \
80.00% V—
000% —

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

T T T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

packet size [B]
Figure 3.4: CPU usage during UDP echo delay measurements (see Figure 3.3).

3.2.2 Echo Delay Measured in Stack’s Components

These measurements use the PXA255 timer register to measure the delay each component ex-
periences between receiving an echo request packet from a lower network layer component until
the packet’s echo reply is sent to the lower network layer by the current component. This is the
total time that the current component and all other components above the current component in
the network stack spend processing the echo request (see Figure 3.5). These measurements
depend on how fast packets are forwarded in the network stack from component to component
and how much time each component takes to process a packet.

To measure this delay, the PXA255 timer register’'s value is stored in each component when
an echo request packet arrives from a lower network stack component. When the same com-
ponent sends the corresponding echo reply back to the lower network layer component, the
difference between the current PXA255 timer register’s value and the stored value is calculated
to get the delay. These measurements can be turned on and off for each component by editing
the include/debugprint.h file in the application’s directory. The actual measuring points
can be found in the corresponding component’s implementation. There are measurements for
different router versions.

Figure 3.5: Delay measured in each network stack component (with PXA255 timer register).

Router Version 0.98, (see Figure 3.6)

1. Driver component. Measurement points are just before the driver copies the echo request
via the bus from the NIC’s memory to the main memory and just after the driver copies
the echo reply to the NIC’s memory via the bus (includes bus read/write).

2. Driver component. Measurement points are just after the driver copies the echo request
via the bus from the NIC’s memory to the main memory and just before the driver copies
the echo reply to the NIC’s memory via the bus (does not include bus read/write)

42 CHAPTER 3. PERFORMANCE EVALUATION OF THE ROUTER

3. ARP/IP measurement points
4. UDP measurement points

5. Echo service measurement points

1700
1600 2
1500 —
1400 —

1300
1200 /
1100
1000 /
900

800
700 —
600

500
400

300 ﬂ

200

100 -
- —— ——

O T T \I T T T T T T T
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Packet size [B]

Delay [us]

Figure 3.6: Echo Delay Measured in Stack’s Components. Router version 0.98.

The gap between data series 1 and 2 is caused by the network driver while exchanging data
with the NIC’s memory over the bus. It is assumed that driver related problems are a main
cause of the divergent data series 1 and 2. The gap between data series 2 and 3 is caused
by the RX and TX queues between the driver component and the ARP/IP component. Data
series 3 and 4 are very close together as there are no queues between the ARP/IP and the
UDP components. As there is a copying queue between the Echo component and the UDP
component that is connected with IguanaRPC, the gap between data series 4 and 5 is relatively
large. It becomes larger as the packet size increases since there is more time spent on copying
the data from the forwarding plane to the application plane.

Router Version 0.96, (see Figure 3.7)

1. Driver component. Measuring points are just before the driver copies the echo request via
the bus from the NIC’s memory to the main memory and just after the driver copies the
echo reply to the NIC’s memory via the bus (includes bus read/write).

2. ARP/IP measuring points
3. UDP measuring points

4. Echo service measuring points

To compare the final design to the most optimized router version (version 0.96), the same data
was measured using router version 0.96. The results are plotted in Figure 3.7.

In Figure 3.7, the gap between data series 1 and data series 2 is caused by the delay induced
by the queue in between the driver and the ARP/IP components as well as the time it takes to
copy the network packet out of the NIC’s memory. There is also a delay between data series
4 and data series 3 because the UDP component and the echo service are connected by a
queue as well. The other delays on the plot are very small compared with router version 0.98
on Figure 3.6.

In total, this network stack is about 0.1ms faster than the one from version 0.98. This is because
all of the components are connected by DirectCall connections. Also, the data series are nearly
independent of the packet size (except for the driver) as there are no memory copies involved
while the packet travels up and down the stack.

3.3 NAT Benchmarks 43

1600

1400 /
1200 /

3‘ 1000
% * 1.
2 800 v 2
a A 3.
600 / > 4.
400
200 #
0 1 1 1 1 1 1 1 1
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Packet size [B]

Figure 3.7: Echo Delay Measured in Stack’s Components. Router version 0.96.

3.3 NAT Benchmarks

In this Section, benchmarks of the actual NAT routing process are presented. This includes the
traversal of a network packet from the NIC where it arrives up the network stack to the ARP/IP
component. Packets bound for another network are forwarded to the NAT component where
the network address translation is executed. Finally, the packets travel down the network stack
corresponding to the other NIC and are sent to the other network.

3.3.1 NAT Delay Benchmarks

To measure the delay that is caused by the router, ICMP echo request messages were sent
from a machine in the local network via the router to a machine in the global network. The time
between sending the echo request until receiving the echo reply includes the router induced de-
lay caused by the network stack and the network address translation. As compared to the echo
service running on top of the router’s network stack, an echo request and the corresponding
reply are written twice to the NICs and are also read twice from the NICs by the drivers.

The program used to acquire this data was ping in flooding mode (ping -f —-s host). Inthe
routing table on the machine sending out the echo requests, the gateway for the target machine
of the echo request was set to the router’s local IP address. In flooding mode, echo requests
are sent out as fast as possible. In the end, the average packet delay is returned. As the delay
depends on the packet size chosen with the ping parameter —s, measurements for different
packet sizes were carried out.

ICMP Echo delay, Router Version 0.98, (see Figure 3.8)

1. Router Version 0.98, with all DirectCall connectors replaced by IguanaRPC connectors.
The components are in different protection domains.

2. Router Version 0.98.

3. Router Version 0.98, with all DirectCall connectors replaced by IguanaRPC connectors.
The components are in the same protection domain.

ICMP Echo, CPU usage, Router Version 0.98, (see Figure 3.9)
1. Router Version 0.98, with all DirectCall connectors replaced by IguanaRPC connectors.
The components are in different protection domains.

2. Router Version 0.98.

44 CHAPTER 3. PERFORMANCE EVALUATION OF THE ROUTER

\

\
\

w
0

w
|

n
o
|

v 2
A 3.

Delay [ms]
*

N
|

|

o
&

T T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

packet size [B]

Figure 3.8: Delay between an ICMP echo request and the corresponding reply. ICMP requests
were sent from the local network via NAT to the global network.

3. Router Version 0.98, with all DirectCall connectors replaced by IlguanaRPC connectors.
The components are in the same protection domain.

0.98

0.95 \

093
0\0 oo \ \
& o085
S \ \
@9 083
S \ \ .1
D 08 v 2
o \ e a3
© o \

0.75 \ S

078 \

0.7

0.68 T T T T T T T T T T T

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

packet size [B]

Figure 3.9: CPU usage during the ICMP echo test. ICMP requests were sent from the local
network via NAT to the global network.

The final design using DirectCall connectors in the forwarding plane (Figure 3.8, data series 2)
is faster than the same design where only IguanaRPC connectors are used (Figure 3.8, data
series 3). If the components are also placed in different protection domains (Figure 3.8, data
series 1), the delay increases again.

The same happens to the CPU loads measured in the corresponding systems (see Figure 3.9).
The final design has the lowest CPU loads as DirectCall connectors are used in the forward-
ing plane. This shows that DirectCall connectors make a system faster and help save CPU time.

To see how the NAT logic in the router delays an ICMP echo packet, measurements using
the PXA255’s timer register were made. This time, the command "ping —-s[packet size]
host" was used. This is the standard ping command.

The timer register’s value was stored when an ICMP echo packet arrived on the local NIC (just
before sending it up the stack) and the difference with the current timer register value was
calculated when the same packet was sent out by the other NIC (just before sending the packet
to the NIC). The same procedure was carried out for the corresponding ICMP echo reply packets
that arrived on the global NIC bound for the local network.

Figure 3.10 shows that ICMP echo request packets are delayed by about 200us while ICMP
echo reply packets are delayed by about 300us. These delays do not include any NIC related
instructions in the network driver. They only include the delay caused by the NAT and the
traversal of the network stacks in the router’s software from the local driver component to the

3.3 NAT Benchmarks 45

global driver component and vice versa. They are also independent of the network’s speed.
The data series shown in Figure 3.10 are:

1. Router Version 0.98, ICMP echo request, delay induced by NAT and router’s network
stacks.

2. Router Version 0.98, ICMP echo reply, delay induced by NAT and router’s network stacks.

325

300 e

575 /

250

225

Delay [us]

175

150

125

100

T T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

packet size [B]

Figure 3.10: ICMP echo request and reply. Delay induced by the NAT and router’s network
stacks.

3.3.2 NAT Throughput Benchmarks Introduction

A standard benchmark for access routers is to measure the throughputs for UDP and TCP. This
includes the upload from the local network to the global network as well as the download from
the global network to the local network.

For TCP, the maximum throughput was measured since TCP supports flow control and conges-
tion control and adapts the bandwidths of streams to the speed of the network.

However, for UDP, the stream qualities at certain stream bandwidths are interesing as UDP
packets are sent out at a given rate regardless of the network speed. The UDP stream quality
is the percentage of UDP packets that actually arrive at the destination. This gives an idea of
how good the router handles streaming multimedia contents.

As a tool to run UDP and TCP benchmarks, thrulay[10] was used. Depending on wether
upload or download was tested, a thrulay server was run on the local machine or on the global
machine. For download tests, the thrulay server port had to be forwarded by configuring the
NAT component accordingly.

In UDP mode, the thrulay client sends a stream of a given bandwidth to the thrulay server.
The server then calculates the UDP stream quality by dividing the number of packets actually
arrived by the number of expected packets.

In TCP mode, the thrulay client sends test data as a TCP stream to the thrulay server. At
the end, the average throughput of the stream is calculated.

3.3.3 TCP Throughput Benchmark

This benchmark measures the maximum achievable TCP throughput for upload and download
by using the router as a default gateway. For the download benchmarks, the router had to
be configured to forward the port used by the thrulay server. The throughputs were mea-
sured for different packet sizes. The command used to startthe thrulay clientwas "thrulay
-1 [packet size] [host]".

TCP throughput, absolute values, Router Version 0.98, (see Figure 3.11)

e 1.
v 2

46

CHAPTER 3. PERFORMANCE EVALUATION OF THE ROUTER

1. Router Version 0.98, Maximum TCP throughput download.

2.

throughput [Mib/s]

Router Version 0.98, Maximum TCP throughput upload.

0

T T T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

T
1100 1200 1300 1400 1500

packet size [B]

Figure 3.11: Maximum TCP throughputs for upload and download (router version 0.98).

CPU loads during TCP throughput test, Router Version 0.98, (see Figure 3.12)

1. Router Version 0.98, CPU usage download.

2. Router Version 0.98, CPU usage upload.

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

‘/

* 1,
v 2

C N——

200

700

T T T T T T
0 100 300 400 500 600 800 900 1000 1100 1200 1300 1400 1500

packet size [B]

Figure 3.12: CPU loads during the TCP throughput test (router version 0.98).

As Figures 3.12 and 3.11 show, the throughput for download is higher than the throughput
for upload. Both upload and download throughputs are smaller than expected. Theoretically,
the throughputs should be closer to the maximum bandwidth that the NICs support, which is
100Mib/s. As Figure 3.12 shows, the bottleneck of the system is not the CPU as the CPU load
never gets close to 100%.

3.3.4 UDP Throughput Quality Benchmark

This benchmark measures the UDP upstream and UDP downstream quality (rate of packets that
arrived at the destination machine) when using the router as a default gateway (using 1450B
UDP packets). For the downstream benchmark, the port used by the thrulay server had to
be forwarded. The command used to start the thrulay client was "thrulay -1[packet

3.3 NAT Benchmarks

47

size] -ul[bandwidth] [host]".

UDP upstream and downstream quality, Router Version 0.98, (see Figure 3.13)

1. Router Version 0.98, Upstream quality.

2. Router Version 0.98, Downstream quality.

100.00%
95.00% ﬁ\ \
90.00%

85.00% \ \

80.00% \ \
75.00%

70.00% \ \

65.00% \ \

60.00% N\ T~

55.00% S~—— T

50.00% oe——

45.00% \

40.00% T T T T T

stream bandwidth [Mib/s]

Figure 3.13: UDP stream quality (router version 0.98).

CPU loads during UDP stream quality benchmark, Router Version 0.98, (see Figure 3.14)

1. Router Version 0.98, CPU load upstream.

2. Router Version 0.98, CPU load downstream.

100.00% /
90.00%

80.00% /

70.00%

60.00%

50.00%

* 1.
v 2.

40.00%

30.00% /
20.00% /

10.00% T T T
2 4 6 8 10 12 14 16

stream bandwidth [Mib/s]

Figure 3.14: CPU loads during UDP stream quality benchmark (router version 0.98).

The drop of the UDP upstream quality (Figure 3.13, data series 1) at around 10Mib/s is most
likely related to the CPU load reaching 100% at the same time (Figure 3.14 , data series 1).
However, the UDP downstream quality drop at around 6 Mib/s (Figure 3.13, data series 2) is not
related to the CPU load as the quality already gets worse at a CPU load of 55% (Figure 3.14,

data series 2).

3.3.5 UDP Throughput Quality Benchmark: Overhead of Components in

Different Protection Domains

The following plots compare the UDP stream qualities and CPU loads of the final router design
and the router design where all components are in different protection domains and use Igua-

48 CHAPTER 3. PERFORMANCE EVALUATION OF THE ROUTER

naRPC connectors (using 1450B UDP packets). This gives a good overview of the CPU over-
head caused by having different protection domains and using IguanaRPC. The same bench-
mark as in Section 3.3.4 was carried out measuring the UDP upstream and downstream quali-
ties as well as the CPU load during the tests.

UDP upstream quality, Router Version 0.98, comparison with router design where all com-
ponents are in different Iguana protection domains and only use IguanaRPC connectors
(see Figure 3.15).

1. Router Version 0.98, different protection domain, IlguanaRPC, UDP stream quality up-
stream.

2. Router Version 0.98, UDP stream quality upstream.

100.00%
90.00% —R \
80.00% \ \

70.00% \ \

60.00% \ \\

50.00% \ . 1.
40.00% \ rE

30.00%

20.00%

10.00%

0.00% T T T T T T T T T T T T T T 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

stream bandwidth [Mib/s]

Figure 3.15: UDP upstream quality (router version 0.98 compared to design with components
in different protection domain and only IguanaRPC used).

CPU load during UDP upstream quality measurements in Figure 3.15, Router Version
0.98, comparison with router design where all components are in different Iguana pro-
tection domains and only use IguanaRPC connectors (see Figure 3.16).

1. Router Version 0.98, different protection domain, IguanaRPC, CPU load upstream.

2. Router Version 0.98, CPU load upstream.

100.00%
90.00% S /
80.00% / /
70.00%
60.00% / /
50.00%
40.00% / / 2
30.00% /
20.00% /

10.00%

0.00% T T T T T T T T T T T T T T T

stream bandwidth [Mib/s]

Figure 3.16: CPU load during UDP upstream quality measurements in Figure 3.15.

3.3 NAT Benchmarks 49

Figure 3.16 shows that the additional CPU load caused by the overhead of the inter protection
domain IguanaRPC connectors is about 15% to 20% for UDP upstreams (Figure 3.16, data se-
ries 1 and 2). The upstream throughput penalty caused by this overhead is also approximately
20% (Figure 3.15, data series 1 and 2).

UDP downstream quality, Router Version 0.98, comparison with router design where all
components are in different Iguana protection domains and only use IguanaRPC connec-
tors (see Figure 3.17).

1. Router Version 0.98, different protection domain, IguanaRPC, UDP stream quality down-
stream.

2. Router Version 0.98, UDP stream quality downstream.

100.00%

90.00%

80.00%

70.00%

S

\

SN

60.00% :
50.00% 1
v 2

40.00%

30.00%

20.00%

10.00%

0.00% 1 1 1 T 1 1 1 T 1 1 1 1 T |
2 25 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

stream bandwidth [Mib/s]

Figure 3.17: UDP downstream quality (router version 0.98 compared to design with components
in different protection domain and only IguanaRPC used).

CPU load during UDP downstream quality measurements in Figure 3.17, Router Version

0.98, comparison with router design where all components are in different Iguana pro-
tection domains and only use IguanaRPC connectors (see Figure 3.18).

1. Router Version 0.98, different protection domain, IguanaRPC, CPU load downstream.

2. Router Version 0.98, CPU load downstream.

100.00%

90.00%

80.00%
70.00% ~
60.00% /
50.00% /
40.00% /

30.00% —_* //
20.00%

10.00%

0.00% T T T T T T T T T T T T]
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

stream bandwidth [Mib/s]

Figure 3.18: CPU load during UDP downstream quality measurements in Figure 3.17.

50 CHAPTER 3. PERFORMANCE EVALUATION OF THE ROUTER

In Figure 3.17, both router designs have exactly the same UDP downstream quality for different
stream bandwidths. The CPU load of the design where the components reside in different pro-
tection domains is about 20% higher than the CPU load of the router version 0.98 (Figure 3.18,
data series 1 and 2). However, as the CPU load of both designs never reaches 100%, the
UDP downstream quality stays the same even if there is a CPU load penalty to pay for the inter
protection domain IguanaRPC connections.

3.4 Discussion of the Performance Measurements

3.4.1 Overhead of the Modular Network Stack

The results in Section 3.2 show that, depending on the configured security level, the delay in-
duced by the overhead of the component architecture is less than 5% compared to a monolithic
IwIP network stack.

However, the delay of the Linux network stack is, depending on the packet size, 5% to 30% lower
than the delay measured with the most optimized router version 0.96. As the measurements in
Figure 3.7 show, the delay measured by the stack’s components from the network layer upwards
is nearly independent of the packet size for router version 0.96 and is constant regardless of the
packet size. This means, that 25% of this 30% difference between the Linux network stack and
the router’s network stack for large packets are caused by the network driver component. This
assertion is backed by the fact that it takes up to 500ms to copy a 1450B network packet from
the main memory to the NIC’s memory as Figure 3.19 shows. Further, the delay measured in
the monolithic IwlP stack, that uses the same driver as the router, is nearly the same as the one
measured in the modularized network stack.

As Figure 3.4 shows, the presented network router does not run with 100% CPU load for all
of the packet sizes while Linux on Gumstix takes advantage of more CPU time. These results
show that the CPU in the router is not the bottleneck and that the packets are delayed some-
where else in the system. The router would still have CPU time available to process packets.

These facts lead to the conclusion that the network driver or the NIC hardware is responsible
for a major part of the larger delay caused by the router’s network stack compared to the delay
induced by the Linux network stack. The problems that might cause these delays in the network
driver or the hardware are discussed in Section 3.4.4.

3.4.2 Network Address Translation Performance

The delay that an ICMP network packet experiences while in transit between the local network
driver and the global network driver is, as Figure 3.10 shows, between 200us for upload and
300us for download excluding NIC related instructions in the driver component. The return trip
time inside the router therefore is about 500us and nearly independent of the ICMP packet size.
However, the ICMP echo delay measured by a remote machine is between 0.7ms and 4ms for
router version 0.98 as Figure 3.8 states; it depends significantly on the packet size. The CPU
load is only about 70% at the same time. This means, the router has unused CPU capacity
(see Figure 3.9) that could actually be spent to copy packets by PIO from the NIC or to translate
between the global and the local networks.

Similar to the delay discussed in Section 3.4.1, the overall delay mainly seems to be caused by
the network driver or the NIC hardware.

For a router that has all of its forwarding plane’s components in different protection domains, the
delay increases by nearly 1ms (see Figure 3.8) and the CPU load is also significantly higher as
Figure 3.9 shows. If the components are in the same protection domain but still communicate
via IPC, there is also a CPU load and delay penalty to pay. This is an example of the perfor-
mance and security trade-off that has to be considered during the design of such a system.

3.4 Discussion of the Performance Measurements 51

Regarding the throughput benchmarks for UDP and TCP, the results are lower than expected.
They should be closer to the 100Mib/s supported by the NIC. There should be enough CPU
power as, except for the UDP upload benchmark in Figure 3.14, the CPU load never reaches
100%.

The UDP upstream speed in Figure 3.13 is related to the CPU load reaching 100% at the same
time and would be higher if the CPU was faster or the network driver supported DMA. The CPU
spends all of its time copying network packets by PIO from/to the NICs and would be available
for the actual NAT process if a DMA controller executed this task in the background. However,
for UDP downstream, the quality already starts to become worse when the CPU usage is only
at about 60% (see 3.14). In this benchmark, the CPU load should theoretically go up to 100%.
However, the packets never make their way up the network stack in the router but instead are
dropped by the NIC because of reception overrun exceptions. Again, the network driver or the
NIC seem to be the reason why the UDP downstream quality already starts to get worse at
6Mib/s. The task of finding the problem that causes the difference between the upload and the
download stream quality were left for future work.

For TCP, the achieved maximum throughputs can be seen in Figure 3.11. Again, the through-
puts are lower than expected as they should be closer to the 100Mib/s that the NICs support.
It is not clear why the upload throughput is higher than the download throughput. Similar to the
other benchmarks, the CPU load of the router never reaches 100% but stays as low as 30% for
upload and 60% for download (see Figure 3.12). Theoretically, the CPU load should be close
to 100%, especially as the network drivers only support PIO. This means, the CPU should be
busy reading and writing to the NICs.

All'in all, the performance of the router has potential for improvement. This mainly refers to the
network driver components as most of the achievable performance actually gets lost before a
network packet enters the router’s logic. However, at the time this thesis was written, the router’s
performance was good enough to support the upload and download speeds provided by most
of the ADSL and Cable Internet plans. For example, the fastest ADSL internet plan of the Swiss
provider Bluewin included 0.5Mib/s upload throughput and 5Mib/s download throughput.

3.4.3 Trade-off Between Speed and Security

The benchmarks presented in this chapter reveal that there is a trade-off between performance
and security in the router. If connections and patterns are used that are faster, they are usually
less secure as the components need to share memory between each other. They have to pro-
vide access to the memory areas where the provided functions reside if a DirectCall connection
is used. Components also need to share memory for the allocation of network packets if zero
copy packet forwarding has to be supported. CAmKES provides ways to easily configure the
security/performance trade-off from within the ADL file of an application.

In Figure 3.2, one can see that the delay caused by the componentised network stack increases
when DirectCall connectors are replaced with TguanaRPC connectors, network packets
have to be copied from one component to the other or queues are added between the different
components. At the same time, the CPU usage increases in the system as Figure 3.9 shows.
This is the price to pay for increased security.

Taking this into consideration, the final router design as presented in this report is divided into
two planes. Components that reside in the forwarding plane only use the fastest connections
but reside in one protection domain and therefore are not protected from each other as a result.
The forwarding plane is protected from the application plane, but slower connections have to be
used between the application plane and the forwarding plane. This represents a compromise
between security and performance. The price to pay for this security feature is relatively small
compared to the increased security, as this chapter shows.

52 CHAPTER 3. PERFORMANCE EVALUATION OF THE ROUTER

3.4.4 Driver Components as Bottlenecks

As the discussion in Sections 3.4.1 and 3.4.2 shows, the driver components are a main bottle-
neck in the router implementation.

Some time during this thesis work was spent on tracking down the bottleneck in the driver im-
plementation. However, as the focus of the thesis is not on low level 1/0 and low level driver
implementations, the task of optimizing the drivers and solving /O related problems was left for
future work.

The communication of the router’s drivers with the NICs mainly involves copying Ethernet frames
over the bus between the CPU and the NIC’s memory. Measurements of the time it takes to
copy a frame out of the NIC’s memory or into the NIC’'s memory revealed the copy durations
showed in Figure 3.19. To measure these delays, the PXA255’s timer register’s value was stored
before the instruction to read or write to the bus and the difference with the register’s value after
the bus transactions was calculated. No frames were forwarded to other components in the
router. These delays are much higher than expected. For a frame of the size 1450 Bytes, the
r/iw delay has to be at most approximately 0.116ms to support a NIC speed of 100Mib/s in PIO
mode. The measured delays are about 4 to 5 times higher than this expected delay. Taking
the measured delays into consideration, the current driver only supports a maximum Ethernet
frame arrival rate of about 2500 frames/s (frame size 1450B) if other interrupt processing related
delays in the driver are ignored. This leads to a theoretical maximum reception throughput of
only approximately 29Mib/s. Taking other delays in the interrupt delivery and handling process
into consideration, this maximum throughput in reality is even lower.

Write / Read NIC's memory

550

e
500
450
— 400 =
) —
2. 350 / ——
"E -
300 -
L e * Write
»n 250 o v Read
8 200 —
= _—
150 - —
—
100 =
ol
e
0 T T T T T T T 1
0 200 400 600 800 1000 1200 1400 1600

Packet size [B] (excl ip/udp/eth header)

Figure 3.19: Duration in [us] of read/write to NIC’s memory. The PXA255’s timer regis-
ter was used for the measurements (resolution approx. 0.3 [us]). The driver version was
andri.toggenburger@nicta.com.au-devel/driver-smc91x-devel-0.2. The mea-
surements only included the instructions that are used to read (SMC_PULL_DATA) or write
(sMC_PUSH_DATA) to the bus. The variance of the data is 10 us2. Used Hardware: Gumstix
Connex 400xm, ARM XScale/PXA255, 400MHz, 64MB RAM, netDUO-mmc extension board
(100 Mib/s).

As there are many RX overruns (a frame arrives at the NIC but the NIC is not ready to pro-
cess it and consequently drops the frame) registered by the network drivers during the different
benchmarks, the actual rates of RX overruns and processed Ethernet frames in the NICs were
measured for UDP streams of different bandwidths (see Figure 3.20). The corresponding coun-
ters in the driver implementation were used to obtain this data. The Ethernet frames were
copied out of the NIC’s memory but were not forwarded to other components in the router.

Figure 3.20

1. Rate of processed packets.

3.4 Discussion of the Performance Measurements 53

2. Rate of RX overflows.

5500 /
5000 /
4500 /
4000
g 3500 /
é 3000 /
% 2500 / E
X 2000 / v 2
1500
1000 oo 7!
500
0 T T T T T T T T T T]
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
stream bandwicth [Miby/s]
Figure 3.20: RX overruns and actually processed ether-
net frames (frame size 1500B). The driver version was
andri.toggenburger@nicta.com.au-devel/driver-smc91lx-devel-0.2. The

received Ethernet frames were not forwarded to other components in the router. Used Hard-
ware: Gumstix Connex 400xm, ARM XScale/PXA255, 400MHz, 64MB RAM, netDUO-mmc
extension board (100 Mib/s/s).

Figure 3.20 shows, that there is a maximum rate of frames a NIC can receive successfully. This
rate is around 1100 frames per second (for 1500B frames). If the packet arrival rate exceeds
this maximum rate, all other frames generate an RX overrun and are consequently dropped by
the hardware. The measured maximum arrival rate corresponds with a throughput of approxi-
mately 14Mib/s. Note that during these measurements, the NIC only receives frames but does
not send any out to the network.

Not a single RX overrun was registered when the instructions to actually copy a frame out of the
NIC’s memory were commented out.

Figures 3.19 and 3.20 suggest that the communication between the CPU and the NIC is a major
bottleneck in the driver’s implementation. Packets can not be copied fast enough from the NIC'’s
memory to the main memory in order to support high bandwidths. As ethernet frames arrive
at a higher rate from the network than the rate at which they can be copied out of the NIC’s
memory, the circular buffer in the NIC fills up and subsequent frames generate RX overruns,
which lead to packet losses.

The task of solving this I/O related problem was, as stated before, left for future work. Some
possible causes might include:

e Problem with thread priorities of driver.

¢ No DMA support, so CPU is still busy copying a frame while it actually should process the
next interrupt.

e Bugs introduced when the driver was ported from Linux to L4/Iguana.
o Memory alignment problems or endianness problems.

e Wrong configuration of full-duplex, half-duplex or 10baseT/100baseT in NIC’s physical
layer.

¢ Wrong settings for collision avoidance and detection on physical layer.
e other hardware misconfigurations (see the SMC FAQ[9]).

The data sheet[8] and the FAQ[9] of the SMC network controller used provide more information
about possible causes of bad NIC performance.

54 CHAPTER 3. PERFORMANCE EVALUATION OF THE ROUTER

3.4.5 Comparison with the Stated Performance Requirements

The performance requirements in Section 2.1 can be fulfilled by the final router design. Its sup-
ported bandwidths are high enough to support the maximum speeds provided by most broad-
band plans at the time this report was written. The delays induced by the router are also small
enough (between 1ms and 4ms for a ping with a packet size of 64B and 1450B respectively)
that the router can be used as an access device to the internet instead of a Linux machine
configured as a NAT router for example.

Furthermore, the router’s performance has potential to be improved by solving the 1/O related
problems described in Section 3.4.4.

Chapter 4

CAmMKES as a Component
Architecture for the Development
of a Modular Router

As CAmKES is the underlying architecture of the presented router, it shaped the design and
implementation of the router in a major way. However, since the router was the first major
application, missing features were implemented in CAmkES and insights into the development
and implementation process of a project using CAmKES were gained.

4.1 Adding Support for User Defined Connectors

Each connection declaration in a CAmKES ADL file has an associated connector. The con-
nector provides the communication logic and defines the run-time semantics of the communi-
cation channel defined in the connection declaration. The "user defined connectors" feature in
CAmMKES lets a designer implement their own logic, which is executed when two components
communicate together via a corresponding connection. While it is easy to change the connector
belonging to a certain connection by simply editing the connection declaration in the CAmkES
ADL file, the implementation of the support for user defined connectors was missing in CAmMKES
when this thesis started and was added as part of it.

4.1.1 Motivation

During the design and implementation of the router, two major bottlenecks caused by the
CAmKES architecture were detected. One bottleneck was the missing support for direct method
invocations between the different components. Every method invocation involved the overhead
of exchanging messages via IPC calls between the components as there was only the standard
connector TguanaRPC implemented in CAmkES.

Another problem was the missing support for data sharing between more than two components.
Only pairs of components could share a common memory area between each other. This meant
that, for all processes where packets had to be transferred between 3 or more components, the
payload of the packet had to be copied from one shared memory area to the other by the com-
ponents. As various measurements showed, the overhead caused by the method invocations
via IPC and the memory copies of whole packets had a major impact on the router’s perfor-
mance.

As part of this thesis, a connector based on method invocation by using function pointers was

designed and implemented (DirectCall connector). To allow for data sharing between arbitrary
numbers of components, the existing IguanaSharedData dataport connector was generalized.

55

CHAPTER 4. CAMKES AS A COMPONENT ARCHITECTURE FOR THE DEVELOPMENT
56 OF A MODULAR ROUTER

During this work, insights into the architecture generating the code for the CAmMKES component
architecture were gained. This knowledge was used to design and implement the support for
"user defined connectors" in CAmKES as described in the following sections.

4.1.2 Benefits

User defined connectors provide the following benefits as compared to a set of standard con-
nectors:

o A designer can implement optimized connectors for a certain scenario.

e Connectors can be instrumented to e.g. make performance measurements in a system.
They also can be instrumented to create log files of the performed RPC method invoca-
tions, emitted events and accessed memory locations.

e Queues, stacks and other data structures can be implemented as connectors rather than
as components. This simplifies the ADL declaration of complex applications and makes it
more readable.

e Extensions could be added to existing connectors. E.g. a connector could be extended
to encrypt and decrypt network packets transparently between the components that it
connects.

4.1.3 Design of the Support for User Defined Connectors

CAmMKES uses a set of Python scripts and helper programs to generate the code for each com-
ponent out of the ADL and IDL declarations and the component’s implementation. An important
tool is Magpie[6], which is an interface compiler for the L4 kernel. It supports template driven
code generation.

First, Magpie creates an abstract syntax tree using the ADL and IDL declarations of the applica-
tion. In a second step, the CAmMKES Python scripts traverse this tree and create data structures
for all of the components and connections in the application. These data structures are later
used to generate code for each component by using a set of template files.

The CAmKES Python scripts that existed contained a lot of non generic and hard coded, con-
nector specific, code. Also, the template files that were used to generate the code for the
different connections and the components were not completely separated from each other. The
templates used to generate code for the connections also contained code for the components
and vice versa. However, connector specific templates have to be independent of other tem-
plates in the system so they can be added or removed like extension modules to CAMKES

Another missing feature of the existing implementation was its support for generic initialization
code for connectors (and connections) of different types. Taking this into consideration, an archi-
tecture supporting generic initialization code, and that completely separates connector specific
templates from the other connectors’ and components’ templates had to be developed.

The designed and implemented architecture is generic enough to support user defined con-
nectors between 2 or more components. The connectors can implement their own connector
and connection initialization protocols. The architecture is also symmetric, for example, it does
not distinguish between users and providers in the RPC interface case. All it does is to pass
the position of a component in the connection declaration to the corresponding connection’s
initialization function (e.g. first place, second place).

Code Generation Architecture

Figure 4.1 shows the code generation process in CAmMKES. First, Magpie generates an abstract
syntax tree out of the application’s ADL and IDL files. This syntax tree then is processed by a set

4.1 Adding Support for User Defined Connectors 57

of CAmKES python scripts that create data structures for the components and their connections.

In a further step, for each connection belonging to a certain component, server stub files and
client stub files are generated. The code that is generated for a connection depends on the
connector that is declared for this specific connection. Each connector implementation has its
own set of template files that are automatically used by the CAmKES python scripts during the
code generation.

The client and server stub code is generated by the following scripts (see Figure 4.1):

e RPC connections: The stub files are generated by the script stub_runner.py.
e Event connections: The stub files are generated by the script event_runner.py.
e Dataport connections: The stub files are generated by the script dataport_runner.py.

In order to initialise the connections during run-time, initialisation code for each connector a
component uses is generated by the script connector_runner.py out of a set of connector
specific templates. This code then sets up the environment (e.g. starts server threads waiting
for IPC method invocations) of the connector and initialises all of the connections that use this
connector. This consists of initialising the server and client stubs belonging to the specific con-
nections. The used template files have to be named <Connector_name>_connector.c/h
(see Figure 4.1).

There is a set of functions that has to be implemented for each connector in its templates.
During the initialization of a component and its connections, these functions are automatically
called by the component code generated by CAmKES in order to initialise the connector and all
connections that use it:

e <Connector_name>_connector_init (void *p, int index): Initialize connector
wide things (e.g. start a thread listening for IPC requests or arriving events). Parameter
p contains a generic environment while parameter index refers to the position of this
component in the connection declaration.

e <Connector_name>_instance_init (void *p, int index): Initialize connector
related things in this component instance (e.g. call __init functions for each interface
provided). Parameter p contains a generic environment while parameter index refers to
the position of this component in the connection declaration.

e <Connector_name>_connection_init_active (int con_id,L4_ThreadId_t
con_init_loop_tid, objref_t data,int index): Implement connection initial-
ization logic for the component that initiates this connection’s initialization process (is the
client in this connection’s initialization process). Parameter con_id contains the global
connection ID of the current connection. Parameter con_init_loop_tid contains the
thread ID of the other component’s (server) connection initialization thread. Parameter
data contains a reference to the data section of this component (needs to be passed to
other component to create Iguana sessions for memory sharing). Parameter index refers
to the position of this component in the connection declaration.

e <Connector_name>_connection_init_passive (int con_id,L4_ThreadId_t
con_init_runner_tid,objref_t data,L4_Msg_t *msg,int index):Implement
connection initialization logic for the component that is the server for this connection’s
initialization process. Parameter con_id contains the global connection ID of the cur-
rent connection. Parameter con_init_runner_tid contains the thread ID of the other
component’s (client) connection initialization thread. Parameter data contains a refer-
ence to the data section of this component (needs to be passed to other component to
create Iguana sessions for memory sharing). Parameter index refers to the position of
this component in the connection declaration.

The code for the client and server stubs as well as the code for the connector and connection
initialisation is finally placed in the directories of the corresponding components. After the code
generation is finished, the generated C code can be compiled to build a boot image.

CHAPTER 4. CAMKES AS A COMPONENT ARCHITECTURE FOR THE DEVELOPMENT
58 OF A MODULAR ROUTER

ADL:
{

component c1,c2;
connection IguanaRPC conl(from c1.x, to c2.x)

connection con2(from cl.e, to c2.e)
} ./lguanaRPC:
for each component IguanaRPC connector
| component_runner | specific templates
for each connector »| lguanaRPC_connector.h/c
—>| connector runner'— IguanaRPC_serverstub.h/c
for each RPC connection lguanaRPC_clientstub.h/c

—>{__stub_runner H .J/lguanaAsynchEvent:
for each Dataport connection Igua naAsynChEvent
—»{ dataport_runner | connector specific templates

for each Event connection L9 IguanaAsynchEvent connector.h/c

event_runner » IguanaAsynchEvent_serverstub.h/c
Al guanaAsynchEvent_clientstub.h/c
cl, generated code c2, generated code

Figure 4.1: Generation of code using CAmMKES user defined connectors. At the end, there is a
directory for each component containing its generated code.

Connector and Connection Run-time Initialization

As an example of how components initialize their connections and connectors during run-time,
the run-time initialization interaction between two components sharing an IguanaRPC connec-
tion together is depicted in the Figure 4.2. This also includes the startup of the components
themselves.

This is an explanation of the different steps in Figure 4.2.

1. The CAmKES application loader thread starts up all of the components in the system as
L4/Iguana servers. It also starts each component’s init_loop_threadand init_runner_thread.
The init_loop_thread is the server for connection initialization protocols while the
init_runner_thread is the client for connection initialization protocols.

2. The init_loop_threads call the initialization function <Connector_name>_connector_init
for each connector a component uses. In the example in Figure 4.2, it starts an Igua-
naRPC service loop thread that handles IPC method invocations. At the same time,
the <Connector_name>_instance_init function is also executed to initialize the pro-
vided RPC interfaces (only the ones that use IguanaRPC as a connector).

3. The application loader sends information about each connection a component is part of
to the corresponding component’s init_runner_thread. This information contains the
global connection ID of a given connection. Another data field is the init_loop_thread
ID of the other component sharing this connection. Furthermore, the connector type that
is used for the connection is also sent.

4. Using the received connection data, the init_runner_threads start to call the
<Connector_name>_connection_init_active function for all of the connections
the corresponding component has. This function implements the client part of the connec-
tion initialization protocol and IPC messages are exchanged withthe init_loop_threads
in the other component sharing a certain connection. The server part of the connection ini-
tialization protocol is implemented in the function <Connector_name>_connection_init_active
that is called by the server’'s init_loop_thread. In the IguanaRPC example, the caller
component receives the thread ID of the IguanaRPC service loop thread started in step
2. This is later used to make function invocations by using IPC messages.

4.1 Adding Support for User Defined Connectors 59

ADL:

{

component c1,c2;

connection IguanaRPC conl(from c1.x, to c2.x)

}

application loader
start components and their init_loop and init_runner
threads

send (init_loop TID, connection ID, connection type) of
each connection to all components it connects
(to init_runner thread)

(init_loop_tid, £oN_id, con_type)

O
(init_loop_thread

(init_runner_threa

cl

g init_loop_thread
S/

init_runner_thread

C connector init

)

start control

a

lguanaRPC connector (4

- G control thread - lguanaRPC g
i b service loop z

client_stu erver stub =)

Figure 4.2: Startup, connector and connection initialization of a CAmKES application.

5. The data that was received from the init_loop_thread of the other component is
stored in the client stub belonging to the just initialized connection. In this example, the
thread ID of the IguanaRPC service loop of the other component is stored in the client stub.
On the server side, the other component could store data in the server stub belonging to
this connection if necessary.

6. After all components in the system are finished with initializing their connectors and con-
nections, the application loader starts the control threads of the active components run-
ning. At this time, the whole system is up and running.

7. Now, as the system is up and running, component c1 can make method invocations by
using the functions provided by the client stub. The logic that is executed during the
communication with component c2 is the logic as defined in the IguanaRPC user defined
connector templates.

4.1.4 Implementing a User Defined Connector

To implement a user defined connector, the template files mentioned in 4.1.3 need to be added
to a directory named <Connector_name>. If a connector has to be made available for all
CAmMKES applications, this directory has to be in the standard CAmKES template directory. If
only one application uses a particular connector, the connector’s directory can be in the appli-
cation’s main directory. In order for the code generator to recognize the new connector, the new
connector has to be declared in the file . /components/camkes/std_connectors.camkes.
While it would be better to declare the new connectors at a more appropriate place than the
standard connector file, support for multiple connector definition files was left for future work.

CHAPTER 4. CAMKES AS A COMPONENT ARCHITECTURE FOR THE DEVELOPMENT
60 OF A MODULAR ROUTER

4.2 Evaluation of Overhead Induced by CAmKES Connectors

4.2.1 Performance Comparison of 3 Different CAmKES Connectors

Given that the router's components are connected with IguanaRPC and DirectCall connectors,
performance measurements for these connectiors were carried out. For connections of the type
IguanaRPC, the two involved components do not need to be in the same Iguana protection do-
main. However, if the components are not in the same protection domain, another performance
penalty has to be paid because of the more expensive cross-protection domain IPC.

Figure 4.3 shows a comparison of different connection types. The delay of a method invocation
including 0 to 16 int parameters was measured using the PXA255 timer register on the hardware
platform described in Chapter 3. The called function’s implementation does nothing but add
integers. The delay caused by the IguanaRPC connection is very high if the components are
in different protection domains (data series 1) but is lower if the components are in the same
protection domain (data series 2). The DirectCall connection is the fastest connection as it
uses function pointers for the method invocation and does not have to send the parameters and
the results as an IPC message (data series 3). However, if the components are in the same
protection domain, a possibly misbehaving component can cause another component to crash
by writing to its sensitive memory areas.

1. IguanaRPC connector, components in different protection domains.
2. IguanaRPC connector, components in the same protection domain.

3. DirectCall connector.

300
275

250
225
200
175
15.0

.1

125 vo
10.0 o8
75
50
25

delay [us]

0.0

T T T T T T 1 1 1
0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16

number of int parameters

Figure 4.3: Comparison of the method invocation delay caused by different connectors.

4.2.2 Examination of the Overhead of the IguanaRPC Connector

The overhead induced by an IguanaRPC connector was measured using the instrumented
IguanaRPCMeasure connector. This connector measures the duration of different stages in
the process of invoking a function in another component by using the PXA255'’s timer register.
As before, the hardware platform described in Chapter 3 was used to perform the measure-
ments. The called function’s implementation does nothing but add integers. The measurements
were performed for 0 to 16 int parameters that were passed as function arguments.

Unfortunately, the resolution of the timer register is too low to measure the execution time of a
short sequence of instruction like the marshaling or the unmarshaling in IguanaRPC. However,
to get approximate values, the instructions in the interesting code sections to be measured were
executed 10000 times in a row. This duration was divided by 10000 to get an approximation of
the actual duration. Unfortunately, this is only a very rough approximation as cache misses
and other system related delays that occur during an TguanaRPC invocation are not measured

4.3 Influence of CAMKES induced overhead on Router’s Performance 61

this way. The measurements were carried out on the client side and on the server side of the
interface invocation.
On the client side, there are three different stages in the communication process:

e Marshal function parameters
e Make IPC call and wait for reply from server
e Unmarshal the results

The duration of each of these stages can be seen in Figure 4.4. The duration of unmarshaling
the result can be neglected compared to the durations of the other stages. The marshaling
duration depends on the number of parameters that the function passes. The IPC call and the
delay caused by the server cause most of the measured overall delay of an IguanaRPC method
invocation.

I unmarshal
M call + server processing
Ml marshal

duration [us]

Number of int parameters

Figure 4.4: Durations of different stages in an TguanaRPC method invocation (client side).

On the server side, there are also three different stages in the communication process:
e Handle the IPC request message of the client (includes unmarshaling of the parameters)
e Dispatching of the RPC and executing the called function’s implementation
e Send the reply by IPC to the client (includes marshaling of the result)

The duration of each of these stages can be seen in Figure 4.5. The majority of the time on the
server side is spend to send the IPC reply message containing the function results back to the
client. Handling the IPC request and dispatching the RPC take approximately the same time
and depend on the number of received function parameters.

The results presented in this section show that the marshaling and unmarshaling of the function
parameters and the result is small compared to the time it takes to make IPC calls and service
arriving IPC messages. The marshaling and unmarshaling of the result is optimized as the
result data structure is directly allocated in the IPC message buffer used to send the reply to
the client. The function parameters, on the other hand are marshaled/unmarshaled in a more
complicated way. As the time it takes to communicate via IPC causes the major part of the
delay, there is only a low potential for any further optimizations of the TguanaRPC connector.

4.3 Influence of CAmMKES induced overhead on Router’s Per-
formance
As Chapter 3 shows, the impact of the CAmKES component architecture’s overhead on the

router's performance depends on the chosen connector types and communication patterns.
Generally, the overhead of connectors that involve the sharing of memory (to share variables or

CHAPTER 4. CAMKES AS A COMPONENT ARCHITECTURE FOR THE DEVELOPMENT

62

OF A MODULAR ROUTER

[T send reply
Hl dispatch (+function impl)

duration [us]

M ipc request handling

Number of int parameters

Figure 4.5: Durations of different stages in an IguanaRPC method invocation (server side).

to provide functionality) is smaller than the overhead of connectors using messages transported
by IPC. However, the price to pay is lower security in the system as misbehaving components
can trash the shared memory areas and cause other components to crash.

4.4

441

Assessment of the CAmKES Component Architecture

Positive and Negative Properties as Seen from a Developer’s View

This reflects personal experience regarding the "look-and-feel" and the "ease of development”
of using CAMKES as a component architecture.

Positive aspects include:

[]

Easy to implement first applications. During this thesis, the first test applications were up
and running after a few days. The provided sample applications cover a wide range of
CAmKES features.

Easy to replace connectors with other connector implementations. This allows to configure
the speed and security trade-off of an application in an easy way.

User defined connectors allow the optimization of the component’s communication, instru-
mentation of the communication logic and transparent addition of features like connection
encryption in an easy way.

Easy to replace different implementations of components with each other. For example,
replace a driver component for a particular hardware with a driver component for a different
hardware or replace different memory allocator implementations with each other to find the
optimal one for a system.

CAmMKES code generation architecture is easy enough to be able to fix bugs in it or to add
special or missing features required by an application (e.g. add interrupt handling support
to it).

Does not hide L4/Iguana but rather complements them. This makes it easy, for example,
to encapsulate the implementation of a hardware driver into a CAmKES component.

Negative aspects include:

[]

[]

CAmkES ADL files are hard to read as there are many connection declarations for more
complex applications.

CAmkES ADL files are hard to edit as there are no real error messages produced by the
compiler if declarations are wrong. Combined with the fact that these files are hard to
read, it takes a long time to track down an error in an ADL file.

4.4 Assessment of the CAmKES Component Architecture 63

e Poor support for complex data types. There is no support for types of undefined length
(e.g. strings) at all as parameters for RPC calls.

o |t can take several minutes to generate the code for a more complex application.

o No iterators for interfaces. In a component’s declaration, each interface must have its own
name. This makes it hard to read. Also, in the code using these interfaces, they have to
be referred to by their names in a hard coded way.

¢ Not suitable to assemble applications out of fine grained components. CAmKES compo-
nents are similar in size to servers in the microkernel context.

4.4.2 Generality of the Mechanisms Provided by CAmKES

In this section, the matching of the three other modular router architectures discussed in Sec-
tion 2.7.5 (Scout, XORP and Click) to CAmKES components is investigated. This gives an
insight into wheter CAmKES and its features are general enough to support different patterns of
modular software development.

Scout

Scout stages and modules implementing different network protocols directly match to CAmKES
components. Every CAmMKES component would have to provide a classification function, so the
path of a network packet through the router could be looked up before the packet actually en-
ters the router’s logic. The connections between the components could either be implemented
as RPC method invocations by IPC or direct function calls. However, it is not straightforward
to provide the guaranteed allocation of different system ressources to a certain packet’s path
through the router like in Scout. CAmMKES is general enough to support the implementation of
Scout. Wether a ressource allocation as in Scout is possible depends on the features of the
underlying L4/lguana.

XORP

XORP modules are UNIX processes behaving similar to servers in the microkernel context.
Therefore, XORP modules directly match to CAmKES components connected by RPC or Event
interfaces using IPC for message exchanges. By designing appropriate CAmMKES connectors,
it should also be possible to support XORP’s transparent communication between components
running on different machines. Similar to XORP, the components could either run in a single
protection domain or in different protection domains. CAmkES would be an ideal platform to
implement XORP.

Click

The Click elements do not really match to components in CAMKES as they are very fine grained.
However, Click theoretically could be implemented as CAMKES components if necessary. Every
Click element would be implemented as a single CAmKES component. An L4/Iguana thread
would run over the task queue and call the different element’s functions by using DirectCall
connectors.

Such a system would contain a lot of components only implementing very limited logic. As
the overhead of the generated code would be very large and the CAmkES ADL files would
become unreadable because of the large amount of component and connection declarations,
the CAmMKES architecture is unsuitable to implement Click.

Results

As the previous discussion showed, CAMKES is general enough to theoretically support the
implementation of all of the mentioned router architectures. However, it does not make sense
to implement Click in CAMKES as Click elements are too fine grained compared to the more

CHAPTER 4. CAMKES AS A COMPONENT ARCHITECTURE FOR THE DEVELOPMENT
64 OF A MODULAR ROUTER

coarse grained components that CAmMKES is aimed at.

The supported interface types in CAmkES (RPC, Event, Dataport) and the possibility to im-
plement user defined connectors to connect the components’ interfaces make CAmMKES very
general and flexible.

4.4.3 Proposed Additional Features for CAMKES

The following is a list of features deemed missing during the router's development and that
would improve CAmMKES as a component architecture.

e There is no explicit support for interrupt handling available in CAmKES. It would make
sense to add a new keyword to the ADL so components could declare their interest in
receiving certain interrupts.

e There is no way to explicitely group a set of components together in a protection domain.
The ADL should contain language constructs to explicitely group components in certain
protection domains.

o A powerful additional feature for CAMKES would be to support hierarchies of connector.
This would allow to define connectors as stacks of different other connectors or as bundles
of other connectors.

e The support for data types of variable length (strings, arrays) as parameters in RPC inter-
faces is missing.

e Components can declare attributes in the ADL. A necessary feature would be to let con-
nectors also declare attributes. These attributes could for example be used to set the
thread priorities of the service loops of different TguanaRPC connector instances.

e The CAmKES ADL files are already hard to read for smaller applications. Therefore, a
GUI implementation that allows to connect components together etc. and automatically
generates an ADL file in the background would be beneficial to the development process
of a CAmMKES based application.

e Low overhead support for fine grained components (components that are similar to soft-
ware libraries)

o Reflection for CAmMKES, so the components can query information like their instance name
and the connections they use. This would e.g. be useful for debugging purposes.

4.4.4 CAmMKES to Build a Microkernel-Based Embedded System

Based on the experiences with CAmMKES gained during the design and implementation of this
project, it is believed that CAmKES will facilitate the development of microkernel-based embed-
ded systems in a major way.

Examples of how CAmMKES can be used to support the development of embedded systems:

e Easy assembly of whole microkernel-based (operating) systems out of pre-designed com-
ponents. A component in this case would represent a server in the microkernel context.
The connector type would be TguanaRPC.

e Easy assembly of servers in the microkernel-context based on pre-designed software
modules. For example assembling a server that implements a network stack out of com-
ponents that implement the different protocols. All of these components would be placed
in one protection domain and be connected by DirectCall.

e Plug-and-play like assembly of experimental (operating) systems e.g., for analyzing and
testing purposes.

e Easy to replace hardware specific code (e.g., a driver) with an implementation supporting
other hardware or providing a software emulation of the hardware.

Chapter 5

Conclusions

This report presents the development of a ready-to-use modular router based on the CAmMKES
architecture for embedded systems. The proposed router architecture is extensible, flexible and
especially tailored to embedded systems. The resulting software is the first CAmkKES-based
major application and runs on a real embedded hardware platform. CAmKES proved to be
a very sophisticated architecture that supports an abundance of different patterns of how to
build a modular system. The possibility in CAMKES to implement custom made logic for the
connections between the system’s components proved to be especially powerful. CAmkES will
facilitate the development of microkernel-based embedded systems in a major way.

5.1 Self-Assessment

This section points out positive and negative aspects in the design and the implementation of
the described router and the whole project.

Negative aspects include:

e The achieved throughputs of the router are low compared to the throughputs the NICs
would support. The problem causing the low throughputs could be tracked down to the
network drivers. However, the problem could not be solved in a reasonable time and
therefore had to be left for future work. Another performance related problem is the miss-
ing DMA support in the system.

In most of the measurements, the network drivers were the bottleneck. Therefore, it was
hard to perform tests of the router’'s logic under heavy load as network packets simply
were dropped by the NICs before entering the router’s logic.

e More measurements using Linux for Gumstix would be necessary to compare delays and
throughputs of the router's NAT functionality to another software architecture running on
the same hardware. Unfortunately, it was not possible to set up the routing functionality in
the Gumstix Linux distribution in a reasonable time. Many standard Linux programs like
route are missing on the Linux for Gumstix and therefore have to be added manually.
However, different approaches to compile NAT support into the Linux boot image for a
Gumstix machine did not succeed.

e Regarding the modular network stack, only delay measurements were performed. It would
also be important to measure the maximum throughput at which an application can send
data out to the network and the maximum throughput at which an application can receive
data.

e The presented router does not use a CAmkKES feature that allows to group components
together in a composite component. A composite component exports defined interfaces
of its inner components and can be used like a standard component. Components of the
network stack including their queues could have been grouped in a composite component
to make it easier to understand the ADL definition of the whole application.

65

66

CHAPTER 5. CONCLUSIONS

The modularization of the IwlIP stack could have been done in a more sophisticated and
consistent way. At the moment, only the functions that are actually used by the router and
its components are modularized. Furthermore, there would be architecturally better ways
of modularizing IwlP compared to the current approach of actually replacing the code of all
function invocations to upper or lower network layers by function pointer calls. The current
way does not allow IwIP to be upgraded to a newer version, for example.

A more generic architecture for the actual routing process could have been chosen. In
the current design, the NAT component implements forwarding, packet editing and routing
in one place. A more generic architecture would separate these three stages. One com-
ponent would manage the forwarding of packets to an arbitrary number of NICs. During
the forwarding, it would look up a route using an interface to a routing database. The
entries in this database could either be configured manually or inserted dynamically by a
component running a dynamic routing protocol. Before or after looking up a route, plugin
components could be added. These plugins would allow, for example, NAT functionality to
be implemented.

Positive aspects include:

[]

The implementation of the router is stable and the Gumstix machine running the router
application has been successfully used to access the internet and its applications from a
desktop machine by configuring the desktop machine’s default gateway accordingly. The
reliability of the router is a result of the decision to use already existing, well-tested code
as often as possible.

The router fulfills all of the requirements that were defined before the project started. It
uses most of the features provided by CAmMKES and runs on a real embedded hardware
platform. It therefore is a good reference application for the CAmKES architecture.

The design of the router distinguishes between trusted and untrusted components. Trusted
components can be connected to other trusted components by using the fast Directcall
connector that was developed during this project. Untrusted components can be inte-
grated into the system as components running in the application plane and communicat-
ing via IPC with other components. If an untrusted component misbehaves, it does not
affect the rest of the system.

Extensibility, flexibility and reusability are a key feature of the designed router architec-
ture. The components provide simple and general interfaces. Therefore, components
extending the router’s functionality can be developed, implemented and inserted into the
router in a short time. By choosing different connectors for the connections between the
components, the performance/security trade-off of each connection can be configured in
a flexible way. The existing network stack components, queue components and memory
allocator components are general enough so they can be re-used in another application
based on the CAmKES architecture.

Performance measurements were carried out often and regularly as the project progressed.
This allowed the comparison of the performance of different router versions between each
other. As an interesting additional dimension to the measurements of the router’s delays
and throughputs, the CPU load in the system during the benchmarks was also measured.
Finally, the overhead induced by the CAmMKES architecture was examined by experiment-
ing with different connectors and performing benchmarks of the resulting router systems
and different stages in the communication process.

The designed and implemented router was compared to other modular router architec-
tures. This included pointing out similarities and differences between the different archi-
tectures as well as assessing the possibility to theoretically port components of another
router architecture to CAmKES in order to be integrated with the current router.

The experiences made during the design and implementation of a system with CAMKES
led to an abundance of proposed features and patterns of how to build applications with
CAmMKES. During the project, new features were designed and implemented in CAmKES.
This includes an architecture for user defined connectors, a DirectCall connector and
an instrumented connector to measure the overhead of IPC method invocations.

5.2 Future Work 67

5.2

Future Work

Interesting future work on this project could include:

5.3

Solve the experienced |/O problems and add DMA support to the driver components. This
possibly leads to a massively improved router performance. As the bottlenecks will move
from the outer components to the components implementing the router’s logic, this would
also include optimizing the newly detected bottlenecks.

Implement more sophisticated routing protocols and extend the router to support 3 or more
NICs. This would require finding an appropriate hardware platform and porting drivers for
the NICs to L4/Iguana. As a second step, a general routing architecture would have to
be developed where components implementing different routing protocols can be added
and removed on demand (similar to XORP). As a third step, actual routing protocols would
have to be implemented in CAmKES. It should first be examined wether it is technically
possible to directly port XORP components to CAmMKES.

Implement the remaining standard network stack protocols (e.g. ICMP and TCP) as
CAmMKES components so future CAmkES applications could use a complete network stack
built out of CAmMkKES components.

For TCP, this would also include the design of support for low overhead streams to be used
by the application components. A promising approach might be to implement a connector
that provides the basic stream operations like reading and writing bytes. This connector
would connect an application component using TCP with a component implementing the
TCP protocol.

Improve the security of the system by adding support for transport layer security (TLS)
protocols. TLS functionality could either be added as part of special connectors or be
implemented in components dedicated to decrypting incoming network packets and en-
crypting outgoing network packets. An encrypted connection could be used to establish a
secure connection between a remote machine and the NAT Admin component.

Add components implementing static firewall functionality, statefull packet inspection or
logging and packet sniffing functionality to the router. A firewall component would be
useful to restrict internet access to a limited set of machines on the local network. Such a
component simply would be plugged in between two existing components in the forwarding
plane.

Implement different traffic shaping concepts as components. This could include compo-
nents to throttle the traffic generated by certain machines or to divide the available band-
width equally between all machines currently using the router as a gateway to the global
network. Furthermore, by adding other packet classifiers to the router, support for quality
of service could be added.

Add support for communication hardware other than ethernet controllers. This could in-
clude adding a component implementing a driver for a modem connected to the serial
port. This component would have the same interfaces as the existing NIC drivers and
would replace a NIC driver transparently.

Thanks

| would like to especially thank my supervisor Dr. Ihor Kuz for his friendly, prompt and compe-
tent support during this master’s thesis and for his valuable comments during my work on this
report. While | was working on my router project, he always made me feel like being a valuable
member of the whole CAMKES project.

| would also like to thank Dr. Felix Rauch for supporting me during the organization of my thesis
at NICTA and for always helping me whenever | needed any advice.

68 CHAPTER 5. CONCLUSIONS

At ETH Zurich, | would like to thank Prof. Roger Wattenhofer for supervising my thesis from the
ETH side.

Thanks also to Hans Dubach who helped me organize everything at ETH Zurich for this mas-
ter’s thesis abroad.

Finally, | would like to express my gratitude to NICTA and its ERTOS program. ERTOS made
my master’s thesis in Sydney possible and provided a great working environment in their Kens-
ington Lab.

5.3 Thanks

69

Appendix A

Thesis Project

A.1 Project Description

CAmMKES[20], a project of NICTA[7]'s ERTOS[2] program, has recently developed and imple-
mented a component architecture for its microkernel-based embedded operating system. The
architecture allows the application of component-based software engineering to the develop-
ment of embedded systems software, including operating system services such as file systems,
network stacks, drivers, etc.

The first phase of the CAMKES project was the development of a low overhead component
architecture. The next phase is to investigate the use of this architecture in building system
software.

The proposed project forms part of this research, and involves the design and implementation
of a significant system using the CAmMKES component architecture. The project work will involve
designing and implementing a network router (including drivers, network stack, and any other
required operating system services) as a collection of interconnected components. The design
should consider reusability and flexibility of the components so that they can be reused in dif-
ferent configurations and potentially lead to a dynamically reconfigurable router.

The implementation will run on our Iguana[18] L4[23]-based embedded operating system. Be-
sides being a good test of the flexibility and suitability of the component architecture, the project
will also involve analysing the resulting system (e.g., the understandability, ease of development,
etc.), proposing changes or extensions to the architecture, and researching suitable design pat-
terns and idioms for component-based embedded systems.

Depending on the progress made, possible further work may include comparing the resulting
router to the Click modular router framework and consider, for example, whether click modules
can be incorporated into the router as reusable components.

A.2 Project Plan

Starting date: November 7, 2006
Finishing date:May 6, 2007

November 2006
o familiarization with the CAmKES model and L4/Iguana
o familiarization with traditional router design
e router requirements, hardware platform choice

o start design of componentised router

70

A.2 Project Plan 71

e assessment: review of requirements, preliminary design and understanding of CAmKES
and L4/Iguana

December 2006
e continue design of componentised router
o start implementation of router components
e assessment: review of final design
January 2007
e continue implementation of router components
e assessment: implementation progress
February 2007
o test implementation
o modify design and implementation as necessary
e assessment: review of implementation and test results
March 2007
e continue testing and modifying as necessary

e experiment with the changing of component-based designs, investigate flexibility of the
model and the usefulness of the mechanisms provided by CAmMkES

e assessment: suitability of initial design and proposed changes
April/May 2007
e wrap up work
e present work and results to ERTOS research group
e write a research report outlining the work. This research report will lead to a thesis

e assessment: assessment of presentation and report

Appendix B

Version History

Version 0.98 (andri.toggenburger@nicta.com.au—devel/camkes-project—router—0.98)
e Support for user defined connectors added.
e Ported all existing connectors to the user defined connector architecture.

e Implemented an instrumented version of the IguanaRPC connector (IguanaRPCMeasure)
to measure the delay caused by different stages in the IguanaRPC connector.

Version 0.97 (andri.toggenburger@nicta.com.au—devel/camkes-project-router—0.97)

e Final design of the router (see 2.5). Protection between application plane and forwarding
plane added.

Version 0.96 (andri.toggenburger@nicta.com.au—devel/camkes-project—router—0.96)

e Forwarding plane uses direct method invocation to forward packets (no queues in between
the components). However, the driver components are still connected to the rest of the
system by queues.

e The system uses only DirectCall connectors for connections where packets are forwarded.
e The application plane is connected to the forwarding plane through queues.
Version 0.95 (andri.toggenburger@nicta.com.au—devel/camkes-project—router—0.95)
e DirectCall connector implemented.
e IguanaSharedData connector generalized so 2+ components can share data.

e Replaced IguanaRPC connections between the forwarding components by DirectCall con-
nections.

o All components share a common memory area to store network packets.

e Memory Allocator components implemented so the memory in the shared memory area
can be dynamically allocated and deallocated by all of the components

Version 0.9 (andri.toggenburger@nicta.com.au—devel/camkes-project—router—0.9)
o First working version of the router.
e There are queues between all network stack components.

e Only pairs of components share common memory sections, so the network packets have
to be copied every time they are passed to another (third) component.

e Only IguanaRPC connectors are used to forward network packets.

72

Appendix C

NatAdminConsole

The Java program NatAdminConsole is a console application that can be used to remotely
configure the NAT component in the router and to query its status. It connects via UDP to the
NAT Admin component running in the application plane of the router. The NAT Admin compo-
nent is bound to the global network interface.

The parameters to start the application are <1P address of router’s global interface>
<port used by NAT Admin server>. The port where the NAT Admin server is listening is
set to 3201 in the current implementation.

These are the commands supported by the console:

e N_PACKETS_FORWARDED_TCP: returns the number of the translated TCP packets by
the NAT.

e N_PACKETS_FORWARDED_UDP: returns the number of the translated UDP packets by
the NAT.

e N_PACKETS_FORWARDED_ICMP: returns the number of the translated ICMP packets
by the NAT.

o N_PACKETS_DROPPED: returns the number of packets arriving from the global network
that were discarded by the NAT.

e N_DYNAMIC_ENTRIES: returns the number of the dynamic entries in the NAT lookup
tables.

o N_STATIC_ENTRIES: returns the number of configured port forwarding declarations.
e GET_GLOBAL_IP: returns the IP address of the global interface (assigned by DHCP).

e SET_ENABLE_NAT <true / false>: enables or disables the NAT. If it is disabled, all packets
are dropped.

e SET_STATIC_ENTRY <localip> <globalport>: enables the forwarding of all packets di-
rected to the port <globalport> to the machine with the address <localip> on the local
network (enables port forwarding).

e DELETE_STATIC_ENTRY <localip> <globalport>: disables the forwarding of packets di-
rected to the port <globalport> to the machine with the address <localip> on the local
network (disables port forwarding).

e GET_STATIC_ENTRIES: print all defined portforwarding declarations.

o GET_DYNAMIC_ENTRIES: print the dynamic NAT lookup table used to translate packets
between the local and the global network.

73

Appendix D

Gumstix - How To

In this section, the steps to connect to a Gumstix machine are explained. Furthermore, an expla-
nation of how to upload a bootimage to a Gumstix machine via TFTP is given. This explanation
assumes the following hardware to be present:

o Gumstix mainboard

e Gumstix ethernet extension board (1 or 2 NICs). The primary port has to be connected to
a LAN.

e Gumstix serial extension board connected to a PC.

Connecting to the Gumstix via Serial

The program kermit has to be installed on the system first.

Then execute the following commands in a Linux console:
1. su
2. kermit -1 /dev/ttySO

3. issue the following commands in kermit:

set speed 115200

set reliable

fast

set carrier-watch off
set flow-control none
set prefixing all

4. issue the command connect in kermit
5. power up Gumstix machine

If everything works fine, the uboot boot screen of the Gumstix machine should be displayed in
kermit.

Load Bootimages from a TFTP Server

Depending on your Linux distribution, either set up a TETP server via console commands or by
using a configuration menu (e.g. YaST in SUSE Linux). Then add the bootimage to be uploaded
to the Gumstix to the files the TF TP server provides.

74

75

Now, the Gumstix has to be configured in order to be able to connect to a TFTP server. After
powering up the Gumestix, hit any key to stop autoboot (2s limit). This loads an uboot menu.

Configure the IP settings of the Gumstix by setting the following environment variables (using
the command setenv "<args>").
e ipaddr: setthis to the desired IP address of the Gumstix network interface (e.g. 10.13.1.250).
e netmask: set netmask of the network the Gumstix has to be part of (e.g. 255.255.254.0).

e serverip: set IP address of the TFTP server to be used (e.g. 10.13.1.148).

e bootcmd: setthis variable to "t ftpboot 22008000 <bootimage filename (e.g.
bootimg.bin)> ; go a2008000"

Example:

setenv ipaddr ’710.13.1.250'';

setenv netmask ’’7255.255.254.0"";

setenv serverip ’710.13.1.148"'";

setenv bootcmd ’'’tftpboot a2008000 bootimg.bin; go a2008000"’

As these environment variables are not saved in permanent storage, issue the command saveenv
to permanently save the environment variables. The Gumstix is now set up for TFTP. In order
to test if the Gumstix machine is able to connect to the TF TP sever, use the command ping.

Reboot the Gumstix machine. It should now load the defined boot image from the specified
TFTP server and boot up.

Appendix E
UDP Echo Clients and Servers

UDP Echo clients and servers were implemented for different platforms. They implement func-
tionality similar to the ping program but on the transport layer. An UDP echo service sends
back the payload of a received UDP echo request to the sender.

Java UDP Echo Client / Server

This Java program implements an UDP echo client and an UDP echo server. The main function
of this program is in the class Test and has to be started with the argument <send> in order
to start the client or with the argument <receive> to start the server.

The UDP echo client measures the time it takes to send and receive a certain amount of UDP
echo requests and replies. It waits for a pending echo reply to arrive before it sends out the next
echo request. At the end, it prints out the total time it has taken to send and receive the config-
ured number of echos. Parameters like UDP packet size, server IP, server port and the number
of echos to be sent can be configured by setting the corresponding constants or variables in its
implementation file Sender. java.

The UDP echo server simply sends back all of the received UDP packets to the sender. Its
server port can be configured by setting the according constant in its implementation file Server

CAmKES UDP Echo Server

The router’s UDP echo service that implements UDP echo server functionality is, for simplicity
reasons, implemented in the DHCP component and can be turned on or off by defining the ac-
cording constant in the file include/debugprint.h. Itis bound to the global router interface
and listens for UDP echo requests on port 3200.

Linux for Gumstix UDP Echo Server

This is a C program that implements an UDP echo server. It listens on port 3200 for arriving echo
requests and sends an echo reply back to the sender. Its implementation file is udpecho. c.
In order for it to run on Linux for a Gumstix machine, it has to be compiled with the compilers
supplied with the Gumstix Buildroot[4]

76

. Java.

Appendix F

IDL and ADL Files of the Router
Application

net.camkes

import "std_connector.camkes";

import "Driver_interface.idl4";

import "UDP_interface.idl4";

import "BidirQueue_interface.idl4";
import "Malloc_interface.idl4";

import "PacketCallback2_interface.idl4";
import "PacketCallback_interface.idl4";
import "NatAdmin_interface.idl4";

component Malloc{//k-d malloc
provides Malloc mallocd;
dataport Buf d;

}

component MallocPre{//pre-allocated
provides Malloc mallocd;
dataport Buf d;

component NatAdmin{
control;
dataport Buf d;
dataport Buf data_nat_natadmin;
uses BidirQueue g_udp_natadmin;
uses NatAdmin nat;
uses Malloc mallocd;
uses Driver driver;
uses UDP udp;
consumes PacketArrivedEvent e_packet_up;
consumes DriverEvent e_netinfo_changed;

component DummyCallback({
//this is used to keep the compiler quiet for interfaces not
provides PacketCallback cb;

component CopyingBidirQueue ({
provides BidirQueue queue;

77

used

78 APPENDIX F. IDL AND ADL FILES OF THE ROUTER APPLICATION

uses Malloc m_down;

uses Malloc m_up;

dataport Buf d_down;

dataport Buf d_up;
emits PacketArrivedEvent g_e_up;
emits PacketArrivedEvent g_e_down;

component BidirQueue {
provides BidirQueue queue;
emits PacketArrivedEvent g_e_up;
emits PacketArrivedEvent g_e_down;

component DummyBidirQueue {
//queue to store void x values. it is a double queue compromised of
//an up-queue and a down—-queue (e.g. up or down the stack)
//it is used to keep the compiler quiet
provides BidirQueue queue;
//event 1is triggered if queue was empty and a down packet or up packet arrived
emits PacketArrivedEvent g_e_up;
emits PacketArrivedEvent g_e_down;

component Driver({

control;

uses BidirQueue g _driver_arp;
consumes PacketArrivedEvent e_packet_down;
uses Malloc mallocd;

provides Driver driver;

dataport Buf d;

dataport Buf test;

emits DriverEvent e_netinfo_changed;
attribute string gpio_string;
attribute string memoryarea_string;
attribute string mac_string;
attribute string id_string;

}

component InitManager {
//initialise network cards, set static network info for local NIC
control;
uses Driver driver;
uses Driver driver2;
attribute string local_ip_string;
attribute string local_netmask_string;
attribute string local_gw_string;

component DHCP ({
control;
uses Malloc mallocd;
uses BidirQueue g _udp_dhcp;
consumes PacketArrivedEvent e_packet_up;
uses UDP udp;
uses Driver driver;
dataport Buf d;
consumes DriverEvent e_netinfo_changed;

79

component ARPHandler {
control;
uses Driver driver;
uses Malloc mallocd;
uses BidirQueue g_driver_arp;
uses PacketCallback2 gateway_callback_2;
uses PacketCallback gateway_callback_1;
uses PacketCallback to_udp_callback;
consumes PacketArrivedEvent e_packet_up;
provides PacketCallback fromgateway_callback;
provides PacketCallback2 fromudp_callback;
dataport Buf d;
consumes DriverEvent e_netinfo_changed;
attribute string mode;

component UDP {
control;
uses Malloc mallocd;
uses BidirQueue g _udp_dhcp;
uses BidirQueue g_udp_natadmin;
consumes PacketArrivedEvent e_packet_down_dhcp;
consumes PacketArrivedEvent e_packet_down_natadmin;
uses PacketCallback2?2 to_arp_callback;
provides PacketCallback from_arp_callback;
uses Driver driver;
dataport Buf d;
provides UDP udp;
consumes DriverEvent e_netinfo_changed;

}

component NAT {
uses Driver globaldriver;
uses Malloc mallocd;
dataport Buf d;
dataport Buf data_nat_natadmin;
provides PacketCallback local_packet;
provides PacketCallback2 global_packet;
provides NatAdmin nat;
uses PacketCallback to_local_callback;
uses PacketCallback to_global_callback;
consumes DriverEvent e_global_netinfo_changed;

assembly {

composition {

//processing stack components
component Driver driverl;
component Driver driver2;
component ARPHandler arpl;
component ARPHandler arp2;
component UDP udpl;

component DHCP dhcpl;
component InitManager initmanagerl;
component NAT nat;

component NatAdmin natadmin;

80 APPENDIX F. IDL AND ADL FILES OF THE ROUTER APPLICATION

component BidirQueue g_driver_arp;
component CopyingBidirQueue g _udp_dhcp;
component CopyingBidirQueue g _udp_natadmin;
component BidirQueue g driver2_arp2;
component DummyCallback dummy_cb;

//Memory manager for forwarding plane
component Malloc ml;

//for DHCP app
component Malloc m2;

//for Nat admin app
component Malloc m3;

//x*x% Dataport connections **x%*x

connection IguanaSharedData testl (from driverl.test,

//** components to malloc ml

connection IguanaSharedData driverl_ml_data (from
connection IguanaSharedData arpl_ml_data (from ml
connection IguanaSharedData udpl_ml_data (from ml
//connection IguanaSharedData dhcpl_ml_data (from

ml

.d,
.d,

ml

to driver2.test);

.d,

to
to

.d,

connection IguanaSharedData driver2_ml_data (from ml.d,
connection IguanaSharedData arp2_ml_data(from ml.d, to arp2.d);

connection IguanaSharedData natadmin_ml_data (from ml.d,

natadmin.d) ;

to driverl.d);
arpl.d);
udpl.d);

to dhcpl.d);
connection IguanaSharedData nat_ml_data(from ml.d, to nat.d);

to driver2.d);

to

connection IguanaSharedData g _udp_dhcp_ml_datal (from ml.d, to

g_udp_dhcp.d_down) ;

connection IguanaSharedData g udp_natadmin_ml_datal (from ml.d, to

g_udp_natadmin.d_down) ;

//components to malloc m2

connection IguanaSharedData dhcpl_m2_data(from m2.d, to dhcpl.d);
connection IguanaSharedData g _udp_dhcp_m2_data2 (from m2.d, to

g_udp_dhcp.d_up) ;

//components to malloc m3

connection IguanaSharedData natadmin_m3_data(from m3.d, to natadmin.d);
connection IguanaSharedData g udp_natadmin_m2_data2 (from m3.d, to

g_udp_natadmin.d_up) ;

//** natadmin and nat

connection IguanaSharedData nat_natadmin_data (from nat.data_nat_natadmin, to

natadmin.data_nat_natadmin) ;

//xxxx function call connectors *#*x*x%//

//*% to driverl

connection IguanaRPC dhcpl_driverl_driver (from dhcpl.driver,
connection IguanaRPC udpl_driverl_driver (from udpl.driver,

driverl.driver);

connection IguanaRPC arpl_driverl_driver (from arpl.driver,

driverl.driver);

to

to

to driverl.driver);

connection IguanaRPC initmanagerl_driverl_driver (from initmanagerl.driver, to

81

driverl.driver);
connection IguanaRPC
driverl.driver);
connection IguanaRPC
driverl.driver);

//*xto driver?2
connection IguanaRPC
driver2.driver);
connection IguanaRPC
driver2.driver);

//** to udpl
connection IguanaRPC
udpl.udp) ;
connection IguanaRPC
udpl.udp) ;

//** to malloc 1
connection DirectCall
ml.mallocd);
connection DirectCall
connection DirectCall
ml.mallocd) ;
connection DirectCall
connection DirectCall
ml.mallocd);
connection DirectCall
ml.mallocd) ;
connection DirectCall
connection DirectCall
to ml.mall

// to malloc 2
connection DirectCall
m2.mallocd) ;
connection DirectCall
m2.mallocd) ;

//to malloc 3
connection DirectCall
m3.mallocd) ;
connection DirectCall
m3.mallocd);

nat_driverl_driver (from nat.globaldriver, to

natadmin_driverl_driver (from natadmin.driver, to

initmanagerl_driver2_driver (from initmanagerl.driver2, to

arp2_driverl_driver (from arp2.driver, to

dhcpl_udpl_udp (from dhcpl.udp, to

natadmin_udpl_udp (from natadmin.udp, to

driverl_ml_malloc (from driverl.mallocd, to

driver2_ml_malloc (from driver2.mallocd, to ml.mallocd);
arpl_ml_malloc(from arpl.mallocd, to

arp2_ml_malloc(from arp2.mallocd, to ml.mallocd);
udpl_ml_malloc (from udpl.mallocd, to

g_udp_dhcp_ml_mallocdown (from g _udp_dhcp.m_down, to
nat_ml_malloc (from nat.mallocd, to ml.mallocd);
g_udp_natadmin_ml_malloc (from g_udp_natadmin.m_down,
ocd) ;

dhcpl_m2_malloc (from dhcpl.mallocd, to

g_udp_dhcp_m2_mallocup (from g _udp_dhcp.m_up, to

natadmin_m3_malloc (from natadmin.mallocd, to

g_udp_natadmin_m3_mallocup (from g udp_natadmin.m_up, to

//*% connections between queues and components

connection DirectCall
from drive
connection DirectCall
from arpl.

//DHCP Client
connection IguanaRPC

driverl_g_driver_arp_bidirqueue (

rl.g driver_arp, to g _driver_arp.queue);
arpl_qg_driver_arp_bidirqueue (
g _driver_arp, to g _driver_arp.queue);

udpl_qg_udp_dhcp_bidirqueue (from udpl.qg udp_dhcp, to

82 APPENDIX F. IDL AND ADL FILES OF THE ROUTER APPLICATION

g_udp_dhcp.queue) ;
connection IguanaRPC dhcpl_g udp_dhcp_bidirqueue (from dhcpl.q _udp_dhcp, to
g_udp_dhcp.queue) ;

//Nat admin server
connection IguanaRPC udpl_g udp_natadmin_bidirqueue (from udpl.q _udp_natadmin,
g_udp_natadmin.queue) ;
connection IguanaRPC natadmin_g udp_natadmin_bidirqueue (
from natadmin.qg _udp_natadmin,to g _udp_natadmin.queue) ;

//to nat administration interface
connection IguanaRPC natadmin_nat_natadmin (from natadmin.nat, to
nat.nat);

/) **

connection DirectCall driver2_qg driver2_arp2_bidirqueue (from
driver2.qg _driver_arp, to g _driver2_arp2.queue);

connection DirectCall arp2_qg driver2_arp2_bidirqueue (from
arp2.q_driver_arp, to g_driver2_arp2.queue);

//*xxx event connectors xxxx//

//** queues to components dequeueing packets
connection IguanaAsynchEvent g_driver_arp_driverl (from
g _driver_arp.qg_e_down, to driverl.e_packet_down);

connection IguanaAsynchEvent g driver_arp_arpl (from
g _driver_arp.qg_e_up, to arpl.e_packet_up);

//dhcp client queue
connection IguanaAsynchEvent g _udp_dhcp_udpl (from
g_udp_dhcp.qg_e_down, to udpl.e_packet_down_dhcp);

connection IguanaAsynchEvent g _udp_dhcp_dhcpl (from
g_udp_dhcp.qg_e_up, to dhcpl.e_packet_up);

//natadmin server queue
connection IguanaAsynchEvent g_udp_natadmin_udpl (from
g_udp_natadmin.qg_e_down, to udpl.e_packet_down_natadmin) ;

connection IguanaAsynchEvent g _udp_natadmin_natadmin (from
g_udp_natadmin.g_e_up, to natadmin.e_packet_up);

/) **
connection IguanaAsynchEvent g driver2_arp2_driver2 (from
g_driver2_arp2.q_e_down, to driver2.e_packet_down);
connection IguanaAsynchEvent g driver2_arp2_arp2 (from
g_driver2_arp2.gq_e_up, to arp2.e_packet_up);

//x% driverl to stack components
connection IguanaAsynchEvent driverl_dhcpl_e (from
driverl.e_netinfo_changed, to dhcpl.e_netinfo_changed);
connection IguanaAsynchEvent driverl_udpl_e (from

to

83

driverl.e_netinfo_changed, to udpl.e_netinfo_changed);
connection IguanaAsynchEvent driverl_arpl_e (from

driverl.e_netinfo_changed, to arpl.e_netinfo_changed);
connection IguanaAsynchEvent driverl_nat_e (from

driverl.e_netinfo_changed, to

nat.e_global_netinfo_changed);

connection IguanaAsynchEvent driverl_natadmin_e (from
driverl.e_netinfo_changed, to natadmin.e_netinfo_changed);

//** driver2 to other components

connection IguanaAsynchEvent driver2_arp2_e (from
driver2.e_netinfo_changed, to arp2.e_netinfo_changed);

//+xxxxxcallbacks between components (to fwd packets)

connection DirectCall arpl_nat_callback (from arpl.gateway_callback_2, to
nat.global_packet);

connection DirectCall arp2_nat_callback (from arp2.gateway_callback_1, to
nat.local_packet);

//dummy connections (to deal with problem in camkes which doesnt allow

//a component to implement several interfaces of the same type

connection DirectCall arp2_nat_callback_2 (from arpl.gateway_callback_1, to
nat.local_packet);

connection DirectCall arpl_nat_callback_2 (from arp2.gateway_callback_2, to
nat.global_packet);

connection DirectCall nat_arpl_callback (from nat.to_local_callback, to
arp2.fromgateway_callback);
connection DirectCall nat_arp2_callback (from nat.to_global_callback, to
arpl.fromgateway_callback);

connection DirectCall arpl_udpl_callback (from arpl.to_udp_callback, to
udpl.from_arp_callback);
connection DirectCall udpl_arpl_callback (from udpl.to_arp_callback, to
arpl.fromudp_callback);

connection DirectCall arp2_udp2_callback (from arp2.to_udp_callback, to
dummy_cb.cb) ;

configuration {
//forwarding activated (so it forwards packets to gateway)
arp2.mode = "forward";

//forward everything (except packets to port 67, 3200, 3201 on
//connected netif)

arpl.mode = "nat_global";

//parameters for driverl

driverl.memoryarea_string = "67108864"; //=="0x04000000"
driverl.mac_string = "10:10:10:10:10:1";
driverl.gpio_string = "36";

driverl.id_string = "1";

84 APPENDIX F. IDL AND ADL FILES OF THE ROUTER APPLICATION

//parameters for driver?2

driver2.memoryarea_string = "134217728"; //=="0x08000000"
driver2.mac_string = "10:10:10:10:10:2";
driver2.gpio_string = "27";

driver2.id_string = "2";

//parameter for initmanager (used to set static ip/gw/netmask of
//local driver (driver2))

initmanagerl.local_ip_string = "192.168.0.1";
initmanagerl.local_gw_string = "192.168.0.1";
initmanagerl.local_netmask_string = "255.255.255.0";

}

Driver_interface.idl4

interface Driver {

int setup();

int getIpAddress();

int getHwAddressLength () ;

int getMac (in int 1);

int getGwAddress () ;

int getNetmask();

void setNetworkInfo(in int ip, in int gw, in int netmask);

}i

UDP_interface.idl4

interface UDP ({

int abind(in int clientid, in int c_ip, in int c_port);
int aunbind(in int clientid, in int c_ip, in int c_port);
int aconnect (in int clientid, in int s_ip, in int s_port);

}i

BidirQueue _interface.idl4

interface BidirQueue {

int push_up(in void *x);
int push_down (in void =xx);
void xpull_up (void);

void xpull_down (void);

bi

Malloc_interface.idl4

interface Malloc {

void xmalloc (in int size);

void free (in voidx p);

void xrealloc(in void xptr, in int size);

}i

PacketCallback_interface.idl4

interface PacketCallback {
void callback (in void «*p);

85

}i

PacketCallback2_interface.idl4

interface PacketCallback2 ({
void callback (in void *p);

}i

NatAdmin_interface.idl4

interface NatAdmin {

int n_packets_forwarded_tcp(void);

int n_packets_forwarded_udp (void);

int n_packets_forwarded_icmp (void);

int n_packets_dropped(void);

int n_dynamic_entries(void);

int n_static_entries(void);

int get_global_ ip(void);

int set_enable_nat (in int flag);

int set_static_entry(in int ip, in int port);
int delete_static_entry(in int ip, in int port);
void xget_static_entries (void);

void xget_dynamic_entries(void);

}i

Bibliography

[11 ARM Limited.
http://www.arm.com/.

[2] Embedded, Real-Time, and Operating Systems Research Program.

http://www.ertos.nicta.com.au.

[3] Gumstix - Way Small Computing.

http://www.gumstix.com

[4] Gumstix Buildroot - Create Linux Boot Images for Gumstix
http://docwiki.gumstix.org/Buildroot

[5] The L4-embedded Project

http://www.ertos.nicta.com.au/research/14/

[6] Magpie - Interface Compiler for L4.
http://www.ertos.nicta.com.au/software/kenge/magpie/latest/

[7] National ICT Australia - Australia’s ICT Research Centre of Excellence.
http://www.nicta.com.au.

[8] SMC LAN91c111 Data Sheet.
http://www.smsc.com/main/datasheets/91clll.pdf

[9] SMC LAN91C111 Frequently Asked Questions.
http://www.smsc.com/main/catalog/lan9lclllfaqg.pdf

[10] thrulay, network capacity tester.
http://shlang.com/thrulay/

[11] Carl van Schaik, Embedded Real-Time and Operating Systems Program (ERTOS),
"NICTA L4-embedded Kernel Reference Manual", Sydney, November 2005.

[12] R. Droms, "Dynamic Host Configuration Protocol", RFC 2131, March 1997.

[13] Adam Dunkels, "Minimal TCP/IP implementation with proxy support", Technical Report
T2001:20, SICS - Swedish Institute of Computer Science, February 2001. Master’s thesis.

[14] Adam Dunkels, "Desing and Implementation of the IwIP TCP/IP Stack", Swedish Institute
of Computer Science, February 2001.

[15] Yitzchak Gottlieb and Larry Peterson, "A Comparative Study of Extensible Routers", De-
partment of Computer Science, Princeton University, 2002.

[16] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson, Pavlin Radoslavov, "Design-
ing Extensible IP Router Software", International Computer Science Institute, University
College, London, 2005.

[17] Mark Handley, Orion Hodson, Eddie Kohler, "XORP Goals and Architecture", ACM SIG-
COMM Hot Topics in Networking 2002.

[18] Gernot Heiser, "lguana User Manual", Embedded Real-Time and Operating Systems Pro-
gram (ERTOS), Sydney, April 2005.

86

BIBLIOGRAPHY 87

[19] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek, "The
Click Modular Router", ACM Transactions on Computer Systems 18(3), August 2000,
pages 263-297.

[20] Ihor Kuz and Yan Liu and lan Gorton and Gernot Heiser, "CAMKES: A component model
for secure microkernel-based embedded systems”, Journal of Systems and Software,
Volume 80, Issue 5 (May 2007).

[21] Ihor Kuz, "CAmMKES Core Design and Iguana Implementation”, NICTA's Embedded, Real-
Time, and Operating Systems Research Program, Sydney, 2006.

[22] Ihor Kuz, "L4 User Manual - NICTA L4-embedded API", NICTA’'s Embedded, Real-Time,
and Operating Systems Research Program, Sydney, 2005.

[23] Jochen Liedke, "On u-Kernel Construction”, 15th ACP Symposium of Operating System
Principles (SOSP) December 3-6 1995, Copper Mountain Resort, Colorado.

[24] Allen B. Montz, David Mosberger, Sean W. O’'Malley, Larry L. Peterson, Todd A. Proebst-
ing, John H. Hartman, "Scout: A Communications-Oriented Operating System", Depart-
ment of Computer Science, The University of Arizona, 1994.

[25] Nicolas Pitre, "Linux Driver for SMSC’s 91C9x/91C1xx single-chip Ethernet devices".
Copyright (C) 2003 Monta Vista Software, Inc.

[26] D. Plummer, "Ethernet Address Resolution Protocol”, RFC 826, November 1982.
[27] J. Postel, "Internet Control Message Protocol", RFC 792, September 1981.

[28] J. Postel, "Internet Protocol”, RFC 791, September 1981.

[29] J. Postel, "Transmission Control Protocol", RFC 793, September 1981.

[30] J. Postel, "User Datagram Protocol", RFC 768, August 1980.

[31] P. Srisuresh, K. Egevang, "Traditional IP Network Address Translator (Traditional NAT)",
RFC 3022, January 2001.

[32] XORP Project, "XORP Design Overview", International Computer Science Institute,
Berkeley, 2007.

[33] Hubert Zimmermann, "OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection”, IEEE Transactions on Communications, Vol. Com-28, No. 4,
April 1980.

