
Institut für
Technische Informatik und
Kommunikationsnetze

Andreas Huber

A Load Adaptive &
Frequency-Hopping

MAC-Protocol

Semester Thesis, SA-2009-05
February until June 2009

Advisors: Roland Flury, Philipp Sommer
Professor: Prof. Dr. Wattenhofer



ii



Abstract

A MAC-Protocol is proposed in this thesis that adapts dynamically to load
variations. The protocol makes use of multiple frequencies to lower interfer-
ence. It is energy efficient by scheduling the slots where packets should be
sent or received allowing the nodes to power off the radio when no packets
are transmitted. A method is proposed to allow the nodes to switch reliably
between schedules of different data rates over an unreliable channel.

The protocol was implemented and tested in this thesis on the TinyNode
platform. It was shown that it adapts well to variable traffic conditions and
that multiple frequencies can be used to efficiently reduce interference in a
wireless sensor network.

iii



iv



Acknowledgements

First of all I would like to express my sincere gratitude to Prof. Dr. Wat-
tenhofer for giving me the opportunity to write this semester thesis in his
research group.

I would also like to thank my advisors Roland Flury and Philipp Sommer
for their constant support during this semester thesis. They helped me to
solve the difficult problems of this thesis. Without their assistance, this
work would not have been possible.

Furthermore, I would like to thank my family and my friends for sup-
porting and motivating me during this thesis.

v



vi



Contents

1 Introduction 1

2 Related Work 3

3 Protocol Design 5
3.1 Schedules at Variable Rates . . . . . . . . . . . . . . . . . . . 6

3.1.1 Problems with Variable Rates . . . . . . . . . . . . . . 6
3.1.2 Construction of Schedules at Variable Rates . . . . . . 7
3.1.3 Switch between Schedules of Different Rates . . . . . . 8

3.2 Local Conflicts Between Schedules . . . . . . . . . . . . . . . 8
3.3 Selection of the Appropriate Rate . . . . . . . . . . . . . . . . 10

4 Implementation 13
4.1 RandomSlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 RandomSlotSchedule . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 SendRandomSlot . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Overview over the Actions Performed in a Slot . . . . 15
4.3.2 Negotiation of the Appropriate Rate . . . . . . . . . . 15

4.4 Further Modules . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Evaluation 17
5.1 Generated Plots . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . 18

5.2.1 Adaptation of the Rate . . . . . . . . . . . . . . . . . 18
5.2.2 Interference and Local Conflicts . . . . . . . . . . . . . 20
5.2.3 Multiple Frequencies . . . . . . . . . . . . . . . . . . . 20
5.2.4 Slow Down on Congestion . . . . . . . . . . . . . . . . 20
5.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusion 23
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 Possible Optimizations . . . . . . . . . . . . . . . . . . 24
6.1.2 Selection of the Appropriate Rate . . . . . . . . . . . 24

A Results 25
A.1 Test Cases - Complete Results . . . . . . . . . . . . . . . . . 25
A.2 Overview over the Source Code Written in this Thesis . . . . 25

vii



viii



List of Figures

3.1 Illustration of the Problem when Switching between Different
Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 The Overlapping Schedules for Different Rates . . . . . . . . 8
3.3 Rate Switch with Acknowledgement Loss . . . . . . . . . . . 9
3.4 Local Conflicts between Multiple Schedules . . . . . . . . . . 9

5.1 Test Case Setup . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Rate of the Links and Queue Size Towards Root . . . . . . . 19
5.3 Throughput and Ack-Ratio over the Four Links . . . . . . . . 19
5.4 Transmission Quality over All Links . . . . . . . . . . . . . . 21
5.5 Transmission Quality over the four Links . . . . . . . . . . . 21

A.1 1 Frequency, Rates 0 - 7 . . . . . . . . . . . . . . . . . . . . . 27
A.2 2 Frequencies, Rates 0 - 7 . . . . . . . . . . . . . . . . . . . . 28
A.3 4 Frequencies, Rates 0 - 7 . . . . . . . . . . . . . . . . . . . . 29
A.4 8 Frequencies, Rates 0 - 7 . . . . . . . . . . . . . . . . . . . . 30
A.5 1 Frequency, Rates 1 - 8 . . . . . . . . . . . . . . . . . . . . . 31
A.6 2 Frequencies, Rates 1 - 8 . . . . . . . . . . . . . . . . . . . . 32
A.7 4 Frequencies, Rates 1 - 8 . . . . . . . . . . . . . . . . . . . . 33
A.8 8 Frequencies, Rates 1 - 8 . . . . . . . . . . . . . . . . . . . . 34

ix



x



Chapter 1

Introduction

This thesis studies the transmission of data streams over several hops in
a wireless network. When a sender needs to route a set of packets to a
destination, several network nodes in-between may need to receive and re-
transmit the packets. As a result, several nodes may try to send a packet
at the same time, resulting in packet loss due to interference. A schedule,
which assigns to each node the time slots when it should listen for packets
and when it should forward received packets not only helps to reduce in-
terference, but can also save energy, as the nodes may power off the radio
during idle times. The algorithm proposed in this thesis achieves this. It
further assigns the time slots adaptively to load variations and offers the
possibility to use multiple frequencies by selecting a random frequency for
each assigned slot.

Typical sources of energy waste in wireless sensor networks are idle lis-
tening, packet loss caused by interference, overhearing of packets destined
for other nodes, over-emitting which is caused by transmissions to nodes that
are not listening and control-packet overhead [2]. The protocol introduced
in this thesis addresses all of these sources of energy waste. Idle listening and
overhearing are reduced significantly by powering off the radio outside the
scheduled slots and the schedule also prevents over-emitting in most cases.
The protocol has no control-packet overhead as long as there are packets to
transmit. The necessary control data is piggy backed to the data packets
and acknowledgements. The packet loss caused by interference is reduced
by using random frequencies in each scheduled slot.

The utilization of multiple frequencies can also be seen as a collision
avoidance (CA) measure in contrast to other MAC-Protocols where collision
avoidance is achieved through separation in the time domain. Using the
frequency domain as well reduces the probability of collision by the number
of available channels.

This leads us to the second property of the proposed algorithm. The
algorithm should choose the slots to use in the schedule adaptively to load

1



CHAPTER 1. INTRODUCTION

variations. This is done by using multiple schedules at different rates. The
algorithm then chooses which of the schedules should be used at any time.
A method is proposed and implemented in this thesis to construct these
schedules and to change between the schedules of different rates even in the
presence of packet loss (messages and acknowledgements). The schedule
between the nodes may break apart if the changes between the schedules
of different rates are done carelessly. The algorithm presented in this thesis
ensures that the nodes can switch from one rate to another in the presence
of packet loss.

The algorithm is computed locally on each node based on a random seed
that needs to be exchanged between the neighboring nodes in the initializa-
tion phase. The nodes negotiate in every packet and acknowledgement at
which rate they want to send the following packet(s).

The implementation of the proposed algorithm was a main part of this
thesis. The algorithm was implemented for the TinyNode platform [8] run-
ning the TinyOS [10]. Several test cases were carried out and are presented
in the evaluation of this thesis.

The following chapters contain an overview over the related work (chap-
ter 2), a detailed description of the protocol (chapter 3) and its implementa-
tion (chapter 4), an evaluation with several test cases (chapter 5) and finally
the conclusion (chapter 6).

2



Chapter 2

Related Work

There exist already various propositions for MAC-Protocols for wireless net-
works and wireless sensor networks. There are some MAC layer protocols
designed for wireless devices such as IEEE 802.11 [1]. They are not suit-
able for sensor networks because they will consume a considerable amount
of energy as they continuously sample the medium for activity. Further,
such protocols require the nodes to exchange control packets to avoid colli-
sions. The overhead introduced by such control packets is considerably high
because the packets used in wireless sensor network are usually of small
sizes.

Many applications for wireless sensor networks require only small data
rates but a node and network lifetime that should be as long as possible.
Energy consumption matters highly because a sensor node dies if it runs out
of energy. The radio consumes much energy if it is turned on, even if the
radio is just idle listening. This is also true for the TinyNode [8]. The radio
module of the TinyNode has a current consumption of 33mA in transmit
mode, 14mA in receive mode and below 1µA in sleep mode as stated in
the data sheet of the TinyNode [9]. The CPU of the TinyNode uses 2mA
in contrast. Therefore, it is reasonable to use an algorithm that allows to
power off the radio when it is not needed.

Various other MAC-Protocols for wireless sensor networks were proposed
which try to reduce the energy consumption by reducing the time where the
radio has to be turned on. Some protocols use a scheduled access, others are
based on random access [6]. The focus will be set on random access based
protocols in the following because the protocol implemented in this thesis
belongs to this category, too.

In many of the random access based protocols, the nodes wake up peri-
odically to enter reception mode. The radio is turned off again if the channel
is idle. Otherwise, they try to receive a packet.

The time at which all nodes perform this carrier sensing is synchronized
in some protocols such as S-MAC [12] or T-MAC [11]. These protocols

3



CHAPTER 2. RELATED WORK

are called synchronous protocols. S-MAC introduced the idea of a synchro-
nized wake up schedule where all nodes wake up periodically to exchange
signalling messages to determine which nodes will communicate afterwards.
All inactive nodes will then turn off their radio again. Other protocols like
Low power Listening [4] or WiseMAC [3] use an asynchronous random ac-
cess schemes and do not synchronize the schedules between multiple nodes.
Instead, each node periodically wakes up to listen for activity on the chan-
nel. To initiate a transmission, a sender sends a long wake-up preamble to
ensure that the receiver is in reception mode before the actual data is trans-
mitted. In WiseMAC, the overhead of transmiting a long wake-up preamble
is reduced significantely by learning the wake-up schedule of the receiver and
adapting the wake-up preamble to it. The wake-up preamble is chosen on
the sender based on the time since the last transmission and the accuracy
of the learned schedule of the receiver. It may be very short if packets are
transmitted frequent and grows up to a maximum of a complete period as
without any knowledge of the wake-up schedule of the receiver.

The mentioned protocols don’t make use of multiple frequencies and they
all contain a static period chosen at design time that is used to sample the
medium. This means that this period has to be chosen carefully and the
period will probably not be optimal for all nodes in the network as it is
often the case that the nodes nearer to the root will have more packets to
transmit than the nodes far away.

The protocol introduced in this thesis is different in this two parts as
it makes use of multiple frequencies and it has no fixed length wake-up
period but selects the slots to wake up for communication adaptively and
independently for each link in the network depending on the current load.

4



Chapter 3

Protocol Design

The protocol proposed in this thesis is described in this chapter. Every-
thing related to the actual implementation on the TinyNodes is described
in chapter 4.

The protocol uses slots to receive and transmit packets. In each slot,
a node either transmits a packet to a neighbor, receives a packet from a
neighbor or has its radio turned off. Time synchronization is needed to
be able to use a slotted schedule between the nodes. This appears to be
a drawback but we think that time synchronization is needed anyway for
many applications.

The peculiarity of the protocol lies in the selection of the slots. The
protocol selects the slots adaptively at a rate suitable for the current traf-
fic load and selects for each slot a random frequency selected to enable
frequency-hopping. The slots to be used between two communicating nodes
are selected randomly but such that the slots can be computed locally by
the two neighbors. For this purpose, a random seed is exchanged during the
initialization phase. How this is done is explained in section 3.1 and 3.3

The term schedule is used in this chapter to refer to the slots and fre-
quencies selected at a specific rate between a given sender and receiver node.
Each node runs multiple such schedules in parallel, the current implemen-
tation uses two schedules per neighboring node to communicate in both
directions. This leads to four schedules per node for the linked list topol-
ogy on which the algorithm was evaluated in this thesis. Each slot can be
assigned at most to one of the schedules that run in parallel because the
nodes can only communicate with one neighbor at a time. This means that
all but one schedule have to skip a slot if multiple schedules want to use the
same slot. Section 3.2 explains how the protocol handles these conflicts.

5



3.1 Schedules at Variable Rates

3.1 Schedules at Variable Rates

The challenge of switching between schedules at different rates in the pres-
ence of packet loss is addressed in this section and a solution is presented to
construct the schedules such that it is simple to switch between rates. Only
the communication between one sender and one receiver node is considered
in this section.

3.1.1 Problems with Variable Rates

The nodes should be able to switch from a schedule at a specific rate to
another schedule at another rate in our protocol. It is important that two
communicating nodes switch simultaneously from one schedule to another.
Otherwise, they are no longer able to communicate further with each other
in the future because the sender and receiver will try to use different slots
and/or different frequencies. But a simultaneous transition cannot be guar-
anteed: The sender can request from the receiver that it want to switch to
another rate and wait for an acknowledgement. The sender can be sure that
the receiver got the message if it receives an acknowledgement. Otherwise, it
has to assume the receiver didn’t get the message. But the receiver cannot
know whether the sender actually received the acknowledgement success-
fully or not. To be sure, it could also request an acknowledgement for its
acknowledgement. But the problem to be unsure is only passed back to the
other node and not solved. The two nodes have to wait always for another
acknowledgement to be sure that both of them will decide at the same time
to switch to another rate.

Only one acknowledgement per real messages is sent in the usual im-
plementations. Sequence numbers are added to the messages to detect and
resolve cases where an acknowledgement was lost. This works fine for data
messages but it is not sufficient for a command to switch to another rate.
The two nodes would not be able to communicate any more if only one of
the two nodes decides at one point in time to switch to another rate. Fig.
3.1 illustrates how it could look like if an acknowledgement is lost.

A possible solution in this scenario would be that the sender uses the old
and the new schedule in parallel until it can be sure that the receiver has
switched successfully to the new schedule. But this sounds simpler than it
actually is. It is not enough if the two nodes finally use again the schedule
at the same rate but it is also necessary that both nodes still use the same
random seed. Otherwise they will not be able to compute the shared sched-
ule any more. It may be the case that the two nodes end up with different
random seeds because the random seed is updated during the computation
of the schedule and maybe updated differently if they use different sched-
ules. It would be necessary to exchange further control information between
the two nodes to resolve this conflict. The first node could for example

6



3.1 Schedules at Variable Rates

Figure 3.1: The figure illustrates the problem when switching between sched-
ules of different rates if an acknowledgement is lost. The circles correspond
to all available slots. The upper half of each circle corresponds to the ac-
tions performed by the sender, the lower half to the actions performed by
the receiver. The nodes turn their radio on at the appropriate frequency in
the colored slots. The red slots are selected by the original schedule, the
blue slots are selected by the new schedule.

retransmit its request to change the rate on the old schedule and include
its current seed for the new schedule until it receives an acknowledgement
from the second node either on the old or the new schedule. Additional
problems arise if the old and the new schedule want to use the same slot
but at different frequencies.

A much simpler approach is presented and implemented in this thesis.
The key idea is to construct the schedules at different rates such that they
overlap. This way, the two nodes use a common schedule even if they cur-
rently do not use the schedule at the same rate. Further, the algorithm
is designed such that the random seed shared by the two nodes is altered
independently of the rate that is actually used. This makes it unnecessary
to exchange the random seed any more after the initial exchange, especially
not during a rate switch.

3.1.2 Construction of Schedules at Variable Rates

The schedules at different rates are constructed as follows: Half of all slots
are selected randomly to construct the schedule at the fastest rate. The
random selection serves the purpose to make the schedule independent from
the schedules used between any other nodes. The fastest rate is named rate
0 in this thesis. Every slower schedules is constructed by reducing this first
schedule by using only half of the slots of the next faster schedule. Therefore,
rate 1 is the next slower schedule which includes every second slot of the
fastest schedule. The schedule at rate 2 includes every second slot of the

7



3.2 Local Conflicts Between Schedules

Rate 0:

Rate 2:

Rate 1:

sender
receiver

sender
receiver

sender
receiver

sender
receiver

Rate 3:

Figure 3.2: The overlapping schedules from rate 0 to 3

schedule at rate 1 and thus every fourth slot of the fastest schedule. And
so on for the schedules at slower rates. This means that the slots selected
at a specific rate are a subset of the slots selected at every faster rate. The
construction of the different schedules is illustrated in Fig. 3.2.

The information which rate should currently be used is exchanged be-
tween the sender and the receiver in each message and acknowledgement.
This allows the switch to another transmission rate in every transmission
and can be demanded by the sender or receiver node.

3.1.3 Switch between Schedules of Different Rates

The transition from one rate to another is much easier with the schedules
introduced above. The sender can request to switch to a schedule with a
slower or a faster rate. The sender switches only to the new schedule if an
acknowledgement is returned from the receiver. The receiver acknowledges
the request and switches to the new schedule when it receives such a request
from the sender. If the acknowledgement is lost, the sender and receiver will
still be able to communicate with each other because they can still com-
municate in all the slots contained in the slower of the two schedules. The
two nodes will use the same rate again as soon as they have successfully ex-
changed a message and an acknowledgement. The same holds if the receiver
requests to switch to another schedule in the acknowledgement.

The switch-over to another rate where an acknowledgement is lost is
illustrated in Fig. 3.3

3.2 Local Conflicts Between Schedules

The construction of the schedules introduced above is independent of any
other schedules between other nodes. This makes its computation simple
such that each node can do it locally for its own schedules. But when mul-

8



3.2 Local Conflicts Between Schedules

Schedule at current rate:

Sender request faster rate, ACK gets lost:

original schedule new schedule

sender
receiver

sender
receiver

Figure 3.3: Rate switch with acknowledgement loss. The nodes use the same
schedule again after the next successful transmission.

Figure 3.4: Local conflicts between multiple schedules. The red node has
conflicts between the schedules of link 1 and link 2.

tiple schedules run in parallel on a given node, a schedule may try to choose
the slots already assigned to another schedule with a certain probability.
These conflicts are named local conflicts in this thesis. Such a case is illus-
trated in Fig. 3.4.

In a local conflict, a node will turn on its radio and listen or transmit
unsuccessfully because its neighbor is busy doing something else in the very
same slot. This would be a serious reason of energy waste, especially if the
nodes run on very fast rates where the probability of local conflicts is higher.

One solution to this problem would be to compute a coloring for the
links such that any adjacent link will have another color. In each slot, only
links of one specific color are scheduled in the hole network to prevent local
conflicts. The schedule as described above would then only take place on a
subset of slots, maybe without the random part. But this solution comes at
the high cost of the computation of a coloring.

This thesis proposes that the local conflicts should be accepted but the
neighbor should be informed about local conflicts such that the conflicting
slot can be skipped to prevent waste of energy. The priority in the reserva-
tion of the slots for the parallel schedules is done in a first-come-first-serve
manner where the next slot for a certain schedule is reserved in the current
slot. A node that detects such a local conflict will try to inform its neighbor
about it in the packet or acknowledgement. The two nodes will then skip the

9



3.3 Selection of the Appropriate Rate

conflicting slots in their schedule. This will not work out in certain cases, for
example if the receiver requests to skip some slots in the acknowledgement
but the new next slot is already assigned to another schedule in the sender.
The sender cannot inform the receiver in this case that now even more slots
should be skipped. The solution to inform the neighbor about slots to skip
worked out pretty well in the test cases presented in the evaluation.

3.3 Selection of the Appropriate Rate

This last section handles the question how the appropriate rate should be
chosen between a sender and a receiver. Sender and receiver calculate their
preferred rate and the slower of the two rates will be used. The sender
calculates the preferred rate in each slot and transmits it in the packet to
the receiver. The receiver acknowledges this rate if it agrees or it returns a
slower rate in the acknowledgement if it doesn’t agree. The sender will use
the last rate for which it received an acknowledgement, the receiver will use
the last rate for which it sent an acknowledgement.

How the sender and receiver should calculate their preferred rate is an
interesting question. The sender has packets in a queue that it wants to
transmit and the receiver has free memory available to receive messages. The
first idea was to control the rate such that the number of packets in the queue
stays about constant. This first implementation produced unstable rate
changes even for periodic traffic which was understandable after thinking
a little more about it. The second approach was to calculate the rate as
a function of the queue size. This was done with the following idea: The
sender calculates the preferred rate such that the average time the packets
have to wait in the queue of this node is constant. This rule provides stable
results for various scenarios as shown in the evaluation. How the rate is
computed by this rule is explained next.

Time is measured in number of slots in the analysis. Let t be the average
number of slots between two transmissions of the sender. When sending at
rate r, we have that t = 2 · 2r. Then, the expected number of slots T a
packets remains in the queue of fill size q is

T = q · t = q · 2 · 2r

And solved for r

r = log2(T/q) = log2(T )− log2(q)

In the implementation, the rate is computed according to that rule as

r = s− blog2(q + 1)c

where s denotes the slowest rate which is used for q = 0. The logarithm has
to be rounded to an integer because only integer rates are allowed and it is

10



3.3 Selection of the Appropriate Rate

computed from q+1 to avoid the case of log(0) where an infinitely slow rate
would be requested otherwise.

One has to pay attention when configuring the slowest rate s and the
maximum possible queue size qMax because they are related to the fastest
rate f that will be chosen through the way the rate is computed:

f = s− blog2(qMax+ 1)c

In the current implementation, the receiver calculates the fastest rate it
would accept depending on the rate it can forward messages and on the
available memory to buffer incoming messages such that it will not run out
of memory before it can slow down the incoming traffic.

11



3.3 Selection of the Appropriate Rate

12



Chapter 4

Implementation

The protocol was implemented in this thesis for the TinyNodes [8]. The
protocol was written in the programming language nesC [5], a C-extension,
and bases on the TinyOS [10] and the SlotOS library [7]. The implementa-
tion is splitted into three modules: RandomSlot, RandomSlotSchedule and
SendRandomSlot.

The RandomSlot module handles the computation of the schedule be-
tween two nodes and chooses which slots should be used for communication.
The RandomSlotSchedule module handles the coordination and conflicts be-
tween the schedules running in parallel. This module uses the TimeSchedule
and TimeSync modules of slotos. The time schedule is used to divide the
available time between multiple applications running on the nodes. The
RandomSlotSchedule module places all time slots for the packets in the pe-
riod assigned to it from the TimeSchedule. Then, it signals the start and end
of a assigned slot. The third module, SendRandomSlot, actually sends the
packets to the neighbors in the slots signalled by RandomSlotSchedule and
handles the negotiation of the appropriate rate to use with the neighbors.
Next, these three modules are explained in more detail.

4.1 RandomSlot

The RandomSlot module (implemented in RandomSlotC and RandomSlotP)
chooses slots on a random basis to be used in a schedule. The module con-
tains three commands. The command init() to initialize the schedule with
a random seed, the command getNextSlot() to calculate the next slot in
the schedule based on the rate given and the command getChannelForCur-
rentSlot() to get a random channel for the current slot.

The module choses half of all available slots randomly based on the
random seed set at initialisation. A subset of these slots is chosen for the
schedule, depending on the rate. For rate 0, all of the slots are used. Every
second slot is used at rate 1, every fourth slot is used at rate 2, every eight

13



4.3 SendRandomSlot

slot is used at rate 3 and so on.

The necessary calculations of random numbers is kept low by using every
bit of the random number individually to select or deselect a slot. A counter
which counts the selected slots is then used to decide if a slot is included for
a given rate or not. This operation can be done using bitwise operations.

4.2 RandomSlotSchedule

The RandomSlotSchedule module (implemented in RandomSlotScheduleC
and RandomSlotScheduleP) handles the local conflicts between the indepen-
dent random slot schedules. It offers functions to add new schedules and
to reserve the next slot for a schedule at a desired rate. Two schedules are
added for each neighboring node, one schedule to send and one to receive
packets.

This module subdivides its scheduled period from TimeSchedule into
slots to send single packets and determines which of these slots are used
for sending or receiving packets to and from the neighbors. The start and
end of a slot that is used to communicate with a neighbour is signalled
to the module SendRandomSlot which performs the actual communication.
Further, the module sets the radio already to the appropriate channel if the
use of multiple channels (frequencies) is enabled such that the owner doesn’t
have to care about this. But the module does not start the radio. This is
left to the owner as it is also possible that the radio will not be used at all if
the root node wants to communicate to the pc over the serial and not over
the radio.

4.3 SendRandomSlot

The SendRandomSlot module (implemented in SendRandomSlotC and
SendRandomSlotP) actually sends the packets over the radio. This module
chooses also at which rate the packets should be transmitted and negotiates
this with the neighboring node. To do this negotiation, the module uses one
byte of the payload in the packets and the acknowledgements. To build a
reliable channel, the sequence number module of slotos is used and sequence
numbers are included in each message and acknowledgement.

The SendRandomSlot module is signalled by RandomSlotSchedule at
the start and at the end of a slot for a given schedule. One packet is sent in
every scheduled slot. If there are no packets in the queue, an empty message
is sent which contains only one byte to negotiate the rate to use.

14



4.3 SendRandomSlot

4.3.1 Overview over the Actions Performed in a Slot

Next, the steps performed by this module in each slot are explained shortly.
For a send slot:

1. The radio is started unless the communication passes over the serial
(destination id is zero).

2. A small backoff is waited after the successful start of the radio.
3. After this backoff, the message is prepared to send: The preferred rate

is calculated and written into the message as well as the appropriate
sequence number.

4. If the transmission is successful:

• An acknowledgement is received which contains the sequence
number for validation, the rate that will be used to chose the
next slot as well as the number of slots that have to be skipped.

5. If the transmission (or acknowledgement) fails:

• No acknowledgement is received and the last rate that was ac-
knowledged by the receiver is used to chose the next slot.
• The same message will be resent in the next slot with the same

sequence number but possibly with a different rate.

6. The radio is shut down to finish the current slot.

For a receive slot:

1. The radio is started.
2. After a successful start, the radio waits for a message in receive mode.
3. If a packet is received successfully:

• An acknowledgement is sent, containing the current sequence
number, the rate that will be used to chose the next slot and
the number of slots that have to be skipped.

4. If the transmission fails:

• No packet is received in the current slot.
• The last rate that was acknowledged to the sender is used to chose

the next slot.

5. The radio is shut down to finish the current slot.

4.3.2 Negotiation of the Appropriate Rate

The negotiation of the rate between the sender and the receiver is imple-
mented as explained in the protocol description. For that purpose, one byte
is included in each packet and acknowledgement. Three values are encoded
in this byte:

15



4.4 Further Modules

• Four bits of the message are used to encode the rate. This allows rates
from 0 to 15 resulting in a factor of 215 = 32768 between the fastest
and the slowest rate which is surely more than enough. Rate 0 is the
fastest rate.
• Three bits of the message are used to encode the skip counter. The

skip counter indicates that the next 0-7 slots should be skipped.
• The last bit of the message is used by the receiver to reject a message

if no memory is available to store the message.

4.4 Further Modules

A couple of other modules were developed during this thesis to support
testing, logging, the initialization of the protocol and other things. The
most important ones are mentioned here shortly.

The FastList module allows to send and receive commands over a list
topology. It was used to exchange the random seed in the initialization phase
and to send commands to the nodes. The RadioChannel module allows to
set the radio to several different frequencies. The transmission at different
frequencies was evaluated and the distances between the offered channels
were chosen such that transmissions on different channels do not interfere.
The TrafficGenerator module allows to produce periodic traffic and packet
bursts for test purposes. It is configurable via the FastList. The Router
module is able to route packets in a network, buffers the packets in different
queues for each neighbor until they can be sent and manages the memory
buffer for the messages.

16



Chapter 5

Evaluation

The proposed algorithm was tested on TinyNodes [8] for this evaluation.
The implementation was evaluated using five nodes in a list topology. Each
node communicated with the node whose id was one higher or one lower
than its own id. The five nodes were placed for the evaluation like indicated
in Fig. 5.1 such that the nodes interfere definitely.

The algorithm scheduled slots to transmit messages in both directions of
the list but data was transmitted only towards the root in the test cases pre-
sented next. In the other direction were only the hello messages exchanged
at the slowest possible rate as it is done by the protocol if no data packets
have to be transmitted.

The mixture of periodic traffic and a burst of many packets at a time
was used in all evaluated test cases. Each of the five nodes generates one
packet every five second that has to be transmitted to the root. This could
correspond to a sensor reading in a real world application. After 200 seconds,
a burst of a thousand packets is generated at node 5 and transmitted to the
root. This could correspond to a read out of the flash memory of a sensor
node.

The first set of tests was done using rates from rate 0 down to rate 7.
The tests were run for different number of possible frequencies that could
be selected by the schedule. The test was done using the same frequency
on all links and using two, four and eight different frequencies. The second
set of tests was done using rates from rate 1 down to rate 8 and using again
one, two, four or eight different frequencies.

5.1 Generated Plots

Six plots were generated for each of the eight test case. The complete set
of plots is listed in appendix A. To make the plots more readable, only
information about the links towards the root is shown. But the schedule in
the other direction will slightly influence the results as it will use some slots

17



5.2 Discussion of the Results

1

2

3

4

1 5

Figure 5.1: Test case setup.

that could have been used for the communication towards the root if the
schedule in the other direction was not implemented at all. The contents
displayed in the six plots are explained shortly in the captions of Fig. 5.2,
5.3 and 5.5. The first two plots are updated at every slot that is included
in the current schedule. The other four plots are calculated over periods of
32 seconds to match the periods of the TimeSync module that underlies the
whole algorithm. Like that, the effect that no packets can be transmitted
for several seconds every 32 seconds is equal for every value displayed in the
plot.

5.2 Discussion of the Results

Various results observed in the test cases will be discussed in the following
with a focus on the adaptation of the rate and the benefit from the usage of
multiple frequencies.

5.2.1 Adaptation of the Rate

Only the periodic traffic has to be handled before and after the packet burst.
Each node participates in producing and transmitting this periodic traffic.
The nodes nearer to the root have more packets to transmit because they
have to forward all the packets from the higher nodes, too. This means
that the nodes have to send at different rates. One can observe that this is
actually the case as shown in Fig. 5.2. The nodes nearer to the root send
at a faster rate and have more packets in their queues waiting to be sent as
the send rate is a function of the queue size.

The reaction of the algorithm to a packet burst can be observed very
well, too, in Fig. 5.2. One can see that the queues are filled up in one node
after the other until all the nodes transmit at the fastest rate, rate 0. After

18



5.2 Discussion of the Results

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−−132.9s−−>
<−− 180.7s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

Figure 5.2: Test results of the first set using four frequencies. The left plot
shows the rate that is used for each of the five links towards the root and
the right plot shows the fill size of the queues towards the root.

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

Figure 5.3: Test results of the first set using four frequencies. The left plot
shows the throughput over each of the four links in packets per second and
the right plot shows the ratio of successfully received acknowledgements.

the burst, it takes some time to clear out all queues because the nodes send
slower and slower while the fill levels of the queues shrink.

Fig. 5.4 and Fig. 5.5 show that the algorithm adapts the rate in a
reasonable way. We can see that the nodes didn’t send many empty messages
and that no packets had to be rejected because of memory problems. Empty
messages are sent if the nodes have scheduled a slot when they have no data
to send. This did only occur in the test case for node five because the
periodic packets are generated at a rate just a bit slower than the slowest
possible rate of the algorithm.

19



5.2 Discussion of the Results

5.2.2 Interference and Local Conflicts

The transmission quality is shown and explained in Fig. 5.4. One can see
that there are two principal reasons for failed transmissions where the sender
receives no acknowledgement. The first and main reason is packet loss due
to interference. There is a high probability that two links will transmit
at the same time if all nodes send at the fastest rate. The second reason is
given by local conflicts that cannot be resolved. The nodes try to resolve the
local conflicts by informing their neighbor that one ore more slots should
be skipped. This is not possible if the packet is lost due to interference.
The probability to lose an acknowledgement was very low compared to the
probability to lose a data packet in all test cases.

Fig. 5.3 shows the throughput and the ratio of successfully received
acknowledgements between each communicating node pair over time. One
can see for example that the throughput between node 5 and 4 is higher
in the first measurement after the peak than after because there are less
local conflicts with the communication between node 4 and 3 at that time
because the communication between node 4 and 3 is still on a slower rate.

5.2.3 Multiple Frequencies

Using multiple frequencies works actually quite well and offers a significant
benefit in the evaluated test cases. The plots in Fig. 5.4 show that the inter-
ference can be reduced significantly by using multiple frequencies. Further,
the local conflicts are reduced, too. This is the case because the nodes are
able to resolve more of their local conflicts by informing the neighbor to skip
one or more slots.

5.2.4 Slow Down on Congestion

Another approach to reduce packet loss due to interference would be to lower
the data rate on congestion. This was not yet implemented in the protocol
but it was tested with the second set of tests where the fastest possible rate
was set to rate 1 instead of rate 0. The results are shown the appendix in
Fig. A.5 to Fig. A.8.

5.2.5 Summary

The test results show that the use of multiple frequencies reduces the inter-
ference which leads to a higher throughput and reduces the waste of energy.
The results show also that transmitting at a slower rate in the presence of
congestion reduces the interference and energy waste, too, but leads to a
smaller throughput.

To summarise the result, the acknowledgement ratio and the time needed

20



5.2 Discussion of the Results

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

Figure 5.4: Test results of the first set using one frequency (left) and four
frequencies (right). These plots show the transmission quality over all nodes
(as seen from the sender). The dark blue part shows the fraction of the
local conflicts that couldn’t be resolved because the neighbor could not be
informed that one or more slots should be skipped. The blue part shows
the fraction of the messages that are lost in transmission, mostly due to
interference. The dark red part shows the fraction of lost acknowledgements
which is very low. The light red part shows the fraction of packets that
were unnecessary retransmitted due to a lost acknowledgement. The yellow
part shows the fraction of messages that had to be rejected by the receiver
because it was completely out of memory which did never occur. The dark
green part are the empty control messages that were sent successfully if
there are no data messages to send. Lastly, the light green part shows the
fraction of the successfully transmitted and acknowledged data messages.

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure 5.5: Test results of the first set using one frequency (left) and four
frequencies (right). These plots shows the same results as Fig 5.4 but indi-
vidually for each of the four links.

21



5.2 Discussion of the Results

to send the packet burst is listed for all of the eight test cases. The acknowl-
edgement ratio is computed over the hole evaluated 600s of each test case:

rate 0-7 rate 1-8
1 freq. 67.3% 90.3%
2 freq. 83.4% 94.8%
4 freq. 92.1% 96.0%
8 freq. 95.6% 98.2%

The use of multiple frequencies raised the acknowledgement ratio from
67.3% up to 95.6%. In combination with the transmission at the next slower
rate, an acknowledgement ratio of 98.2% could even be reached.

The following table shows the time needed to send the burst of a thou-
sand packets from node five to the computer connected to node one. The
values are scaled by the time needed with one frequency and rate 0-7:

rate 0-7 rate 1-8
1 freq. 1.00 1.33
2 freq. 0.82 1.23
4 freq. 0.74 1.21
8 freq. 0.69 1.17

A speed up of 31% could be reached by using eight frequencies. Trans-
mitting at a slower rate in combination with eight frequencies was shown
to be only 17% slower but using clearly less energy because of the higher
probability for successful transmissions. The transmission is not half as fast
with the next slower rate as one might first expect. This is so because there
are more than twice as many local conflicts at the rate 0 than rate 1 which
results in skipped slots.

The evaluation showed that the proposed protocol can adjust well to load
variations and that the usage of multiple frequencies reduces interference and
allows a higher throughput.

22



Chapter 6

Conclusion

A MAC-Protocol for wireless sensor networks was proposed, implemented
and tested in this thesis. The protocol schedules slots to receive and send
packets between each pair of neighboring nodes. The radio is used in an
energy efficient manner. It has to be turned on only during the assigned
slots where actually a packet should be transmitted or received. The slots
are selected adaptively at a rate corresponding to the current traffic con-
ditions which allows to transmit energy efficient for variable loads. In the
evaluation was shown that the protocol adapts well to dynamic traffic con-
ditions. The protocol allows further to use a frequency-hopping technique
where a frequency is chosen randomly for the communication in every slot.
The evaluation has shown that the use of multiple frequencies can signifi-
cantly reduce interference between the nodes if they transmit at high data
rates. And the protocol was shown to work reliably.

The current implementation of the protocol is done to give a proof of
concept and not to offer a full implementation ready to use in an arbitrary
wireless sensor network. Various things are left to be done.

6.1 Future Work

There are several things that could not be done during this semester thesis.
The protocol should be analyzed more formally and it should be compared
to other MAC protocols that exist for wireless sensor network in terms of
energy consumption, throughput and handling of traffic bursts or otherwise
variable load. The test should also be done on other network topologies and
other traffic conditions. And there are some optimizations that should be
considered if the protocol is to be used in an actual implementation.

23



6.1 Future Work

6.1.1 Possible Optimizations

Two optimizations were discussed during this thesis but not implemented:
First, the time interval for a slot could be optimized. There are several time
delays during one time slot that are currently not set as tight as possible.
Sending multiple packets per slot is the second idea to optimize the algo-
rithm. The overhead of computing the schedule, starting the radio at the
appropriate frequency and waiting some delays in each slot is a little much
if only one packet is transmitted in each slot.

6.1.2 Selection of the Appropriate Rate

The selection of the appropriate rate is another thing that should be adapted.
The idea that the sender requests a rate that was computed as a function of
the packets in the queue was shown to be useful. But one could use other
functions than the one proposed in this thesis. And the same idea could be
used for the receiver. The receiver could chose the fastest rate that it would
accept as a function of the free memory that is still available.

In the current implementation, the receiver did take into account how
fast it can forward the packets to the root in combination with a fixed
slow down if it runs low on memory to choose which rate it would accept.
This worked well on the list topology tested in this thesis but will not work
well in other network topologies where one node has to forward traffic from
multiple other nodes. Thoughts about the symmetry between the sender
and the receiver lead to the idea that the same function could be used to
calculate the rate, once based on the messages in the queue to send and once
based on the free memory to receive messages.

24



Appendix A

Results

A.1 Test Cases - Complete Results

All plots of the test cases that were evaluated are included here for com-
pleteness. The test cases themselves are described in chapter 5.

A.2 Overview over the Source Code Written in
this Thesis

Detailed documentation is contained in the files themselves. The bold files
are the actual implementation of the protocol presented in this thesis.

• headers/FastListCmd.h — defines fast list commands
• headers/MacControl.h — defines settings of fast list
• headers/MultiTimer.h
• headers/MyAM.h — list of used am-types
• headers/MyTimeSchedule.h — settings for time-schedule
• headers/RadioChannel.h — frequencies for the available channels
• headers/RandomSlot.h — protocol-settings
• headers/Router.h — settings for router (buffer size)
• headers/SendRandom.h
• headers/TrafficGenerator.h
• interfaces/FastListCmd.nc — receive and send commands over fast list
• interfaces/FastListSchedule.nc — configure fast list
• interfaces/FastListState.nc — get state information from fast list
• interfaces/MacControl.nc
• interfaces/MultiTimer.nc
• interfaces/RadioChannel.nc — choose the frequency to use
• interfaces/RandomSlotConf.nc — configuration/initialization

25



A.2 Overview over the Source Code Written in this Thesis

• interfaces/RandomSlot.nc — calculates the next slot for a
schedule at a given rate
• interfaces/RandomSlotSchedule.nc — handles the parallel sched-

ules between each neighbor
• interfaces/Router.nc — send packets to any node in the network
• interfaces/RouterState.nc — query free message buffer
• interfaces/Routing.nc — maps each address to a next hop
• interfaces/RoutingPacket.nc
• interfaces/SendPacket.nc — sends packets to a neighbor
• interfaces/SendRandomConf.nc
• interfaces/TrafficGenerator.nc — produces periodic traffic or bursts
• lib/FastList RandomSlotConfC.nc — initialization
• lib/FastListScheduleC.nc — implementation of the fast list
• lib/MacControlC.nc
• lib/MultiTimerC.nc — manage multiple timers in parallel
• lib/RadioChannelC.nc
• lib/RandomSlotC.nc
• lib/RandomSlotScheduleC.nc
• lib/RouterC.nc
• lib/Router StaticList Random C.nc
• lib/Router StaticList RandomSlotC.nc
• lib/RoutingStaticListC.nc — routing for a list
• lib/SendRandomC.nc — send random, aloha
• lib/SendRandomSlotC.nc — send and receive messages, ne-

gotiate rates
• lib/TrafficGeneratorC.nc
• impl/FastList RandomSlotConfP.nc
• impl/FastListScheduleP.nc
• impl/MacControlP.nc
• impl/MacSchedulerP.nc
• impl/MultiTimerP.nc
• impl/RadioChannelP.nc
• impl/RandomSlotP.nc
• impl/RandomSlotScheduleP.nc
• impl/RouterP.nc
• impl/RoutingStaticListP.nc
• impl/SendRandomP.nc
• impl/SendRandomSlotP.nc
• impl/TrafficGeneratorP.nc

26



A.2 Overview over the Source Code Written in this Thesis

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−− 194.8s −−>
<−− 243.4s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure A.1: 1 Frequency, Rates 0 - 7

27



A.2 Overview over the Source Code Written in this Thesis

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−− 148.0s −−>
<−− 199.1s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure A.2: 2 Frequencies, Rates 0 - 7

28



A.2 Overview over the Source Code Written in this Thesis

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−−132.9s−−>
<−− 180.7s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure A.3: 4 Frequencies, Rates 0 - 7

29



A.2 Overview over the Source Code Written in this Thesis

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−−122.5s−−>
<−− 168.8s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure A.4: 8 Frequencies, Rates 0 - 7

30



A.2 Overview over the Source Code Written in this Thesis

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−− 234.3s −−>
<−− 324.3s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

0 100 200 300 400 500 600
0

1

2

3

4

5

6

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure A.5: 1 Frequency, Rates 1 - 8

31



A.2 Overview over the Source Code Written in this Thesis

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−− 208.4s −−>
<−− 300.3s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

0 100 200 300 400 500 600
0

1

2

3

4

5

6

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure A.6: 2 Frequencies, Rates 1 - 8

32



A.2 Overview over the Source Code Written in this Thesis

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−− 202.6s −−>
<−− 294.3s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure A.7: 4 Frequencies, Rates 1 - 8

33



A.2 Overview over the Source Code Written in this Thesis

0 100 200 300 400 500 600

0

1

2

3

4

5

6

7

time [s]

Packet rate

 

 

1 −> 0
2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

time [s]

Packets in queue towards root

 

 

<−− 199.1s −−>
<−− 287.2s −−>

Node 1
Node 2
Node 3
Node 4
Node 5

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

time [s]

Throughput

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Acknowledgement ratio

 

 

2 −> 1
3 −> 2
4 −> 3
5 −> 4

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

Transmission quality over all nodes.

 

 

local conflicts
msg lost
ack lost
useless retrans.
msg rejected
empty msg
success

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 2 −> 1

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 3 −> 2

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 4 −> 3

0 200 400
0

0.2

0.4

0.6

0.8

1
Transmission quality 5 −> 4

Figure A.8: 8 Frequencies, Rates 1 - 8

34



Bibliography

[1] B.P. Crow, I. Widjaja, L.G. Kim, and P.T. Sakai. Ieee 802.11 wireless
local area networks. Communications Magazine, IEEE, 35(9):116–126,
Sep 1997.

[2] I. Demirkol, C. Ersoy, and F. Alagoz. MAC Protocols for Wireless Sen-
sor Networks: A Survey. Communications Magazine, IEEE, 44(4):115–
121, April 2006.

[3] A. El-Hoiydi, J.-D. Decotignie, C. Enz, and E. Le Roux. Poster ab-
stract: wisemac, an ultra low power mac protocol for the wisenet wire-
less sensor network. In SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems, pages 302–303, New
York, NY, USA, 2003. ACM.

[4] J. Hill and D. Culler. Mica: a wireless platform for deeply embedded
networks. IEEE Micro, 22(6):12–24, November 2002.

[5] NesC: A Programming Language for Deeply Networked Systems.
http://nescc.sourceforge.net/, June 2009.

[6] J. Rousselot, A. El-Hoiydi, and J.-D. Decotignie. Low power medium
access control protocols for wireless sensor networks. In Wireless Con-
ference, 2008. EW 2008. 14th European, pages 1–5, June 2008.

[7] Slotted Programming for Sensor Nodes. Personal communication.

[8] TinyNode. http://www.tinynode.com/, June 2009.

[9] TinyNode 584 Embedded Wireless Network Node - Fact Sheet.
http://www.tinynode.com/uploads/media/SH-TN584-103.pdf, June
2009.

[10] TinyOS Community Forum - An open-source OS for the networked
sensor regime. http://www.tinyos.net/, June 2009.

[11] Tijs van Dam and Koen Langendoen. An adaptive energy-efficient mac
protocol for wireless sensor networks. In SenSys ’03: Proceedings of the

35



BIBLIOGRAPHY

1st international conference on Embedded networked sensor systems,
pages 171–180, New York, NY, USA, 2003. ACM.

[12] Wei Ye, J. Heidemann, and D. Estrin. An energy-efficient mac pro-
tocol for wireless sensor networks. In INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 3, pages 1567–1576 vol.3, 2002.

36


	Introduction
	Related Work
	Protocol Design
	Schedules at Variable Rates
	Problems with Variable Rates
	Construction of Schedules at Variable Rates
	Switch between Schedules of Different Rates

	Local Conflicts Between Schedules
	Selection of the Appropriate Rate

	Implementation
	RandomSlot
	RandomSlotSchedule
	SendRandomSlot
	Overview over the Actions Performed in a Slot
	Negotiation of the Appropriate Rate

	Further Modules

	Evaluation
	Generated Plots
	Discussion of the Results
	Adaptation of the Rate
	Interference and Local Conflicts
	Multiple Frequencies
	Slow Down on Congestion
	Summary


	Conclusion
	Future Work
	Possible Optimizations
	Selection of the Appropriate Rate


	Results
	Test Cases - Complete Results
	Overview over the Source Code Written in this Thesis


