ETH Distributed
Eidgendssische Technische Hochschule Ziirich Computing Gro

Swiss Federal Institute of Technology Zurich

Paging in TinyOS

Provide dynamic memory and paging
capabilities in TinyOS using virtual
addressing

Robin Ziiger
Semester Thesis

Summer Semester 2006

Supervising Professor: Prof. Dr. Roger Wattenhofer
Supervising Assistants: Nicolas Burri, Pascal von Rickenbach

Contents

1 Introduction

1.1 Structure of this document
1.2 Memory model of TinyOS
1.3 Task description oL
2 Related Work and Background
2.1 TinyAlloc e
2.2 Memory Allocator
2.3 Flashchips
3 TinyPaging
3.1 Basic considerations L Lo
3.2 From a user’s perspective
3.2.1 Getting started oL Lo
3.2.2 Functionality oL
3.23 Policy
3.3 Undertheskin
3.3.1 Datastructure oL
3.3.2 Swapping pagesinandout
3.3.3 Testing L
4 Futher Work
4.1 Synchronous commands L.
4.2 BlockStorage
4.3 Support of other chips and therefore page sizes

5 Conclusion

NN NN

oS BN

1 Introduction

This report describes TinyPaging, a TinyOS component providing dynamic
memory to the developper. It works with virtual addresses allowing to swap
out parts of the managed memory to the flash and therewith increasing the
amount of available storage space - probably beyond what fits in RAM.

The reader is presumed to have a basic knowledge of TinyOS[1] and to be
familiar with the basic concepts of memory management, virtual addressing
and paging. In order to understand the implementation in detail, knowledge of
nesC[2] or C is necessary.

1.1 Structure of this document

This first section introduces the reader to the basics of the memory model
of TinyOS. This should allow to understand the subsequent task description.
Section 2 presents related work and the background leading to the solution
described in section 3. Further development possibilites are outlined in section
4 and section 5 concludes this report.

1.2 Memory model of TinyOS

TinyOS is the de facto standard operating system for programming sensor net-
works and has been ported to a wide range of hardware platforms. Part of its
success lies in its simplicity and therefore efficiency as can be seen when looking
at the memory model. In order to cope with the severe hardware constraints
of sensor nodes, TinyOS only allows for static memory allocation. This makes
it very space and time efficient because there is no need for maintaining an ad-
ditional data structure managing the dynamic heap. The only necessary data
structure is the call stack keeping track of local variables and a few pointers.

This allows to use the entire RAM for storing information. Furthermore,
allocating dynamic memory, e.g. using malloc() can be very time-consuming
if there is almost no space left when a free chunk of memory of appropriate size
has to be found. But the downside is that all variables and their size have to be
known at compile time which makes working with dynamic data structures, such
as linked lists or hash maps, almost impossible. This might sometimes be a too
strong restriction, e.g. keeping the ID of an unknown number of neighbouring
nodes.

Another problem is the amount of available RAM because some applications
may need more memory, probably just temporarily, than the node offers. This
is where the EEPROM]3], also called flash, might come in handy. The flash is
mostly larger than the RAM but reading from it and writing to it are operations
needing a lot of time and energy. So they should be used with caution.

1.3 Task description

This semester thesis aims at solving the two above mentioned problems in com-
bination. There are already components which provide some kind of dynamic
memory such as TinyAlloc[5] which is described in the next section. Solutions

for using the flash as storage space exist as well such as loggers® and the Memory
Allocator, described in the subsequent section.

Summing up, we already have dynamic memory, but restricted to physical
RAM, and we also have access to flash storage, but only in a restricted man-
ner. The component to be developped shall combine the features of these two
approaches. The component shall allow the developper to create dynamic data
structures that can exceed the available physical memory.

This is done by hiding part of the complexity. The user of the component
should not have to bother with moving data from and to flash. All this is done
automatically in the background by the component. There is of course a price
that has to be paid for this flexibility. Part of the space and time efficiency is
inevitably lost, but this should be kept as little as possible by finding an optimal
balance between memory consumption and performance.

1Loggers are meant for storing log information in the flash. The main operation is append ()
which adds some data at the end. This stored information can be sent to another node, e.g.
the sink, at some point in time.

2 Related Work and Background

This section presents related work and gives some background information. Re-
lated work includes TinyAlloc and Memory Allocator. Both of them contributed
their part to TinyPaging. The section is concluded by an introduction on how
a flash chip works.

2.1 TinyAlloc

Basically TinyAlloc is a TinyOS component offering dynamic memory capabil-
ities similar to C. It implements an interface named MemAlloc? whose func-
tionality can be used by any component wiring TinyAlloc. MemAlloc’s main
commands are:

e allocate(HandlePtr handle, int16_t size): returns a pointer handle
to a newly allocated memory region of size bytes

e free(Handle handle): frees the memory region to which handle points
to and returns it to allocatable memory

TinyAlloc is implemented by using an array serving as the managed heap.
Its size can be set by the user of the component and is fixed at runtime. The
memory regions are referenced indirectly by a another array containing their
current addresses, i.e. the handle returned when calling allocate only contains
a pointer to this intermediate array. This means that, to access the heap, double
dereferencing is necessary. Figure 1 shows an example.

Handle

Handles Heap

Figure 1: The address of type Handle returned to the user only contains a
reference to the array of the handles. Dereferencing it twice leads to the current
memory location.

Thanks to the double referencing, TinyAlloc can move memory regions
around freely by altering the addresses in the intermediate array and thus purge
the heap which can become fragmented by deallocating memory regions. So this
allows to better exploit the available heap memory. It makes it even possible to
resize memory regions.

The deterioration of performance due to the double referencing can be over-
come by the locking functionality. The latter makes it possible to fix a memory
region to the current address, so it can be referenced directly until the region

2 Actually this interface had been written by the same authors having written TinyAlloc.

is unlocked again. This, on the other hand, constricts the relocation of the
memory regions.

All commands taking up longer time are implemented in split-phase fashion
to not use up too much computing time without interruption®. The disadvantage
for the user of the component is that he cannot use the memory region right
after the allocate command but has to wait until the corresponding event is
signaled. This makes it slightly more complicated.

Another drawback is that the size of the array containing the handles has
a fixed size. This implies that the number of memory regions that can be allo-
cated is restricted. Furthermore, TinyAlloc has been developped for processors
without memory allignment, this might cause problems on several platforms
when dealing with 16 bit integers.

Summing up, it remains to be said that TinyAlloc is a good solution when
wanting to dynamically allocate large structs, but it is not suited for smaller
chunks of memory. The reason for that is the relatively large overhead per
allocated memory region: 2 bytes for the entry in the indirection array and 2
bytes for keeping the size*. An additional eighth of the heap size is needed to
keep track which bytes are used and which ones are still free.

2.2 Memory Allocator

The TinyOS component Memory Allocator aims at providing additional capac-
ity for applications requiring more memory than RAM is physically available.
To achieve this, it uses some kind of paging algorithm which swaps in and out
pages. The developer wiring Memory Allocator can define the page size, the
memory occupied in RAM and the amount in EEPROM?® by altering parame-
ters in a config file.

To use this statically allocated space, the Memory Allocator provides an
interface offering the following major commands:

e requestMemory(): returns a handle of type VMHandle to a page in RAM,
i.e. it allocates a memory region in the size of a page as defined which the
user can now freely, to store data in it

e releaseMemory(VMHandle page): releases the page the handle page points
to, i.e. that memory can be used again when a new page is allocated

e memoryUse (VMHandle page): ensures that the page page is loaded into
physical memory, i.e. it swaps in the page if it is currently located in
EEPROM

The pages are allocated in RAM, but if this space is used up Memory Allo-
cator swaps out a page (selected according to a policy) to make allowance for a
new page. Since the user does not know which pages are swapped out, he needs
to call memoryUse everytime before accessing data managed by the Memory Al-
locator. This forces him to wait for the corresponding memoryUseReady (VMptr

3Some are even split several times.

4This is stored in first two bytes of the allocated memory region in the heap itself.

5The space in memory and the swap space in EEPROM have to be multiples of the page
size.

Mptr) event to know at which location in RAM that page currently is (stored
in Mptr).

Memory Allocator comes with three different policies from which the user
can select one in the config file: first-in-first-out FIFO, least-recently-used LRU
and least-frequently-used LFU. The data to enable these policies is kept in
the background with low overhead and is based on the calls of the memoryUse
command. In case of the former two policies, namely FIFO and LRU, the
developer can be sure that a page remains some time in physical memory. The
latter, LF'U, forces the user to call memoryUse everytime another page has been
accessed in between because it could already have been swapped out again.

Although this component allows to make use of the additional storage space
in EEPROM, it is only suited for a narrow range of applications due to several
reasons: Firstly, Memory Allocator requires from the user to call a command
and to wait for an event everytime a page is accessed, i.e. there is no lock-
ing mechanism forcing the component to keep a certain page in RAM. This is
impractical for applications with complex control flow. Secondly, the page in
which the desired data is stored has to be known and therefore kept by the user.
This allows to store data which is needed complementarily in the same page,
but the downside is the additional overhead of selecting the right page.

Apart from all that, it is not finished yet®. The two critical parts, loading
data from and storing data to secondary storage, are not implemented.

2.3 Flash chips

Working with flash chips is slightly more complex than with RAM because
they represent two different types of storage and therefore have different char-
acteristics. Most of today’s flash chips are Electrically Erasable Programmable
Read-Only Memory, shortly EEPROM|3]. Relating their properties to RAM,
this means:

e They are basically read-only, but in contrast to pure ROM’s or EPROM’s[4]
it is possible to electrically erase them. Their advantage is that informa-
tion is non-volatile.

e Accessing them is significantly slower than accessing RAM, though they
are still faster than hard disks in terms of access/seek time.

This means we can use them as secondary storage, but they really have to
be treated differently to RAM. Concretely, before writing to the flash chip, the
partion to which one intends to write, needs to be erased first. After erasing,
writing is possible once. Sadly, there is one more restriction: the size of the
partion to be erased is not arbitrary, but dependent on the chip. All chips are
divided into a number of pages where one page represents the smallest amount
that can be erased. So, this not only limits the size but also gives borders on
the regions that can be erased.

A variety of chips with different properties are on the market today and still
many of them are fitted to sensor nodes. But only a few offer the possibilites to
implement TinyPaging for the following reason: They have page sizes of 8kBytes
and more, i.e. the smallest unit that can be erased is 8kBytes. Swapping in and

61t probably will never be finished, because there has not been any update since 2003.

out pages of this size is absolutely impractical since this is about the size of the
entire RAM. Fortunately, the flash chip fitted on the sensor node I am working
with, called TinyNode 5847, 8], does not have these limitations. It is fitted
with the so-called AT45DBI9] having a page size of 264 bytes which makes it
ideal for the intended purpose.

Despite that, this EEPROM chip is not as fast as a RAM chip, so we still
need to ensure that it is used as rarely as possible. Operations in RAM take
normally a few nanoseconds whereas operations involving the EEPROM need
several milliseconds.

3 TinyPaging

In this section, you will be presented the actual implementation of TinyPaging.
There are three main parts: Firstly, you will be given some basic considerations
outlining the main concepts. As a second point, TinyPaging is described from
a user’s point of view and finally, we will look under the skin and reveal how
it is actually implemented. Please note that each of these three subsections
presumes the knowledge of the preceding one.

3.1 Basic considerations

As mentioned in the task description, TinyPaging pursues mainly two goals:
Providing dynamic memory-like capabilities and increasing the amount of avail-
able memory by making use of the flash storage. Thinking back to the two
components presented in the previous section, TinyAlloc aims at the first goal
and Memory Allocator provides means for the second. What TinyPaging now
does is it combines the concepts applied in these two components.

The idea of pages, as it is employed in the Memory Allocator, as the unit to
be swapped in and out, has been adopted by TinyPaging. Remembering what
has been explained in section 2.3 on flash chips, each chip has a lower bound
that limits the minimal amount of memory being erased at once. So, what we
have here is a natural fit and we can exploit this given partitioning of the chip
for the swapping, i.e. the size of a swap page matches the page size of the chip.
Due to this, we do not need to erase, write and read more than we really want
to.

Thinking of dynamic memory from the olden days’, it basically consisted
of two functions: alloc(size) and free(pointer). These also are the main
commands TinyPaging provides, and as TinyAlloc supplies them as well: two
functions which are simple to use but offer a lot of possibilites to the user.

Another concept applied in TinyAlloc is double referencing, i.e. indirect
dereferencing involving an additional array which allows to move around blocks
within the heap itself. TinyPaging does not use this concept, but uses virtual
adresses instead. This means when the user allocates a new memory region,
he is returned a virtual address. Before using this virtual reference, he needs
to call a dereferencing function taking the virtual address and returning the
current physical address which can change over time, i.e. when the page on
which the region is placed has been swapped out and in again. Using such
virtual addressing has advantages over the double referencing approach:

e There is no need for an additional intermediate array which saves a lot of
space because this array contains a 16 bit pointer for each memory region,
independent from being in use or not.

e There is no artificial upper bound in the number of memory regions that
can be allocated as there is when using an intermediate array. The reason
for this is simple: The array size is fixed at compile time but there needs
to be an entry for each allocated memory region.

"By this sarkastic expression, I mean the time before garbage collection came up, when
dynamic memory looked the way it is still used in C and C++.

As you might have guessed, there is a shortcoming as well: To figure out the
current physical address of a memory region, calling a dereferencing function
is necessary. This is not as quick as the double dereferencing, but there is no
way to by-pass this because it might be necessary to swap in the page on which
the memory region is located first. To overcome this, the user is provided a
locking /unlocking functionality allowing to freeze a memory region to a certain
physical address. This means he can use the physical address from now on to
directly reference the region. This not only makes it easier to access a dynam-
ically allocated chunk but also a lot faster. The number of locks is limited to
keep some space for swapping in and out pages and therefore allow access to
unlocked memory.

Apart from these functional requirements, there are non-functionals as well:
The entire component tries to use as little physical memory as possible but does
also take time efficiency into consideration. It has been tried to find a good
balance.

3.2 From a user’s perspective

This subsection explains the component from a user’s point of view, i.e. lists
all commands provided by the component and all events that need to be im-
plemented. Apart from a description of the functionality, it also gives some
background knowledge to an extent it might help the user to understand how
to use it.

3.2.1 Getting started

Please note that TinyPaging only works with the AT45DB flash chip so far. If
your node is fitted with another flash chip, you cannot use it. See section 4 on
further work for more information.

The component TinyPaging consists of four files / parts:

e Paging.nc: contains the interface Paging which is provided by TinyPag-
ing and has to be used by components wanting to make use of the supplied
functionality

e Paging.h: contains the declaration of the virtual address type VAddr re-
turned by the allocation command and also defines the invalid virtual
address INVADDR, i.e. instead of null or void, TinyPaging uses its own
invalid address

e TinyPagingM.nc: contains the module, i.e. the entire implementation of
the Paging interface

e TinyPagingC.nc: contains the component, i.e. the wiring of the different
parts of TinyPaging

To use TinyPaging, wiring the component itself, TinyPagingC, is required.
The functionality can be accessed by using interface Paging in the own mod-
ule and wiring the interface to the component itself: MyModuleM.Paging ->
TinyPagingC.

There are a few parameters in the header file Paging.h that need to be
set beforehand: PAGES_IN defines the number of pages that can be swapped

in concurrently, whereas PAGES_TOTAL specifies the overall number of pages.
This has to be greater than PAGES_IN but less than 256. When setting these
constants, take into consideration that one page offers 232 bytes of memory but
uses 266 bytes in RAM®. The third parameter, BASE_PAGE, defines the first page
on the chip being used for storing the pages in EEPROM, i.e. it uses the pages
[BASE_PAGE,BASE_PAGE-+PAGES_TOTAL-1]. If you are not using the flash chip for
storing other information, 0 is the right choice.

3.2.2 Functionality

Asmentioned, TinyPaging provides its functionality through the interface Paging
which arose concurrently to the rest of the component. The offered commands
are as follows:

e result_t alloc(uint8_t size): Allocates a chunk of memory of size
bytes. An allocateComplete event is signaled as soon as the memory
region is ready for use.

e result_t deref (VAddr addr): Dereferences the memory region starting
at virtual address addr. A derefComplete event returns the current phys-
ical memory location.

e result t free(VAddr addr): Frees the memory region that has been
allocated at virtual address addr. Completion of the operation is signaled
by a freeComplete event.

e result t lock(VAddr addr): Locks the memory region allocated at vir-
tual address addr to a fixed physical address. This allows to use it without
the need of dereferencing virtual addresses. A lockComplete event signals
the physical address.

e result_t unlock(VAddr addr): This is the counterpart to the lock com-
mand. It releases a lock and therefore allows the region to be swapped out
again. This operation is not split-phase, i.e. there is no according event.

The following events are signaled:

e void allocComplete(VAddr addr, uint8_t* phy, result_t success):
Signals a completed alloc operation. addr contains the virtual address
at which the allocated chunk can be found by using deref. phy contains
the current physical address at which it can be used momentarily.

e void derefComplete(uint8_t* phy, result_t success): Returns the
current physical address phy to the corresponding virtual address asked
for by using the deref command.

e void freeComplete(result_t success): Signals a completed freeing
request.

e void lockComplete(uint8_t* phy, result_t success): Such an event
is signaled in case of a completed locking operation. phy contains the
physical address at which the given virtual address is locked.

8These values are AT45DB specific. For an explanation see section 3.3.

10

3.2.3 Policy

TinyPaging applies some principles which, if you know them, you might be able
to exploit and therefore make the component perform their actions quicker:

e Pages are swapped in and out according to the least recently used, LRU,
principle. A list is kept in the background keeping track of each page
access and moves a page at the beginning of the list whenever a new chunk
is allocated on it, a memory region is dereferenced or freed or a lock is
aquired or released?. Whenever swapping out is necessary, i.e. there is no
empty slot available in RAM, the least recently used page not helding a
lock is selected.

e New memory regions are allocated on the most recently used page hav-
ing an unused chunk of approriate size, i.e. a chunk at least as large as
required. This chunk is selected according to the first-fit principle. If no
swapped in page offers a chunk of this size, all pages being swapped out
are checked. For this, no swapping in is necessary, unless a suitable page
is found, since the size of the largest free chunk is stored. If this fails as
well, a new page is allocated.

e If a page contains no more memory regions, i.e. all allocated regions on
this page are freed, it will be deallocated.

e Locks apply to an entire page, not just to the passed memory region.
Whenever a lock is granted, the entire page stays swapped in until the lock
is released. To cope with multiple locks on the same page, but different
memory regions, they are additive, i.e. a counter is incremented for each
lock aquired and decremented for each lock released. A counter value of 0
means that the page is not locked and therefore can be swapped out. To
always be able to swap in and out pages, at least two pages have to be
unlocked at any point in time.

e Allocated memory regions are 2 byte aligned, i.e. the starting address
of each chunk is even. This makes working with 16 bit integers possible.
Even though a uint8_t * is returned, this can be cast to uint16_t * or
any other pointer type: (uint16_t *)pointer_to_cast

e Each operation needs to swap out at most one and to swap in at most one
page. On the reference system, the TinyNode 584, swapping out one page
and swapping in one page takes about 32 ms. This means that you can
expect each command to signal completion within 32 ms in the worst case,
but in the average case it is way faster because the execution time heavily
decreases if no swapping is required. You can derive from what you have
read in this section when a swapping operation might be necessary, i.e. it
also largely depends on PAGES_IN.

e TinyPaging can perform at most one command concurrently, i.e. it is
not possible to post a further request while waiting for the event of the
preceding command. A FAIL will be returned by the command.

9Counting unlocking as a page access is done to maintain consistency. It could as well be
omited but it will probably not change much since unlocking is mostly done after using the

page.

11

e When calling a command and SUCCESS is returned, the execution is fea-
sible. This means that TinyPaging checks if the execution is feasible, e.g.
in case of an allocation request if there is a chunk of appropriate size avail-
able or a new page can be allocated, and chooses the return value based
on this'®. In case of FAIL, the user can be sure that his request cannot be
executed and does not have to wait for the signaled event. The success
parameter of the different events is set to FAIL if something went wrong
in the communication with the flash chip, but this is very unlikely.

3.3 Under the skin

This section reveals the implementation details of TinyPaging. It explains the
data structure on which the component is based. According to the famous
guideline ”If your datastructures are good enough, the algorithm to manipulate
them should be trivial” there should be no need for explaining the algorithms.
Additionally, you can also look at the code which is extensively commented.
This section is concluded by a short outline on how it has been tested.

3.3.1 Data structure

The main elements of the data structure are two structs: PageStatus and
Page. An instance of PageStatus exists for every page, independent from being
allocated or not, and from being swapped in or out. These are stored in the
allPages array. Its declaration looks as follows:

PageStatus allPages [PAGES.TOTAL];

PAGES_TOTAL, as you might remember, represents the overall number of pages
that can be allocated. The PageStatus struct is defined as follows:

typedef struct {
InPagePtr loc;
uint8_t free;
} PageStatus;

This very simple struct only needs 16 bit for each page. loc stores the
current location where this page is swapped in. If it is currently swapped out,
its value is set to INVALID!!. Its type, InPagePtr, is defined as uint8_t and
shall emphasize that it points to a location of the inPages array which you will
encounter below. free contains the size of the largest free chunk in the page,
i.e. we can figure out, just by checking this value, if it is possible to allocate a
new memory region of a certain size.

This is a crucial point of the entire data structure, so let me elaborate on
it: Each time a chunk is allocated or deallocated, we have to calculate the
size of the largest consequtive free memory region of the page. This forward
calculation may seem useless because it might never be used, but it has one
very big advantage: It allows to balance the execution time of the operations.
When looking at TinyAlloc, one sees that it always scans the entire array to
find a suitable region. Now, let’s imagine, TinyPaging would do this the same

1ONote the difference from other components which take the request, return SUCCESS by
default and check for feasibility afterwards.
LT1INVALID is a constant with value 255.

12

way: We had to check a bunch of pages, some of them are even swapped out.
Swapping in dozens of pages just to see that there is no space left, can result in
a delay of several seconds. By forward calculation on the other hand, which is
done when the page is in RAM anyway, we can perform this very quickly and
need to do at most one calculation per operation. As you can see, this allows
more constant response times, because we have all the values ready to go, when
we need them - also for the pages which are currently swapped out.

Now, let’s take a look at the data structure keeping track of the pages in
RAM. As mentioned at the beginning of this section, this is the second major
point. For each available slot, an instance of Page is created, which are all
stored in the inPages array. Its declaration looks as follows:

Page inPages [PAGESIN];

PAGES_IN is set in the Paging.h header file and defines the number of pages
that can be swapped in concurrently. The Page struct is defined the following
way:

typedef struct {

PagePtr page;

uint8_t locks;

InPagePtr lessRU;

InPagePtr moreRU;

uint8_t data [PAGEDATASIZE];

uint8_t mask [PAGEMASK SIZE+1];
} Page;

As you can see, this struct is much more extensive. It takes 266 bytes
each as it is configured for the AT45DB chip. Its first member, page, is the
counterpart to loc of the PageStatus struct, as is PagePtr to InPagePtr.
page contains the location of the page in the allPages array, whereas loc links
to the current location of the page in the inPages array.

locks represents the number of locks currently granted for this page. As
described in section 3.2.3 on the policy, locks always apply for the entire page.
As long as this lock counter is greater than 0, the page remains swapped in at
the same location and therefore also keeps its physical address. This allows to
directly reference the memory regions it accomodates.

To make allowance for the least recently used policy, it is necessary to keep
track of the order in which the pages have been accessed. This only applies for
the pages swapped in. lessRU and moreRU do exactly this: They build a doubly-
linked list where 1essRU contains the page which has been accessed before and
moreRU stores the page having been accessed more recently. Furthermore, there
are two global variables named leastRU and mostRU storing the head and the
tail of the list. In which case they are altered is described in section 3.2.3.

The memory regions returned to the user point to the data array, i.e. all
the user data is stored in this array. This is exactly the same way as it is done
by TinyAlloc: A statically allocated array from which the user can dynamically
request chunks of memory. Keeping track of the used and free bytes of the array
is the mask’s purpose. For each byte 7 in the data array, the corresponding bit ¢
of the mask is set to 1, if the byte is already part of an allocated memory region.
Therefore, the size of the mask is defined to be one eighth data array size, i.e.

PAGE_DATA SIZE = PAGE_MASK SIZE << 3;

13

Sadly, keeping the occupied bytes is not enough. Freeing a memory region
requires also to know the lengh of it. Fortunatly, due to the 2 byte alignment,
we can store this information in the mask as well: To attain such an alignment,
it is enough to define all allocated memory region to be of even size'?. What
TinyPaging now does, it sets the last bit of the mask belonging to a memory
region to 0. Since we know that an odd byte cannot be free if its predecessor is
used, this clearly denotes the end of a memory region.

One final remark: In order to provide even addreses to the user, the data
array itself has to start at an even address. This is not inherently given as it
is defined as an array of uint8_t. Suming up the struct size we get 265 bytes
which means that each second struct starts at an odd address. To overcome
this, the mask size is incremented to get to an even number an therefore guar-
antee even starting addresses. An even starting address of the first struct is
achieved by inserting a dummy variable right before of type uint16_t.

3.3.2 Swapping pages in and out

The preceding section has covered the data structure used for storing informa-
tion in RAM. This section describes data structure for storing data in EEPROM.

As you have read in the policy (section 3.2.3), swapping in a page is necces-
sary when

e either not enough space is left on the swapped in pages to carry out an
allocation request, but there is a page currently being swapped out which
has enough space left,

e or a derefering, freeing or locking request refers to a chunk of memory
currently being swapped out.

In most cases swapping in a page is preceeded by swapping out another page
first, because all slots are already occupied by a page!®. It might happen that
a slot is empty in the rare case that all allocated memory regions of a page had
been freed and therefore the entire page has been deallocated.

There are two questions that need answering: What and where to swap out?
Answering the first one is easy: All that needs to be stored in the EEPROM is
the data and the mask. Any other information either becomes irrelevant, such
as the number of locks which are 0 for obvious reason, or remain in RAM for
faster access, such as the size of the largest free chunk of the page.

Now, where does TinyPaging store this information? All pages have a unique
number given by their position in the allPages array. And, as you have seen
in section 2.3 on flash chips, the EEPROM also has pages which are numbered.
So, each page as it is defined by TinyPaging is stored on a page of the flash
chip. To exploit this natural fit as much as possible, the largest page size has
been chosen such that data and mask still fit in one page of the EEPROM.

The AT/5DB is partitioned in pages of 264 bytes, i.e. we cannot erase
smaller units and therefore not use smaller page sizes. Larger page sizes, if they
are multiples of these 264 bytes, would be possible but erasing, writing and
reading larger units makes it less responsive. So, the best approximation is 232

12When the user requests a chunk of odd size, it is just incremented.
13Remember: There are PAGES_IN slots but PAGES_TOTAL pages.

14

bytes for the data and an additional eighth, concretely 29 bytes, for the mask.
Summed up, this allows to use 261 bytes.

Two comments concerning the storage of the pages in the EEPROM: Since
TinyPaging might not be the only component of your application that makes
use of the flash memory, you can define the first page being used by setting
the parameter BASE_PAGE in the header file Paging.h. See also section 3.2.1
on this. Another thing to notice is that although TinyPaging never uses more
than PAGES_TOTAL - PAGES_IN pages concurrently on the flash chip, it does not
exploit this fact but uses PAGES_TOTAL overall. This simplification saves memory
in RAM and makes it faster which, I thought, is more important than saving
space in EEPROM which is rarely fully used.

Let’s have a closer look at these wirtual addresses used by TinyPaging.
Looking at the type definition, we see that these are unsigned 16 bit integers,
uint16_t, which allow to address up to 64 kBytes of memory. This is not fully
exploited. The virtual address is logically divided into two parts: The first 8
bits determine the page number on which the chunk belonging to this address
has been allocated, i.e. they give the position of the page in the allPages array.
Within this page, the second 8 bits determine the start byte in the data array.

Based on this, we can calculate the amount of addressable memory: The-
oretically, 256 pages were possible. Due to several reasons, one number has
to serve as the invalid number, also referened as INVALID. 255 pages of which
each of them offers 232 bytes of memory results in an overall storage capacity
of 59,160 bytes.

3.3.3 Testing

Testing turned out to be quite difficult as the TinyOS simulator TOSSIM[10]
does not support the flash properly. TinyPaging uses a certain part of the
TinyOS library which has been specifically designed for the AT/5DB flash chip.
This produces a segmentation fault everytime it is called by the simulator. Thus,
I had to test in two stages: As a first step in the simulator (without testing the
swapping functionality) and then directly on the node.

For testing in the simulator, I have written a simple application called Pag-
ingTest. It allows to define a certain sequence of operations that are executed.
After each step, apart from the result itself, the current status is printed to the
console including the number of allocated and locked pages, the current list to
comply with the LRU policy, the mask of the most rececently used page, etc.
Since there is no test oracle, the results have to be verified by hand.

Testing on the node itself was tedious since the output options are limited to
three leds. To by-pass this limitation, I have written several test cases consisting
of a number of operations which test for their correctness and then output the
result by setting the leds appropriatly.

15

4 Futher Work

There are a few ideas in my mind which I could not implement due to time
constraints. Some of them are outlined here.

4.1 Synchronous commands

This is for certain the most important point on my list. TinyPaging is highly
optimized to serve requests in an efficient manner. The execution time of all
commands varies little, and although swapping might occur'4, short response
times can be guaranteed.

On that basis, the prerequisits are given for using synchronous commands,
i.e. commands which are not implemented in a split-phase manner by signaling
the results through events but rather answer them directly by their return values.
This significantly simplifies the control flow in the application making use of
TinyPaging. 1 intended to implement it that way, but sadly, the library used
for accessing the flash chip does only provide asynchronous requests. Since
rewriting this library would have exceeded the time I could spend on this, I had
to implement TinyPaging asynchronous.

Rewriting this library (located at . . ./tinyos-1.x/tos/1ib/Flash/AT45DB)
and then TinyPaging to serve requests synchronously, would heavily facilitate
its usage.

4.2 BlockStorage

In the next major release of TinyOS, namely version 2, a new flash library
called BlockStorage[11] is going to be introduced. There also exists a version
for TinyOS 1.x. It offers several layers of abstration to support portability for
multiple flash chips.

I intended to use it as well but there are still a few restrictions. For me, the
biggest obstacle was that it does not allow to specify which page one wants to
erase. It only allows to erase the first one which might be suitable for many
chips because some of them only allow to erase the entire chip due to their
page size. For the AT/5DB and any other chips that could possibly work with
TinyPaging, this is impractical.

Altering BlockStorage and then adapting TinyPaging to it would allow to
integrate it even more smoothly when working with other components accessing
the flash.

4.3 Support of other chips and therefore page sizes

Up to now, the page size is a fixed value, and the virtual addresses are clearly
separated into two parts: One that describes the page number and the other
defines the offset within this page. The boundery between these two parts is
even stricter defined in the source code.

Supporting other flash chips (and therefore nodes) might be enabled through
BlockStorage. But there is more to that: Other chips might have other page
sizes, so this whole business needs to be altered to add flexibility.

14 As you have seen in the previous section, at most one page is swapped in and out per
command.

16

Changing the virtual address to 32 might also be a valuable option to support
a larger memory space.

17

5 Conclusion

You have been presented TinyPaging, a TinyOS component offering dynamic
memory-like capabilities by using paging and virtual addressing. It offers all
this with very low overhead in space and is also fairly efficient in terms of time,
especially when locking memory regions.

I am quite pleased about the outcome and also the work itself. It allowed
me to apply a wide range of skills I have been taught over the past four years
such as low-level programming and data structure design. Furthermore, it gave
me the possibility to gain an insight into programming sensor networks and
embedded systems in general, although I do have to admit that I sometimes
missed graphical debugging badly!®.

I would be very happy if someone takes the time and adapts the flash library
and TinyPaging to handle requests synchronously. That would render it very
useful for the programmer, especially for fast prototyping.

Last but not least, I really want to thank my assistants, Nicolas Burri and
Pascal von Rickenbach, for supporting me through out the entire work. You
have been very helpful and friendly all the time.

15Please note that leds, although displaying some color, cannot be considered graphical.

18

References

[1] Official website of the TinyOS project
http://www.tinyos.net

[2] Official website of the nesC programming language
http://nesce.sourceforge.net

[3] Wikipedia on EEPROM
http://en.wikipedia.org/wiki/EEPROM

[4] Wikipedia on EPROM
http://en.wikipedia.org/wiki/EPROM

[5] The TinyAlloc component is part of the TinyOS distribution and to be
found in the directory tinyos-1.x/tos/lib/Util

[6] Memory Allocator project website
http://lecs.cs.ucla.edu/ mosheg/Projects/MemoryAllocator.htm

[7] Official website of the TinyNode platform
http://www.tinynode.com

[8] Fact sheet of the TinyNode 584
http://www.tinynode.com /uploads/media/SH-TN584-103.pdf

[9] Using Atmel’s Serial DataFlash
http://www.atmel.com/dyn/resources/prod_documents/doc0842.pdf

[10] TinyOS mote simulator TOSSIM
http://www.cs.berkeley.edu/ pal/research/tossim.html

[11] TinyOS Enhancement Proposal 103 on non-volatile storage and BlockStor-
age
http://www.tinyos.net /scoop/special /working_group_tinyos_2-0

19

