
Semester Thesis

Havelaar – Implementation Of A
Peer-to-Peer Reputation System

Dorian Kind
dorian@student.ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Dominik Grolimund, Luzius Meisser and Stefan Schmid

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zürich

Summer 2006

Contents 1

Contents

1 Introduction 3

2 Related Work 4
2.1 Deployed Systems . 4

2.1.1 Fasttrack/KaZaA . 4
2.1.2 eDonkey/eMule . 4
2.1.3 BitTorrent . 5
2.1.4 Credence . 6

2.2 Theoretical Work . 6
2.2.1 DHT-based Reputation Systems 6
2.2.2 Models Based on Virtual Currency 6
2.2.3 Other . 7

3 Havelaar 7

4 Implementation 8
4.1 Nomenclature . 8
4.2 Composing Classes . 9

4.2.1 ReputationCenter.java . 9
4.2.2 ReputationMatrix.java . 9
4.2.3 ReputationVector.java . 9
4.2.4 ReceivedMatrices.java . 10
4.2.5 AggregatedVector.java . 10
4.2.6 SendingRateCenter.java 10
4.2.7 Others . 10

4.3 Succesor Selection . 11
4.4 Transfer Protocol . 11
4.5 Serialization . 11
4.6 Distributing the Upload Bandwidth 12

5 Analysis 13

6 Conclusions 18
6.1 Havalaar . 18
6.2 Personal Conclusions . 18

Havelaar – Implementation Of A Peer-to-Peer

Reputation System

Dorian Kind

September 20, 2006

Abstract

In this thesis, we discuss the implementation of a reputation system called
Havelaar. The aim of Havelaar is to provide incentives for contributing
in a peer-to-peer network, namely the new peer-to-peer overlay network
Kangoo, which is currently being developed at ETH Zürich. First some
general properties and problems of designing such a reputation system are
shown, and we discuss related work in this area. Then we take a look at
Havelaar itself and – more specifically – at its actual implementation into
Kangoo.

1 Introduction 3

1 Introduction

There are two modes of establishing our reputation: to be praised
by honest men, and to be abused by rogues. It is best, however, to
secure the former, because it will invariably be accompanied by the
latter.

—- Charles Caleb Colton (1780–1832), English cleric and writer

When the first large-scale and publicly visible peer-to-peer networks began
to surface (one of the earliest and most notable example being the now infamous
and defunct Napster network), little thought was given about providing a mech-
anism for rewarding contribution (i.e. uploading content to the network). The
paradigm change from the traditional server/client model to a flexible, user-
powered peer-to-peer network was already great enough for the time being.

As these networks diversified and rapidly gained popularity, however, it be-
came apparent that so-called freeloaders or “leeches” could hamper the devel-
opment of peer-to-peer technology by driving away other users. Freeloaders are
nodes which download regularly, but offer little or no upload capacity. [Free00]
has done an early analysis of the Gnutella peer-to-peer network, showing that
nearly 70% of all users share no files at all and thus never contribute. If no dis-
crimination is made against this sort of behavior, a network is likely to become
slow for all users, first because much of the total bandwidth is consumed by
these nodes who offer no upload, second because contributing users are driven
off.

Thus techniques that might provide incentives for contributing to a peer-
to-peer network gained interest and became the subject of increased research.
While the basic requirements of such system are seemingly simple, practical
applications have been unsatisfactory so far. Fairness and anonymity are hard
to balance, and the inherently anarchistic traits of a true peer-to-peer network
make it difficult to establish trust between nodes.

In this article, we wish to give an overview of an efficient reputation system
that overcomes these problems and provides each node in the network with a
global view of reputation: Havelaar. Havelaar is implemented as part of the
Kangoo architecture, a modern peer-to-peer overlay network developed in the
Distributed Computing Group at ETH Zürich, that will become available to
the general public later in 2006. See [Kang05] for more information regarding
Kangoo.

The thesis is structured as follows: First, we try to give an overview of related
work, namely what kind of reputation systems are already in use in operating
peer-to-peer networks, and what theoretical work has been done. The next
section introduces Havelaar and explains its design. Then we will discuss the
actual implementation of Havelaar. In “Analysis” we provide some data gained
from simulating Havelaar in small scale. Finally we draw our conclusions in the
last section and try to look at Havelaar’s future.

2 Related Work 4

2 Related Work

2.1 Deployed Systems

In this section we take a quick glance at what existing peer-to-peer networks
have done in the field of providing upload incentives. Of the more popular
networks, only few utilize some sort of contribution monitoring, and of those,
none is a truly global system – one in which every node has an approximate
view of the reputation values of all nodes.

2.1.1 Fasttrack/KaZaA

Fasttrack remains to be one of the most popular peer-to-peer networks. It ap-
peared in early 2001, timed just right to supersede Napster after its forced end.
Fasttrack, respective its original client “KaZaA”1, supported many new fea-
tures for a peer-to-peer network, most notably the ability to download different
segments of a file simultaneously from different nodes.

Kazaa also tried to reward uploaders for the first time. The mechanism used
is called ”Participation Level” and relies only on a locally computed value. The
formula used is as follows:

Participation Level =
Uploads in Megabytes

Downloads in Megabytes
∗ 100,

where the maximum level is 1000. There is also a special provision for so-
called “integrity rated” files, which are a kind of user-approved files for ensuring
reliable metadata and detecting fake files; “integrity rated” files have their size
counted doubly when uploaded. The participation level value is sent to each
node that a given node wishes to download from, where it determines its position
in the remote node’s download queue.

As the participation level is computed and stored locally (although en-
crypted), and then sent to other nodes, this system is obviously very prone
to cheating nodes. One of the first such practices allowed a malicious node to
download massive amounts of data from itself, thus quickly increasing its partic-
ipation level. Next it became possible to save a node’s participation level when
it was a high value and restore it later on. When the aforementioned encryption
was finally broken, clients could set their participation level to whatever value
they please2, rendering the whole system next to useless.

2.1.2 eDonkey/eMule

eDonkey is, like Fasttrack, one of the second generation peer-to-peer networks.
It features parallel downloads, a robust hashing system for identifying files,
provides upload incentives and is primarily known for its vast selection of files
and slow but reliable downloads. It is estimated that several million eDonkey
nodes are online at any given time, making it still one of the largest networks
to exist. It is not a pure peer-to-peer application, but relies instead on central
servers that act as global index of files and negotiate file transfers.

1http://www.kazaa.com/
2See http://www.khack.com/ for an example.

http://www.kazaa.com/
http://www.khack.com/

2.1 Deployed Systems 5

The reputation mechanism in eDonkey, first implemented in the open-source
client eMule3 (but not supported by all clients), is pretty straightforward. It
depends on a value called “Credit Modifier”, which is calculated in every inter-
action between two nodes that exchange data. The value is defined as

Ratio1 =
Uploaded Data ∗ 2
Downloaded Data

Ratio2 =
√

Uploaded Data + 2

Credit Modifier = min{Ratio1,Ratio2}

and may not be lower than 1 or higher than 10. The Credit Modifier is stored
for every remote node that a given node has transferred data to or from. It
determines how fast a node moves forward in another node’s upload queue.

As the Credit Modifier – or reputation – value is not stored locally, but on
remote nodes and individually calculated for each two different nodes, it is much
more difficult to attack than in the Fasttrack case. The downside of this system
is that reputation is only relative to a given pair of nodes. A newly joining node
will regard all other nodes as having the same reputation. On the other hand,
a node that was a major contributor to the network loses all of it reputation
if it installs a new client, as Credit Modifiers are cryptographically bound to a
specific client.

2.1.3 BitTorrent

BitTorrent4 has quickly gained popularity since its introduction a few years ago,
and some internet traffic analyzer groups have claimed it is today responsible
for quite a considerable amount of all internet traffic – estimates go up to as
high as 35%. BitTorrent is not directly comparable to most other peer-to-
peer networks, as it offers no search capabilities whatsoever, but is designed to
distribute single files, announced by so-called trackers, as quickly as possible.
BitTorrent is one of the few peer-to-peer applications that have gained some
corporate acceptance, with companies such as RedHat using BitTorrent to ease
the load on their download servers.

The reputation system used in BitTorrent has some similarities to the Credit
Modifiers of eMule. It is no global system, in the sense that the reputation
relationship is unique for every two nodes that interact, and in addition it is
unique for every file (or collection of files) that is downloaded. The mechanism is
a form of the classic, game-theoretic “tit for tat” strategy, which is believed to be
the optimal behavior for its specific domain (the “iterated prisoner’s dilemma”).

Tit for tat in BitTorrent’s sense means for a node to always upload to those
remote nodes that provide the best download rates. As all nodes in a BitTorrent
swarm compete for the same file, this is a simple and highly efficient method
of providing an upload incentive. See [Bit03] for a detailed description of the
algorithm.

[Mech05] has done an in-depth analysis of the tit for tat strategy with regard
to peer-to-peer networks and BitTorrent in particular.

3http://www.emule-project.net/
4http://www.bittorrent.com/

http://www.emule-project.net/
http://www.bittorrent.com/index.html

2.2 Theoretical Work 6

2.1.4 Credence

Credence5 is insofar different from the above examples as that it is not a peer-
to-peer network of its own, but instead intended as an add-on to existing ones.
At the time of writing, the only supported network was Gnutella. We should
also note that the main target of Credence is not to rate nodes, but shared
objects inside the network. Nevertheless it has an interesting mechanism to this
end. Credence calculates a reputation value for a given object by collecting
votes from randomly chosen other nodes which possess the object. It constructs
a correlation graph to find nodes that tend to judge objects in a similar fashion
as itself. See [Cred05] for the full algorithm.

Credence is an ongoing project and has some promising properties, espe-
cially regarding reliability of reputation. Still, the message overhead associated
with every lookup (collecting votes from a sizeable part of the network) make
Credence probably not very well suited for a node reputation system.

2.2 Theoretical Work

There has already been a considerate amount of research into this newly emerg-
ing subject. Some of the approaches taken include:

2.2.1 DHT-based Reputation Systems

As most recent peer-to-peer networks already form some sort of distributed hash
table for their overlay structure, it seems natural to store reputation values in
it, too. Say a node u makes an observation about another node v. It then stores
the appropriate reputation value at the location in the DHT corresponding to
v’s address. Of course, measures have to be taken to ensure that v cannot set
its reputation value itself. This method is very simple and difficult to attack, as
a malicious node u would either have to gain control over another node r, which
is responsible for u’s reputation, or alternatively collude with many different
other nodes in order to increase its reputation.

Unfortunately, this system also has its drawbacks. Performing a DHT-
lookup every time a node needs the reputation of another node or wants to
update it can prove to be quite expensive and a strain on the network [Rep04].
Additionally, we have to think about leaving nodes. A machine that leaves
the network has to somehow preserve the reputation values of the node(s) it is
responsible for, probably by sending them to its closest neighbor. One could
mitigate this problem by storing reputation values at multiple locations, but
this brings up the new problem of keeping the reputation values of a single node
consistent across the network.

2.2.2 Models Based on Virtual Currency

A somewhat different approach on implementing contribution incentives is not
to try and record an individual peer’s uploads, but to provide nodes with a form
of virtual currency, which they can use to “pay” for their downloads. In this
fashion, nodes that upload frequently gain more “money” than nodes which do

5http://www.cs.cornell.edu/people/egs/credence/

http://www.cs.cornell.edu/people/egs/credence/

3 Havelaar 7

not. That money can then be used to download more content, or – alternatively
– to download faster than users with little contribution and money.

[Curr05] proposes such a model, where nodes can produce their own coins
by performing a CPU-intensive task (finding collisions on a hash function, to
be specific) and then spending them. Coins are signed by every node which
possesses them at some point. To prevent double-spending of coins, every coin
is “re-minted” once in a while by a central authority. If a coin is spent multiple
times by a malicious node, it will also appear multiple times in the re-minting
process, where it is easy to identify the cheating peer by looking at the signature
history of the offending coins.

The system is elegant and probably well-suited for certain network appli-
cations, for example a distributed computing grid, where nodes can pay for
utilizing resources of other nodes or for doing task that they wish not to per-
form themselves. However, it appears less ideal for a reputation system for a
number of reasons. First, all payments and thus all file transfers involve public-
key cryptographic calculations, which tend to be rather expensive. Second, the
size of a coin grows each time it is spent, meaning communication cost can
also get quite high if there is no frequent re-minting. The re-minting process
itself needs a central, trust-worthy authority which is susceptible to attacks.
Finally, as every peer can produce its own coins (providing each node with a
fixed starting amount may seem more sensible, but then nodes could just spend
that money and rejoin with a new identity), peers with large CPU capacities
are preferred.

2.2.3 Other

In general terms, if a node in a peer-to-peer network is not able to make enough
direct observations of other nodes’ contribution of its own, then it has to some-
how take into account indirect observations from other peers. Such systems
(which the aforementioned DHT-based models are a part of) are well-known
today for its usage in auction sites such as eBay, and are called reciprocity-
based or reputation systems. These systems are inherently jeopardized by the
phenomenon of false reports [Coop03]. Usually one tries to overcome this prob-
lem by establishing a network of trust, such that observations are weighted by
the reputation of the observer. However, there is need for an infrastructure to
exchange the second-hand observations, usually done by requesting them im-
mediately before a transaction or by flooding them through the network. Both
approaches result in significant communication costs and are ill-suited for a net-
work with lots of transactions. In the Kangoo network, storing and retrieving
a single file may result in 500 transactions with different peers, so there has to
be some other way to provide nodes with reputation values of other nodes.

3 Havelaar

Here we wish to give a short overview of Havelaar. For more details, including
analysis of the algorithms, please see [Have06] and [Have06b].

Havelaar was designed specifically for Kangoo. One of its central design
features is that nodes do not poll for the reputation of another node (by looking

4 Implementation 8

it up in the DHT or querying a central authority, for example), but they already
are in possession of the reputation of most other nodes at any given moment.
Havelaar also avoids the problems associated with networks of trust by omitting
them altogether. Instead a node u that has benefitted from another node v
reports the reputation gained by v to a set of successors that is determined
by a hash function over its own address. As the hash function is known, every
receiving node can check if the sender was legitimate. To ensure that reputation
values are spread through the entire network, a node aggregates all observations
from its predecessors before preceding to send the values to its own successors.
Thusly, a node (or more specifically, a storage node, as other nodes do not
upload) is always in possession of the data it needs to compare the reputation
of nodes that want to download from itself and can distribute its upstream
bandwidth accordingly.

In more precise terms: A peer u puts all the observations it makes about
other nodes into a vector ~o0. An observation is any transaction in which u
downloads a fragment form another node, and is calculated as size(fragment) ∗
transfer speed. In each round, u sends a message containing its own observations
(i.e. ~o0), the aggregated observations of its k predecessors, which they made
during the last round (denoted as ~o1), the aggregated observations of its k
predecessors’ own k predecessors (~o2) from two rounds ago, and so forth. The
message thus consists of a matrix O := [~o0, ..., ~or−1]. When a node receives a
matrix O := [~o1, ..., ~or] (note that the indices have changed because a new round
has started) from a predecessor, it aggregates those observations into its own,
local reputation matrix and updates its contribution vector ~c, which it uses to
determine the actual reputation of a remote node. Currently, the contribution
vector holds just the sum of all observations for a given node, but one could also
envision the introduction of an aging factor, so that observations from previous
rounds are weighted less than those of the current round. It is clear that the
vectors form previous rounds aggregate an exponentially growing numbers of
observations, and that the oldest observations lie r rounds in the past.

It is also worth to note that in Havelaar, a node u increases the contribution
value, or reputation, of a remote peer v after downloading a fragment from it,
but it does not decrease that value if u uploads a fragment to v. This may be
regarded as not being the fairest solution, but the designers of Kangoo explicitly
state that they do not wish to provide any disincentives to downloading in the
network.

4 Implementation

This section discusses the actual implementation of Havelaar. We introduce the
different modules and its functionalities and review some of the design choices.
Havelaar is written in Java (version 1.5), as is Kangoo, and consists of about
2’000 source lines of code.

4.1 Nomenclature

A node or peer is a single Kangoo node that is uniquely identified by its node id,
and is either a storage node (a node that satisfies certain requirements regarding

4.2 Composing Classes 9

uptime and free disk space and stores fragments), a super node (a node with
good network connectivity that is assigned additional routing tasks) or a client
node. There can be multiple nodes running simultaneously on the same machine.
A machine is identified by its machine id. A user is the person running one or
multiple nodes and is identified by its user id. Havelaar tracks the reputation
of individual users, so that a user logging in from another node or machine still
profits from its gained reputation.

4.2 Composing Classes

4.2.1 ReputationCenter.java

The reputation center is the heart of the Havelaar system. It allocates resources,
starts the sending rate center and is responsible for keeping the reputation
matrix up to date. It also saves its state, including all reputation values, to
a preferences file on exiting and reads them back when restarting. As there
is no continuous work to do, we chose not to create a separate thread for the
reputation center, but to register it with the Kangoo scheduler and run every
30 seconds or so.

The reputation center keeps track of its successors and predecessors and
allows only matrix transfers from clients who

• have sent a request with a valid certificate,

• are in the set of valid predecessors; i.e. the hash function applied to the
sender’s machine id returns a list which includes the receiving node’s id,

• and have not already sent a matrix in the same round.

At the start of each round, the reputation center serializes its own reputation
matrix and sends it to its successors.

4.2.2 ReputationMatrix.java

This is the abstraction of the matrix which consists of the reputation vectors
from the current and the last (r − 1) rounds. It provides functions to add a
new observation, to get the reputation value of a given user id, to merge the
received matrices into the local one, to serialize the matrix (which calls the
serialize function of all the vectors and concatenates the resulting byte arrays)
and to construct one from its serialized form (again by calling the appropriate
constructor of the vectors). Also, it contains a dirty flag to indicate that the
matrix has been modified and that the reputation center should update its
contribution vector.

4.2.3 ReputationVector.java

A reputation vector is a vector in which all reputation values of a given round are
stored. Internally, the vector is represented as a hash table. As standard Java
hash tables can only store objects, not primitive types, much space would be
wasted by utilizing them. Instead, we chose to use a hash map implementation

4.2 Composing Classes 10

from the GNU Trove6 project, which offers support for primitive types and and
claims performance benefits over the Java-supplied classes7. We use this hash
table to map user ids (which can be represented as ints) to their reputation
value.

This class provides functions to add an observation, to get the reputation
value of a given user id, to serialize the values to a byte array and construct
a new vector from the array. The vector gets locked for the duration of the
serialization as observations might be added from a different thread meanwhile.

4.2.4 ReceivedMatrices.java

This is the class which holds the received matrices from a node’s predecessors.
Every round, it first checks for suspicious entries by comparing all observations
for a given user and looking for spikes, which are discarded. It then aggre-
gates the observation values into a single matrix and merges it with the local
reputation matrix.

4.2.5 AggregatedVector.java

This class is a subclass of ReputationVector and stores the aggregated reputa-
tion values, that is the union of all values of the past r rounds. It corresponds
to the contribution vector ~c mentioned in the previous description of Havelaar.
Every time the reputation matrix is marked as dirty (by adding a new observa-
tion), the aggregated vector gets updated the next time the reputation center
is scheduled to run. AggregatedVector provides additional functionality that
divides the reputation values into percentiles, so that every user id can be as-
signed a percentile his reputation value lies in. This percentile value is then
used in the bandwidth distribution mechanism.

4.2.6 SendingRateCenter.java

The sending rate center is the main interface to the rest of Kangoo. When an
upload of a fragment to another node is initiated, Kangoo requests a sending
rate from the center, passing the receiving node’s user id and its desired rate.
If there still is enough upload bandwidth available, a sending rate instance
is returned, whose main purpose is to provide a function getRate(), which
returns the actually assigned rate. As other uploads finish and new ones start,
getRate() will return different values during the transfer, so it gets called for
every packet to send.

4.2.7 Others

There are some other minor and supporting classes, namely the Havelaar re-
lated messages HavelaarPutRequest.java, HavelaarPutAccept.java and Have-
laarPutDeny.java; the handlers for the actual reputation matrix transfer (Have-
laarPutHandler.java and HavelaarGetHandler.java) and two different sending

6http://trove4j.sourceforge.net/
7See http://trove4j.sourceforge.net/performance.shtml for some benchmarks.

http://trove4j.sourceforge.net/
http://trove4j.sourceforge.net/performance.shtml

4.3 Succesor Selection 11

rate classes SendingRate.java and SimpleSendingRate.java, instances of which
are given out by the sending rate center for each current upload.

4.3 Succesor Selection

The hashing algorithm used to determine the set of successors is a linear congru-
ence PRNG, which is seeded with the machine id x0, has a modulus of m = 232

(an obvious choice, as Java ignores overflows and silently discards resulting high-
order bytes), and a multiplier a = 663′608′941, which satisfies Knuth’s demand
[Knuth98] that a mod 8 = 5 when m is a power of 2, and that a is between
0.01m and 0.99m.

We also chose to use an increment c that must not be constant (we re-used
the seed for that purpose), not primarily to enhance randomness, but because
for a constant c, the sets of successors would overlap, resulting in poor diffusion
of the reputation values. Say node n0 calculates its set of successors {n1, ..., nk},
then it sends its reputation matrix to those nodes. n1 in turn computes its own
set of successors, which only differs in one node from that of n0: {n2, ..., nk+1}.
As it was decided later on not to use node ids but machine ids as input to the
hashing, this problem no longer mattered. The dynamic increment was kept as
it increases the randomness of the successor sets.

4.4 Transfer Protocol

When a node has gathered its successor set and is ready to send out its rep-
utation matrix, it initiates the transfer sequence. As a specific – randomly
chosen – node from the successor set could be offline8, it sends a HAVELAAR PUT
message containing the given address, but with a flag indicating the message
should be routed to the storage node closest to that address. Upon reception
of a HAVELAAR PUT message, a node first checks the cryptographically signed
machine id of the sender. It then uses that id as input to the hashing function
to see whether the original receiver id is correct.

If all those checks succeed and the sending node has not already sent its
reputation matrix during the current round, the receiving node answers with
a HAVELAAR ACCEPT message and sets up a handler to receive the data. Else
it sends a HAVELAAR DENY message back to the sender. Upon reception of the
accept message, the sending node assembles the serialized form of its reputation
matrix, sets up a handler for the transfer, and sends its observations to the
receiving node.

4.5 Serialization

As the designers of the Havelaar system note, “the Achilles heel of Havelaar is
its message size [...]”. As every node has to send its entire reputation matrix,
which can grow to considerable size9, to k successors once a round, there is quite

8This situation is actually very likely, noticing that we have an address space for about 232

nodes.
9The first few vectors are sparsely populated, because they are computed from fewer ob-

servations, but the last vector should by design contain as much nodes as possible to provide
a global view.

4.6 Distributing the Upload Bandwidth 12

a lot of data to transfer. It is thus imperative to try and reduce this data as
much as possible. We do this in two ways:

• First, we decide for each vector whether it is cheaper to send a map or
a vector, i.e. whether to send a list of user ids and their corresponding
values or send a starting and ending user id and all values in between,
some of them probably zero (meaning there have been no observations
about this user).

• Second, the data is (optionally) scaled down to a smaller data type, de-
creasing accuracy but greatly reducing the data size. A reputation vector
has facilities to encode the reputation values (which are stored internally
as ints) to either ints, shorts, or bytes. This is achieved by finding a scal-
ing factor such that the biggest reputation value of the vector is scaled to
just the maximum value of the chosen data type, and sending that scaling
factor with the data.

4.6 Distributing the Upload Bandwidth

Havelaar is mainly a system for collecting and distributing reputation values
across a peer-to-peer network, but there also has to be a mechanism for utilizing
this information. The rewarding scheme has to distribute the upload bandwidth
of a storage node among competing peers, that is among peers that wish to
download a fragment from the storage node at the same time. There are multiple
algorithms that try to do this as fair as possible while preventing starvation of
clients with low reputation.

We first evaluated an algorithm discussed in [Game04] which is called “Re-
source bidding mechanism with incentive and utility feature (RBM-IU)”. It
introduces the concept of “utility” to represent the degree of satisfaction of a
competing node given a certain allocated upload bandwidth. Say for example
two nodes v, w compete for downloading a fragment from peer u, which has
a maximum upstream bandwidth of 1 Mb/s. v can download with 2 Mb/s,
while w has a downstream capacity of 5 Mb/s. If both node have the same
reputation, then a straightforward algorithm might allocate a bandwidth of 0.5
Mb/s to each node. It is clear that node v, being able to download with 25%
of its maximum rate, is more satisfied than node w, which can only use 10% of
its downstream bandwidth. Thus the authors define an utility function for N
competing nodes Ni, i ∈ {1, ..., N}, where bi (the bidding value) is the desired
download rate of a node, and xi represents its actual allocated rate. The utility
function is defined as

Ui(xi) = log
(

xi

bi
+ 1

)
where xi ∈ [0, bi],

and the algorithm performs the following constrained optimization – where W

is the maximum upstream bandwidth of the uploading node and Ci is the rep-
utation value of the node Ni:

max
N∑

i=1

CiUi(xi) s.t.
N∑

i=1

xi ≤ W, xi ∈ [0, bi] ∀ i.

5 Analysis 13

This algorithm has some nice theoretical advantages, however, we found a
major weakness: It is possible for a malicious node to exploit the algorithm
by probing for the best bidding value so it will gain the maximum download
speed possible as determined by its reputation. Consider a source node N0 with
an upstream capacity of 40 kB/s that uploads fragments to 4 competing nodes
N1...4 with the same reputation value and desired upload rate (bidding value)
20 kB/s. The resulting bandwidth distribution will be, of course, 10 kB/s for
every node. Now a malicious node N5 with the same reputation enters the
picture, which has a possible downstream rate of 100 kB/s. If N5 were honest,
it would report those 100 kB/s as its bidding value and get only the minimum
guaranteed rate, as its link’s utility is much more expensive to increase than
that of the other nodes. But N5 is not honest, and uses a smaller value for its
bidding value, say 10 kB/s. This time, N0 will set its upload speed to N5 to
the maximum 10 kB/s, much to the disadvantage of the other nodes, which will
now only get 7.5 kB/s each. But N5 does not stop at this point. It quickly
sends a new bidding value, slightly higher than the last one, to see if it can
get additional downstream bandwidth. For a bidding value of 15 kB/s, N5 gets
a downstream of 12 kB/s. By incrementing the bidding value until the actual
provided bandwidth decreases again, N5 finds the “sweet spot” for its bidding
value, which will maximize its download.

This behavior is clearly detrimental to the network, as more malicious nodes
will adapt to this probing strategy, rendering the whole concept of desired up-
stream rate as bidding value useless. For Havelaar, we thus chose to implement
a more conventional algorithm which allocates upload bandwidth proportionally
to a node’s reputation. For an example, consider the following distribution for
four nodes which download fragments from a source node with upload capacity
40’000 Bytes/s:
user 1, reputation 4.0, desired rate 20000, provided rate 17496
user 2, reputation 3.0, desired rate 20000, provided rate 13122
user 3, reputation 2.0, desired rate 5000, provided rate 5000
user 4, reputation 1.0, desired rate 5000, provided rate 4374

Note that user10 3 is assigned a rate that is not proportional to its reputation,
this is because he already reached its desired rate.

We recalculate the bandwidth distribution every time a new node wants
to download a fragment, an existing transfer stops, or when a node sends a
new bidding message (i.e. its desired download rate has changed). To avoid
starvation, every downloading peer is guaranteed a minimum rate, or, more
exactly, every node has at least a minimum reputation of 1.0.

5 Analysis

For the analysis and testing purposes, we used a tool called the Kangoo Visual-
izer, which is able to run a simulation of a small Kangoo network in real time.
The Visualizer is able to create a small set of nodes, which have pre-defined
behaviors (such as putting a single or multiple fragments, or getting them back
from the network). As every node runs in its separate thread, a true large-scale

10We are talking about users and not nodes here because Havelaar tracks reputation of
users, not nodes. This has no implications for the algorithm, however.

5 Analysis 14

simulation is not possible without writing a new simulation framework that runs
synchronously. Still, the visualizer is suited to provide a first evaluation of the
general concepts of Havelaar and to find bugs in the implementation. Figure 1
shows a screenshot of the Visualizer.

Figure 1: The Havelaar Visualizer.

As the Havelaar algorithm relies on a large number of interactions and the
corresponding observations, a full-scale evaluation of the system is difficult with-
out access to an existing Kangoo network. We instead decided to design certain
test cases, which examine different key aspects of the algorithm. As the cor-
rectness and the efficiency of the algorithm is theoretically proven, this should
suffice to preliminary ensure the quality of the implementation. Of course, ad-
ditional testing will be required in a real-world deployment11 to further analyze
Havelaar. The following are the most interesting test cases.

Our first test case is simple enough: We simulate the smallest Kangoo net-
work imaginable – consisting of just one super node, storage node and client
node each. The client node is configured to regularly put fragments into the
network, which – there being only one storage node – all get stored on the same

11A closed beta of Kangoo is planned for the end of the year.

5 Analysis 15

node. It then downloads those fragments back from the DHT. The purpose of
this case is just to check whether Havelaar correctly records the downloads from
the storage node and updates the reputation matrix on the client node. Figure
2 shows that the reputation matrix of the client node was updated to represent
the contribution of the storage node, respectively its user.

Figure 2: Node 7002 is a client node that has uploaded some fragments into the DHT. When it
re-downloaded the fragments, it kept record of the contribution of the user of node 7001, the storage
node.

The next test case is similar to the first one, except that we have now a
slightly larger network with three storage nodes. The bandwidth of the storage
nodes is capped to different levels. As the contribution value of a single transac-
tion is calculated by multiplying the size of the served fragment by the transfer
speed, the storage nodes different maximum transfer speeds should be reflected
by their users’ reputation values at the client nodes. Figure 3 demonstrates that
this is indeed the case.

One test case has the goal of checking whether the transfer of a reputation
matrix form one node to another works. We again have a small network consist-
ing of a super node, storage node and client node. The client node has already
made some observations about the storage node and sends out its reputation
matrix. As there is only one storage node, it is the only eligible receiver for the
client node’s reputation matrix. Figure 4 and 5 show that the transfer of the
reputation matrix is successful.

5 Analysis 16

Figure 3: Node 7004 is the client node. It uploads fragments into the DHT, which should sta-
tistically be equally distributed to the three storage nodes 7001, 7002 and 7003. When node 7004
downloads those fragments back, the different storage nodes serve their fragments with their respec-
tive maximal upload speed, which is reflected in their users’ reputation values at the client node.
If we let the upload rate of a storage node ni be r(ni), and its user’s reputation value c(ni), then
it holds that r(n1) < r(n2) < r(n3) ⇒ c(n1) < c(n2) < c(n3), if the storage nodes serve similar
amounts of fragments.

5 Analysis 17

Figure 4: Node 7002 has made some observations about (the user of) the storage node 7001 by
getting some fragments. Node 7001 has not made any observations yet.

Figure 5: Node 7002 has sent its reputation matrix to node 7001, whose aggregated vector has
been updated to include those observations.

6 Conclusions 18

The actual distribution of the upstream bandwidth (covered in 4.6) was
evaluated with a separate test unit and found to be correct and adequately fast.

6 Conclusions

6.1 Havalaar

The first evaluations, while being small scale, show that the Havelaar algorithm
is sound and is a viable way of distributing the reputation values into the net-
work. If the duration of a Havelaar round is chosen large enough, the substantial
size of a reputation matrix should not put an insensible burden on an average
user’s network connection, especially with broadband internet access still on the
rise. The impact on performance is negligible, as the most CPU-intensive tasks
(serializing the reputation matrix, checking and aggregating received matrices)
only need to be performed once a round and are not time-critical. There is
still work to do, but we believe that with the Havelaar system, there exists for
the first time a reliable, practical and efficient system for collecting reputation
about users in a peer-to-peer network and using that information to provide
incentives for contributing to the network. It can be hoped that other net-
works will follow suit, maybe learning from the experiences of Havelaar, so that
the “freerider” becomes a problem of the past, and that peer-to-peer networks
continue to thrive.

6.2 Personal Conclusions

I would like to give some personal thoughts about this thesis in this section.
Never having worked with Eclipse before, I felt a bit intimidated by the prospect
of working on a project this big (Kangoo consists now of over 50’000 source lines
of code, divided into numerous modules). Also, my experiences with Java, while
coming from different subjects during my studies, were not that great. However,
it can be said that the Eclipse IDE in combination with the Java programming
language make for a quick adaption phase and the comprehensive Java API
documentation proved extremely valuable. The clean structure of Kangoo also
helped (using Interface types instead of actual classes where appropriate, divi-
sion of the code in various packages with well-defined and minimal interaction,
adequate but not excessive documentation, to name a few aspects). Commu-
nication with my advisors was excellent. My e-mails with questions to specific
parts of Kangoo were answered promptly and always helpfully.

Problems mainly arose due to the fact that a small scale simulation, helpful
as it is, makes evaluation and testing not that meaningful, especially as Havelaar
is explicitly designed for large networks, because it relies on large amounts of
observations to achieve approximate results. Also, the fact that Kangoo itself
is still in development led to some difficulties with hard-to-reproduce bugs that
were difficult to trace back to their origins. Especially the Visualizer was in
constant change and thus not always very stable (a fact that the author greatly
contributed to. . .)

All in all, it can be said that the work on Havelaar was a very interesting
and challenging task, especially with the prospect that the code written for this

6.2 Personal Conclusions 19

thesis will perhaps later be run by millions of users around the globe. I finally
wish to thank my principal advisors Dominik Grolimund and Luzius Meisser
for the opportunity to work on Havelaar and Kangoo, and for all the feedback,
support and enthusiasm they provided.

References 20

References

[Bit03] Bram Cohen: Incentives Build Robustness in BitTorrent. In Proceedings
of the First Workshop on Economics of Peer-to-Peer Systems, 2003.

[Coop03] Kevin Lai, Michal Feldman, Ion Stoica and John Chuang: Incentives
for Cooperation in Peer-to-Peer Networks. In Proceedings of the Workshop
on Economics of Peer-to-Peer Systems (P2PEcon), 2003.

[Cred05] Kevin Walsh and Emin Gün Sirer: Thwarting P2P Pollution Using
Object Reputation. Technical Report TR2005-1980, Cornell University,
Computer Science Department, 2005.

[Curr05] Flavio D. Garcia and Jaap-Henk Hoepman: Off-line Karma: A De-
centralized Currency for Peer-to-peer and Grid Applications. In Proceed-
ings of the Third International Conference on Applied Cryptography and
Network Security (ACNS), 2005.

[Free00] Eytan Adar and Bernardo Huberman: Free Riding on Gnutella. First
Monday, 5(10), 2000. Available at
http://www.hpl.hp.com/research/idl/papers/gnutella/gnutella.pdf.

[Mech05] Lukas Füllemann, Stefan Schmid and Roger Wattenhofer: P2P Mecha-
nism Design. Semester Thesis. Available at
http://dcg.ethz.ch/theses/ss05/p2pmd report.pdf. ETH Zürich, Switzer-
land, 2005.

[Game04] Richard T. B. Ma, Sam C. M. Lee, John C. S. Lui and David K.
Y. Yau: A Game Theoretic Approach to Provide Incentive and Service
Differentiation in P2P Networks. In SIGMETRICS, pp. 189–198, 2004.

[Have06] Dominik Grolimund, Luzius Meisser, Stefan Schmid and Roger Wat-
tenhofer: Havelaar: A Robust and Efficient Reputation System for Active
Peer-to-Peer Systems. Extended Abstract for the First Workshop on the
Economics of Networked Systems, ACM Conference on Electronic Com-
merce, Ann Arbor, Michigan, 2006.

[Have06b] Dominik Grolimund, Luzius Meisser, Stefan Schmid, and Roger
Wattenhofer: Havelaar: A Robust and Efficient Reputation System for
Active Peer-to-Peer Systems. Technical report, TIKReport 246, available
at http://www.tik.ee.ethz.ch/. ETH Zürich, Switzerland, 2006.

[Kang05] Dominik Grolimund and Luzius Meisser: Implementation of the Kan-
goo Distributed Hash Table. Semester Thesis at the Distributed Computing
Group, ETH Zurich, 2005. Report available upon request.

[Knuth98] Donald E. Knuth: The Art of Computer Programming, Volume
II: Seminumerical Algorithms, Third Edition, Addison-Wesley Publishing
Company, 1998.

[Rep04] Thanasis G. Papaioannou and George D. Stamoulis: Effective Use of
Reputation in Peer-to-Peer Environments. In Proceedings of the IEEE/ACM
CCGRID 2004 (Workshop on Global P2P Computing), pp. 259–268, 2004.

http://www.hpl.hp.com/research/idl/papers/gnutella/gnutella.pdf
http://dcg.ethz.ch/theses/ss05/p2pmd_report.pdf
http://www.tik.ee.ethz.ch/

	Introduction
	Related Work
	Deployed Systems
	Fasttrack/KaZaA
	eDonkey/eMule
	BitTorrent
	Credence

	Theoretical Work
	DHT-based Reputation Systems
	Models Based on Virtual Currency
	Other

	Havelaar
	Implementation
	Nomenclature
	Composing Classes
	ReputationCenter.java
	ReputationMatrix.java
	ReputationVector.java
	ReceivedMatrices.java
	AggregatedVector.java
	SendingRateCenter.java
	Others

	Succesor Selection
	Transfer Protocol
	Serialization
	Distributing the Upload Bandwidth

	Analysis
	Conclusions
	Havalaar
	Personal Conclusions

