
Distributed
 Computing

wgfinance.ch
Group Thesis

Dominik Fankhauser
Jonas Luder

Lorenz Koestler
Raphael Seebacher

{forename}@wgfinance.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Barbara Keller

Prof. Dr. Roger Wattenhofer

October 19, 2011

Abstract

This group thesis presents wgfinance.ch, the versatile and intelligent finance tool
for you and your flatmates. From the history of wgfinance to the most current
version, the concepts behind wgfinance are explained and implementational de-
tails are presented. Furthermore design and usability issues are looked at, as
well as potential competitors. Finally a roadmap for the future is provided as a
development guideline.

i

Contents

Abstract i

1 Introduction 1

1.1 A Short History of wgfinance . 1

1.2 The Old wgfinance . 2

1.3 The Need for a New wgfinance 2

2 Specification 4

2.1 Assumptions . 4

2.2 Features . 5

2.3 Concepts . 6

2.3.1 Basic Concepts . 6

2.3.2 Accountancy . 6

2.3.3 The wgfinance API . 6

2.4 Technological Specification . 6

2.4.1 Python . 6

2.4.2 The Django Framework 7

2.4.3 The Database . 7

2.4.4 Libraries . 8

3 Implementation 9

3.1 How-To Develop . 9

3.2 Backend . 9

3.2.1 Models . 9

3.2.2 Views . 9

3.2.3 Client/Server Interaction 9

3.2.4 The Forms Class . 9

3.3 Frontend . 9

ii

Contents iii

3.3.1 Templates . 9

3.3.2 Functionalities . 10

3.4 API . 11

3.5 Design and Usability . 11

4 Security and Data Privacy 13

4.1 The Client’s Perspective . 13

4.1.1 HTTPS . 13

4.1.2 API Security . 13

4.2 The Server’s Perspective . 14

4.2.1 SQL Injection . 14

4.2.2 Cross-site Scripting . 14

4.2.3 Directory Traversal . 15

4.2.4 Session Hijacking . 15

4.2.5 API . 15

5 Competitors and Rivals 16

5.1 splitabill . 16

5.2 iou.ch . 16

5.3 abrechnung-wg.de . 17

6 Conclusion 18

6.1 wgfinance Future . 18

A Developer’s Notes A-1

A.1 Application Programming Interface A-1

A.1.1 General Remarks . A-1

A.1.2 Function Reference . A-2

References A-9

Chapter 1

Introduction

In this introductory chapter the point we started from is being illustrated. The
first view on the new wgfinance is given in chapter 2, where the basic concepts and
features we planned are discussed. A more concrete point of view is provided
in chapter 3, which focuses on the implementation of the previously specified
features, as well as on design and usability. Security issues one faces when
developing a publicly accessible website are treated in chapter 4. Rivals and
competitors are looked at and compared to wgfinance in chapter 5. We conclude
this thesis in chapter 6, where we provide a plan for future development of
wgfinance.

1.1 A Short History of wgfinance

It all started in midsummer 2009, when Lorenz and some of his friends moved to
a flat. As in every flat, the finances are a very important issue. Being a part-time
programmer for an ETH spinoff company, Lorenz quickly realized that doing all
the accounting by hand or using a spreadsheet was far too impractical and kind
of old-fashioned. There was a need for something new. He therefore spent some
night shifts developing a quite simple, but never the less useful webbased tool:
The very first version of wgfinance was born. One might of course ask, why
Lorenz didn’t look out for some preexisting tool, but by writing the tool from
scratch one can precisely tailor the tool to ones needs, which is basically why
Lorenz wrote wgfinance himself.

Soon after Lorenz has developed wgfinance and registered the domain wgfi-
nance.ch, Jonas’ flat began doing their accounting using wgfinance. In late 2009
Dominik, Jonas, Lorenz and Raphael first met to discuss how to continue with
wgfinance. First concepts and ideas were brought to paper, but it took another
year for the developing of the new wgfinance to begin:
In late fall 2010 we found ourselves looking for a group thesis for the upcoming
spring term. Some day one of us came up with the idea of developing wgfinance
as our group thesis. It didn’t take long until we were all convinced to do so,

1

1. Introduction 2

since we always wanted to develop wgfinance further but ended up having not
much spare time.

1.2 The Old wgfinance

In order to give an answer for the legitimate question of why developing a totally
new wgfinance, we have to look at the architecture and the concepts behind the
very first version of wgfinance. Needless to say, as this first version of wgfinance
was a product of several night shifts, its capabilities were limited and yet it
provided the very basic functionality for accounting.

It was basically a one page website consisting of various boxes (cf. figure 1.1).
For each basic task, such as adding an expense, or showing a list of expenses,
there was a specific box. All one could do with the old wgfinance was collecting
and viewing expenses and transactions, setting up accounts, and calculating the
overall credit each member of the flat had.

From a technical point of view the old wgfinance based on PHP and MySQL
and was written using no specific framework, but rather some proprietary source
code from the ETH spinoff company Lorenz works at.

1.3 The Need for a New wgfinance

The main reason why we started completely from scratch with the new wgfinance,
is because it partly consisted of proprietary source code, as already mentioned
above. It would not have been possible to launch wgfinance as a public product
when it still consisted of that proprietary code. A further, yet minor reason was
that the first wgfinance didn’t make use of a framework and therefore many basic
functionalities had to be implemented by hand. Furthermore the old wgfinance
lacked some useful functionalities regarding user management, account manage-
ment, statistics and more. The need for developing a new version of wgfinance
is, hence, justified for the aforementioned reasons.

1. Introduction 3

Figure 1.1: The first version of wgfinance.

Chapter 2

Specification

In software development a quite well proven approach is to first fully - or at least
mostly - define the concepts and features a piece of software is supposed to have,
and then actually implement it. Below we illustrate the process just described,
by first stating the assumptions we acted on, then specifing the features, the
concepts and finally some technological details. The descriptions below are de-
liberately held in a rather abstract, non-implementation-specific manner, as the
next section focuses on implementation.

We define a feature to be something the user actually sees and can make
use of, whereas a concept is how wgfinance accomplishes certain tasks in the
background, hence not directly visibile to the user.

2.1 Assumptions

As mentioned above, we decided on the assumptions stated below, in order to
simplify our programming task on one hand, and to be able to provide tailor-
made features on the other hand. Note that the following assumptions do not
impose major constraints.

• We assume that the flatmates trust each other. In our opinion this trust-
fulness is necessary, since wgfinance is designed to keep track of expenses
and not to settle disagreements between flatmates.

• As the members of flat shares can change quite frequently, we further
assume that a user can be a member of multiple flat shares at a given
time instant. In our opinion this is quite useful, when moving from one flat
to the next, while still having unsettled expenses with the former flatmates.

• To mitigate potential currency conversion problems, especially regarding
currency exchange rates over time, we decided that a flat share has got only
one currency. From our point of view, the case where several currencies
are needed on a daily basis is negligible.

4

2. Specification 5

2.2 Features

With the above assumptions, we can now specify the features we want to im-
plement. We tried to limit these features to a minimun, such that wgfinance
provides the basic functionality, and to implement selected features, if additional
resources were available. We decided to implement the features listed below.

• Expense Tool
The most obvious feature wgfinance should provide is an easy to use, but
yet versatile tool for entering expenses. In order to guarantee the versatility
of this expense tool it has not only to provide input fields for date, com-
ment, amount, account, and checkboxes for those flatmates who pay, but
rather expense splitting functionality to guarantee much faster entering of
expenses. An expense has to be splitted when a receipt has multiple items,
for which not every flatmate has to pay, and which belong to different
accounts.

• Statistics
The counterpart to the entering of expenses is the viewing of single and/or
grouped expenses in various manners. We therefore planned on three dif-
ferent types of what we refer to as statistics: Pie charts, bar charts and
tables. These statistics have to be configurable regarding the details of ex-
penses, such as date, account, amount, etc., as well as regarding the time
domain and the time interval.

• Shopping List
Not absolutely necessary, but easy to implement and useful for users is the
shopping list feature. The key idea of this feature is to give the users the
possibility to add multiple lists, to which they can add items to be bought.
These items can be marked as bought, and can be deleted. We also planned
to give a shopping list a scope: The creator of a list can choose, whether
the list can be seen by the whole flat share, or only by himself. This feature
would become particularly useful in combination with smartphones, as lists
could be modified in real-time, while being at e.g. a supermarket.

• Management and Logging
Last but not least are several features regarding user and flat management,
and logging such as

– functionality to reset a forgotten password

– user property changes

– managing accounts

– adding, modifying, deleting members of a flat share

– having all relevant action logged

2. Specification 6

At this point we would like to stress that, even though functional with the
above features, there are several features that have already been thought on. A
list of possible future features is provided in section 6.

2.3 Concepts

2.3.1 Basic Concepts

First of all, there are some basic, not really project specific concepts many soft-
ware projects implement and all of them are usually provided by a framework
(cf. 2.4.2). These basic features consist of providing the Model-View-Controller
pattern, Object-Relational Mapping, Internationalization, Modularization, Ex-
tendability and various other. It therefore makes sense to base the tool on a
well-known and well-documented framework with a reasonably big community.

2.3.2 Accountancy

A key question we had to address is how to store all financial data in a proper, but
flexible and easy to use way. Even though we could have implemented our very
own scheme, we decided to implement a standard double entry bookkeeping. The
issue of how to map such a bookkeeping onto a relational database has proven
to be already solved1.

2.3.3 The wgfinance API

To fully exploit the above specified shoppinglist feature, we planned on an ap-
plication programming interface for external applications to provide access to
the shoppinglist feature. For reasons of simplicity in parsing and readability, we
decided to use HTTP GET parameters within an url2 for queries by a client and
the XML format for replies by the server.

2.4 Technological Specification

2.4.1 Python

We decided to use the python programming language 3 for the following reasons:

1Double Entry Accounting in a Relational Database http://homepages.tcp.co.uk/

~m-wigley/gc_wp_ded.html
2cf. RFC 1738 http://www.rfc-editor.org/rfc/rfc1738.txt
3http://www.python.org

http://homepages.tcp.co.uk/~m-wigley/gc_wp_ded.html
http://homepages.tcp.co.uk/~m-wigley/gc_wp_ded.html
http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.python.org

2. Specification 7

• It is a very widely used programming language, with a useful online docu-
mentation and a very large and active community.

• Python has its own object-oriented concept, which is very powerful. Fur-
thermore, python relies on intendation rather than on brackets for struc-
turing code. This leads to very readable and clean code, which, from our
point of view, is an advantage.

• No one of the wgfinance team had yet gotten in contact with python,
which is an advantage on one hand, and a disadvantage on the other: We
all wanted to learn a new programming language, even though we would
have been much faster in PHP, as some of us had already developed using
PHP.

2.4.2 The Django Framework

Having decided to use the Python programming language, we had to find a suit-
able framework, as already discussed above. Quite quickly we took the decision
to use the Django framework. According to their website4

Django is a high-level Python Web framework that encourages rapid
development and clean, pragmatic design.

Django implements the model-view-controller pattern, to which they rather
refer to as the model-template-view pattern. It has many users, many of which
are active on the project’s mailing list. In addition django is being constantly
developed further and is very well documented. Built-in in django are various
functions as for example a template engine, form classes, internationalisation,
and more.

2.4.3 The Database

For the database in the background we chose MySQL5, which is an open-source
and well documented relational database. MySQL is a very powerful database,
that provides more than enough functionalities and performance than we needed
for wgfinance. Moreover we already used MySQL several times and, hence,
already have some practical experience.

4https://www.djangoproject.com
5http://mysql.com

https://www.djangoproject.com
http://mysql.com

2. Specification 8

2.4.4 Libraries

• JQuery6

JQuery is an open-source JavaScript library that allows us to manipulate
HTML objects in a much simpler and more efficient way. Due to the fact
that it’s widely used, it is very stable and mostly free of bugs. Furthermore
it is cross-browser compatible. JQuery in particular provides functions to
select, manipulate and animate HTML objects, as well as to interact with
the server using Ajax requests.

• jqPlot7

jqPlot is an open-source JQuery plugin that is capable of displaying various
types of charts, including line plots, bar charts and pie charts. The plugin
provides various options for customization.

• JQuery UI8

JQuery UI is an official extension to the JQuery framework, which provides
the functionality to implement various types of user interface widgets, such
as calendar widgets, dialog windows, progress bars, etc.

• DataTables9

DataTables is another plugin for the JQuery library. It provides quite
sophisticated enhancements to HTML tables, such as internationalization,
multi-column sorting, search functions and many more.

• JSTree10

Finally, JSTree implements a tree object, which is based on JavaScript and
provides many features such as drag and drop support, inline editing, and
so on.

6www.jquery.com
7www.jqplot.com
8http://jqueryui.com
9http://datatables.net/

10http://www.jstree.com/

www.jquery.com
www.jqplot.com
http://jqueryui.com
http://datatables.net/
http://www.jstree.com/

Chapter 3

Implementation

3.1 How-To Develop

• extensive use of a mailinglist

• subversion

• wiki with a few howtos (setup of working station etc.)

• setup of working station: ubuntu, local testserver, sqlite and alternatively
mysql

3.2 Backend

3.2.1 Models

3.2.2 Views

3.2.3 Client/Server Interaction

3.2.4 The Forms Class

3.3 Frontend

3.3.1 Templates

The Django template engine gives the programmer the possibility to dynami-
cally compose the pages by building generic templates for various sub-pages and
linking them together. Templates can include other templates, or also extend
base templates. They can contain logic variables and loops which are then in-
terpreted by the template engine. The placeholders in the templates are filled

9

3. Implementation 10

by python, before the server delivers the page to the client. This has several
advantages: On one hand it is possible to build very complex pages while on
same time keeping the templates simple and generic. This especially means,
that design changes usually require changes in just a few files. ¡Der Aufbau der
Seite kann sehr einfach kontrolliert werden¿

Each page extends a base template, and is composed of a header, a content,
and a footer. On the main page the content is composed of several boxes which
contain a certain content (for example a shopping list, or the statistics) and can
include tabs. The contents and sizes (wide or narrow) of the boxes can be defined
in python. The same principle also applies to the settings page, where there are
tabs for each main category (personal settings and settings that apply to the
whole flat share). Each tab contains various boxes for each subcategory.

3.3.2 Functionalities

Using JQuery

As mentioned above, JQuery is a widely used JavaScript library. HTML objects
are selected using CSS1-like selectors, which means that it is much simpler to
select for example all elements of one class than it is using only JavaScript.
Once the objects are selected, various functions can be applied on them, for
event handling purposes or to manipulate their attributes, amongst others. We
used JQuery extensively for most user interface functionalities of the page, for
example:

• implementing the tabs on the main page, as well on the settings page

• in the expense box

• in the shopping list box

Statistics using jqPlot

To draw the bar and pie charts we used the jqPlot library. The data to be dis-
played is delivered to the client in JSON2 format and then parsed by JavaScript.
This data was then used to compute various parameters used to customize the
appearance of the plot. We for example calculated the ticks on the y-axis our-
selves (instead of using the standard autoscale function provided by jqPlot) since
we wanted to display ’nicer’ numbers, i.e. multiples of powers of ten. The data
was then handed over to the jqPlot constructor which rendered the plot and dis-
played it. The statistics are automatically refreshed if the user enters an expense,
or if he switches tabs.

1http://www.w3schools.com/css/default.asp
2http://www.json.org/

http://www.w3schools.com/css/default.asp
http://www.json.org/

3. Implementation 11

3.4 API

Regarding the use of the wgfinance application programming interface, we refer
to the appendix, where a detailed usage scheme for the API is given.A.1

3.5 Design and Usability

In this section we’d like to describe the basic ideas behind the design. Our goal
was to have a tool, that can be used with as few clicks as possible, and that
consists of as few pages as possible. However, the tool has still to be usable and
clearly laid out.
To achieve this goal, we came up with the boxes design. For every tool there
exists a box. The boxes can be displayed next to each other on the main page.
Furthermore, we changed the content dynamically using AJAX. Therefore no
page reloads are necessary, which makes the page slightly faster, but also easier
to use. Each box can also contain tabs.
We wanted the current balance of the users to be always visible, therefore we
placed a bar chart displaying that information in the header.
All settings (except where you can customize the statistics) are on a separate
page.
We placed the expense tool on the upper left of the page, since we think, that
this will be the tool that is used most. The statistics tool is placed on the bottom
of the page to take advantage of the full page width.
We tried to make the page more usable by automatically focussing on the most
appropriate input field. As soon as the user is logged in, the focus is automati-
cally on the field where you can enter the amount of an expense. On the other
hand, if you create a new shoppinglist, the focus is on the field, where you can
add new items to the shoppinglist.

3. Implementation 12

Figure 3.1: The new wgfinance.

Chapter 4

Security and Data Privacy

When developing a service for today’s World Wide Web, one should be quite
cautious, as there are many, partly automated, adversaries that try to exploit
various vulnerabilites; or, as they’ve put it in [4]:

The Internet can be a scary place.

In this chapter we illustrate how security issues are handled in the Django frame-
work and wgfinance, respectively. Generally speaking, there are two different
perspectives we have to focus on, namely the perspective of the client and the
server’s.

4.1 The Client’s Perspective

A client’s main concern, if even any, is usually the protection of the data he or
she provided. To account for this we considered the following:

4.1.1 HTTPS

In order to authenticate the server to the client on one hand, and to encrypt the
traffic on the other, we deployed HTTPS, hence certificates. With that we can
establish a secret channel between the server and the user and hence, the client
need not worry about his data being eavesdropped.

4.1.2 API Security

The API is typically used for external applications, that want to use the ca-
pabilities of wgfinance and include it within this application. Since we cannot
guarantee the well-functioning of those applications, it would not make sense to
use the username and password combination that we use within wgfinance itself

13

4. Security and Data Privacy 14

for authentication. We took the decision to rather use a username and token
combination. For allowing an external application access to wgfinance, the user
has to generate a token within wgfinance and then use it to connect from within
the exernal application.

This is particularly useful in the case where the external applications are
run on portable devices. Upon loss of such a device the user can just simply
deactivate the token within wgfinance to prevent further access by the external
application. In addition the password itself has not been compromised, since it
was never stored on the lost device.

4.2 The Server’s Perspective

From the server’s point of view the security challenge is manifold. According to
[4, p. 341] the most important paradigm concerning how to deal with the threat
can be stated as follows:

Never - under any circumstances - trust data from the browser.

Having this paradigm in mind, let’s look at some frequent exploits.

4.2.1 SQL Injection

In an SQL injection exploit an attacker typically makes use of form parameters,
i.e. GET or POST parameter, that are put into a SQL query without being
properly escaped. Since an SQL query is directly executed on the database, this
type of exploit has quite a big impact.

Thanks to the sophisticated Django database API all parameters given to
the API functions are escaped automatically. The only point where we did have
to pay special attention is obviously in cases where we did deliberately omit the
database API. Since this happens only at one point in the code, we were able to
ensure that parameters are being escaped.

4.2.2 Cross-site Scripting

Another typical attack, which again makes use of browser data not being cor-
rectly escaped, is known as cross-site scripting, or XSS for short. In this case
GET or POST parameters are poisoned with possibly malicious HTML tags,
such as iframes et al, that are then directly put onto the returned webpage.

In Django however the mighty template engine generally escapes every vari-
able that it is given.

4. Security and Data Privacy 15

4.2.3 Directory Traversal

As on one hand we do not explicitly open files in our code, and on the other hand
all urls that are requested by a client are matched against regular expressions,
there is virtually no risk of directory traversal.

4.2.4 Session Hijacking

Since we use HTTPS, as already mentioned above, a secret channel between
the client and the server can be established, which eliminates the risk of a ses-
sion being hijacked. However one is still vulnerable against Man-in-the-Browser
attacks.

4.2.5 API

Regarding the API we do have to be very paranoid, as any possibly malicious
application can access it. Therefore we observe that 1. we have to always comply
with the above paradigm and hence 2. design the API calls in a very strict and
clearly defined manner.

Chapter 5

Competitors and Rivals

Obviously, there are dozens, if not hundreds of other websites that provide func-
tionalities similar to wgfinance. Below we analyzed three of them and provide
comparisons to wgfinance.

5.1 splitabill

splitabill.com1 essentially provides the functionality we call the expense tool.
However, in splitabill every expense is looked at separately and therefore it is
not efficiently possible to look at statistics and every expense needs to be settled
separately. This may be suitable to settle occasional expenses with varying
partners, but it is a very inefficient way of keeping track of regular expenses with
the same partners, as it would be the case in a flat share. From a flat share’s
point of view wgfinance would better suit its needs.

5.2 iou.ch

iou.ch2, which has been developed by fellow ETH students, has a very sophis-
ticated way to split bills. It is for instance possible to split bills percentaged,
whereas wgfinance is only able to split them equally among the flat mates. It
has a very doodle-like user interface to create the so called pots. In contrast
to the multi-level account scheme of wgfinance, iou.ch supports only a single
account called a pot to register all expenses. Therefore iou.ch can only provide
very limited statistics.

1https://splitabill.com
2http://www.iou.ch

16

https://splitabill.com
http://www.iou.ch

5. Competitors and Rivals 17

5.3 abrechnung-wg.de

The tool that matches wgfinance best is abrechnung-wg.de3. Many features of the
two tools are similar. However abrechnung-wg.de provides additional features,
namely a budget planning tool and automated regular expenses. wgfinance on
the other hand provides splitting of expenses, which abrechnung-wg.de doesn’t.
Furthermore the statistics of wgfinance seem more sophisticated than those of
abrechnung-wg.de, since they are able to show multiple accounts within the same
chart. Generally wgfinance seem to be laid out more clearly, due to the fact that
abrechnung-wg.de uses more pages to provide the same features.

3http://abrechnung-wg.de

http://abrechnung-wg.de

Chapter 6

Conclusion

Taking the above comments on our rivals into account, we observe that in some
cases wgfinance is in an inferior position and in other cases superior. We can
therfore conclude that wgfinance provides a competitive service, but does not
provide revolutionary new functions.

6.1 wgfinance Future

As mentioned on various occations above, there are numerous features we already
came up with. In the following we provide a list as well as a description of those
features as an inspiration for future development of wgfinance. An implementa-
tion of the features below would turn wgfinance into an even more competitive
tool.

• Budget
A budget tool for planning and monitoring accounts of a flat share is prob-
ably the feature that has to be implemented next. This feature would
provide a simple form where expense limits for certain accounts could be
specified. Furthermore the statistics would have to provide an appropriate
visualization of budget states.

• Export
Even though all expenses can be examined in the statistics, there might
be the need for a hardcopy. For instance the hardcopy could be needed for
archiving, or even as a backup. An export functionality of a given statistics
would therefore be a very handy feature.

• Website for Mobile Clients
Generally the time between an expense itself and the its registration in
wgfinance has to be kept small. It would therefore be desirable that ex-
penses are registered almost in real-time, hence on mobile clients. As the
display of those devices is usually small, a special website is required for
these devices.

18

6. Conclusion 19

• Autocomplete
A small but useful feature would be an autocomplete function for the com-
ment in the expense tool, as well as for items in the shoppinglist. This
feature would provide suggestions based on previous entries while typing.

• API Extension
Currently the above specified API provides access only to the wgfinance
shoppinglist feature. It is desirable that the API is extended as to provide
the whole wgfinance functionality, especially registering expenses.

• Embedding http://aktionis.ch

By embedding the website aktionis.ch, which provides an overview of sales
promotions by multiple companies such as Migros, Coop or Denner, the
shoppinglist feature could be made even more sophisticated. Given items
of a shoppinglist could be compared to the promotions, and suggestions
could be given regarding the store at which the item could be bought.

• Social Sharing
In order to promote wgfinance and to attract more users the integration
of wgfinance into social networking sites has to be deepened. One could
an imagination such that a given facebook user can share that he or she is
using wgfinance in a simple manner.

There is currently already an ongoing project: A flat mate of Lorenz is de-
veloping a shoppinglist app for android mobile phones, that makes use of the
wgfinance API.

http://aktionis.ch

Appendix A

Developer’s Notes

A.1 Application Programming Interface

A.1.1 General Remarks

• All URLs have to be encoded as defined in RFC17381.

• All strings are encoded in UTF-8.

• Arguments like <api_token> have to be replaced by the variable.

• Arguments like [person_id] have to be replaced as well, but are optional.

• The root tag of every responce is the api_v0 tag.

• If the status is not ok, this tag is always empty:

– If the request url does not match any pattern shown below:

<api_v0 status="request_invalid" />

– If the token is invalid:

<api_v0 status="auth_token_invalid" />

1http://www.rfc-editor.org/rfc/rfc1738.txt

A-1

http://www.rfc-editor.org/rfc/rfc1738.txt

Developer’s Notes A-2

A.1.2 Function Reference

• wg_listing_add

– success

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

wg_listing/add/?name=a%20new%20list

<api_v0 status="ok" wg_id="1" person="LK" >

<wg_listing_add status="ok" >

<listing id="12" v_id="24"

modified="2011-01-01 20:41:50"

modified_by="LK"

name="a new list" />

</wg_listing_add>

</api_v0>

– If the name parameter is omitted:

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

wg_listing/add/

<api_v0 status="ok" wg_id="" person="" >

<wg_listing_add status="name_missing" />

</api_v0>

• wg_listing_delete

– success

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

wg_listing/delete/9/

<api_v0 status="ok" wg_id="1" person="LK" >

<wg_listing_delete status="ok" id="9" />

</api_v0>

– If the listing does not exist or does not belong to the person or the
flat share of the token:

<api_v0 status="ok" wg_id="1" person="LK" >

<wg_listing_delete status="invalid_listing_id" />

</api_v0>

• wg_listing_get

– http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

wg_listing/get/

Developer’s Notes A-3

<api_v0 status="ok" wg_id="1" person="LK" >

<wg_listing_get status="ok" >

<listing id="1" v_id="3"

modified="2010-12-31 17:03:29"

modified_by="LK"

name="test 0" />

<listing id="2" v_id="9"

modified="2011-01-01 14:57:54"

modified_by="LK"

name="second listing" />

<listing id="10" v_id="21"

modified="2011-01-01 15:42:14"

modified_by="LK"

name="another listing" />

</wg_listing_get>

</api_v0>

– http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

wg_listing/get/?items=true&listing_v_id_gt=1&item_v_id_gt=10

<api_v0 status="ok" wg_id="1" person="LK" >

<wg_listing_get status="ok" listing_v_id_gt="1" item_v_id_gt="10" >

<listing id="1" v_id="23"

modified="2011-01-01 20:36:47"

modified_by="LK"

name="new name" >

<item id="1" v_id="20"

modified="2011-01-01 20:50:15"

modified_by="LK"

content="modified content" />

</listing>

<listing id="2" v_id="9"

modified="2011-01-01 14:57:54"

modified_by="LK"

name="second listing" >

<item id="10" v_id="11"

modified="2011-01-01 14:13:56"

modified_by="LK"

content="third thing" />

<item id="11" v_id="12"

modified="2011-01-01 14:14:10"

modified_by="LK"

content="third thing" />

<item id="13" v_id="14"

Developer’s Notes A-4

modified="2011-01-01 14:24:02"

modified_by="LK"

content=""another test"" />

</listing>

<listing id="10" v_id="21"

modified="2011-01-01 15:42:14"

modified_by="LK"

name="another listing" />

<listing id="12" v_id="24"

modified="2011-01-01 20:41:50"

modified_by="LK"

name="a new list" />

</wg_listing_get>

</api_v0>

– items=true

If the get parameter items == ’true’, the items are returned.

– listing_v_id_gt=n

If the get parameter listing_v_id_gt is set, only listings with a
listing_version_id > listing_v_id_gt are returned.

– item_v_id_gt=n

If the get parameter item_v_id_gt is set, only items with a item_version_id
> item_v_id_gt are returned.

• wg_listing_modify

– http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

wg_listing/modify/1/?name=new%20name

<api_v0 status="ok" wg_id="1" person="LK" >

<wg_listing_modify status="ok" >

<listing id="1" v_id="23"

modified="2011-01-01 20:36:47"

modified_by="LK"

name="new name" />

</wg_listing_modify>

</api_v0>

– No name given:

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

wg_listing/modify/1/

<api_v0 status="ok" wg_id="1" person="LK" >

<wg_listing_modify status="name_missing" />

</api_v0>

Developer’s Notes A-5

– If the listing does not exist or does not belong to the person or the
flat share of the token:

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

wg_listing/modify/42/?name=foo

<api_v0 status="ok" wg_id="1" person="LK" >

<wg_listing_modify status="invalid_listing_id" />

</api_v0>

• item_add

– success:

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/item/ \

add/1/?content=new%20item

<api_v0 status="ok" wg_id="1" person="LK" >

<item_add status="ok" listing_id="1">

<item id="15" v_id="18"

modified="2011-01-01 20:44:57"

modified_by="LK" content="new item" />

</item_add>

</api_v0>

– If the listing does not exist or does not belong to the person or the
flat share of the token:

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/item/ \

add/1/?content=new%20item

<api_v0 status="ok" wg_id="1" person="LK" >

<item_add status="invalid_listing_id" />

</api_v0>

• item_delete

– success

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/item/ \

delete/15/

<api_v0 status="ok" wg_id="1" person="LK" >

<item_delete status="ok" id="15" />

</api_v0>

– If the item does not exist or does not belong to the person or flat
share of the token:

Developer’s Notes A-6

<api_v0 status="ok" wg_id="1" person="LK" >

<item_delete status="invalid_item_id" />

</api_v0>

• item_get

– success

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

item/get/1/

<api_v0 status="ok" wg_id="1" person="LK" >

<item_get status="ok">

<listing id="1" v_id="23"

modified="2011-01-01 20:36:47"

modified_by="LK"

name="new name" >

<item id="1" v_id="20"

modified="2011-01-01 20:50:15"

modified_by="LK"

content="modified content" />

<item id="2" v_id="2"

modified="2010-12-31 14:51:18"

modified_by="LK"

content="foo" />

<item id="3" v_id="3"

modified="2010-12-31 14:51:26"

modified_by="LK"

content="another item" />

<item id="4" v_id="4"

modified="2010-12-31 14:56:43"

modified_by="LK"

content="Milch" />

<item id="5" v_id="6"

modified="2010-12-31 14:59:21"

modified_by="LK"

content="Kuchen" />

</listing>

</item_get>

</api_v0>

– If the Listing does not exist or does not belong to the person or the
flat share of the token:

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

item/get/1/

Developer’s Notes A-7

<api_v0 status="ok" wg_id="1" person="LK" >

<item_get status="invalid_listing_id" />

</api_v0>

– http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

item/get/1/?item_v_id_gt=4

<api_v0 status="ok" wg_id="1" person="LK" >

<item_get status="ok" item_v_id_gt="4" >

<listing id="1" v_id="23"

modified="2011-01-01 20:36:47"

modified_by="LK"

name="new name" >

<item id="1" v_id="20"

modified="2011-01-01 20:50:15"

modified_by="LK"

content="modified content" />

<item id="5" v_id="6"

modified="2010-12-31 14:59:21"

modified_by="LK"

content="Kuchen" />

</listing>

</item_get>

</api_v0>

– item_v_id_gt=n

If the get parameter item_v_id_gt is set, only items with a item_version_id
> item_v_id_gt are returned.

• item_modify

– success

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

item/modify/1/?content=modified%20content

<api_v0 status="ok" wg_id="1" person="LK" >

<item_modify status="ok" listing_id="">

<item id="1" v_id="19"

modified="2011-01-01 20:49:24"

modified_by="LK" content="modified content" />

</item_modify>

</api_v0>

– If the item does not exist or does not belong to the person or flat
share of the token:

Developer’s Notes A-8

http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

item/modify/1/?content=modified%20content

<api_v0 status="ok" wg_id="1" person="LK" >

<item_modify status="invalid_item_id" />

</api_v0>

– http://localhost:8000/api_v0/9ebd6c2bd3a5234bd81a817b23b9a099/ \

item/modify/1/

<api_v0 status="ok" wg_id="1" person="LK" >

<item_modify status="content_missing" />

</api_v0>

References

[1] Michael Bowers. Pro CSS and HTML Design Patterns. Apress, 1 edition,
April 2007. ISBN 9781590598047.

[2] Django Software Foundation. The official django documentation.
https://docs.djangoproject.com/en/1.3/, October 2011.

[3] Magnus Lie Hetland. Beginning Python: From Novice to Professional.
Apress, 2 edition, June 2010. ISBN 9781590599822.

[4] Adrian Holovaty and Jacob Kaplan-Moss. The Definitive Guide to Django:
Web Development Done Right. Apress, 2 edition, July 2009. ISBN
9781430219361.

[5] Allan Jardine. Datatables examples. http://datatables.net/examples/, Oc-
tober 2011.

[6] jqPlot. jqplot usage documentation. http://www.jqplot.com/docs/files/usage-
txt.html, October 2011.

[7] The jQuery Project. jquery documentation. http://docs.jquery.com, October
2011.

[8] Mark Lutz. Learning Python. O’Reilly, 4 edition, October 2009. ISBN
9780596158064.

[9] Oracle. Mysql 5.5 reference manual. http://dev.mysql.com/doc/refman/5.5/en/,
October 2011.

A-9

	Abstract
	1 Introduction
	1.1 A Short History of wgfinance
	1.2 The Old wgfinance
	1.3 The Need for a New wgfinance

	2 Specification
	2.1 Assumptions
	2.2 Features
	2.3 Concepts
	2.3.1 Basic Concepts
	2.3.2 Accountancy
	2.3.3 The wgfinance API

	2.4 Technological Specification
	2.4.1 Python
	2.4.2 The Django Framework
	2.4.3 The Database
	2.4.4 Libraries

	3 Implementation
	3.1 How-To Develop
	3.2 Backend
	3.2.1 Models
	3.2.2 Views
	3.2.3 Client/Server Interaction
	3.2.4 The Forms Class

	3.3 Frontend
	3.3.1 Templates
	3.3.2 Functionalities

	3.4 API
	3.5 Design and Usability

	4 Security and Data Privacy
	4.1 The Client's Perspective
	4.1.1 HTTPS
	4.1.2 API Security

	4.2 The Server's Perspective
	4.2.1 SQL Injection
	4.2.2 Cross-site Scripting
	4.2.3 Directory Traversal
	4.2.4 Session Hijacking
	4.2.5 API

	5 Competitors and Rivals
	5.1 splitabill
	5.2 iou.ch
	5.3 abrechnung-wg.de

	6 Conclusion
	6.1 wgfinance Future

	A Developer's Notes
	A.1 Application Programming Interface
	A.1.1 General Remarks
	A.1.2 Function Reference

	References

