/f
ETH 4

Distributed |
Eidgendssische Technische Hochschule Ziirich . ‘:“‘
Swiss Federal Institute of Technology Zurich Computing %

HikeDroid — GPS Navigation
for Hikers on Android Phones

Bachelor’s Thesis

Damian Pfammatter

pdamian@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Ziirich

Supervisors:
Tobias Langner, Samuel Welten
Prof. Dr. Roger Wattenhofer

June 6, 2011

mailto:Damian Pfammatter<pdamian@student.ethz.ch>

Acknowledgements

I am heartily thankful to my supervisors, Tobias Langner and Samuel Welten,
whose encouragement, guidance and support enabled me to develop HikeDroid
and this final report, presenting work and results.

I further offer my regards and blessings to all of those who supported me in any
respect during the completion of this project.

Damian Pfammatter

Abstract

HikeDroid is an application for mobile devices using Google’s Android platform.
The application aims to support hikers with useful information about the sur-
rounding area, terrain and hiking trails. To do so, the application marks the
user’s current position on the map and tracks the passed course. For this pur-
pose, HikeDroid accesses the device’s internal GPS receiver. In addition, Hike-
Droid tries to provide the user with a natural way to interact with the map. For
that reason, HikeDroid supports two different touch gestures, drag and pinch.
The drag gesture is used to move over the map. The pinch gesture provides an
easy way to zoom in and out, in order to show more or less map details, respec-
tively. The architecture of the application is developed with the requirement to
be modular, flexible, easily understandable and extensible for future works.

This paper gives an overview about the general concepts, techniques and
architectural decision used in HikeDroid. This paper is not intended to list all
the implementation details used to realize the application.

Chapter [I] provides a short overview about Google’s Android platform. In
Chapter [2| HikeDroid is compared to similar existing applications. This chapter
lists advantages and motivations for the use of HikeDroid. Chapter [3|states what
goals the application tries to achieve. Chapter [4] lists some general problems and
requirements that need to be considered during the development of a map appli-
cation like HikeDroid. Chapter [5] presents some abstract models and theoretical
backgrounds that are used in the application. Chapter [] is more specific. It
provides a more detailed look at the ideas of Chapter |[5| and how they are in fact
realized in HikeDroid. Chapter [7] lists some proposals, ideas and extensions for
future work on the application. Chapter [§| concludes this paper.

ii

[Acknowledgements|

[Abstract]

Contents

2.2 Google Maps for Mobile| 00000

2.2.1 Overview|

[2.3.2 Comparis

on with HikeDroid|.

2.4 Swiss Map Mobile] oo oo

[4.2.4 Coordinate Systems|

[4.2.5 GPS5 Posi

TIONING| o e

4.2.6 Layering|

iii

ii

~ U o e R W W W NN NN

© © © © w o0 o o

CONTENTS

4.3.3 Replacement Strategy|
4.4 Asynchronism|. o o

[6 Theoretical Background|

p.1.3 Hierarchy| L

5.2 Request Manager| L.
[.2.1 Asynchrony|
[5.2.2 Field of Application|

5.3 Map Adapter|

6.1.1 Surface Viewl
6.1.2 Event Handling|.
6.1.3 AVETS| .« v v e e e e e e e e e e e e e e e
|6.1.4 Coordinate Systems|
615 Drawer,
...............................
6.3 Cachel
6.3.1 Bitmap Cache] 0.
6.3.2 Byte Array Cache| 0.

v

10
10
10
10
10

11
11
12
12
12
13
14
14
15

18
18
18
18
19
20
21
22
22
23
23
23
24

CONTENTS v

[7.1.2 Map Architecture|. oo 25

[7.1.3 Offline Maps|, 26

[7.1.4 Energy Saving Mode| 26

[7.1.5 Memory Leakage| 26

[[2 Extensions. 27
[f21 DataSetd 27

[7.2.2 Hiking Information|. 27

[(23 Features 27

8 _Conclusion| 28
[A° UML Diagrams| 1
IB_Reterence Documents| 4
IB.1 Swiss Map Mobile, 2009|, 4
B.2 Swiss Map Mobile Sectors, 2009. 4
B.3 Coordinate System 'Transformations, 2008 4

CHAPTER 1

Android

This chapter gives a short overview and description of the Android platform. Fur-
ther information can be found on the Android website http://www.android.com.

Android is a software stack for mobile devices like smart phones, mobile
phones, netbooks and tablets. It includes an operating system, middleware and
key applications. Android' is based on the Linux kernel. It is developed and re-
leased by Google Inc.? and other members of the Open Handset Alliance (OHA)3,
The Open Handset Alliance was found in November 2007 with the intent to im-
prove open standards for mobile devices. It is a consortium of 80 hardware,
software and telecom companies. Currently there are more than 200’000 ap-
plications available from Google’s online application store Android Market*. A
large community of Android developers exists. Android applications are primar-
ily written in the Java® language using Java libraries developed by Google.

! Android Website, 2011. Android.com
Available at: http://www.android.com [Accessed June 6, 2011]
2Google Website, 2011. Google Inc.
Available at: http://www.google.com [Accessed June 6, 2011]
30pen Handset Alliance Website, 2011. OHA
Available at: http://www.openhandsetalliance.com [Accessed June 6, 2011]
4Android Market Website, 2011. Apps — Android Market
Available at: https://market.android.com [Accessed June 6, 2011]
5Java Website, 2011. Java.com
Available at: http://www.java.com [Accessed June 6, 2011]

CHAPTER 2

Motivation and Related Work

This chapter lists three typical examples of related works. For each example
a short overview of its functionality is provided. Subsequently each example is
compared to HikeDroid. This chapter focuses on what HikeDroid tries to achieve
and what not, compared to other solutions.

2.1 Motivation

The vast majority of hikers have already been in this situation: One is out in the
wild at a junction of hiking trails but does not know for sure at which particular
point on the map one is presently located and further, which trail to take to
get to the desired destination. The rise of omnipresent GPS devices in the form
of modern smart phones opens completely new perspectives on this problem.
How nice would it be whenever you take out your smart phone, it displays your
current location and orientation on a high resolution hiking map straightaway?
The goal of HikeDroid is to develop an application fulfilling this aim by accessing
the VECTORZ2S5 hiking maps that have been released by the Swiss government
at 1 July 2008.

2.2 Google Maps for Mobile

2.2.1 Overview

Google Maps for Mobile! is probably the best known and widest used map appli-
cation for mobile devices. Figure shows one of the latest features available in
Google Maps for Mobile, namely 3 dimensional maps. Google Maps for Mobile
is a free mapping application developed and distributed by Google through the
Internet. It provides most of the web-based site’s features and services. Google

1Google Website, 2011. Google Maps for Mobile
Available at: http://www.google.com/mobile/maps [Accessed June 6, 2011]

2. MOTIVATION AND RELATED WORK 3

Maps for Mobile supports multiple map views like satellite, traffic, street or ter-
rain. Google Maps for Mobile is not just a map application. It offers further
functionalities like navigation assistance, journey planner and business locator.

2.2.2 Comparison with HikeDroid

Functionality As stated above, Google Maps for Mobile provides a wide
amount of functionality. However, this has the drawback, that the concepts
are often too general for a specific field of application. This is where HikeDroid
tries to improve. HikeDroid adapts some functionality of Google Maps for Mo-
bile and makes them more usable for hikers. The two major improvements are
listed below.

Map Data HikeDroid is able to access high resolution Swiss maps which are
full of useful details. They for example contain information about streets, rivers,
lakes, contour lines, towns, villages, buildings, waters and mountains. Further-
more, HikeDroid is able to access Swiss hiking trail information. An overlay
containing all the hiking trails can be shown over the general map data. By
enabling the GPS locating service, hikers can see which trail they currently fol-
low. Further information about hiking trails and other usable hiking information
could be added by future works on HikeDroid (Section [7.2.2)).

Offline Maps Google Maps for Mobile requires a permanent Internet connec-
tion to work, which is obviously not always possible while hiking. Furthermore,
loading map data over a mobile Internet connection is often slow and expen-
sive. However, HikeDroid allows users to load maps beforehand by using Wi-Fi.
Users could therefore define sectors containing prospective routes and save for
later use. HikeDroid does not yet implement full support for this idea. The idea
should to be improved as proposed in Section Google Maps for Mobile
attempts to support offline maps as well in latest releases.

2.3 Geo Admin Web Interface

2.3.1 Overview

The Swiss Federal Office for Topography (swisstopo) provides a web interface?
for freely accessing Swiss map data. The web interface is primarily intended to
be integrated in a website. Different data sets are available for the following
fields:

2Geo Admin Website, 2011. Offentlicher Zugang zu Geoinformationen und Geodaten
Available at: http://map.geo.admin.ch [Accessed June 6, 2011]

2. MOTIVATION AND RELATED WORK 4

e basic data

ground levels

area and human population

infrastructure and communication

e environment, biology and geology

e cnergy and economy

Recently a mobile version (BETA)? of the web interface got released. Figure
shows a screenshot.

2.3.2 Comparison with HikeDroid

Map Data HikeDroid basically accesses the same data as the web interface
does. At the moment HikeDroid only supports the basic map data and informa-
tion about hiking trails. As stated in Section future work should make all
data sets accessible in HikeDroid.

Zooming The mentioned web interface does not support seamless zoom. Fur-
thermore it does not provide most of the desired functionality, for example to
mark the device’s current location. Altogether the interaction with the map is
rather poor and not flexible enough to be applicable on mobile devices. Hike-
Droid therefore does not include or build on the provided web interface.

2.4 Swiss Map Mobile

2.4.1 Overview

The Swiss Federal Office for Topography provides an application for mobile de-
vices to access its map data, called Swiss Map Mobile*. Swiss Map Mobile
is a commercial application developed by the Andreas Garzotto GmbH®. Cur-
rently the application is available for Windows Mobiles, Symbian S60 Mobiles and

3Geo Admin Mobile, 2011. BETA mobile version
Available at: http://mobile.map.geo.admin.ch [Accessed June 6, 2011]

4Swiss Map Mobile Website, 2011. Swisstopo: Swiss Map Mobile
Available at: http://www.swisstopo.admin.ch/internet/swisstopo/de/home/products/maps/mobile.html
[Accessed June 6, 2011]

® Andreas Garzotto GmbH Website, 2011. Die Hebammenpraxis fiir Projekte und Produk-
tentwicklung
Available at: http://web.me.com/garzotto/ [Accessed June 6, 2011]

2. MOTIVATION AND RELATED WORK 5

iPhones / iPads. A screenshot of the iPhones version is shown in Figure
At the moment, there is no version available for Android mobiles. The Swiss
Map Mobile application supports three different scales, 1:25°000, 1:100°000 and
1:500°000. The scale is manually chosen by the user. The application supports
seamless zoom between each scale level. Further, the application is able to mark
the current GPS position and to record way points as traces. A more detailed
comparison of functionalities and platforms can be found in Appendix

2.4.2 Comparison with HikeDroid

Cost Asstated above, the Swiss Map Mobile application does not come for free.
In order to download the application, users currently have to pay an initial cost of
CHF 4.40%. However, this package does not yet contain any map material, but a
limited amount of map data for testing. Further map data comes with additional
costs. The Swiss map is partitioned into eight different sectors (Appendix
each of which can be obtained for CHF 89.00. While HikeDroid tries to follow the
idea of making all the map data freely available for users, especially for hikers,
as it is already publicly available on the Internet.

Zooming HikeDroid and Swiss Map Mobile both provide seamless zooming
functionality. But in comparison, HikeDroid switches automatically between
different scale levels in order to provide the best resolution for the displayed map
sector. HikeDroid supports scales of 1:25°000, 1:50°000, 1:100°000, 1:200°000,
1:500°000, 1:1°000°000, 1:2°500°000 and 1:5°000°000.

5 Apple iTunes Website, 2011. Swiss Map Mobile
Available at: http://itunes.apple.com/ch/app/swiss-map-mobile/id311447284 [Accessed June
6, 2011]

Hyatt Regency
SamFfancisto

(c) Swiss Map Mobile

Figure 2.1: Screenshot Comparison

o e AP At
(b) GeoAdmin mobile ver-
sion BETA

@

Start tracking

(d) HikeDroid

Show sector

of different Map Applications

CHAPTER 3

Goals

This chapter summarizes what the map application HikeDroid tries to achieve
and what the goals are.

The goal is to develop an Android application that retrieves the VECTOR25
hiking map data from the website http://geo.admin.ch. The map data has to be
displayed correctly on the device’s screen. Users should be allowed to interact
with the map in a user friendly way. The application is primarily developed
for hikers. The purpose for the application is to replace the need of having a
conventional map of trails by hand while hiking. The potential of mobile devices
should be exploited, for example by the included GPS receiver. The current
location of the user is appropriately displayed on the map. The user can thereof
conclude its current location and which trail to follow to get to the desired
destination. Also, it is desirable that additional information is displayed on the
map to further assist hikers. During the trip, the application should not require
the establishment of a connection to the Internet. In other words, the application
should allow the usage of offline maps. To further make the application usable
for hikers, the application has to be energy efficient. Yet another important goal
is the extendibility of the underlying framework. It is of particular importance
to allow the implementation of advanced features later on.

CHAPTER 4

Problems

This chapter gives a short description of the initial position and enumerates the
main problems that occurred when developing the map application.

4.1 Architecture

The underlying architecture should be flexible, easy to extend and open for
future adjustments. To achieve this, the architecture used in HikeDroid consists
of three main components. The first component models maps, its representation
and its user interactions (Section [6.1). The second component models a cache
architecture to allow fast map data accesses (Section Section [6.3). The
third component is the map adapter (Section which connects the first two
components.

4.2 Map

This section lists the problems that occur in conjunction with the map.

4.2.1 Map Data

The first problem that came up was the question of where and how to access
the required map data. Also, to minimize the access costs was essential. It
was not exactly clear what types of access costs exist and which ones the most
relevant are. Considering mobile devices, time, memory and energy are crucial
in deciding the costs.

4.2.2 User Interaction

The second problem that needs to be solved, is the fact that users should be
capable to interact with the map. It should be possible to move over the map.

8

4. PROBLEMS 9

It should also be possible to zoom in or out in order to show more or less details,
respectively.

4.2.3 Tiles

The retrievable VECTOR25 map data represents a map as a collection of tiles.
However, the first problem that occurred, is to correctly handle this tiles, which
includes how to access and store them, as well as how to position them correctly
on the screen. To make the tiles accessible without long delays turns out to be
vitally important through out the overall performance of the application. This
is where the idea of a multi-level cache hierarchy came up.

4.2.4 Coordinate Systems

Mainly to solve the previously mentioned problem of intuitively displaying the
map data, one needs to consider different coordinate systems. There is at least
the need to support the Global Positioning System (GPS) and the standard
Cartesian coordinate system used to control the device’s screen. It is likely
that further coordinate systems have to be taken into account. It is for example
common that maps for Switzerland and Liechtenstein rely on a coordinate system
called the Swiss Grid. The problem one has to solve is the correct transformation
between this coordinate systems.

4.2.5 GPS Positioning

One of the requirements is that the current GPS location can be correctly marked
on the map. This requires the application to interact with the GPS receiver on
the device. It further requires that a given GPS position can be found on the map
and marked accordingly. This problem is related with the previously mentioned
problem to handle different coordinate systems (Section [4.2.4)).

4.2.6 Layering

So far, a map object only consists of a single layer which contains a visual
representation of the basic topographic data. This layer is referred to as the
base layer. However, the base layer does not always contain all the required
information. For example, the base layer contains no information about hiking
trails, which is an essential data set for hikers. To solve this problem in general,
a map object has to support overlays. Informally, an overlay is a layer that
is located on top of another layer. The handling of multiple overlays leads to
further problems one has to take into account. First, the map needs to keep track
of more data sets. Therefore, the process of storing, accessing and drawing the

4. PROBLEMS 10

data gets more complex. Accordingly, an appropriate data structure has to be
found. Second, users should be allowed to enable or disable a subset of layers. A
user interface needs to be created for that purpose. A third problem that comes
up, is the fact that not all layers are of exactly the same type. One may think
of a special type of layer, which the application itself creates, for users to draw
objects on.

4.3 Cache

This section lists the problems that occur in conjunction with the cache.

4.3.1 Interface

Different caches need to agree on a uniquely known way to access a cache. In
that case, caches can easily talk to each other, which then results in building a
cache hierarchy.

4.3.2 Trade-Off

Caches are a way to speed up the access of data. However, there is a trade-
off between bandwidth and capacity. To bypass this problem, there are usually
different caches arranged in a hierarchical structure. Typically caches in the top
of the hierarchy are smaller, but serve accesses faster, where lower caches are
larger and slower. Therefore one needs to find an adequate cache hierarchy to
minimize the access cost.

4.3.3 Replacement Strategy

Because of the limited capacity, caches sometimes have to discard items. There-
fore they need to follow a certain strategy defining which items have to be dis-
carded, which was rather obscure at early stage.

4.4 Asynchronism

Is is essential for the application to handle tasks in an asynchronous way. In
other words, some tasks should be allowed to get processed in the background
without interrupting incoming calls. For example it is crucial for the Ul thread
to be small and simple in order to stay permanently responsive for user events.

CHAPTER 5

Theoretical Background

This chapter lists theoretical concepts and ideas that are used to realize the
map application HikeDroid. However, all concepts and ideas listed here are
independent of HikeDroid and not restricted to map applications.

Section explains the concept of a cache and justifies the usage of caches
in a map application. The idea of a request manager and it’s field of application
is introduced in Section[5.2] Section [5.3]introduces the concept of a map adapter
that serves as a connecting piece between cache and map.

5.1 Cache

This section explains the idea and motivation behind the usage of a cache in
map applications.

A cache is a component that stores a certain amount of data, usually some
subsets of a lager amount of data, so that future requests for that data can
be served faster. The case where the requested data is contained in the cache is
called a cache hit, while cases don’t contain requested data is called a cache miss.
In the case of a cache hit, data can simply be read out, which is comparatively
fast. In the case of a cache miss, data has to be fetched from its original stor-
age location which is comparatively slow. In order to reduce costs and provide
efficient ways to access data, caches are usually relatively small.

Definition 5.1 (Cache, Capacity, Bandwidth) Let I = {i1, iz, ...,i,} be the
set of all available data items. A cache C is a data structure that stores a set
of at most m data items D C I, where m is called the capacity of C. The
bandwidth b(C) is defined as the number of cache accesses per time unit, that
can be served by C. o

11

5. THEORETICAL BACKGROUND 12

5.1.1 Motivation

One of the most fundamental requirements for a map application is the fact
that map data needs to be displayed as fast as possible, without long delays
and response times. This requirement motivates the idea of using a cache to
access the map data. To be cost efficient, the cache may consist of multiple
cache levels building up a cache hierarchy. In response to a further requirement,
the application should always remain responsive to user events. For the cache
architecture this implies, that cache accesses should be non-blocking, meaning
that the UI Thread does not have to wait for results, especially not in the case
of a cache miss.

5.1.2 Interface
Each cache implements the following functionality:

e contain: check if a certain item is contained in the cache
e get: get a certain item from the cache
e put: put a certain item in the cache

e remove: remove a certain item from the cache

Forcing each cache to implement this functionality establishes a commonly known
interface for accessing caches. This brings the advantage that instances are able
to access caches without explicit knowledge of the underlying cache instance.
Furthermore, caches may directly interact with each other leading to the possi-
bility to create a multi-level hierarchy of caches.

5.1.3 Hierarchy

In order to realize the idea of a multi-level cache hierarchy, the basic functionality
of a cache does not have to change. The access rules provided by the cache
interface are preserved. However, to achieve the hierarchical structure each cache
additionally needs to maintain the following two references:

e next: next, lower level cache

e prev: previous, higher level cache

The idea is, to build the cache hierarchy analogously to a Linked List data
structure. The main advantage is that caches can be added and removed in
a very flexible way. Furthermore, the caches can be easily reordered in the
hierarchy.

5. THEORETICAL BACKGROUND 13

Definition 5.2 (Level i Cache, Top Level Cache) The i-th cache in the hi-
erarchy is referred to as the level © cache. By definition, there are i higher levels
of caches in the hierarchy. The level 0 cache has no previous cache in the hier-
archy and is therefore called the top level cache (Figure . o

Why is it useful to build a hierarchy of caches? To answer this ques-
tion, we first have to define what it means by a cache being faster or slower,
respectively larger or smaller compared to another cache.

Definition 5.3 (Relatively Fast, Slow Cache (Definition [5.1))) A cache C;
is called faster than a cache Cj, if b(C;) > b(Cj). A cache C; is called slower
than a cache Cj, if b(C;) < b(C}). o

Definition 5.4 (Relatively Large, Small Cache (Definition [5.1))) A cache
C; is called larger than a cache Cj, if m; > mj. A cache C; is called smaller
than a cache Cj, if m; < m;. o

A hierarchical cache structure is typically used to solve the following problem:
Normally there is a trade-off between bandwidth and capacity. A fast cache is
typically of small size. A large cache is typically slow. To bypass this trade-off,
caches are arranged in a cache hierarchy. The level i cache is typically smaller,
but faster than a level j cache, with 0 < ¢ < j. The level j cache is typically
larger, but slower than the level i cache.

5.2 Request Manager

This section explains the concept of a request manager and its field of application.

The concept of a request manager is simple and always follows the same pat-
tern. Each request manager has an associated buffer queue into which requests
are written. The request manager takes requests from the buffer and handles
them. When there are no more requests in the buffer, the request manager waits.
At the arrival of a new request the manager gets notified and resumes activity.
In general, a request manager handles several types of requests. Each request
type defines a sequence of steps that the request manager has to execute in order
to handle the request.

Definition 5.5 (Request Manager) A request manager RM holds a buffer
queue BQ. Typically, BQ is implemented as stack data structure, meaning that
it follows the last in first out (LIFO) principle (Definition [5.6). The request
manager is a component that repeatedly executes the following steps:

1. Wait until BQ # {}

5. THEORETICAL BACKGROUND 14

null
prev
Level 0 Cache L
— | Top Level Cache le—
next prev
L | Level 1 Cache -
— l—
next ! ! prev
| |
Lo —
| |
— -
| |
| |
next ‘ : : : prev
L p| Level n-1 Cache L
next
Ly nul

Figure 5.1: Hierarchy of n Caches

2. Take request v from BQ using the LIFO strategy

3. Handle r

4. Go back to step 1 o
Definition 5.6 (Last In First Out (LIFO)) The Last In First Out (LIFO)
strateqy refers to the way that items stored in a queue data structure are pro-

cessed. By definition, the last data added to the structure must be the first data
to be removed and processed. o

5.2.1 Asynchrony

The concept of a request manager is mostly useful for the following reason:
Request initiators do not have to wait until their requests are handled. This
allows request initiators to proceed working while their requests are handled
asynchronously.

5.2.2 Field of Application

The concept of request managers is designed for the application in caches (Ex-
ample . However, it is important to notice that the concept itself is much more

5. THEORETICAL BACKGROUND 15

generally applicable. This means that other components, requiring a similar kind
of functionality, are free to instantiate and use their own request managers to
handle their own type of requests.

Example 1 (Request Manager) Figureshows how the concept of request
managers is used inside a cache. Each cache instance keeps a static number of
request managers that handle incoming requests. Incoming requests are dis-
tributed equally along all managers. A cache initially chooses the number of
available request managers by estimating its expected workload.

Remark 1 (Dynamic Request Manager Instantiation) The number of re-
quest managers used by a cache should be chosen dynamically, depending on the
current workload. This is clearly a point which one may think to improve in

future work (Section [7.1.1)). o

The reason why it makes sense to use request managers to manage cache ac-
cesses, is to fulfill one of the requirements mentioned before. Namely the one
that applications have to continuously stay responsive for user events. How-
ever, the question why the request managers are part of the caches still remains
unanswered. In order to answer this question, we again consider the hierarchical
cache setting of Figure Mainly there are two advantages. First, caches at
different levels in the hierarchy stay completely independent. The idea of allow-
ing the reordering of caches in the hierarchy is preserved. Second, and even more
important, the proposed setting allows caches themselves to issue new requests,
most likely for other caches. For example, if an item ¢ is missing at some cache
level I, the cache at level | might issue a request to get item i from cache level
[+1. The initiator cache does not have to wait for the request to be handled. It
is possible that the request initiator gets notified when the request is handled.n

5.3 Map Adapter

This section briefly describes the concepts of a map adapter. Some further ex-
amples are provided to support the ideas and concepts.

A map adapter is a component that connects the map with the cache, as
shown in Figure The map adapter controls all interaction between these
two components. It is possible, that the map adapter itself implements further
functionality.

Example 2 (Map - Map Adapter - Cache) Consider the case where a map
object wants to display a certain sector of the map. The map requests a visual
representation of the sector from the map adapter. In order to handle this
request, the map adapter requests some items from the cache. O

5. THEORETICAL BACKGROUND 16

Cache

\)

Entries

RequestManager

| handle e—» [| [| Buffer

PutRequest

\J/

RequestManager

GetRequest
handle H Buffer

Figure 5.2: Cache with Request Managers

Example 3 (Cache - Map Adapter - Map) Consider the case, where a new
item gets available in the cache. As a result, the cache notifies the map adapter.
The map adapter may now want to update the map. O

Remark 2 (Further Functionality) In order to communicate with maps and
caches, the map adapter implements further functionality or accesses other com-
ponents (Example [4). o

Example 4 (Location Listener) The map adapter has access to another com-
ponent in the system, the so called location listener. More precisely, the map
adapter registers itself to the location listener in order to receive location updates.
This means, that the location listener repeatedly provides the map adapter with
the current location. As a result, the map adapter notifies the map. O

Map Adapter

]

Map Cache

Figure 5.3: Map Adapter connecting Map and Cache

CHAPTER 6

Realization

In contrast to the theoretical Chapter [5] this chapter highlights more details
of the specific realization of the map application HikeDroid. Section shows
how maps are represented and what their functionalities are. Section points
out how the previously introduced concept of a cache hierarchy (Section is
realized in HikeDroid. This section explains which types of caches are used at
which level in the hierarchy and why this makes sense.

6.1 Map

A map is a rectangular area on the screen that shows some visual representation
of objects, regions, themes and the relationships between them.

6.1.1 Swurface View

A map is an interactive Ul component extending the concept of a Surface View!.
In principle, a View? handles the drawing of a rectangular area on the screen
and responses to events. The Surface is a dedicated area embedded in the View
into which the map is drawn. Making a map extend the Surface View allows
users to include maps in the screen layout.

6.1.2 Event Handling

Maps implement a callback on the Surface (Section [6.1.1)) in order to receive
information about events. Maps primarily have to react to Touch Screen Motion

! Android Developers Website, 2011. SurfaceView
Available at: http://developer.android.com/reference/android/view/SurfaceView.html [Ac-
cessed June 6, 2011]

2 Android Developers Website, 2011. View
Available at: http://developer.android.com/reference/android /view/View.html [Accessed June
6, 2011]

18

6. REALIZATION 19

Events. There are two Touch Screen Motion Fvents that maps handle:

e Drag Gestures (Figure [6.1al)
e Pinch Zoom Gestures (Figure |6.1D))

The Drag Gesture is used to move over the map. The Pinch Zoom Gesture is
used to zoom in and out. To be more explicit, the scale of the viewed area is
changed in order to see more or less details.

(a) Drag Gesture (b) Pinch Zoom Gesture

Figure 6.1: Touch Screen Motion Events

6.1.3 Layers

A layer is a rectangular area containing specific geographic information (e.g.
hiking trail information). A layer that lays on top of another layer is called an
overlay.

A map in HikeDroid consists of a base layer and zero or more overlays (Fig-
ure . The base layer is special in the sense that users cannot disable it. It
contains the basic cartographic data. Different to the base layer, users are al-
lowed to enable and disable overlays. HikeDroid currently uses the following two
overlays:

e Hiking Trail Overlay

e GPS Data Overlay

The Hiking Trail Overlay contains information about Swiss hiking trails. The
GPS Data Overlay is a drawable layer. HikeDroid itself creates this layer by
drawing recorded GPS points in it.

6. REALIZATION 20

GPS Data Layer

Hiking Trail Layer

/ / Map Data Layer

Figure 6.2: Multi Layering

6.1.4 Coordinate Systems

Global Positioning System (GPS) The Global Positioning System (GPS) is
a global navigation satellite system that allows the location of positions around
the world. Maps in HikeDroid provide an Application Programming Interface
(API), that takes GPS positions from API users and handles them correctly.
More precisely, API users have to pass GPS positions to maps in order to use
their functionality. To make this more understandable, consider the following
two examples:

Example 5 (GPS Sector) A user can request a sector on the map by speci-
fying two GPS positions A and B. A and B have to define a sector like the one
in Figure The map internally handles the sector by transforming A and B
to Swiss Grid and MapCoords positions. o

Example 6 (GPS Locating) The map API provides functionality to draw at
a certain GPS position on the map. For example, this can be used to mark the
current location of the device on the map. The device’s GPS receiver can simply
pass the current GPS position to the map. O

Swiss Grid (CH1903) A lot of maps for the countries Switzerland and Liecht-
enstein commonly use a coordinate system referred to as the Swiss Grid, or
CH1903 for short. Transformations between Swiss Grid and GPS coordinates are
provided by the Swiss Federal Office for Topography (swisstopo) (Appendix [B.3)).
The proposed transformations rely on an approximating solution that guarantees
an exactness of at least 1 meter. The transformations are based on a well-defined
fixed point, the Department of Ezxact Science at University Bern. It is located
at position (600°000/200°000). HikeDroid uses the CH1903 coordinate system to
map GPS coordinates to intern MapCoords.

MapCoords The units of length used to draw onto the device’s screen, are
pixels. Therefore it makes sense to introduce a reference coordinate system

6. REALIZATION 21

over maps that also uses pixels as the unit of length. This coordinate system
is referred to as the MapCoords. MapCoords is a Cartesian coordinate system
having its origin and orientation as shown in Figure MapCoords allows a
simple mapping of a map sector to the device’s screen.

y [Pixel]
A
Map
A Sector
\ # x [Pixel]
B 0
(a) GPS Map Sector (b) MapCoords coordinate system

Figure 6.3: Map Sector and Coordinate System

6.1.5 Drawer

A map object has a special component that takes care of the drawing process.
This component is called the map drawer. It is the map drawer’s task to draw
the requested part of the map to the device’s screen. During its entire lifetime,
the drawer simply executes the following two steps:

e Wait until getting notified

e Update, i.e. redraw the map

The drawer needs to be an autonomous component. More explicitly, the map
drawer has to be implemented as a separate thread. Doing the drawing in a
separate thread has several advantages. While drawing the map, the calling
thread (e.g. the UI thread) remains responsive to events, for example to user
events. Furthermore, this allows external entities to independently update the
map. This is especially used by the map adapter (Section .

Example 7 (Non-blocking Drawings) Consider a case where the adapter re-
quests some new sector of the map. It is very likely that the requested map data
is not immediately accessible from the cache, meaning that not all the data is
contained in the top level cache (Definition [5.2). The access time depends on
the cache level in which the requested data is found. To satisfy the requirement

6. REALIZATION 22

of a non-blocking drawing process, some default loading representation will be
drawn, while the data propagates upwards in the cache hierarchy. When the
data is in the top level cache, the adapter updates the map to make the changes
visible. o

6.2 Tile Map

A tile map is a special kind of map, which only differs from a general map by the
fact that its rectangular area is partitioned into tiles. The tiles are arranged to
form a two dimensional grid as shown in Figure[6.4l The number of tiles, out of
which a certain map consists, varies between different zoom levels. This concept
of representing a map is widely used. However, it is important to notice that
other representations are possible as well. The general concept of a map can be
extended appropriately.

A
(w-1,0) | | (wLj) | f(o-Ln-1) tile height
o [| o
1 1 1 1 1 1
. . [
L1 L1 L1
@) || @) || o map height
A T)
o [v
. . [
L1 - L1
©0) [T o) [T (op)
\j
» map width
tile width

Figure 6.4: Tile Map

6.3 Cache

This section shows, how the theoretical concept of a cache hierarchy is actu-
ally realized. HikeDroid uses the cache hierarchy shown in Figure In the
following, the individual caches are briefly described.

Decoding The maps that HikeDroid accesses, are represented as a collection
of tiles, as stated in Section [6.2] The tiles are stored in the image file format

6. REALIZATION 23

JPEG. JPEG is a commonly used method of lossy compression for digital images.
HikeDroid receives the tiles in JPEG format as a compressed stream of bytes.
However, this byte stream first has to be decoded into a bitmap representation,
which then can be drawn to the device’s screen. This decoding is an expensive
operation. The bitmap representation is no longer compressed, which means,
compared to the JPEG format, more memory is used to store a tile in bitmap
representation.

6.3.1 Bitmap Cache

HikeDroid uses an in-memory bitmap cache as top level cache. This cache stores
a small set of items directly as bitmap objects, which can be directly drawn on
the screen, without further transformations. Therefore, in the case of a cache
hit, the requested item can immediately be given back, without doing further
expensive calculations, like the decoding step described above. The bitmap cache
therefore has a high bandwidth. The major drawback of storing items directly
as bitmaps is the high memory consumption. The bitmap cache therefore has a
small capacity.

6.3.2 Byte Array Cache

In HikeDroid the level 1 cache is a byte array cache. Like the level 0 cache, the
byte array cache is also held in memory. Storing map data as byte arrays has
the advantage of lower memory utilization. For a predefined amount of available
memory, a higher number of items can be stored in this cache compared to
the bitmap cache. More precisely, the byte array cache has a higher capacity
compared to the bitmap cache. The drawback of storing items as byte arrays
is the rather expensive and time consuming need of decoding items to bitmap
objects. As stated above, bitmap objects are required by the drawing process.
Compared to the bitmap cache, the byte array cache has a lower bandwidth.

6.3.3 SD Cache

As a level 2 cache, HikeDroid uses a SD cache. This cache no longer stores items
in memory but on the external Secure Digital (SD) card. The major advantage
of this cache level is the huge amount of available storage, compared to the two
previous cache levels. The SD cache has a much higher capacity. Getting an
item in bitmap format from this cache requires a similar transformation as the
one proposed in the byte array cache. However, a much higher access time is
required to read and write from the external SD storage. The SD cache has a
much lower bandwidth compared to the previous cache levels.

6. REALIZATION 24

6.3.4 Web Cache

Finally, HikeDroid uses as level 8 cache a web cache. Accessed items are loaded
from the Internet, which requires a huge amount of time, compared to all the
other levels. This cache has the lowest bandwidth. The web cache contains all
available data. It therefore has the highest required capacity. In the case of
HikeDroid, the map data is provided by the Swiss Federal Geo Portal®.

null

prev
Lo -

| BitmapCache le—

next prev

Ly Ll L
| ByteArrayCache e

next prev

L L2 L
| SDCache le—

next prev

Ly L3 L
| SwisstopoWebCache

next

Ly null

Figure 6.5: SwisstopoPixelMap Cache Hierarchy

3Geo Admin Website, 2011. Offentlicher Zugang zu Geoinformationen und Geodaten
Available at: http://map.geo.admin.ch [Accessed June 6, 2011]

CHAPTER 7

Future Work

By now, HikeDroid implements the basic architecture and functionality of a map
application. All concepts are constructed to make them easily extensible by fu-
ture work. New features can be built on top of it. The technical part of the
application is now ready to be extended by interesting features and function-
alities. One may think of various improvements and extensions for HikeDroid.
This chapter provides some ideas and starting points for improving the applica-
tion. There are also a few adjustments proposed how the current work could be
enhanced.

7.1 Suggestions for Improvement

This section suggests some points in the current implementation that should be
improved by future work.

7.1.1 Cache

Dynamic Request Manager Instantiation The cache itself should decide
dynamically when to increase and decrease the number of request managers,
depending on the current workload.

Memory Utilization Caches are currently able to store a predefined number
of items. However, most caches should limit their capacity by the amount of
available memory. A user could for example be allowed to define the amount of
SD memory that HikeDroid’s SD cache can use.

7.1.2 Map Architecture

This is the part of the application that has to be adjusted the most. In the ini-
tial design phase, several issues were not sufficiently taken into account, mostly

25

7. FUTURE WORK 26

because they were unclear and unknown at this point in time. Almost all ar-
chitectural problems that occur are based on the fact, that the concepts of tile
maps, different map layers and different zoom levels do not properly fit together.
This is the major point that needs to be improved by future work. Adequate
adjustments to this part will solve most of the problems in the current imple-
mentation.

7.1.3 Offline Maps

At the moment, HikeDroid automatically stores the latest accessed map data on
the device’s SD card. Later accesses to this data can be handled without the
need of an Internet connection. However, only data that was accessed before
is stored. Moreover, not recently used map data may get overwritten. In fact,
users should be provided with the possibility to specify a map sector which is
then loaded and stored for future usage. The idea is that users can in advance
load all the information needed for their hiking trip. During the trip, all used
data should be accessible without the need of establishing a connection to the
Internet.

7.1.4 Energy Saving Mode

Mobile devices have a limited amount of battery power available. Applications
should therefore try to minimize their power consumption. HikeDroid should
try to further reduce its power consumption, for example by providing different
energy saving modes. Especially a permanently activated GPS receiver is power
consuming. HikeDroid should provide an energy saving mode which turns the
GPS receiver on and off in regular time intervals. For example during hiking, it
seems enough to record GPS positions in regular time intervals of a few seconds.

7.1.5 Memory Leakage

The current implementation of HikeDroid seems to suffer from memory leaks.
Terminating and restarting the application’s main activity (for example by switch-
ing the screen between portrait and landscape mode) for several times leads the
application to run out of memory. This error arises most likely because of the
mistake to keep a long-lived reference to the Context!.

! Android Developers Website, 2011. Context
Available at: http://developer.android.com/reference/android/content/Context.html [Ac-
cessed June 6, 2011]

7. FUTURE WORK 27

7.2 Extensions

This section proposes some further ideas of how to enhance the current imple-
mentation.

7.2.1 Data Sets

At the moment, HikeDroid is not yet able to use the full information provided
by the Swiss Federal Office for Topography?. It only allows users to display
hiking trail information. As stated in Section further data sets are available.
HikeDroid should be extended to allow users the access of this information.

7.2.2 Hiking Information

One may think of various extensions providing users with more information about
hiking trails. For example, information about the altitude characteristics of a
track can be shown. Further, the user could be provided with an estimated
amount of time required for a certain hiking trail. HikeDroid will therefore most
likely have to access vector data of the trails, which is currently not supported.

7.2.3 Features

HikeDroid is designed in a modular way and allows easy extension for its features.
There are almost no limitations in extending HikeDroid’s features. Elevation
profiles for hiking trails, sharing points of interest and notifying the user of
incoming thunderstorms are only a few ideas that one may think to add.

2Swisstopo Website, 2011. The Federal Geo-Information center
Available at: http://www.swisstopo.admin.ch [Accessed June 6, 2011]

CHAPTER 8

Conclusion

The Android application HikeDroid makes the VECTOR25 map data freely
accessible by mobile devices. VECTOR25 maps contain a bunch of useful details
and informations for hikers. HikeDroid provides a convenient way to access this
data. Users are allowed to interact with the map. They can move to their
desired position, zoom in and out in order to see more or less details, respectively.
Multiple scale levels are used to provide the best resolution. HikeDroid takes into
account, that hikers do not always have the possibility to establish a connection
to the Internet. Therefore, a map sector can be loaded in advance at home and
accessed offline during the trip. HikeDroid further tries to minimize the energy
consumption. Additionally the receipt of the devices GPS location is supported.
The current location can be directly marked on the map. Furthermore, a walk
can be tracked. Users can select different layers of information. For example
Swiss hiking trails can be enabled. HikeDroid is based on a flexible and extensible
architecture. The modular design allows future work to extend the application
with additional features.

28

List of Figures

2.1 Screenshot Comparison of difterent Map Applications| 6
5.1 Hierarchy of n Caches| 14
5.2 Cache with Request Managers|. 16
5.3 Map Adapter connecting Map and Cache| 17
6.1 Touch Screen Motion Fventsl 19
6.2 Multi Layering| 20
6.3 Map Sector and Coordinate System| 21
6.4 Tile Map| 22
6.5 SwisstopoPixelMap Cache Hierarchy| 24

[A.1 Map Adapter UML Class Diagram|
[A.2 Request Manager UML Class Diagram|
|A.3 Cache UML Class Diagram|
[A.4 Map UML Class Diagram|

W NN =

29

APPENDIX A

UML Diagrams

©® MapAdapter

TAG : String = MapAdapter { readonly }
map : Map

cache :1Cache

locationManager : LocationManager
requestedKeys : Set<String>

pointCount : int=0

create()

destroy ()

getBitmap (key : String,) : Bitmap
keylnCacheMotification (key : String)
onLocationChanged (location : Location)
onProviderDisabled (provider : String)
onProviderEnabled (provider : String)
onStatusChanged (provider : String, status : int, extras : Bundle)
enableGPS (minTime : int, minDistance : int)
disableGPS()

getMap() : Map

® ® & O O & OO ® ® ®|o o 0o 0 0 O

Figure A.1: Map Adapter UML Class Diagram

& RequestManager

o isRunnable : boolean
o buffer : Stack<AbstractRequest>

@ run()
@ terminate()
@ handle (request : AbstractRequest)

Figure A.2:

® LRULinkedHashMap

© AbstractRequest

o key : String
@ handle ()

Request Manager UML Class Diagram

© BitmapCache

o TAG : String { readonly }

o cacheMap : LRULinkedHashMap<String,Bitmap>

<<interface>>

@ ICache

o serialVersionUID : long = 0 { readonly }
o capacity : int { readonly }
@ removeEldestEntry (eldest : Entry,) : boolean

contains (key : String,) : boolean
remove (key : String)

putBytes (key : String, value : byte[*])
getBytes (key : String,) : byte
getBitmap (key : String,) : Bitmap

o000

TAG : String { readonly }

create()

destroy ()

contains (key : String,) : boolean
put(key : String, value : byte[*])

© spcache

© HierarchicalCache

TAG : String { readonly }

FOLDER : String = hikedroid { readonly }
FILE_EXTENSION_JPEG : String = .jpeg { readonly }
FILE_EXTENSION_PNG : String = .png { readonly }
cacheDir : File

keyMap : LRULinkedHashMap<S5tring,Long>

TAG : String { readonly }

rms : RequestManager{*] { unique }
head :int=0

adapter : MapAdapter

e s o o

setNext(next : HierarchicalCache)

®® ® ® 00 OO ® ®|0c 000 00

getCacheDir () : File

getFile (key : String,) : File
readFile(file : File,) : byte

writeFile (file : File, data : byte[*])
deleteFile(file : File)

create ()

contains (key : String,) : boolean
remove (key : String)

putBytes (key : String, value : byte[*])
getBytes (key : String,) : byte

setPrev (prev : HierarchicalCache)
create ()
destroy ()

putBytes (key : String, value : byte[*])
put(key : String, value : byte[*])
getBytes (key : String,) : byte
get(key : String)

getBitmap (key : String,) : Bitmap

®® 00O OO OO

handleRequest (request : AbstractRequest)

remove (key : String)
getBitmap (key : String,) : Bitmap

®®® 0 OO0

© Webcache

TAG : String { readonly }
REFERER : String = Referer { readonly }

contains (key : String,) : boolean
remove (key : String)

putBytes (key : String, value : byte[*])
getBytes (key : String,) : byte
loadFromURL (url : URL,) : byte
getReferer () : String

getURL (key : String,) : String

0 ® @ OO0 @0 o

Figure

© ByteArrayCache

o TAG : String { readonly }

o cacheMap : LRULinkedHashMap<String,byte[]1>

@ contains(key : String,) : boolean

@ remove (key : String)

@ putBytes (key : String, value : byte[*])
@ getBytes (key : String,) : byte

A.3:

Cache UML Class Diagram

© map

TAG : String { readonly }

surfacewidth : int

surfaceHeight : int

adapter : MapAdapter

TOUCH_MODE_NONE : int = 0 { readonly }
TOUCH_MODE_MOVE : int = 1 { readonly }
TOUCH_MODE_ZOOM : int = 2 { readonly }

mode : int

start : PointF

oldDist : double = 0

zoomID : int

zoomSCALE : double

X_MAP_BERN : double

Y_MAP_BERN : double

activeLayers : CopyOnWriteArraylist<AbstractLayer>
disengageableLayers : CopyOnWriteArrayList<AbstractLayer>
allLayers : CopyOnWriteAmayList<AbstractLayer=
XA_MAPCOORDS : double

YA_MAPCOORDS : double

XB_MAPCOORDS : double

YB_MAPCOORDS : double

scaling : double

pointMap : HashMap<S5tring,List<Pair<Point,Paint>>>

® © 0 0000000 O0O0O0EC0 0000000 OCO OO0 0CO0OOOOOOO OO0 O OO OO ®|(00 00 0000000000000 O0 000 OO

initCache (adpater : MapAdapter,) : ICache

getDrawer () : MapDrawerThread

getAdapter() : MapAdapter

getSurfaceWidth() : int

getSurfaceHeight() : int

surfaceCreated (holder : SurfaceHolder)

surfaceChanged (holder : SurfaceHolder, format : int, width : int, height : int)
surfaceDestroyed (holder : SurfaceHolder)

getDist(event : MotionEvent,) : float

setStartinPointerCenter (event : MotionEvent)

onTouchEvent (event : MotionEvent,) : boolean

zoomin()

zoomout ()

setldScale(id : int, scale : double)

setMapBern(xMapBem : int, yMapBem : int)

initLayers ()

initDefaultLayer () : AbstractLayer

initDrawableLayer () : AbstractLayer

addLayer (layer : AbstractLayer, isDisengageable : boolean)

removelayer (layer : AbstractLayer)

enableLayer (layer : AbstractLayer)

disableLayer (layer : AbstractLayer)

getActivelayers () : AbstractLayer

getLayerDialog () : AlertDialog

getScaling () : double

setScaling (scaling : double)

getXA_MAPCOORDS() : double

getYA_MAPCOORDS () : double

getXB_MAPCOORDS() : double

getYB_MAPCOORDS () : double

getXA_CH1903 () : double

getYA_CHI903 () : double

getXB_CH1903 () : double

getYB_CH1303 () : double

set_MAPCOORDS (xA : double, yA : double, xB : double, yB : double)
handleSector_WGS84 (lonA : double, latA : double, lonB : double, latB : double)
handlesector MAPCOORDS (xA : double, yA : double, xB : double, yB : double)
moveSector MAPCOORDS (dx : double, dy : double)
zoomSector_MAPCOORDS (zoomFactor : double)

xy_CH1903toWGS84 (mapX : double, mapY : double,) : double
x_WGS84toMAPCOORDS (longitude : double, latitude : double,) : double
xs5_WG584toMAPCOORDS (longitude : double, latitude : double,) : double
y_WGS84toMAPCOORDS (longitude : double, latitude : double,) : double
¥s_WG584toMAPCOORDS (longitude : double, latitude : double,) : double
getPointList (key : String,) : List

putPointList (key : String, pointList : List,) : List

addPoint (latitude : double, longitude : double, paint : Paint)

enableGPS ()

disableGPS()

© TileMap
o TAG : String { readonly }
o tilewidth : int
o tileHeight : int
o tileXmir :int
= tileXmax : int
o tileYmin : int
o tileYmax :int
@ getTilewidth() : int
@ getTileHeight() : int
@ setTileFormat(width : int, height : int)
@ setTileBounds (xMin : int, xMax : int, yMin : int, yMax : int)
@ onDraw (canvas : Canvas)
@ getZoomLevelids () : int
@ initDrawableLayer () : AbstractLayer
@ addPoint (latitude : double, longitude : double, paint : Paint)

© prawableTileLayer

]

onDraw (canvas : Canvas, dst : Rect, key : String)

® AbstractLayer

o SEPARATOR : String = # { readonly }
o id : String
© name : String
1 1 | ¢ fileExtension : String
T < active : boolean
+Map fdefauItLa)jeé o adapter : MapAdapter
+Map -drawableLayer | @ getName() : String
@ isActive() : boolean
® setActive (active : boolean)
@ onDraw (canvas : Canvas, dst : Rect, key : String)
© BitmapTileLayer
o defaultBitmap : Bitmap
@ onDraw (canvas : Canvas, dst : Rect, key : String)
© swissGrid
@ get_X_SWISS_BERN () : double
@ get Y_SWISS_BERN() : double
@ getAuxiliaryQuantitylatitude (latitude : double,) : double
@ getAuxiliaryQuantityLongitude (longitude : double,) : double
@ getX WGS84toCH1903 (longitude : double, latitude : double,) : double
@ getY WGS84toCH1903 (longitude : double, latitude : double,) : double
@ getH_WGS84toCH1903 (longitude : double, latitude : double, altitude : double,) : double
@ getxXY CH1903toWGS84 (x : double, y : double,) : double

Figure A.4: Map UML Class Diagram

APPENDIX B

Reference Documents

The following reference documents are also contained on the CD that comes with
this report.

B.1 Swiss Map Mobile, 2009

Comparison of the functions/platforms

Available at: http://www.swisstopo.admin.ch/internet /swisstopo/de/
home/products/maps/
mobile.parsysrelated1.56233.downloadList.28768. DownloadFile.tmp/
smm2009vergleichfunktionen.pdf [Accessed June 6, 2011]

B.2 Swiss Map Mobile Sectors, 2009

Status of map content

Available at: http://www.swisstopo.admin.ch/internet /swisstopo/de/
home/products/maps/
mobile.parsysrelated1.56233.downloadList.82447.DownloadFile.tmp/
nachfuehrungsstandswissmapmobile2009all.pdf [Accessed June 6, 2011]

B.3 Coordinate System Transformations, 2008

Formeln und Konstanten fiir die Berechnung der Schweizerischen schiefachsigen
Zylinderprojektion und der Transformation zwischen Koordinatensystemen
Available at: http://www.swisstopo.admin.ch/internet/swisstopo/de/
home/topics/survey /sys/
refsys.parsysrelated1.23611.downloadList.12097.DownloadFile.tmp /refsysd.pdf [Ac-
cessed June 6, 2011]

	Acknowledgements
	Abstract
	1 Android
	2 Motivation and Related Work
	2.1 Motivation
	2.2 Google Maps for Mobile
	2.2.1 Overview
	2.2.2 Comparison with HikeDroid

	2.3 Geo Admin Web Interface
	2.3.1 Overview
	2.3.2 Comparison with HikeDroid

	2.4 Swiss Map Mobile
	2.4.1 Overview
	2.4.2 Comparison with HikeDroid

	3 Goals
	4 Problems
	4.1 Architecture
	4.2 Map
	4.2.1 Map Data
	4.2.2 User Interaction
	4.2.3 Tiles
	4.2.4 Coordinate Systems
	4.2.5 GPS Positioning
	4.2.6 Layering

	4.3 Cache
	4.3.1 Interface
	4.3.2 Trade-Off
	4.3.3 Replacement Strategy

	4.4 Asynchronism

	5 Theoretical Background
	5.1 Cache
	5.1.1 Motivation
	5.1.2 Interface
	5.1.3 Hierarchy

	5.2 Request Manager
	5.2.1 Asynchrony
	5.2.2 Field of Application

	5.3 Map Adapter

	6 Realization
	6.1 Map
	6.1.1 Surface View
	6.1.2 Event Handling
	6.1.3 Layers
	6.1.4 Coordinate Systems
	6.1.5 Drawer

	6.2 Tile Map
	6.3 Cache
	6.3.1 Bitmap Cache
	6.3.2 Byte Array Cache
	6.3.3 SD Cache
	6.3.4 Web Cache

	7 Future Work
	7.1 Suggestions for Improvement
	7.1.1 Cache
	7.1.2 Map Architecture
	7.1.3 Offline Maps
	7.1.4 Energy Saving Mode
	7.1.5 Memory Leakage

	7.2 Extensions
	7.2.1 Data Sets
	7.2.2 Hiking Information
	7.2.3 Features

	8 Conclusion
	A UML Diagrams
	B Reference Documents
	B.1 Swiss Map Mobile, 2009
	B.2 Swiss Map Mobile Sectors, 2009
	B.3 Coordinate System Transformations, 2008

