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Abstract

A fundamental assumption in game theory is that the agents partici-
pating in a game are selfish. This assumption is reasonable, but sometimes
too restricted. In this semester thesis we loosen it to some extent, letting
the players still be selfish, but also caring to some degree for other agents.
Concretely, we introduce friendship between neighbors while looking at a
virus inoculation game which is played on a network of connected agents.

We prove that introducing this social aspect never impairs the commu-
nity with respect to the total social cost, although social welfare does not
monotonously increase with the strength of friendship. We further quan-
tify the social effect in two special topologies, namely in the clique and in
the star graph.
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1 Introduction

Over the past years, the Internet, as the probably best known network at all,
has evolved enormously and became a great platform for a continuously raising
number of users and innumerable applications. Unfortunately, not just the good
parts of the Internet have made progress, the process has, among others, also
led to a huge number of computer-viruses, acting in many different manners and
aiming at diverse objectives. However, it is interesting that most of them share
a common technique to propagate. Namely, they often try to proceed to those
participants of the network who seem to be on friendly terms with the infected
computer. For example, they automatically forward themselves to those email-
addresses that are stored in the infected computer’s address book, so they are
actually spreading in social networks.

A contaminated computer hence serves as a source for the virus to infect every
other directly linked computer, where ‘directly linked’ has to be understood not
as physically but rather semantically connected. Of course, this is not the only
effect for a successfully attacked victim. Depending on the nature of the virus,
every computer that eventually is infected has also to face a drawback in terms
of e.g. lost data or recovering costs.

However, owners of computers have a possibility to avoid an infection by in-
stalling anti-virus software. Clearly, such an anti-virus software also needs some
investment, may this be money to buy it or time to install it.

A person’s decision whether to install anti-virus software on his machine or to
renounce it, is of course influenced by the costs of the respective investments. As
a first thought one could decide to buy the protection if and only if the expected
loss by infection is greater than the cost of the software. However, thinking
twice, such a totally selfish decision is too shortsighted. It seems reasonable
that installing the software on just a few central devices can limit the risk of
an infection to such an extent that this solution is cheaper regarding the whole
society.

Considering the total social cost of a network when it is centrally organized
compared to when there are only selfish players is an especially interesting ques-
tion, not only for the just described Virus Inoculation Game but generally in
game theory. This ratio is known under the term of Price of Anarchy.

In this semester thesis we are interested in another quantity, namely the effect
to the total social cost when the players are still selfish but now also care to some
degree about other agents, namely their neighbors, in the network. We call this
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ratio the Windfall of Friendship.

We believe that introducing a social aspect to networks which are threat-
ened to be polluted by a virus is of great interest for a large number of applica-
tions as social networks have become an important topic in various fields today.
Linked to computer science we would like to mention additionally the telephone-
graph, where participants have stored the numbers of and hence are connected
to their friends, as well as the fast raising number of community websites, such
as ‘MySpace’1 or ‘Orkut’2.

After presenting some related work (in Section 2), we formally describe the
Virus Inoculation Game and give some important definitions and observations (in
Section 3). Having defined the basis, we first show (in Section 4) that introducing
friendship never impairs the community with respect to its total social cost.
However, we also give an example to show that stronger friendship does not
always implicate lower cost. We then prove that computing the best and the
worst equilibrium is NP-complete for any degree of friendship.

Following these general findings, we then investigate (in Section 5) the com-
plete graph to establish that there are problem instances where the worst equi-
librium in the social adaption is a factor 4/3 better than the worst equilibrium
in the original game and that this is even the best possible improvement. For
the star graph, the second special topology we analyze in detail, we find that
there are instances for which the worst equilibrium totally disappears thanks to
friendship (i.e. there is only the best equilibrium left) and give a condition to
check whether this is the case for a given instance of interest. We also state an
upper bound for the improvement that can be reached in the star graph.

The thesis is completed (with Section 6) by stating concluding comments and
by indicating open problems.

2 Related work

2.1 Social networks

Social networks are structures of linked-up participants which share some com-
mon interest. As there is a broad variety of naturally-occurring social networks,
consider e.g. kinship or trade, it is not surprising that they have been studied for a

1http://www.myspace.com/
2http://www.orkut.com/
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long time, primarily by sociologists. Recently, Kleinberg introduced the algorith-
mic study of social networks, causing them to be a currently intensively studied
topic in computer science too. Among others, research includes the so called
small-world phenomenon [11, 22], the analysis of networks of strategic agents
[7, 17, 20] as well as very recent approaches to examine large-scale community
websites [13] such as e.g. ‘Facebook’3.

Relations in social networks do not necessarily have to be symmetric. However,
in this semester thesis we require the friendship relation to have this property.
Furthermore, we do not grade friendship, i.e. two agents are either friends or they
are not.

2.2 Game theory

Game theory studies systems of agents which are interacting with each others.
The outcome of such a system then depends on the strategy of these agents. This
field of research is of great interest in various social sciences and economics. Pa-
padimitriou’s statement in [17] that the Internet has a complexity which requires
techniques from game theory [16] to be understood resulted in game theory to
become very popular in computer science as well.

In the context of selfish agents, there has been a lot of research concerning the
Price of Anarchy [12, 19], which has been examined in different systems, such
as the Internet [4], wireless ad-hoc networks [3] or peer-to-peer networks [14].
We investigate another quantity in this semester thesis, namely the Windfall of
Friendship, which is a measure for the improvement for the community when
adding a social aspect.

2.3 Virus games

Traditional models characterize virus infections in terms of birth and death rate
of the virus [2, 6]. Since then, the model has been transfered to a directed random
graph [8] and later to other kinds of graphs [9, 10, 21] such as Internet-like power-
law graphs [18, 23]. Furthermore, [5] attends to malware propagation in mobile
phone networks by evaluating realistic simulations. The model used in this thesis
has been presented in [1] and does, considering a general undirected graph, not
restrict the network topology.

3http://www.facebook.com/
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The original Virus Inoculation Game can of course be extended in different
ways. One recent approach, namely adding Byzantine players, and its according
results have been given in [15]. In this semester thesis we go into the oppo-
site direction: Instead of making the environment more vicious, we loosen the
selfishness of the players, which results in a friendlier setting.

3 Model

The game we are considering in this semester thesis is the Virus Inoculation
Game from [1]. We give its definition and our adaption to it in the following two
subsections. However, we first have to give the definition of a concept that is
of great importance in general game theory and therefore also for this semester
thesis.

Definition 3.1 (Nash Equilibrium). Assume that every player in a given game
has chosen his probability distribution over the possible strategies. If no player
can, supported by the knowledge of the choices of all the other players, increase
his own profit (or decrease his own cost, respectively) by changing his decision,
then the system is in a Nash equilibrium.

In this semester thesis we restrict ourselves to pure strategies, i.e. every player
deterministically chooses one strategy. Accordingly, the system is in a pure Nash
equilibrium if no player has an incentive to change his strategy.

3.1 Virus Inoculation Game

Having already described the Virus Inoculation Game in the introduction in
Section 1, we now express those considerations more formally. We are given
players pi for i = 1, . . . , n that are connected by m links, i.e. they form a graph
with n nodes and m edges. Each one of these players is the initial attack-point
of the virus with probability Pr[pi is the infection-source] = 1/n.

Every player has the choice between buying an anti-virus software for the price
of C or facing the risk of being infected, yielding a damage of cost L. We introduce
a variable api

for every player pi that indicates pi’s chosen option. Namely, api
= 1

means that the player pi is protected whereas a player pj that is willing to take
the risk sets apj

= 0. The collectivity of these choices is summarized as the
strategy profile ~a = (ap1 , . . . , apn).
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Note that, as announced before, we are only interested in pure strategies here.
Therefore, api

∈ {0, 1} for every player pi.

The virus will start at one player and not only infect this one (if it is not
inoculated) but also all the players that are linked with it over a path of insecure
nodes. Hence, the more insecure players are connected, the more dangerous it gets
for every one of them. The vulnerable region in which a player pi lies is denoted
as pi’s attack component. Note that the attack component is only determined by
the strategies of pi’s surrounding nodes but is independent of the strategy of pi

itself.

Sticking it together, we are now ready to give the definition of the actual cost
of a player:

Definition 3.2 (Actual Cost). The actual cost of a player pi is defined as

ca(i,~a) = api
· C + (1− api

) · L · ki

n

where ki denotes the size of pi’s attack component.

It is natural that the total social cost of a network N , a value that we will
particularly be interested in, is defined as the sum of the costs of its players,
i.e. Cost(N,~a) =

∑
pi∈PN

ca(i,~a) where PN is the set of players in the network N .

As already mentioned before, a widely studied quantity in game theory com-
pares the total social cost of a network when it consists only of totally selfish
players to when it is centrally organized. This quantity is defined as follows:

Definition 3.3 (Price of Anarchy). The Price of Anarchy PoA(I) for an instance
I is defined as

PoA(I) =
Cost(I,~aworstNE)

Cost(I,~aOPT)
.

To avoid two uninteresting cases, we further need some conditions on C and L.
The first case occurs when the cost of the anti-virus software is very high, resulting
in a totally insecure network in which no player will inoculate and therefore all
nodes eventually will be infected. The other case is the opposite phenomenon.
Namely, even with an attack component of size only 1 the expected loss due to
infection is higher than the investment of buying the software. This would result
in a network in which every player would protect himself and hence no one would
ever be infected.
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We give the formal correspondence of these considerations in the following
observation:

Observation 3.4. In every setting it must hold that

• C < L (to avoid total insecurity)

• C > L
n

(to avoid total security)

3.2 Social Aspect

We now introduce the social aspect in the form of the Friendship Factor F which
describes how much a player will weigh the situation of his neighbors. As F = 0
would drive us to the original game as described before and F ≥ 1 would in some
sense violate the selfishness of the players, we ask F to be a value strictly between
0 and 1 when speaking about the social case.

As we will often compare the original game with its social adaption, we some-
times use the notation of Nash equilibrium (NE ) if F = 0 and, respectively,
friendship Nash equilibrium (FNE ) if F > 0.

The decision of a player to buy the protection or not to buy it will now be based
on a different cost-function that also takes the costs of his neighbors into account.

Definition 3.5 (Perceived Cost). The perceived cost of a player pi is defined as

cp(i,~a) = ca(i,~a) + F ·
∑

pj∈Spi

ca(j,~a)

where Spi
denotes the neighborhood of pi.

Note that the perceived cost of a player pi is only responsible for pi’s selection
of one of his options. Nevertheless, in the end pi will only have to pay ca(i,~a) as
before. Otherwise we would have to adapt the total cost of the network as well,
resulting in an impossibility to compare the results in the original game with the
one in this social adaption.

However, this comparison is exactly what we are mainly interested in here.
To qantify the improvement (or impairment, respectively) that is caused by the
addition of the social aspect, we introduce the Windfall of Friendship.
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Definition 3.6 (Windfall of Friendship). The Windfall of Friendship WoF (I, F )
for an instance I is the ratio of the total cost of the most expensive Nash equi-
librium in the original game over the total cost of the most expensive Nash
equilibrium in the social adaption, i.e.

WoF (I, F ) =
Cost(I,~aworstNE)

Cost(I,~aworstFNE)
.

According to this definition it is clear that a Windfall of Friendship WoF (I, F ) >
1 is synonymical to an improvement we get by adding the social aspect whereas
WoF (I, F ) < 1 is equivalent to an induced impairment. If WoF (I, F ) = 1 we
neither win nor lose anything.

4 General Results

It has been proven in [1] that in the original game any attack component has size
at most Cn/L. We will show in this section that there is a similar characteristic
in our social adaption. As every node cares about its neighbors, it seems reason-
able to assume that the maximal size of the attack component of a player pi is
dependent on the number of secure and insecure neighbors this player has, and
thus differs from player to player.

For the rest of this section, let n denote the number of players and let pi be
one of those. We denote by S1

pi
(with s1

pi
:= |S1

pi
|) the set of secure neighbors of

pi and by S0
pi

(with s0
pi

:= |S0
pi
|) the set of his insecure neighbors, respectively.

Furthermore, the size of the attack component of pi is denoted by ki.

Theorem 4.1. The player pi will inoculate if and only if the size of his attack
component is

ki >
Cn/L + F ·

∑
pj∈S0

pi
kj

1 + Fs0
pi

.

Proof of Theorem 4.1. As, like every player, pi is selfish, it is clear that he
will buy the anti-virus software if and only if this choice is cheaper for pi. We
therefore have to compare the two expected costs of buying it and facing the risk
respectively. By Definition 3.5 these costs are

c1
p(i,~a) = C + F

s1
pi
C +

∑
pj∈S0

pi

L
kj

n
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to inoculate and

c0
p(i,~a) = L

ki

n
+ F

(
s1

pi
C + s0

pi
L

ki

n

)
to not buy the protection.

In order that pi inoculates it must hold that

c0
p(i,~a) > c1

p(i,~a)

L
ki

n
+ F · s0

pi
L

ki

n
> C + F ·

∑
pj∈S0

pi

L
kj

n

L
ki

n
(1 + Fs0

pi
) > C + FL

1

n
·

∑
pj∈S0

pi

kj

ki(1 + Fs0
pi

) > Cn/L + F ·
∑

pj∈S0
pi

kj

ki >
Cn/L + F ·

∑
pj∈S0

pi
kj

1 + Fs0
pi

.

A question of main interest is of course, under which circumstances the intro-
duction of the social aspect to the Virus Inoculation Game leads to an improve-
ment (or impairment, respectively) with respect to the total cost. The answer to
this question is given by the following theorem.

Theorem 4.2. The value of the Windfall of Friendship is for every instance I
always at least 1 and at most PoA(I).

Proof of Theorem 4.2. Lower bound. The outline of the proof for the lower
bound is as follows: We start with an instance I where F > 0 and let the game
converge into a worst Nash equilibrium. Then we set F = 0 and examine the
changes that occur to the just reached Nash equilibrium.

Let α be a worst Nash equilibrium in the social game. If α is also a Nash
equilibrium in the same instance with F = 0 then we are done. Otherwise there
is at least one player pi that would decide differently about his strategy.

Assume pi is insecure but would be secure in the original game. Then pi’s
attack component has on the one hand to be at least k′i > Cn/L (cf [1]) and on
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the other hand at most k′′i = (Cn/L + F ·
∑

pj∈S0
pi

kj)/(1 + Fs0
pi

) ≤ (Cn/L +

Fs0
pi

(k′′i − 1))/(1 + Fs0
pi

) ⇔ k′′i ≤ Cn/L − Fs0
pi

(cf Theorem 4.1). But this is of
course not possible.

It remains the case where pi is secure but would be insecure in the original
game. Note that, as every node has the same bound for the size of its attack
component when F = 0, this switch-over cannot force any other player to change
its strategy as well. Furthermore, only the costs of the players inside pi’s attack
component are affected by it. The total cost of this attack component raises by
at least

x =
ki

n
L− C︸ ︷︷ ︸

pi

+
∑

pj∈S0
pi

ki

n
L− kj

n
L

︸ ︷︷ ︸
pi’s insecure neighbors

=
ki

n
L− C +

L

n
(s0

pi
ki −

∑
pj∈S0

pi

kj).

As pi remains secure in the social adaption, we know that C+F
∑

pj∈S0
pi

kj

n
L ≤

ki

n
L + F

∑
pj∈S0

pi

ki

n
L and therefore

x ≥ ki

n
L− ki

n
L− F

∑
pj∈S0

pi

ki

n
L + F

∑
pj∈S0

pi

kj

n
L +

L

n
s0

pi
ki −

L

n

∑
pj∈S0

pi

kj

= (1− F )
L

n
s0

pi
ki − (1− F )

L

n

∑
pj∈S0

pi

kj

≥ (1− F )
L

n
(s0

pi
ki − s0

pi
(ki − 1))

≥ 0.

Clearly, after such a step we might no longer be in a friendship Nash equi-
librium. However, as pi will not change his state anymore and the initial point
remains intact for all other players, our considerations still hold for further steps
too. Hence, for every worst friendship Nash equilibrium there exists a Nash
equilibrium which is at least as expensive.

Upper bound. As for the upper bound, it holds for any instance I that

WoF (I, F ) =
Cost(I,~aworstNE)

Cost(I,~aworstFNE)
≤ Cost(I,~aworstNE)

Cost(I,~aOPT)
= PoA(I)
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Having this result it seems intuitive that the Windfall of Friendship is not only
at least 1 but even monotonically increasing in F . But this is actually not always
true as the following observation shows.

Observation 4.3. The Windfall of Friendship WoF (I, F ) is not for every in-
stance I monotonically increasing in F .

As an example, consider the star graph Sn with n = 13, i.e. one center node
and 12 boundary nodes. We set C = 1 and L = 4 and compare the two cases
where F = 0.1 and F = 0.9 respectively.

Because we are interested in the worst Nash equilibrium, we have to assume
that the center node is insecure. As given by Definition 3.5, the perceived cost
of an insecure boundary node pi is then

c0
p(i,~a) = L

n0 + 1

n
+ FL

n0 + 1

n
= (1 + F )(n0 + 1)

L

n

where n0 is the number of insecure boundary nodes. If such an outer node changes
its strategy, i.e. protects itself, its perceived cost gets

c1
p(i,~a) = C + FL

n0

n
.

Accordingly, for the center node pj itself we have

c0
p(j,~a) = L

n0 + 1

n
+Fn0L

n0 + 1

n
+F (n−1−n0)C = (1+Fn0)(n0+1)

L

n
+F (n−1−n0)C

when it is insecure and

c1
p(j,~a) = C + FL

n0

n
+ F (n− 1− n0)C

when it is protected.

If we want to let the game converge to the worst Nash equilibrium, i.e. we try
to let only boundary nodes inoculate, it is easy to calculate that in the case where
F = 0.9 all but one boundary node will inoculate. After this, neither the last
outer node nor the center node will protect itself, resulting in a Nash equilibrium
with total cost (n− 2)C + 2L 2

n
= 12.23.

However, in the case where F = 0.1 only 10 boundary nodes will inoculate
until all boundary nodes are content with their strategies. But now the attack
component is still large enough for the center node to have an advantage pro-
tecting itself, naturally causing all boundary nodes to then change back to their
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insecure states. In other words, here the worst Nash equilibrium is actually the
best (and only) Nash equilibrium with a total cost of only C + (n− 1)L

n
= 4.69.

A further general result is stated by the following observation. We do not give
a proof here but instead refer to the clique as an example (cf Lemma 5.2 and
Lemma 5.3).

Observation 4.4. The social optimum ist not always a friendship Nash equilib-
rium.

Reasoning about best and worst Nash equilibria raises the question, how dif-
ficult it is to compute such Nash equilibria. We can generalize the proof given
in [1] and show that computing the cheapest and the most expensive friendship
Nash equilibrium is hard.

Theorem 4.5. Computing the best and the worst pure friendship Nash equilib-
rium is NP-complete for any 0 ≤ F ≤ 1.

Proof of Theorem 4.5. We prove this theorem by reductions from the Vertex
Cover problem and the Independent Dominating Set problem. Namely, we show
that answering the question whether there exists a pure friendship Nash equi-
librium with cost less than k, or more than k respectively, is at least as hard
as solving Vertex Cover or Independent Dominating Set. Note that verifying
whether a proposed solution is correct can be done in polynomial time, hence the
problems are in NP .

Fix some graph G = (V, E) and set C = 1 and L = n/1.5. We show first that
the following two conditions are necessary and sufficient for friendship Nash equi-
libria: (a) all neighbors of an insecure node are secure, and (b) every inoculated
node has at least one insecure neighbor.

As C > L/n (cf Observation 3.4) condition (b) holds. To see that condition
(a) holds as well, assume that there is an attack component of size at least 2. An
insecure node pi in this attack component bears the cost ki

n
L + F (s1

pi
C + s0

pi

ki

n
L).

Changing its strategy reduces its cost by at least rpi
= ki

n
L + Fs0

pi

ki

n
L − C −

Fs0
pi

ki−1
n

L = ki

n
L+Fs0

pi

1
n
L−C. By our assumption of ki ≥ 2, and hence s0

pi
≥ 1,

it holds that rpi
> 0, resulting in pi becoming secure. Hence, condition (a) holds

as well.

We now argue that G has a vertex cover of size k if and only if the virus game
has a friendship Nash equilibrium with k or fewer secure nodes, or equivalently
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an equilibrium with social cost at most Ck + (n− k)L/n, as each insecure node
must be in a component of size 1 and contributes exactly L/n expected cost.
Given a minimal vertex cover V ′ ⊆ V , observe that installing the software on all
nodes in V ′ satisfies condition (a) because V ′ is a vertex cover and (b) because
V ′ is minimal. Conversely, if V ′ is the set of secure nodes in a friendship Nash
equilibrium, then V ′ is a vertex cover by condition (a) which is minimal by
condition (b).

For the worst friendship Nash equilibrium, we consider an instance of the Inde-
pendent Dominating Set problem. Given an independent dominating set V ′ ⊆ V ,
installing the software on all nodes except the nodes in V ′ satisfies condition (a)
because V ′ is independent and (b) because V ′ is a dominating set. Conversely,
the insecure nodes in any friendship Nash equilibrium are independent by condi-
tion (a) and dominating by condition (b). This shows that G has an independent
dominating set of size at most k if and only if it has a friendship Nash equilibrium
with at least n− k secure nodes.

5 Windfall of Friendship for selected graphs

We now establish some results for the Windfall of Friendship in special graphs.

5.1 Complete Graph

As a most simple topology, we consider the complete graph (the clique Kn) where
all players are connected to each other.

First consider the classic setting where nodes do not care about their neigh-
bors. We have the following result:

Lemma 5.1. In the clique, there are two Nash equilibria with total cost

• Cost(Kn,~aNE1) = (n− dCn/L− 1e)C + (dCn/L− 1e)2L/n, and

• Cost(Kn,~aNE2) = (n− bCn/Lc)C + (bCn/Lc)2L/n.

If dCn/L− 1e = bCn/Lc, there is only one Nash equilibrium.
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Proof of Lemma 5.1. Let ~a be a Nash equilibrium. Consider an inoculated
node pi and an insecure node pj. Obviously, it holds that ca(i,~a) = C and

ca(j,~a) = L
kj

n
. Note that kj is the total number of insecure nodes in the clique.

In order for pi to remain inoculated, it must hold that C ≤ (kj + 1)L/n, so kj ≥
dCn/L−1e; for pj to remain insecure, it holds that kjL/n ≤ C, so kj ≤ bCn/Lc.
As the total social cost in the clique is given by Cost(Kn,~a) = (n−kj)C +k2

j L/n,
the claim follows.

Observe that while in the Nash equilibrium, the size of the attack compo-
nent is roughly twice the size of the attack component of the social optimum, as
Cost(Kn,~a) = (n− kj)C + k2

j L/n is minimized for kj = 1
2
Cn/L.

Lemma 5.2. In the social optimum, the size of the attack component is b1
2
Cn/Lc

or d1
2
Cn/Le, yielding a total social cost of Cost(Kn,~aOPT) = (n−b1

2
Cn/Lc)C +

(b1
2
Cn/Lc)2 L

n
or Cost(Kn,~aOPT) = (n−d1

2
Cn/Le)C+(d1

2
Cn/Le)2 L

n
, respectively.

In order to compute the Windfall of Friendship, we have to study Nash equi-
libria in the social adaption first.

Lemma 5.3. In the clique, there are two friendship Nash equilibria with total
cost

• Cost(Kn,~aFNE1) = (n− dCn/L−1
1+F

e)C + (dCn/L−1
1+F

e)2L/n, and

• Cost(Kn,~aFNE2) = (n− bCn/L+F
1+F

c)C + (bCn/L+F
1+F

c)2L/n.

If d(Cn/L − 1)/(1 + F )e = b(Cn/L + F )/(1 + F )c, there is only one Nash
equilibrium.

Proof of Lemma 5.3. From Theorem 4.1 we know that in a Nash equilibrium
the attack component in which a secure node pi lies has size at least ki = kj +1 ≥
(Cn/L + Fk2

j )/(1 + Fkj) where kj is the number of insecure nodes. Some simple
calculations then give that kj ≥ d(Cn/L− 1)/(1+F )e. Similarly, for an insecure
node pj it holds that kj ≤ (Cn/L+F (kj − 1)2)/(1+F (kj − 1)) which yields that
kj ≤ b(Cn/L + F )/(1 + F )c.

Given these bounds on the total number of insecure nodes in a Nash equi-
librium, the social cost can be computed by replacing kj in the total social cost
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formula Cost(Kn,~a) = (n− kj)C + k2
j L/n. As the difference between the upper

and the lower bound for kj is at most 1, there are at most two Nash equilibria
and the claim follows.

Armed with the social costs of the different equilibria, we have the following
theorem.

Theorem 5.4. In the clique, the Windfall of Friendship is at most WoF (Kn, F ) =
4/3. Moreover, there are problem instances where the worst Nash equilibrium in
the social adaption is indeed a factor 4/3 better than the worst Nash equilibrium
in the original game.

Proof of Theorem 5.4. Upper Bound. We first derive an upper bound for the
Windfall of Friendship WoF (Kn, F ).

WoF (Kn, F ) =
Cost(Kn,~aworstNE)

Cost(Kn,~aworstFNE)

≤ Cost(Kn,~aworstNE)

Cost(Kn,~aOPT)

≤
(n− dCn/L− 1e)C + (bCn/Lc)2 L

n

(n− 1
2
Cn/L)C + (1

2
Cn/L)2 L

n

as the optimal social cost (cf Lemma 5.2) is smaller or equal to the social cost
of a friendship Nash equilibrium.

Simplifying this expression yields

WoF (Kn, F ) ≤ n(1− C/L)C + C2n/L

n(1− 1
2
C/L)C + 1

4
C2n/L

=
1

1− 1
4
C/L

.

This term is maximized for L → C, implying that WoF (Kn, F ) ≤ 4/3.

Lower Bound. We now show that the ratio between the equilibria can really
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be as large as 4/3.

WoF (Kn, F ) =
Cost(Kn,~aworstNE)

Cost(Kn,~aworstFNE)

≥
(n− bCn/Lc)C + (dCn/L− 1e)2 L

n

(n− d(Cn/L− 1)/(1 + F )e)C + (b(Cn/L + F )/(1 + F )c)2 L
n

.

For F → 1, C = 1 and L → 1 we get

WoF (Kn, F ) ≥ (4n2 − 8n + 4)/(3n2 + 4n + 1).

For n ≥ 1, the supremum of this function is 4/3.

It is not clear that there is always a pure friendship Nash equilibrium for gen-
eral graphs. However, this indeed holds for complete graphs. Furthermore, if the
players asynchronously change their strategies in a best response manner, then
the system quickly converges to such a friendship Nash equilibrium.

Theorem 5.5. In every clique Kn, a friendship Nash equilibrium will be reached
in at most n− 1 strategy profile changes.

Proof of Theorem 5.5. Consider a clique Kn with n0 insecure and n1 = n−n0

secure nodes. As all players are connected to each other, an insecure player
inoculates if and only if it is better to be secure in the situation with n0 − 1
insecure and n1 + 1 secure players than to be insecure in the initial situation.
Hence, after this step, no secure player wants to be insecure.

Vice versa, a secure player gets insecure if and only if it is preferable to be
insecure in the situation with n0 + 1 insecure and n1 − 1 secure players than to
be secure in the initial situation. Hence, after a secure player switches his state,
no insecure player wants to be secure.

Therefore, every player changes his strategy at most once. Moreover, as we
exclude the possibility of totally (in)secure networks by Observation 3.4, the last
player can never change his strategy.
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5.2 Star Graph

Observe that in the star topology Sn the social welfare is maximized if the cen-
ter node inoculates and all other nodes do not. The total inoculation cost then
is C and the attack components are all of size 1, yielding a total social cost of
Cost(Sn,~aOPT) = C + (n− 1)L/n.

Lemma 5.6. In the star graph Sn, the social optimum has cost Cost(Sn,~aOPT) =
C + (n− 1)L/n.

As we will see, the situation where only the center node is inoculated also
constitutes a Nash equilibrium. However, there are more Nash equilibria.

Lemma 5.7. In the star graph, there are three Nash equilibria with total cost

• Cost(Sn,~aNE1) = C + (n− 1)L/n,

• Cost(Sn,~aNE2) = (n− dCn/L− 1e)C + (dCn/L− 1e)2L/n, and

• Cost(Sn,~aNE3) = (n− bCn/Lc)C + (bCn/Lc)2L/n.

If dCn/L− 1e = bCn/Lc, there are only two Nash equilibria.

Proof of Lemma 5.7. Clearly, the center node being the only secure node is a
Nash equilibrium: If the center node pi changes its strategy, its cost changes from
C to L; if a boundary node becomes secure, its cost changes from L/n to C. But
by Observation 3.4 these changes are unprofitable. The social cost of this Nash
equilibrium is Cost(Sn,~aNE1) = C + (n− 1)L/n.

For the other Nash equilibria we have to assume that the center node is not
inoculated. Let the number of insecure boundary nodes be n0. In order for
a secure node to remain secure, it must hold that C ≤ (n0 + 2)L/n, so n0 ≥
dCn/L− 2e. In order for an insecure node to remain insecure, it must hold that
(1+n0)L/n ≤ C, so n0 ≤ bCn/L−1c. Therefore, we can conclude that there are
at most two other Nash equilibria, one with dCn/L − 1e and one with bCn/Lc
many insecure nodes. Note that these Nash equilibria are distinct, i.e. the clique
has three NE, if and only if Cn/L is an integer value. The total social cost follows
by substituting n0 in the total social cost function.
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We now turn our attention again to players who care about their neighbors.

Lemma 5.8. In the star graph, there are at most three friendship Nash equilibria
with total cost

• Cost(Sn,~aFNE1) = C + (n− 1)L/n,

• Cost(Sn,~aFNE2) = (n− dCn/L− 1− F e)C + (dCn/L− 1− F e)2L/n, and

• Cost(Sn,~aFNE3) = (n− bCn/L− F c)C + (bCn/L− F c)2L/n.

If dCn/L− 1− F e = bCn/L− F c, there are only at most two Nash equilibria.

Proof of Lemma 5.8. First, observe that having an inoculated center node and
all other nodes insecure constitutes a friendship Nash equilibrium. In this case, in
order for the center node to remain inoculated, it must hold that C+F (n−1)L 1

n
≤

nL/n + F (n − 1)Ln
n

= L + F (n − 1)L. All boundary nodes remain insecure as
long as L/n + FC ≤ C + FC ⇔ L/n ≤ C. Both conditions are always true as
stated by Observation 3.4. We have Cost(Sn,~aFNE1) = C + (n− 1)L/n.

If the center node is not inoculated, we have n0 insecure and n − n0 − 1
inoculated boundary nodes. In order for a secure boundary node to remain secure,
it must hold that C + F n0+1

n
L ≤ n0+2

n
L + F n0+2

n
L, so n0 ≥ dCn/L− 2−F e. For

an insecure boundary node, it must hold that n0+1
n

L + F n0+1
n

L ≤ C + F n0

n
L, so

n0 ≤ bCn/L − 1 − F c. Inserting these two values into the social cost function
yields the claim.

To explain the term ‘at most’ in Lemma 5.8, consider the following: The
center node is insecure and every boundary node is content with its strategy.
But because of its exposed position, the center node still wants to become secure,
naturally causing the system to converge into FNE1, the best friendship Nash
equilibrium. In other words, there are instances for which FNE1 is the only
friendship Nash equilibrium. We already made use of this phenomenon in Section
4 to show that WoF (I, F ) is not always monotonically increasing in F .

Knowning about this phenomenon, we would like to know of course under
which circumstances it occurs. The next lemma gives us the necessary and suffi-
cient condition.
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Lemma 5.9. Let F > 0. The instance Sn has only one (the best) friendship
Nash equilibrium if and only if

bCn/L− 1− F c − b 1

2F
(
√

1− 4F (1− Cn/L)− 1) + 1c ≥ 0

Proof of Lemma 5.9. As discussed above, Sn has only one Nash equilibrium
if every (insecure) boundary node is content with its chosen strategy but the
insecure center node would rather inoculate. In order for an insecure boundary
node to remain insecure we must have (cf Proof of Lemma 5.8) that n0 ≤ bCn/L−
1−F c (Condition I) and the insecure center node wants to inoculate if and only
if C+F (n−n0−1)C+Fn0

1
n
L < (n0+1)L

n
+F (n−n0−1)C+Fn0

n0+1
n

L ⇔ Fn2
0+

n0 + 1− Cn/L > 0 ⇔ n0 ≥ b 1
2F

(
√

1− 4F (1− Cn/L)− 1) + 1c (Condition II).

Note that it is not important whether the condition for a secure boundary
node to remain secure, i.e. n0 ≥ dCn/L − 2 − F e (Condition III), holds or not.
If it does, then the center node is the only player that wants to change his
strategy. If it does not, then maybe a secure boundary node pi gets insecure
first. As this increases n0 by 1, Condition II still holds. Moreover, we thus
have n0 < dCn/L − 2 − F e ≤ bCn/L − 1 − F c before pi gets insecure and
so n′0 = n0 + 1 < bCn/L − F c ⇔ n′0 ≤ bCn/L − 1 − F c afterwards. Hence,
Condition I still holds as well.

Therefore there is only one Nash equilibrium if and only if there exists an
integer n0 such that b 1

2F
(
√

1− 4F (1− Cn/L)− 1)+1c ≤ n0 ≤ bCn/L− 1−F c.

Note that it is indeed possible for a star graph to have exactly three friendship
Nash equilibria. As an example, consider the star graph Sn with n = 9 nodes
and let C = 1, L = 4 and F = 0.25. Then, as Cn/L − F is an integer value,
Lemma 5.8 gives us that all three friendship Nash equilibria are distinct. It
remains to check that the system does not necessarily converge to the best FNE.
As bCn/L−1−F c−b 1

2F
(
√

1− 4F (1− Cn/L)−1)+1c = 1−b2(
√

9/4−1)+1c =
−1 < 0 and so the condition from Lemma 5.9 does not hold, there really exist all
three FNE in Sn.

Now we are ready to give some upper bounds on the Windfall of Friendship
for star graphs. We have the following result:

Theorem 5.10. If the condition from Lemma 5.9 holds, i.e. there is only one
friendship Nash equilibrium, then the Windfall of Friendship in the star graph Sn
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is equal to the Price of Anarchy PoA(Sn) < (n+1)C/L. Otherwise the Windfall
of Friendship is less than (n + 1)/(n− 3).

Proof of Theorem 5.10. If the condition from Lemma 5.9 holds, we have

WoF (Sn, F ) =
Cost(Sn,~aworstNE)

Cost(Sn,~aworstFNE)

=
Cost(Sn,~aworstNE)

Cost(Sn,~aOPT)
= PoA(Sn)

≤ (n− dCn/L− 1e)C + (bCn/Lc)2L/n

C + (n− 1)L/n

≤ (n + 1)C

C + (n− 1)L/n

<
(n + 1)C

L
.

Otherwise, i.e. if the game does not necessarily converge to the best friendship
Nash equilibrium, we have

WoF (Sn, F ) =
Cost(Sn,~aworstNE)

Cost(Sn,~aworstFNE)

≤ (n− dCn/L− 1e)C + (bCn/Lc)2L/n

(n− bCn/L− F c)C + (dCn/L− 1− F e)2L/n

≤ (n + 1)C

nC + FC − 2C(1 + F ) + (1 + F )2L/n

<
(n + 1)C

C(n + F − 2(1 + F ))

<
n + 1

n− 3
.

Similar to Theorem 5.5, we also have a fast convergence to a friendship Nash
equilibrium in star graphs.

Theorem 5.11. In every star graph Sn, a friendship Nash equilibrium will be
reached in at most 2n− 3 strategy profile changes. This bound is tight.
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Proof of Theorem 5.11. To prove this theorem, we first state the following
four observations.

Claim 5.12. During the whole process, it holds that

1. as soon as the center node is secure, no boundary node will inoculate any-
more,

2. if the center node eventually inoculates, it will never change back to be
insecure again,

3. if the center node switches its state from secure to insecure, no boundary
node will inoculate anymore,

4. if a boundary node switches its state from secure (insecure) to insecure
(secure), no boundary node will protect (unprotect) itself anymore, given
that the center node does not switch its state.

Proof of Claim 5.12. 1. For the first observation we have that if the center
node is secure, then every boundary node is isolated and so, by Observation 3.4,
no one of them wants to be secure.

2. The center node prefers to be secure if and only if the number of insecure
boundary nodes reaches some given limit. After the center node inoculates, it
holds by the first observation that this number can only increase. Hence, the limit
is reached further on and the center node therefore stays secure, which proves
the second observation.

3. Let pi be the secure center node and pj one of the n0 insecure boundary
nodes. pi gets insecure if and only if C + F (n0

n
L) > n0+1

n
L + F (n0

n0+1
n

L) ⇔
Cn/L > n0 + 1 + Fn0

2. In order for pj to then change its state it must hold that
n0+1

n
L + F n0+1

n
L > C + F n0

n
L ⇔ Cn/L < n0 + 1 + F . As this is not possible, the

third observation holds as well.

4. Finally, a boundary node switches its state only if it is preferable to do
so. But another boundary node which afterwards redecides in the other direction
contradicts this condition. Thus, the last observation holds as well.

Let n1 be the number of secure boundary nodes. The last observation states
that we can either increase or decrease n1 until a strategy change of the center



Virus Inoculation on Social Graphs - The Windfall of Friendship page 22

node occurs, whereas by the first and the third observation n1 can only be de-
creased after such a strategy change. Actually, the first observation even says
that if the center node is already inoculated in the beginning, then n1 can only
be decreased during the whole process.

Note that n1 is always a positive integer of at most n − 1. However, if n1 is
increased until its value is indeed n− 1, then the center node is isolated and we
have reached a Nash equilibrium.

Thus it is clear that there is no longer path to a Nash equilibrium than starting
with the center node being insecure, increasing n1 as long as possible, switching
the strategy of the center node, and then decreasing n1 again. Note that by the
second observation it is not possible that the center node changes its strategy
again during the decreasing phase.

Therefore, a friendship Nash equilibrium is reached after at most (n−2)+1+
(n− 2) = 2n− 3 strategy profile changes.

6 Conclusion

We have extended the Virus Inoculation Game by adding the aspect of friendship:
Players are no longer totally selfish but they also care to some degree about their
neighbors. We have seen that introducing friendship makes players act more
conservatively, i.e. they have an increased willingness to inoculate. We could
prove that this cautiousness never impairs the whole community. However, even
if it is quite a bit surprising, the improvement to the total social cost is not
always monotonically increasing in the degree of how much the players care for
their friends. For a somehow similar phenomenon in the real world, consider a
network of people all of which decide to bake some Christmas cookies for their
friends. This is nice and the community gets happier, but if everybody gives away
a really large amount of self-made cookies, then the community gets severely
surfeited.

The introduced social aspect was restricted by choosing the radius of friend-
ship to be very small, i.e. friendship only exists between nodes that are directly
connected, which allows for extension in further examination. For example, one
could consider friendship over multiple hops or let the metric distance between
two players decide about their degree of friendship, i.e. porting the Virus Inocu-
lation Game into the Euclidean space.
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The game itself can also be extended of course. For example, a virus might not
infect unlimitedly many insecure players that are adjacent to an already infected
player. Or there might be different kinds of viruses and different kinds of nodes,
which are resistent to some viruses but not to others. Furthermore, one could
also modify the underlying model by introducing Byzantine players in this social
adaption as well.

Apart from all these propositions and more closely continuing the work done
in this semester thesis, one could try to establish a proof for convergence to a
friendship Nash equilibrium in general graphs. This question is substantially more
involved than for the original game because in the social adaption the perceived
cost of a player depends on his neighbors and their attack components. Hence,
every player has an own maximal allowed size of his attack component and so
a player may become insecure even though another player is thereby forced to
inoculate, which is not possible in the totally selfish game.

Moreover, we have calculated the Windfall of Friendship for two special topolo-
gies, but not for other or even general graphs. The difficulty herein is on the one
hand the task of finding the worst Nash equilibrium at all, and on the other hand
that the players need to have a relatively good knowledge about the topology of
the network to be able to compute their perceived cost. Hence, to analyze such
a network, we also have to have a good knowledge about its topology.

Last but not least, introducing friendship is not only an interesting aspect for
the Virus Inoculation Game but can lead to various new insights and improve-
ments in other games, and even in diverse non-computational fields, as well.
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