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Abstract

The distribution of music happens more and more over the internet. On single computers
large collections of music are formed. And they are ever growing since the copying of digital
data is an easy obstacle to overcome. These collections are so large that one hardly can have
an overview of it. To help ordering music, in this thesis musical songs are encoded in a graph
representation. Songs which are linked are expected to be similar. The distance in the graph
then is the similarity of two songs. A large collection of user’s favorite songs is downloaded
from last.fm to form such a graph with 430000 nodes. Furthermore, to evaluate the quality of
graph and embedding, a measurement using a category-tree is introduced. Most algorithms
on the raw graph are too complex (even a single shortest-path-computation has complexity
O(m + n � log n)). To create a reasonable application using this graph, it is therefore
almost inevitable to assign distance labels to the nodes. A new embedding-algorithm
(IterativeLMDS) is proposed which is based on LMDS, and it is shown that it improves the
quality. Using the embedding, a web-application is presented which is able to create playlist
and propose styles for songs in less than a second.

Musik wird immer mehr digital über das Internet verbreitet. Auf einzelnen Computer sam-
meln sich grosse Mengen an Musikstücken an. Und diese Musik-Kollektionen wachsen
ständig, da das Kopieren und Verteilen von digitalen Daten sehr einfach ist. Die Menge an
Musikstücken wird so gross, dass es zunehmend schwieriger wird, den Ueberblick darüber
zu behalten. In dieser Arbeit werden Musikstücke in Form eines Graphen dargestellt, um
die Ordnung und die Organisation von Musik zu vereinfachen. Die Distanz in diesem
Graphen entspricht dabei der Aehnlichkeit der beiden entsprechenden Musikstücke. Aus
einer grosse Anzahl von Lieblingssongs von last.fm-Usern wird ein Graph mit etwa 430000
Knoten gebildet. Um die Qualität dieses Graphen und der Embeddings zu messen, wird ein
Mass für die Qualität von Aehnlichkeit von Musik, basierend auf einem Kategorien-Baum,
eingeführt. Da die meisten Algorithmen für Graphen zu komplex sind (die Berechnung eines
kürzesten Pfades hat Komplexität O(m+n� log n))), ist es beinahe unabdingbar, ein Embed-
ding des Graphen erzeugen. Dazu wird ein neuer Embedding-Algorithmus (IterativeLMDS)
vorgeschlagen der auf LMDS basiert. Es wird gezeigt, dass die Qualität des Embeddings
durch IterativeLMDS erhöht wird. Unter Verwendung des Embeddings wird eine Web-
Applikation entwickelt, mit der man Playlisten generieren kann und Musikstücken Genres
zuordnen kann. Dank dem Embedding dauern diese Abfragen nur wenige Zehntelsekunden.
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1
Introduction

1.1 Task Description

The task of this master thesis can be divided into two parts:

• Create a music-graph with either songs or artists as nodes. Edges should represent
some kind of relationship or similarity.

• Develop an interesting application using this graph

To create such a music-graph there are several challenges and problems to solve, such as
finding an appropriate source of information about music similarity (see Chapter 3) or dealing
with large amounts of data.

1.2 Motivation

The sales figures of conventional physical music stores are declining in the past few years.
The distribution of music happens more and more over the internet. Music is downloaded
directly to computers, and from there copied to mobile music-players or streamed to other
devices. On single computers large collections of music are formed. And they are growing
since the copying of digital data is an easy obstacle to overcome. These collections are so
large that one hardly can have an overview of it. The organization of these large collections
is an important and challenging topic in music distribution.

The organization in folders soon came to limits. Today, music is mostly organized with
metadata. A notion of similarity of music would certainly help organizing and retrieving
music. It could ease the handling of large music collections and give recommendations of
what fits together.
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2 1.3. CHALLENGES

1.3 Challenges

The world of music is expected to be huge. It goes back to the time of the great composers
like Mozart or Beethoven and ranges to the stars like Elton John or Mariah Carey. Every day
new songs are produced. It contains a lot of genres and styles like classical, rock n’ roll or
rap to mention just a few. Thus, computing a graph which contains the whole world of music
is quite challenging, and the quality and the up-to-dateness of this graph can not be foreseen
before making first tryouts.

Another challenging aspect of this task is the “human factor”. Which music sounds similar,
or which songs are completely different, depends significantly on the personal background
of the listener. One person could weight the voice of the lead singer as primary attribute for
similarity, another could compare the used musical instruments, and yet another compares
social factors such as the message delivered in their lyrics.

Consequently, a music graph can never be exact - some people will find similarities inappro-
priate, to which others would agree. Strongly associated with this problem is the problem
of the “ground truth” in music similarity [9]. What is the best quality measure once such a
graph would exist? Where is a source which has undoubted similarities between artists or
songs? In short, one can either rely on what people personally decide to be similar, or on
machine algorithms which analyze the music as a sequence of frequencies. These approaches
are described in more detail later.

1.3.1 Songs or artists?

One of the first questions to answer was if the graph should base on songs or artists. There
were several relevant points which play a role in this decision:

• What has already been done? What problems have already been solved?

• Does it make sense to compute song-similarities? Or are songs of the same artist any-
way alike?

• Would it be feasible (with respect to space and computational complexity) to create a
song-graph? How many songs do exist in the world of music?

A graph on song-level would definitively be preferred with respect to applications. Possible
users have songs on their computers, and these songs could be an input for an application.
Furthermore, songs rather than artists are shared and downloaded over the Internet and not
artists.

1.3.2 Find Data Source

In order to construct a graph of music in which similar songs or artists are interlinked, a
notion of similarity has to be found. Of course, it is not possible to analyze each piece of
music in the world in order to find out which ones are similar. Further this would only be the
opinion of one person and possibly differ from others. The goal is therefore to find a source
in the web which is freely accessible and relates different songs or artists in some sense.
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1.3.3 Distance Measures

In order to create a reasonable application on top of the graph, the distance between two ran-
dom nodes must be computed. This distance can be derived directly from the graph structure
or via some distance labeling or embedding. A distance labeling would have the clear advan-
tage of not being bound to a server. Computations could also be made distributed without
knowledge of the whole graph.

1.4 Small-World Networks

For a graph to be a small-world-network, it should have three special features:

• A high clustering coefficient

• Sparseness

• Short average path length

If a graph has this properties, it experiences the “Small-World-Phenomenon”. That means
there exist short paths between any two nodes in the graph. Stanley Milgram first discovered
this fact by using letters which had to be sent as near as possible to a target-person in the
United States. He observed that there were small paths from any person to any other, and that
the letters managed to get to their target in average 6 steps. The famous word “Six degrees
of separation” was born.

Jon Kleinberg later founded the theory about the “Small-World-Phenomenon” [12] and
explained the findings of Stanley Milgram with a theoretical background. Some networks
are already empirically proven “small-world-networks”, like the graph of film actors
(collaborations as edges), the power grid of the western United States or the neural network
of the worm caenorhabditis elegans [21].

A graph of songs or artists is also expected to be a small-world-network. In the world of
music, clusterings exist for different genres or language regions. So it is expected to exhibit
its properties of a high clustering-coefficient and short paths with few links.

1.5 Outline

Figure 1.1: Overview of the steps taken in this thesis



4 1.5. OUTLINE

In Figure 1.1, an overview over the whole work is given. The steps in this overview also
correspond to the chapters in this thesis. Chapter 2 summarizes the work that has been done
concerning music similarity, in research and applications. Chapter 3 deals with sources about
music similarity available in the Internet and their crawling. Chapter 4 shows how a graph
of songs can be constructed out of the data. In Chapter 5, the graph constructed before is
embedded. Afterwards in Chapter 6, an application is designed and implemented which uses
the embedding. At last, a summary over the whole thesis as well as some critical remarks and
conclusions are given in Chapter 7.



2
Related Work

Since music is a very popular topic, many things have been done already, be it academic
papers or commercial projects. Music similarity is expected to be a commercially usable
feature. It can be used by music-vendors to sell more music, for example it is thinkable that
it can somehow be predicted which kind of music will be popular in future. Some interesting
work is presented below in more detail.

2.1 Research

Several studies have already been conducted regarding music similarity. Only an extract of
them is mentioned here. There are three major strategies of how music similarity can be
obtained: from metadata, from user-generated data or from the audio signal (audio-based,
content-based).

Metadata

Music similarity can be generated from metadata, although metadata often is subjective.
Furthermore it is hard to obtain it for large amounts of songs. Platt [17] constructed a graph
of music from a metadata-database to compare different embedding algorithms for sparse
graphs. Aucouturier and Pachet [1] generate playlists from a given metadata-database (17000
songs) satisfying constraints as duration, increasing tempo or genre closeness.

User-generated data

User-generated data (playlists, streams, user ratings) is also subjective, but large amounts of
data are freely available. Of course each single user has his own perception, but it is hoped
that in sum the obtained relations reflect the true similarity. Even if this is not the case,
it reflects the opinion of the majority of users. Rasmussen, Gleich, Zhukov and Lang [5]
embedded a graph of musical artists in three dimensions for visualization, using user-ratings
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for artists. Ragno, Burges and Herley [19] built a graph of songs with 60499 nodes from
authored streams (e. g. playlists of radio stations). They propose algorithms to generate
playlist from a given seed-song.

Audio-based

Computing music similarity from the audio-signal is a purely objective measure. It is inde-
pendent from metadata or the perception of individuals. On the other hand, the evaluation
of the quality of such a measure again is subjective. Aucoutier and Pachet [2] propose an
algorithm to compute audio-based similarity of music. Algorithms for playlist-generation
from audio-based similarity are proposed by Logan [13].

Evaluation

The big problem of measuring the quality of music similarity is faced by Berenzweig, Logan,
Ellis and Whitman [4] evaluated different similarity measures for music, from audio-based
to metadata-based approaches, and faced the problem of “ground-truth” in artist similarity
[9]. Pampalk, Dison and Widmer [16] compare and evaluate different audio-based similarity
measures.

Playlist-Generation

Pampalk, Pohle and Widmer [7] generate playlists based on audio-based similarity dynam-
ically, by observing the users skipping behavior. In another study [8] they apply travelling
salesman algorithms on the whole graph. Having one big playlist, they propose to ease the
browsing through a musical library with one input wheel. Van Gulik and Vignoli [20] present
a visual playlist-generation from a given visualization of an artist-graph.

Contribution

In this thesis, music-similarity was obtained from users favorite tracks. A graph with more
than 400000 nodes was created. Many algorithms proposed were not applicable to a graph
of this size. The graph was embedded to an Euclidean space, to allow faster algorithms
and the development of distributed algorithms. To evaluate the quality of the graph and the
embedding, a new quality measure is introduced using a category-tree. It could be shown that
IterativeLMDS improves the quality of the embedding compared to LMDS. Furthermore,
some algorithms for playlist-generation out of an embedding are presented.

2.2 Applications

Pandora / Music Genome Project The “Music Genome Project” was created in January
2000, since then it goes on classifying music. Pandora is the Webradio-station, which
uses the “Music Genome Project” to recommend new songs to the listener.

The name “Music Genome Project” is adapted from the famous slogan “Human
Genome Project”, which tries to split the human DNA into parts, analyze, interpret



CHAPTER 2. RELATED WORK 7

and understand it. The same claim meets Pandora. Experts as well as algorithms ana-
lyze music using hundreds of attributes or “genes”. The analysis of a song takes about
30 minutes and is partially done by experts. So the “human factor” is not fully dis-
carded. But with this rather technical classification of music also unpopular music is
presented to the listener. So it is a good source of finding new music which one could
like, but otherwise never would have heard of.

Last.fm / Audioscrobbler Last.fm is a social networking platform for music-enthusiasts. It
is based on “Audioscrobbler”, which traces every track a registered user listens to on
his PC and sends it to a server. This way, last.fm is able to show each user’s statistics
about music preferences and has a large database about the users favorite songs and
their listening behavior. Concerning music similarity, last.fm provides a list of similar
artists, which is computed out of the Audioscrobbler-data.

MusicIP MusicIP1 developed an acoustic fingerprint of music. Songs can be identified by
their fingerprint (regardless of file format or compression) using their free service
“MusicDNS”. The metadata returned by MusicDNS is used by MP3-Taggers like
Musicbrainz’ Picard2.

MusicIP also created audio-based algorithms that identify similar music, based on
mathematical analysis. Based on this algorithms, MusicIP sells so-called “play-
grounds”, with which a user can browse through his library on similarity links.

1http://www.musicip.com
2http://musicbrainz.org/doc/PicardTagger
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3
Music-Information Sources

In the web, music is a very popular topic. Websites dealing with music and artists are widely
spread. Nevertheless, structured and homogeneous information about the world of music
is difficult to find. There are projects which give a system to the colorful world of music.
Some of them are listed below. Unfortunately, not all of them make their work accessible for
research issues. Thus, the list of possibilities shortens a lot. This chapter shows an evaluation
of possible sources of information about music, and explains why last.fm seemed the most
promising source. Afterwards it is described how the last.fm data was crawled and processed
to later serve as basis for a graph of songs.

3.1 Evaluation of Possible Sources

3.1.1 Overview

Table 3.1 gives a broad overview over the evaluated sources. The first column shows if a
graph on song-level can be constructed, the second column indicates how complete the data
is and the third shows if it is freely available.

song-level completeness availability
Allmusic.com

pp p
Wikipedia

p p ppp
Pandora (Music Genome Project)

ppp pp
Search Engines

p ppp ppp
Last.fm

pp ppp pp

Table 3.1: Overview over the evaluated sources.

9



10 3.1. EVALUATION OF POSSIBLE SOURCES

3.1.2 Allmusic.com

Allmusic.com is a popular music-database. An expert-community is maintaining the
information which is stored about artists, albums and songs. Also, concerning similarity
information, they provide some interesting information.

Concerning artist-relationships, the allmusic-database contains for some artists a short list
of similar artists. But this information is quite fragmentary. For some artists no similarity
is stated and for others only very few. Nevertheless allmusic.com seems to be the best
hand-made source which is freely accessible on the web. For similarity on the granularity of
songs, allmusic.com provides style-, mood- and genre-information of the (about 100) most
popular songs. This amount of songs is of course far too small to construct a reasonable
graph of songs, but using this style-information, a similarity measure can be computed [17].

The core business of allmusic.com is the licensing of their information to companies like mi-
crosoft or amazon. These companies use the data to enhance their applications. Unfortunately
allmusic.com is not crawlable. After some number of requests the crawler gets banned. As a
consequence, this source of meta-information can not be used for constructing a music-graph.

3.1.3 Wikipedia

Wikipedia in its different language versions is holding a lot of information about music. For
lots of artists, style-information and a descriptive text is given. Since Wikipedia is a wiki and
therefore ’hand-edited’ by the community, the pages of the different artists are individual.
The crawling of these different-looking pages would require complex parsing and is not
feasible within this master thesis.

Another weakness of Wikipedia as information-source for music is its incompleteness. It is
in the nature of a wiki, that unpopular and rather unknown topics are not perfectly covered.
Also information at song-level is hardly available, it exists only for very popular tracks as
those of the Beatles.

3.1.4 Pandora / Music Genome Project

Pandora is a personalized Web-radio1. As starting point it gets the favorite artist or song.
From then on, it plays music that should be similar. Behind Pandora lies the ’Music Genome
Project’; the name is derived from the famous ’Human Genome Project’. This project was
founded in January 2000, and since then analyzes songs. It has the ambitious goal to divide
every piece of music into ’genes’. Therefore it uses expert-opinion and acoustic algorithms.

The music genome project analyzed over 400000 songs from more than 20000 artists (July,
2006, source: Wikipedia). This database is the core of the company so it is comprehen-
sible that Pandora does not make information accessible, and does not make available a
data-sample for reseach issues. However, on their website, Pandora offers a ”Background
Search”-function, which indicates a sample of 6 similar songs for each song in their database.

1http://www.pandora.com
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But this small and incompletely accessible information, together with the uncertainty if crawl-
ing would be legal, discourages from using Pandora as source for a music-graph

3.1.5 Search Engines

Search engines are a known source for extracting social networks. E. g. in the development
of POLYPHONET [14], search engines are extensively used. It is described how a social
network of the academic society is constructed using Google.

The way relations are built using search engines is as follows:

1. Number of results ni for query ’keyword i’

2. Number of results nj for query ’keyword j’

3. Number of results ni;j for query ’keyword i AND keyword j’

With this triple fni; nj ; ni;jg, the relatedness of two keywords is computed using known
formulas (see Section 4.1.1).

For music (be it artists or songs), the information search-engines provide seems to be in-
adequate. Web-pages holding two songs are rather chart-lists or discographies than lists of
similar songs. So a co-occurrence of two songs on a web-page has nothing to do with simi-
larity in many cases. For this reason, search engines like Google were not taken into account
in the evaluation of possible data-sources for music similarity information.

3.2 Last.fm / Audioscrobbler

Last.fm is a social network, where registered users have a profile and a list of friends (see
Figure 3.1). The 50 most played tracks (”top-tracks”) of each user can be retrieved. Songs
which appear together on such a list are in most cases related, so they can be assumed to be
similar in some sense. However, such two songs do not have to be the most similar ones.
How similarity is constructed out of these top-tracks is described in Chapter 4 in detail.

Audioscrobbler (the project behind last.fm) provides some REST-Webservices2 which
are freely available. A REST-Webservice encodes the parameters in the url (like
http://www.zipcode.com/ws/country?cityname=xyz) and gives the information back in
xml-format or plaintext. The advantage of this approach is the fact that it works the same
way as the world-wide-web. The request does not have to be encoded in a special format
(like SOAP) and the webservice can therefore be consumed by simple clients (like websites
with javascript).

The only constraint the Audioscrobbler Webservice has is that it is not allowed to do more
than one request per second. This constraint was not critical to the project, since one
request per second means 86400 requests per day. This number of requests is high enough
to get a useable amount of data in a reasonable time (the thesis took six months). There

2http://www.audioscrobbler.net/data/webservices/
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are other quite similar services (musicmobs.com, upto11.net), but last.fm is the most pop-
ular and therefore the most adequate for the task of constructing a graph of the world of music.

Figure 3.1: Simplified model of the last.fm-community. A friendship-network, where every
user has its music profile

With respect to possible applications, the opinion and the feeling of the “end-users” them-
selves seemed a good source. The alternative would be expert opinions or some sort of
acoustic comparisons (which was out of scope). Last.fm is always up-to-date and indepen-
dent from experts, which are of course also subjective in their findings. Another nice charac-
teristic of the Audioscrobbler-data is that it allows to compute both artist- and song-similarity.
Considering this advantages and the disadvantages of the other sources, we decided to work
with last.fm/Audioscrobbler.

3.2.1 Retrieving the Data

Using the REST-Webservice of last.fm, the 50 most-heard tracks of each user can be
retrieved. Unfortunately, last.fm has the policy of not giving away large amounts of data
although it is freely accessible in small pieces. So a sample of data has to be fetched by a
automated crawler. Since it is allowed to state one request per second, the amount of data
that can be fetched is limited by time, but sufficient to get a quite large sample (see Table
3.3). Our crawler has two basic functions (see Figure 3.2): expanding users and crawling
top-tracks.

A mysql-database is used in this project for storage. The data-model corresponds to the data
in last.fm (see Figure 3.3). The tables for users and friendships are filled when expanding
users. The tables for songs, artists and top-tracks (tblHas song) are filled up when crawling
the users’ top-tracks.
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Figure 3.2: Expanding users (left) and crawling the top-tracks (right)

Figure 3.3: Relational tables for storing the data from last.fm
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Possible Improvements

Expand users and get the top-tracks of users which are on the “edge” of the network. Take the
user with the least friends in the database to be the next to be expanded. Like that, the crawled
sample of users would spread more “homogenous” over the whole friendship-network. If we
assume that friends tend to listen to similar styles of music, the graph of songs would also get
more homogenous in the world of music.

3.2.2 Cleaning Process

The data of last.fm is in fact what the users provide. That means the names of the songs and
the titles may be misspelled or even incorrect. Table 3.2 shows an exemplary extract of the
data to illustrate the problem. To reconstruct the incorrect data is in general not possible
since it is not known what song was really played by the user.

id name musicbrainz.org-id (mbid)
137 The Beatles b10bbbfc-cf9e-42e0-be17-e2c3e1d2600d
34012 The Beatles (Love Album)
89826 The Beatles @ .com
125937 The Beatles-LOVE 2006
133814 The Beatles - No Reply
135968 The Beatles’
145964 The Beatles: Paul Mccartney
149681 The Beatles @ .nl
155591 Meet the beatles
160674 Beatles, Let it be
200856 1025 Beatles

Table 3.2: Extract of table “tblArtists”. Many different versions of the same artist exist, but
only one has a musicbrainz.org-id (see Section 3.2.2) attached.

For simplicity, no data is altered in the cleaning process, entries are only accepted or deleted.
If an artist’s name is not found in the musicbrainz-database3, the artist is deleted with all his
songs. Also all top-tracks-entries containing these songs are deleted.

Musicbrainz

Musicbrainz is a large online-community which is committed to bring order into the world
of music. They have a database with over 300000 artists and 5000000 tracks (April 2007).
Each artist has a unique id called MBID and a lot of information stored. Associated with
the artists are albums and tracks. The tracks have also an unique MBID and an acoustic
fingerprint. This acoustic fingerprint, called PUID, is proprietary by Music IP (see Section
2.2), which collaborates with musicbrainz.

3http://www.musicbrainz.org
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Musicbrainz makes all its data available in a REST-Webservice. This webservice is used to
clean the last.fm-data as described in Section 3.2.2.

Data Statistics

The cleaning process results in the following data, which was used to compute the graph (see
Table 3.3).

Total users 290’148
Distinct songs 1’570’519
Distinct artists 91’470
Avg songs/artist 17.2
Avg toptracks/song 9.24

Table 3.3: Data statistics after cleaning

The songs/artist-ratio shows how many songs an artist has on average in the crawled data.
The toptracks/song-ratio on the other hand shows how many times a song appears in the
playlists on average. The second ratio is important in order to create a meaningful graph. If
a song only appears once in all top-tracks, there cannot be said much about the relatedness
of this song to other ones. Of course, the more data is at hand, the more the songs occur and
the better the quality of the graph gets.

3.3 Handling of Large Tables

In the course of this master thesis, a lot of data was gathered which had to be processed. This
data was all stored in different MySQL-databases. To handle the large tables, there are some
strategies and “tricks” which helped a lot. Most important and the goal of all following points
- reduce database-accesses as much as possible. In this project, Java and JDBC were used,
but this recommendation typically also holds in other configurations.

Batch-Updates When a lot of updates, inserts or deletes are required, batch updates should
be made. This way, the database is accessed only once instead of hundreds of times.
This reduces the database-accesses and speeds up the application.

Streaming result sets When doing a request with JDBC, the whole resulting table is stored
in memory before it can be accessed. This fact can lead your application to run out
of memory. To process the rows anyway, a streaming result set can be used. Only the
actual row is loaded into memory at a time. The drawback of the streaming result set
is that no other query can be executed until the streaming result set is closed.

Subqueries When the database allows subqueries (MySQL does so from at least version 5),
they are faster than to process the inner query in your application code.

Indices Indices should be used very carefully. They speed up select-statemens, but slow
down updates and inserts significantly (especially when the indices are organized as



16 3.3. HANDLING OF LARGE TABLES

B-Tree). The index has to be maintained with each change of the table. So when tables
get large and frequent inserts are needed, every index that is not essential should be
omitted.



4
Graph Construction

There are different possibilities how to construct a graph of songs out of the described data
(see Chapter 3). Depending on the strategy, other links between songs and other weights of
the links will be generated. Because of this large variety of possibilities, it is inalienable to
have a certain “ground-truth” to which the constructed graph can be compared.

4.1 Pairwise Similarity

Having the top-tracks of the last.fm-users, the first problem to solve is the method how
to relate two songs. The basis on which the whole graph is founded on is the following
assumption:

Playlists contain similar music

and therefore

The more top-tracks contain both together, the more similar the songs are (assuming
all other parameters stay constant).

There are some difficulties to consider using this heuristic:

• Two very popular songs are more likely to be together in the top-tracks of a user, so
popular songs should be “punished” somehow.

• Songs which occur only once are difficult to treat. They have 49 neighbors, namely
the songs of the top-tracks-list in which they occur. A similariy calculated from this
scenario is clearly doubtful.

17
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4.1.1 Similarity Indices

To describe the different coefficients, a few simple terms are introduced:

N Number of playlists

ni Number of occurrences of th song with id=i

ni;j Number of co-occurrences of the songs with the ids i and j

users(si; sj) Set of users which have the two songs with ids i and j in their top-tracks

A co-occurrence of two songs is the event that these two songs occur in the same top-
tracks-list. That means the two specified songs are listened to by a person. We restricted the
pairwise similarity between two songs to depend only on the triple fni; nj ; ni;jg. Having the
data from last.fm (see Figure 3.1), it would also be possible to consider other information.
Further ideas are explained in Section 4.1.2.

Adapted to the environment with the songs and the top-tracks-lists, some similarity measures
from the information retrieval community are known from literature[14].

Co-occurrences: ni;j

Cosine Coefficient: ni;jp
ni�pnj

Dice Coefficient: 2�ni;j
ni+nj

Overlap Coefficient: ni;j
min(ni;nj)

Jaccard (Tanimoto) Coefficient: ni;j
ni+nj�ni;j

Dice and Jaccard are equivalent with respect to ordering, since dice = 2�jaccard
jaccard+1 . For the

ranking of the similar songs it makes therefore no difference whether to use Dice or Jaccard.
But the Jaccard-coefficient is a little more “rigorous” for less-related entities. E. g. if the
similarity computed with Dice is 0:8, Jaccard returns only 2

3 .

Own Approaches

triple-probability This similarity coefficient measures the probability that a triple
fni; nj ; ni;jg would occur in N random top-tracks-lists.

P [si] =
ni
N

Ptriple = ((ni
N
)ni;j � (1� ni

N
)nj�ni;j ) � Permutation(nj ; ni;j ; nj � ni;j)

weight = � logPtriple

Explanation: Given users(sj) and users(si; sj). ni;j of the occurrences must exactly
match the ni;j playlists in playlists(si; sj). The probability for one of these events
is ni

N
. At the same time, nj � ni;j times the occurrence of si must not match the

top-tracks-lists which sj is in. This gives the probability of this triple to occur in one
special sequence. To get the overall probability this term has to be multiplied with the
permutation of all possible sequences.



CHAPTER 4. GRAPH CONSTRUCTION 19

co-probability The co-probability relates the natural probability that two songs co-occur
(based on their overall occurrence) to the actual co-occurrence ni;j .

P [si] =
ni
N

P [si; sj ] =
ni;j
N

weight = log
P [si;sj ]

P [si]�P [sj ]
= log

ni;j

N
ni
N
�nj
N

� ni;j
ni�nj

To emphasize the value ni;j , it can also be squared. We then call the coefficient
co� probability2.

weight = log
ni;j

2

N
ni
N
�nj
N

The weight is then equivalent (with respect to ordering) to the cosine index, since
co � probability2 = log(N � cosine). The co � probability2 is however better for
the purpose of song-similarity, because it favors low similarities, whereas the cosine-
coefficient produces very low weights for most cases.

4.1.2 Considering Rank- and Friendship-Information

The last.fm/Audioscrobbler-data also contains friendship information. This information
made it possible to retrieve a random set of top-tracks-lists by randomly walking through
the friendship links. Because only a subset of all friendship-links are accessible via the
web-service at the time of writing, it was not possible to get the complete friendship-graph
from last.fm. So we could only get a subgraph of the real friendship network.

Assumption: The less connected the users(si, sj) are, the more connected are the two
songs.

Explanation: Two friends are more likely two share the same songs, even if they are not
highly similar. Thus it seems to be an even stronger indicator for similariy if two unrelated
persons share two songs in their top-tracks. This influence is however assumed to be
marginal and therefore not further explored in this project.

The top-tracks of the users contain also rank- and playcount-information (see Figure 3.1).
The playcount is the number the user listened to the specific song. Also this data can be
taken into consideration:

Assumption: The higher the playcount-numbers are, the more important is a specific
co-occurrence

Explanation: If a user listens only sporadic to music, his opinion is less important to a music-
enthusiast. If a song is only heard twice in a month, that obviously doesn’t mean a lot to the
similarity inside this top-tracks-list.
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4.2 Directed or Undirected?

When talking about artists, one would clearly agree that the similarity relation must not
be mutual. E. g. a former artist that influenced a new one (e. g. The Beatles and Oasis)
would not be called similar. But in the other direction the new artist is similar to the artist
that influenced him. The notions of time and style influence are mixed with the notion of
technical similarity.

But between songs, this influence is less natural. Songs can be compared at a more technical
level and the social components are less present. Two songs can be similar for different
reasons (instruments, lyrics, mood, melody) than artists. Thus it is reasonable to have no
direction on the edges between songs.

4.3 Construction of Edges

Out of the described pairwise similarities, a graph G = (V;E) with n vertices and m edges
has to be computed. In our graph, the vertices represent songs. The pairwise similarity
measures gives a weight for each edge in the graph. Assuming that every song appears only
once and there are 1 million nodes, the following simple calculations can be made:

m = 49 � n = 49millions,

since every vertex has 49 neighbors (the songs in the same top-tracks-list). Having an
average occurrence of 7, this number increases:

m = 7 � 50 � n = 350millions

With the ongoing crawling and adding of top-tracks-lists, the number of edges gets even
larger. To handle the graph and perform algorithms on it, it is necessary to sparsen it, i. e. to
remove some edges. To achieve this, two major strategies can be found.

4.3.1 Different Sparsening-Strategies

Fixed Number of Edges (rank-based)

Idea: To limit the total number of edges in the graph, the number of outgoing edges per
node can be limited. For each vertex, the top-weighted x edges are stored. This strategy has
advantages and drawbacks

• Every vertex has neighbors

• If x is set large enough, the graph is connected with high probability

• “Weak” edges will be in the graph, whereas “stronger” edges are omitted

Threshold (weight-based)

Another strategy to find the edges which are worth storing is to fix a threshold �, and to
omit all edges with weight < �. This approach is more intuitive, since the weakest edges
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are omitted first. That means that only edges with a certain amount of similarity stay in the
graph.

• A threshold has to be found such that the graph is connected

• The “strongest” edges stay

When counting the number of nodes in the largest connected componenet with increasing
threshold, an optimal value can be found (see Figure 4.1). The graph should be connected
(the largest connected component should desirably be as large as the graph itself), but there
should be as few edges as possible. So the right point for the threshold is where the curve
starts to flatten. That means there are not much nodes added when further increasing the
threshold, but mainly edges.

Figure 4.1: Largest Connected Component for different thresholds after 290148 users pro-
cessed. The pairwise similarity measure used in this test is co� probability2.

4.4 Quality Measures

4.4.1 “Ground-Truth”

Finding ground truth in music-similarity is a known problem. For artist-similarity, [9] already
evaluated some sources to serve as ground-truth and made different datasets available. But
to be reasonable for a song-graph, the ground-truth also has to apply on the level of songs.
Otherwise the song-similarity could not be checked and it would make no sense at all to
construct a graph at the granularity of songs. Therefore, we had to find a reasonable source
to compare the results ourselves.
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Since music is not an exact topic and lacks a mathematical model, similarity depends on the
human observer. Nevertheless, something is needed to measure the quality of the links of the
created graph. There are at least three possibilities to do this, of which we chose the easiest
with respect to time and budget constraints.

Ask People

The first solution which comes to mind is certainly a sort of poll or user evaluation. The
generated similarities are presented to ordinary people which then give feedback whether
this similarity is good or not. Because the outcome of such an evaluation depends greatly on
the persons that are asked, a certain bias in the user’s opinion is very probable. This problem
can be countered with more test-persons.

It seemed difficult to generate a big and heterogeneous community of test-users in short time.
The quality measure with user evaluation was not considered.

Other User-Driven Recommendation Systems

There exist recommendation systems on the internet, and they are also accessible (last.fm,
upto11.net, musicbrainz.org, musicmobs.com). But all of them just provide artist similarity.
Of course this can also be used, to give an overall impression over the sense of the generated
links. If a link exists between two songs whose artists are recommended mutually by the
recommendation systems, the link can be appropriate. But it doesn’t help getting the quality
on the level of songs.

Because there was no freely accessible song-level recommendation system, this quality mea-
sure was also out of question.

Expert Systems

Another possibility to measure the quality of the constructed links is to compare them to
an expert-opinion. If there would exist a database of links between songs edited by some
experts, that could serve as a sort of “ground-truth”. Unfortunately, such data is hard to find,
but allmusic.com provides a kind of similarity between songs feasible to crawl, which is
described in the next section.

4.4.2 Style-Information as Ground-Truth for Song-Similarity

Allmusic1 is surely one of the largest music-database which exist on the internet. [9] used
allmusic.com in their studies as ground-truth for artist-similarity. However, it can also serve
as source for song-similarity. Allmusic provides (among other things) a hierarchical tree
of music styles. Each of these styles has a list of “main-songs” (see Figure 4.2), songs
which are typical and popular for a certain style. These lists are hand-made by the community.

These “main-songs”-lists can be used to measure the quality of the computed similarities.
Songs which appear on one of this lists should be similar to the other ones, or at least to the

1http://www.allmusic.com
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Figure 4.2: Style-graph of allmusic.com. The distance of two styles is the level of the least
common ancestor. E. g. the two highlited styles have distance 2.

ones of the parent style or of sibling styles. The most natural distance function for two songs
si and sj or styles sa and sb in this graph is based on their lca (least common ancestor):

styleDistance(si; sj) = level(lca(styleOf(si); styleOf(sj)))
styleDistance(sa; sb) = level(lca(sa; sb))

The levels are according to Figure 4.2. If two connected songs are within distance 0, they
are from the same style. If they have distance 3, they are only connected by the artificial
supernode, that means they are not related at all. Any distance function which is used with
the music-graph can now be compared to the distances given by the style-graph. If two
songs have distance 3 in the style-graph, they should be far away in a graph representation.
This fact is used to measure the quality of the link creation, the graph construction and the
embedding.

For the implementation of the quality measure, the styles and their main-songs have to
be crawled from Allmusic.com. To avoid being banned, only one request per 10 seconds
was made. Of course, not all of the songs in the allmusic.com-main-songs were found
in the crawled sample of last.fm, since there are very special styles in allmusic.com like
“Traditional Middle Eastern Folk”. And some styles do not even have main-songs assigned.

The style-graph is not exactly a tree. Styles can have multiple parents (as in Figure 4.3).
Nevertheless it has no cycles, since the edges are directed from child to parent, and only
point from a lower level to higher one (i. e. the graph is a special directed acyclic graph). So
the least common ancestor, which is used as distance measure, can be defined exactly.

styles 735
styles with assigned main-songs 610
distinct songs 10534
distinct songs found in sample 6654
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Their occurrence in the “toplevel-styles” (main categories like rock, jazz or blues) are as
follows. The same song can appear several times, so the sum of all songs is beyond the
number of distinct songs.

Rock 6602
Jazz 908
R & B 1695
Rap 170
Country 1198
Blues 1004
World 831
Electronica 1079

4.4.3 Results

For our sample of songs, the links have been created using the different pairwise similarity
measures (see Section 4.3.1). Afterwards, the distance can be computed for all edges.

1. Construct graph using a specific strategy (pairwise similarity coefficient, threshold or
fixed number of links)

2. For each edge, compute the distance

Because edges which base on only one co-occurrence are rather random, these edges are
omitted for the quality measure. In Figure 4.3, the results of a quality-measure is shown. Up
to almost 90 percent, the constructed edges are within distance 2, that means there are only
10 percent of the edges whose styles are not connected according to allmusic. The cosine-
and the co � probabilty2-index and the triple � probability-index (see Section 4.1) seem
to be the best indices for constructing similarity out of lists with persons favorite songs.

Similarities can be constructed out of the weights (which are dissimilarities) easily, e.g. by
just subtracting from 1. In Figure 4.4, the weights are mapped to similarities between 0 and
100 (0 means perfectly similar). It is obvious that using the indices jaccard, dice, cosine
or overlap results in weights that are mostly between 90 and 100. Theses indices do not
differentiate the different strengths of similarities in our data. The indices co � probabilty,
co � probability2 and triple � probability show more balanced distributions. Therefore,
co� probability2 is chosen to construct the links of the graph.

4.5 Implementation

The whole project was implemented in Java. As database connection, MySQL together
with an according JDBC-Driver was used. For the construction of the edges, an incremental
approach was realized (see Figure 4.5. Each song and each edge has a counter which is
incremented whenever it occurs.
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Figure 4.3: Quality measure for fixed 3 edges per vertex.The value at position 0 is the fraction
of edges which connect nodes from the same style. The value at position 2 is the fraction of
edges which connect nodes from the same top-category (Rock, Jazz, etc.), including the edges
of position 0 and 1 (a subtree in Figure 4.2). Thus, the higher the curve lies, the better.
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Figure 4.4: Weight-distribution of the edges constructed with the different pairwise similarity
measures. The value at position 10 is the number of edges with weight between 0 and 10.

Figure 4.5: Processing a user
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Each user is processed alone. Each song and each pair of songs (edge) in a user’s top-
tracks-list is incremented. After this computation, a user can be forgotten, and new users
can incrementally be added to improve the quality of the links and to add new links. This
approach is very natural and makes it easy to expand the data.

Complexity: O(u�p2) where u denotes the number of users and p the number of top-tracks-
entries per user.
Time: Approximately 8s/user (most of the time used for updating edges)

4.6 Properties of the Graph

According to Figure 4.1 it is optimal to set the threshold to 60. Ignoring all edges with
distances higher than 60, the following graph is built:

Nodes n 430’000
Edges m 6’300’000
Clustering coefficient 2 0.5152826376728573
Diameter d (weighted) 370 ¡ d ¡ 523
Average path length 194.18

The high clustering coefficient and the low average degree agree to the properties of a small-
world-network, as Watts and Strogatz [21] explained. This properties lead to a small diameter
and small path lengths, which is the most significant feature of small-world-networks, as
they gain their names from it. The graph of songs constructed out of people’s most heard
songs therefore joins the group of small-world-networks.

The degree-distribution of the graph is approximately power-law (see Figure 4.6). This
degree-distribution also occurs in web-graphs [3].

2According to paper of Watts Strogatz [21]
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Figure 4.6: Degree-distribution of the music-graph. The distribution is approximately power-
law.



5
Embedding

Given a graph G = (V;E) with n vertices and m edges. An embedding of G assigns to each
node in V a point in the Euclidean space Rd, where d is the number of dimensions of the
Euclidean space.

For the Music-Graph, the advantages of an embedding are obvious. A lot of algorithms
such as computing the distance between two songs are drastically simplified. Moreover,
an embedding makes many applications which are based on the Music-Graph independent
of a central server, the application gets distributed (see Figure 5.1). Especially mobile-
applications, which typically have a slow, and often not permanent connection to the Internet,
this would be a significant feature.

Figure 5.1: Sketch of applications with an embedding of a music-graph

29
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5.1 Embedding of Large Graphs

When dealing with large graphs, a lot of embedding and visualizing algorithms are too com-
plex (quadratic complexity is infeasible for a large number of nodes). Memory or computa-
tion time limits are reached. The general idea to break through this limits is to split or filter
the graph in some way. The graph is divided in subgraphs and then embedded one after the
other. This idea is applied in MIS-Filtering and Landmark MDS, which are able to deal with
large graphs.

All-pair-shortest-path O(n2 � log n+m � n) Johnson
Single-source-shortest-path O(m+ n � log n) Dijkstra
Classical MDS O(d � n2)

Landmark MDS [6] O(n � l � d+ l3)

Force-directed embeddings O(n2 +m) Fruchterman-Reingold [10]
MIS-filtering [11] O(n � logmaxdegree2)

Table 5.1: Complexities for some graph-algorithms. n denotes the number of vertices, m
the number of edges, d the dimensions of the embedding and l the number of landmarks in
Landmark MDS

Force-directed embeddings Also called spring-embeddings. These methods are not able to
embed large graphs, they are only convenient for some hundreds of vertices (see [11]).

MDS, Landmark MDS There exist different versions of MDS (Classical MDS, FastMap,
MetricMap, Landmark MDS). MDS works with eigenvalue-decomposition of the adja-
cency matrix of a graph. Platt [18] showed that Landmark MDS outperforms the other
variants of MDS.

MIS-Filtering The graph to embed is first split into vertex sets which are maximum inde-
pendent sets. These sets are sequentially embedded with a local force-directed method.
The advantage of this algorithm is that no clustering is needed, the hierarchical splitting
of the graph is according to the underlying graph structure. [11]

5.2 Embedding with LMDS

To embed the Music-Graph, we decided to use Landmark MDS. Landmark MDS first embeds
a set of landmarks with classical MDS and afterwards positions every other node according
to the distances to the landmarks. The algorithm assures to bring results with low compu-
tation complexity, since its complexity is controllable by the input parameters (landmarks,
dimensions).

5.2.1 Choosing Landmarks

The set of landmarks has a significant effect on the outcome of LMDS, so it is important to
think about possible ways of choosing them and which approach is best suited.

Random The landmarks are chosen at random.
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Max-degree The nodes with the highest degree are the landmarks.

Max-min Proposed by de Silva and Tenenbaum [6]. Starting with a random node, the next
landmark is always the node with the maximum minimal distance to the set of land-
marks.

Max-degree favourises the most popular nodes (in terms of a small-world-graph). This can
lead to bad embeddings since the popular nodes may all be in the same part of the graph (e.g.
US web-pages in a web-graph). Random landmarks lead to good results when the number
of them is high enough. But this worsens the performance a lot, since for every landmarks a
SSSP-tree1 has to be computed (see Table 5.1). Max-min gives also reasonable embeddings
with small numbers of landmarks, and it is guaranteed that also unpopular parts of the graph
(like classical music in our graph) have near landmarks. Otherwise whole groups of nodes
can have the same distance to all landmarks and would therefore be embedded in a single
point, which is not desirable.

5.2.2 Right Number of Dimensions

Besides the landmarks, the number of dimensions determines the outcome of the embedding.
The determination of the number of dimensions is a trade-off between quality of the
embedding and the space needed.

To measure the quality between the different dimensionalities, different playlists are
generated (using Algorithm 4). The smoothness is computed as the number of re-occurring
style-transitions in the playlist (e. g. if a playlist starts with a country-song followed by a
jazz-song and country-song, this would count as one re-occurring style). As a playlist should
smoothly lead from one style to another without many jumps, this serves as a good quality
measure.

As Figure 5.2 shows, the smoothness of the playlists increases while incrementing the number
of dimensions. 8 dimensions is the lowest number of dimensions where the outcome is still
reasonable. This is the optimal, because the number of dimensions should be held as small as
possible (because of space and computation complexity).

5.2.3 Quality Measures

An embedding has different parameters (number of landmarks, methods to choose landmarks,
dimensions, sparsening of the edges). To find the best suited parameters, it is important
to have a notion of quality. One can distinguish between structural and semantic quality
measures. Structural means without knowledge of the content of a vertex (e. g. without
knowing what songs lies behind the vertices). A semantic quality measure on the other hand
can take into account this information.

Edge-Distortion A well-known structural quality measure of embeddings is the so-called
distortion. The distortion d compares the distance of two vertices in the embedding
and in the original graph. Because the full distortion is too complex (it would require

1Shortest paths from all nodes to a single source-node.
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Figure 5.2: Playlist-Smoothness for playlists of size 50

a all-pairs-shortest-path), only the distortion of the edges that are present in the graph
is considered. Formally:

d = 1
m
�Pfu;vg2E max( diste(u;v)

distg(u;v)
;
distg(u;v)
diste(u;v)

)

When dealing with Small-World-Graphs, the distortion has only limited weight. In
Small-World-Networks, clusters are supposed to exist, which are interlinked by so-
called long-range-contacts. Although this contacts are far away in the sense of an
embedding, they can be linked with high weight. The long-range contacts thus worsen
the distortion as the term already suggests.

Allmusic-Styles To semantically measure the quality of an embedding, the allmusic-styles
can again be used (see Section 4.4.2). Of course the semantic quality of the links have
already been tested when constructing the graph, but to be sure that the embedding
does not worsen this properties, such a measure can be built (see Algorithm 1). The
distances of the styles and the distances in the embedding are constructed and their
dependence is computed and summarized in a single value (called style qm).

A value of 0:2 then means that for each increment of distance in the style-tree (see
Figure 4.3), the distance in the embedding increases by 20 percent in average. The
higher this average increase is, the better the songs of the “close-by” styles and the
ones of the “far-away” styles get separated.
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1: for all si, sj do
2: // si and sj have style-information
3: dists  level(lca(styleOf(si); styleOf(sj)))
4: diste  euclidean� distance(si; sj)
5: end for
6: distt  avg(diste where dists = t)

7: return avg(distt+1�distt
distt

)

Algorithm 1: Quality measurement using style-information (style qm)

5.2.4 Results

As shown in Table 5.2, it is reasonable to apply LMDS to the graph of songs, as the style-
measure (which measures how well the songs of the same style get together and the ones
from different styles get separated) is good. The songs from the same style are significantly
nearer than the songs of completley different styles.

dim landmarks choosing nodes edge-distortion style qm
10 500 random 374738 1.704 0.210
10 500 max-min 374739 1.702 0.210

Table 5.2: Example embeddings with Landmark MDS

5.3 Iterative LMDS

A real-world graph which is created from imperfect data is of course itself imperfect. Some
edges get into the graph which should not exist (e. g. between two very popular songs in a
song-graph). The way the graph of songs is created in this thesis (see Chapter 4) lets strongly
assume that some of those edges also exist in this graph. To locate these “bad” edges and
remove them from the graph, we propose Iterative Embedding as a heuristc to take advantage
of this fact and further improve the LMDS-embedding (see Algorithm 2).

5.3.1 Algorithm

After each embedding, the “worst” edges are removed from the graph. This process is
repeated i times. After each iteration, a quality-measure has to be applied to the embedding
to see if it is still improving or it already gets worse.

To locate the edges to remove, the stresses of all edges are computed. The edges with the
largest stress are removed before computing the next embedding (see Algorithm 3). The
fraction should be chosen as small as possible. The smaller the fraction gets the more
iterations are needed to get to the best solution, so the lower bound for the fraction is set by
the computation time.

Complexity: O(n � l � d � i+ l3 � i), where i is the number of iterations.
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1: landmarks createLandmarks(number; strategy)
2: coordinates LMDS(d; l)
3: for i = 0 to i do
4: removeEdges(f)
5: landmarks createLandmarks(l; strategy)
6: coordinates LMDS(d; l)
7: end for
8: return coordinates

Algorithm 2: IterativeLMDS(dimensions d, landmarks l, fraction f, iterations i)

1: for all edges e do
2: stress = lengthembedding(e)=lengthgraph(e)
3: end for
4: for i = 0 to m � f do
5: remove edge with maximal stress
6: end for

Algorithm 3: removeEdges(fraction f)

5.3.2 Experimental Results

When applying IterativeLMDS to the graph of songs, a significant improvement in the
quality of the embedding can be observed.

In Figure 5.4 IterativeLMDS was applied to the full graph (about 370’000 nodes). In each
iteration, 0.5 percent of the edges were removed. It is clearly visible that the quality of the
embedding is improving. Therefore, different samples were made with different seeds for the
pseudo-random-generator of the landmark-choosing-process (the graphs in Figure 5.3 show
the mean quality over all samples). After about 30 iterations, the quality starts to decrease,
since more and more “good” edges start to get removed.

The number of iterations to get to the peak seems to be independent of the size of the graph,
when using a constant fraction of edges to remove at each iteration. Thus the fraction of
“bad” edges stays constant as the graph grows. The evaluations with graphs of different sizes
underline this assumption (see Figure 5.3).

To compare IterativeLMDS with LMDS, LMDS must be performed with i � l landmarks,
such that it has the same complexity. This is done in the example with 50 landmarks on the
graph with 50000 nodes (see Figure 5.3). The peak is at about 30 iterations, thus i � l is
1500. It shows that LMDS doesn’t reach the quality that IterativeLMDS gives with the same
complexity.
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Figure 5.3: Simalutions of IterativeLMDS with different sizes of graphs. The bars show
the variance over all the samples. The simulations show a clear increase of the quality (see
Section 5.2.3) until a “peak” is reached.
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Figure 5.4: Simalution of IterativeLMDS with the full graph of songs (370000 nodes).



6
Application

Once an embedding of songs is at hand, some interesting applications become possible. The
scenario is described in Figure 5.1. A user downloads the coordinates of his song-files and
any application can use them in order to create a benefit for the user.

• Visualization of a user’s music collection

• Recommendation Systems

• Playlist generation out of a user’s music collection

A playlist-generator (see Section 6.1 and a style-proposer (see Section 6.2) were
implemented and deployed in a web-application which is available at http://pc-
5413.ethz.ch:8180/musicweb (see Section 6.3). In order to leave the embedding open for
third-party developers, a web-service is available (see Section 6.3.1). Using the web-service,
the coordinates for any song can be retrieved and processed to create new applications.

6.1 Playlist-Generator

The simplest algorithm one would think of for creating a playlist is described in 4. The
virtual connection line between the start- and the end-song is divided into n pieces, where
n is the desired length of the playlist. At each virtual intermediate node on this connection
line, the nearest node is chosen. The nearest-neighbor-search is performed on a kd-tree[15].

This algorithms behaves badly if the start- and end-song are near and there are not enough
songs in between them. In this case, songs around these two are taken in more or less
arbitrary order. If the start- and end-song are even the same, the playlist contains the nearest
neighbors of this song. In order to create a meaningful ordering, some kind of tour has to be
taken.
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1: compute connection line between coords(v1) and coords(v2)
2: intermediatePoints[] divide connection line into s-2 parts
3: playlist[0] v1
4: playlist[s� 1] v2
5: for i = 1 to s� 2 do
6: n nearest(intermediatePoints[i])
7: while playlist contains(n) do
8: n nextnearest(intermediatePoints[i])
9: end while

10: playlist[i] n
11: end for
12: return playlist

Algorithm 4: Create playlist of size s from v1 to v2 from a given embedding coords

Artist Title
The Beatles All You Need Is Love
The Beatles Lady Madonna
John Lennon Intuition
The Beatles In My Life
R.E.M. Find the River
Gerry Rafferty Right Down the Line
Neil Diamond I’m a Believer
Frank Sinatra New York, New York
Billy Joel New York State of Mind
Stevie Nicks Leather and Lace
David Bowie Nature Boy
Alanis Morissette 21 Things I Want in a Lover
Mariah Carey All I Want for Christmas
Fatboy Slim Because We Can
Shakira Hips Don’t Lie (featuring Wyclef Jean)
Christina Aguilera Make Over
Britney Spears Boys
Britney Spears Walk on By
Britney Spears Sometimes

Table 6.1: Example playlist generated with Algorithm 4. Start- and endsong are “All you
need is love” from “The Bealtes” and “Sometimes” from “Britney Spears”.
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6.1.1 Time-constraints

In some cases, the desired criterion for a playlist is not the number of songs in it, but the total
length in minutes. E. g. if you want to play 30 minutes of music to fall asleep, or if you host
a party and you want to play music for the next hour. For this purpose, Algorithm 4 has to be
adapted.

1: remainingT ime d� duration(v1)� duration(v2)
2: playlist[0] v1
3: counter  0
4: while remainingT ime > avgSongLength=2 do
5: guessedSize round(remainingT ime� avgSongLength)
6: intermediatePoints[]  divide connectionLine(playlist[counter � 1]; v2) into

guessedSize+ 1 parts
7: n nearest(intermediatePoints[0])
8: while playlist contains(n) do
9: n nextnearest(intermediatePoints[0])

10: end while
11: playlist[counter] n
12: remainingT ime remainingT ime� duration(n)
13: end while
14: playlist[counter + 1] v2
15: return playlist

Algorithm 5: Create playlist of duration d from v1 to v2 from a given embedding coords

Algorithm 5 shows a possible generation of a playlist of a given duration. The size (number
of songs) is guessed each time a song is added to the playlist. The remaining space between
the current song and the endsong is divided by the guessed size and the next song is added.
The duration of the generated playlist will not differ much from the given duration. In a
bad case the duration of the very last song is a multiple of the average song length. As a
consequence, the playlist will get too long.

6.2 Style-Proposer

For a small subset of the songs, the style is known (see Section 4.4.2). Using this knowledge,
it is possible to make proposals for the other ones. There exist different methods to do this
proposals:

Minimum average distance (avg) Propose the style whose songs have the minimum aver-
age distance to the input song.

Minimum average distance with x nearest songs (min) Take for each style the x nearest
songs to the input songs and compute the average distance of these. Propose the style
with the minimum average distance.
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x nearest neighbors (maj) Take the x nearest neighbors of the input song and propose the
style which the majority of neighbors has.

method E[styleDistance] (see Section 4.4.2)
avg 1.877
min(1) 1.705985915492958
min(2) 1.601672535211268
min(3) 1.579665492957746
min(4) 1.587147887323944
min(5) 1.601452464788732
maj(100) 1.609222724031376
maj(150) 1.62621359223301
maj(200) 1.629384965831435

Table 6.2: Expected value of the style-distance between the proposed style and the real style
of the songs for which style-information is available. Taking the three nearest songs for each
style give the best results.

6.3 Web-Application

To make the algorithms and the embedding available, we developed a simple web-application.
We therefore used some REST-Webservices1 which are accessed with asynchronous calls2.
The webservices then query the db-server that contain the metadata and the coordinates (see
Figure 6.1).

Figure 6.1: Architecture of the web-application.

With the web-application playlists can be generated from a startsong to an endsong. Option-
ally an intermediate-song can be chosen. The playlist is then generated from the startsong to
the endsong via the intermediate-song. The length of the playlist can be stated either by a

1http://www.ics.uci.edu/ fielding/pubs/dissertation/rest arch style.htm
2AJAX, asynchronous webservice-calls with Javascript
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number of songs or by the length in minutes. Some sample-screenshots are in Figure 6.2. In
addition to generate playlists, an option can be switched on to propose styles to the songs.
This proposals are computed according to the algorithms described in Section 6.2.

The personal music-library can be uploaded via file-upload. For that reason, a file-format
had to be created, since there exists nothing likely by now. An Xml-format that holds all
the necessary meta-information of the songs seemed to be the best solution (see Section B).
Once the library is uploaded, a session is created to store the personal information. Now
playlists can be generated from a start- and end-song and afterwards downloaded in form of
a .m3u-file3, which can be played by most music-players.

The Xml-file has to be constructed out of the ID3-Tags4 of the audio-files. This tags are
often not complete or contain spelling errors. This problem can be faced with automated tag-
gers, which synchronize the tags witch metadata-databases (e. g. musicbrainz.org) through
acoustic fingerprints.

6.3.1 Web-Service

In order to allow a simple development of applications using the coordinates from the
embedding of songs, a webservice is installed in the web-application. Thus any application
can get the coordinates for songs and process them in a way that creates an additional benefit
for the user. The URL-Schema is:

http://pc-5413.ethz.ch/musicweb/getCoordinates?artist=x&title=y

where x is the name of the artist, and y the title of the song (e. g. getCoordinates?artist=The
Beatles&title=Yesterday) the http-response is in xml-format, containing a status-message and
the coordinates.

3M3u is a file-format for playlists, originally created for Winamp.
4Meta-information attached to Mp3-files
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Figure 6.2: Screenshot of the web-application while generating playlists, and the upload of
the library in the xml-format.



7
Summary and conclusions

7.1 Summary

As the quality measurements and the application show, it is possible to construct song-
similarity and a graph of songs out of people’s favorite (or most-heard) songs. The links
created agree mostly with the assigned styles by the Allmusic.com and are far from being
random. But to construct reasonable edges, a lot of data is required.

To get a notion of distance between two random songs, a distance labeling is most appropri-
ate. Algorithms running on the graph itself are inpractical, since computing a single shortest
path already has complexity O(m + n � log n)) (n nodes, m edges). Out of the distance
labeling and embedding algorithms, LMDS seemed to be a reasonable choice, because its
complexity O(n � l � d + l3) is adjustable through the parameters l (number of landmarks)
and d (number of dimensions). The quality measures showed that the embedding clusters
“close-style”songs and separates “far-away-style”-songs.

The quality of the embedding can be further improved by applying IterativeLMDS, which
iteratively embeds the graph and removed the “worst” edges (the ones with the highest stress).
Having such an embedding, a lot of interesting applications become possible. In a demo-
application, a useful playlist-generator was developed.

7.2 Future Work

More sources The graph is constructed in a incremental way (see Section 4.5). This “open”
architecture allows to easily append new sources to the graph, other than last.fm. The
occurrence-counter of the edge has just to be incremented each time two songs are
stated as similar.

Incorrect/misspelled data The data provided by last.fm is often incorrect (see Table 3.2).
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The misspelled names could be matched to correct ones using special alignment al-
gorithms. Then less data would have to be omitted in the cleaning process and more
would be available for constructing the graph.

Updatable embedding Since there steadily come in new nodes to the graph of songs, there is
a need to insert this nodes to the embedding without constructing the whole embedding
from scratch.

Community If there can be created a community (or use existing communities like mu-
sicbrainz.org), the graph could be made self-improving. Community members could
increase or decrease the similarity of two songs.

Develop offline-application The web-application still is on a central server, but it would
also be possible to download the coordinates of the songs once and store them. To ease
the download a web-service was implemented (see Section 6.3.1). The coordinates
could even be stored in custom ID3-Tags, such that they would propagate together with
file-sharing of mp3-files. Once the coordinates are downloaded, the connection to the
web-server or the db-server could be closed (gekappt), and the processing (playlist-
generation, browsing, etc.) could happen local. Instead of developing an application a
plug-in for an existing music-player (Winamp, iTunes) could reach a larger audience.

Compare with audio-based similarity measures The generated playlists and the similari-
ties computed could be compared and evaluated with audio-based similarity measures.
That would probably lead to new insights about the differences of the different ap-
proaches for music similarity (metadata-based, user-generated-data, audio-based).

Interest regions “Interest regions” of a user can be defined (spheres, ellipsoids, etc.), which
reflect the regions in space a user is interested in. Music can be recommended that lies
within these interest regions. In a peer-to-peer-environment, these interest regions can
be intersect to retrieve the regions they both like to hear.

File-sharing Using the interest regions or another form of recommendation, a file-sharing
application could be developed which recommends the files to share. Alternatively,
the recommendations could be integrated into an existing file-sharing application as
plug-in.



A
Development Environment

IDE

Java version: 1.5
IDE: Eclipse 3.2.1
DBMS: phpMyAdmin 2.9.0.2-Debian-1
JDBC version: 2.0

Database

MySQL server version: 5.0.24a-Debian 9-log
Storage engine: MyISAM

Application Server

Application server: Tomcat 5.5
Path: http://pc-5413.ethz.ch:8180
Web-Application: http://pc-5413.ethz.ch:8180/musicweb

Main-Classes

Crawling last.fm: ch.ethz.dcg.ma.main.Crawler nr users to expand nr toptracks to fetch

Processing users: ch.ethz.dcg.ma.constructor.Constructor nr users to process

LMDS: musicgraph.algorithms.MusicGraphLMDS host db dim nr landmarks outfile
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weight threshold occ threshold seed

IterativeLMDS: musicgraph.algorithms.MusicGraphIterativeLMDS dim nr landmarks
outfile weight threshold occ threshold seed filter filename fraction iterations results file
sample id



B
Xml-Schema for the Library-Upload

to the Web-Application

Xml-Schema of the file-format which is used by the web-application. An xml-file of this
format can be uploaded and processed by the web-application. The “artist” and “title” are
used to find the song in the database, “path” is used to create the .m3u-file that can be
downloaded and processed by most music-players.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ethz.ch/dcg/musicworld/library"
xmlns="http://ethz.ch/dcg/musicworld/library">

<xsd:element name="songlibrary">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="song" type="song" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:complexType name="song">
<xsd:attribute name="type" type="filetypes"/>
<xsd:attribute name="artist" type="xsd:string"/>
<xsd:attribute name="title" type="xsd:string"/>
<xsd:attribute name="path" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:integer"/>
</xsd:complexType>
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<xsd:simpleType name="filetypes">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="mp3"/>
<!-- add other formats ... -->

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>
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