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Abstract

Mobile devices are becoming part of our daily life. One of the most important uses
for them is consumption of multimedia content, which is often streamed from the
internet through cloud music and video services.

The Pulsar project provides a new, peer-to-peer based content distribution system for
rich media content. The goal of this thesis is to make this technology usable on mobile
devices. Mobile devices have specific requirements like limited computational capacity
and battery life. We present an adapted and optimized version of Pulsar, tailored for
use on mobile devices.

During the course of the thesis, it became apparent that the original Java implemen-
tation of Pulsar is not efficient enough for use on smartphones. Therefore, a major
part of the thesis was the development of a Java to C++ converter, which allowed us to
automatically port the whole Pulsar stack to C++.

To validate the approach on a real device, we implemented a feature-complete radio
streaming application, optimized for low resource usage, for the Android platform. This
application is used as a benchmark for our Java to C++ converter, and to verify the us-
ability of the adapted Pulsar framework on mobile devices.
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1
Introduction

Mobile devices like smartphones, netbooks, and tablets are becoming part of our daily
life. They are selling better year after year, and continuously replace – not only for the
young generation – our radios, televisions and desktop computers at home. These new
appliances use the ubiquitously available internet connections, be it through wireless
hotspots or mobile data connections, to deliver content to the users wherever they are.

One of the most prominent uses for mobile devices is entertainment. Users enjoy hav-
ing their collection of music, movies or TV shows on the devices they carry with them.
This basic need led to the development of the walkman, one of the first devices that
reached cult status with a global customer base. Nowadays, Apple’s iPod is widely used
as a synonym for portable music players, mostly because it is easy to buy, manage and
listen to your favorite music from your computer or your various mobile devices.

1.1 Multimedia Streaming Services

An increasingly visible trend in entertainment solutions is the use of cloud services.
Several large companies such as Amazon, Google or Apple launched cloud-based mu-
sic services this year. The advantages of these are that the user’s music collection is
stored online and thus accessible from different devices any time there is an internet
connection. In the cases of Amazon’s cloud player and Apple’s iCloud, the music stor-
age is coupled with an online store to buy new songs. Purchasing tracks makes them
automatically available through the cloud storage.

A similar trend can be seen with radio stations. Traditionally, radio signals are trans-
mitted over the air using the FM and AM frequency bands. A single antenna can serve
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an unlimited number of users within its transmission range, and thus makes it a par-
ticularly good broadcast method for this purpose. Nevertheless, more and more users
listen to radio through the internet. In Germany, for example, more than 16 million
people are regularly listening to radio stations through the internet, a number that is
projected to grow to 21 million by 20131. More than 40 percent of the internet users are
listening to a music service while surfing.

In contrast to the traditional over-the-air radio broadcasting, the increasing number
of users listening to the radio over the internet leads to additional costs for the radio
stations. Currently available streaming solutions require a certain amount of server
and bandwidth resources for every single listener. This means that radio stations need
to invest a lot of money into additional server infrastructure to cope with the projected
growth of listeners of their streaming services.

1.2 Contribution

This thesis explores a new approach to stream multimedia content, in particular music,
to mobile devices. Our solution is based on Pulsar, a peer-assisted content distribution
platform. We believe that using a peer-assisted streaming technology leads to vari-
ous technical and economical advantages in this field. In particular, using Pulsar as
a distribution platform allows for a growing audience that consumes rich media con-
tent online, without the associated added cost that traditional solutions involve on the
server side.

The goal of this thesis is to integrate mobile devices into the Pulsar content distribution
platform. This includes in particular:

• Creating a reusable module to access Pulsar streams from mobile devices.

• Optimizing the Pulsar protocol for additional requirements of mobile devices.

• Implementing a fully functional radio streaming application for a smartphone
platform.

In order to achieve acceptable performance on mobile devices, an additional tool was
developed to convert the Pulsar codebase from Java to C++ automatically.

1.3 Outline

The rest of the thesis is structured as follows: Chapter 2 gives some background for this
thesis, including related scientific work and existing technologies and applications in
the field of media streaming. Chapter 3 defines the requirements of our content distri-
bution network for mobile devices and describes the experience and conclusions gath-
ered with developing a prototype radio streaming application. The automatic program-
1 http://corporate.radio.de/werbung.html

http://corporate.radio.de/werbung.html
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ming language converter used to translate the Pulsar codebase to C++ is presented in
Chapter 4.

Chapter 5 presents the adapted version of Pulsar. Following this, Chapter 6 describes
the smartphone application that we implemented. It goes into more detail about the
architecture, the underlying technology as well as the user interface. At the end, Chap-
ters 7 and 8 summarize the results achieved, and give a conclusion and outlook into
future developments.





2
Background

Realizing a mobile peer-to-peer system that streams live content to mobile devices re-
quires knowledge about various technologies and research fields. As we deal with a
very broad topic, this chapter can only provide a general overview of the involved con-
cepts, relevant publications, and applications.

2.1 Live Streaming

Presenting a continuous video or audio track to the user if the content is not available
on the device beforehand is called streaming. Streaming involves a source signal, a
delivery channel and a client application. The source signal can be a file stored on a
server, or an input device such as a video camera or a microphone. This source signal is
usually transmitted from a broadcasting application to a media publisher that provides
it to potential end users by means of a streaming protocol. The internal delivery of the
content from the media publisher to end users is controlled by a content distribution
network.

2.1.1 Broadcasting and Transcoding

Several applications can be used as the source of a live stream. For audio streaming, the
most commonly used applications are SAM Broadcaster1, SimpleCast2 and Winamp3.
1 SAM Broadcaster: http://www.spacialaudio.com/?page=sam-broadcaster
2 SimpleCast: http://www.spacialaudio.com/?page=simplecast
3 Winamp: http://www.winamp.com

http://www.spacialaudio.com/?page=sam-broadcaster
http://www.spacialaudio.com/?page=simplecast
http://www.winamp.com
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The broadcasting application is responsible for creating a connection to the media pub-
lisher and consistently delivering the source signal of the stream.

It is often desirable to have a stream available in different formats. For example, having
a stream available in multiple bitrates and multiple encoding formats allows a listener
to choose the one that matches best the available bandwidth and the capabilities of
his device. There are two possibilities to achieve this:

• Let the broadcasting software encode the signal in different formats, and send all
of them to the media publisher. This requires additional processing power and
bandwidth.

• Let the media publisher encode a single source signal into all the required for-
mats (transcoding). This is easier for the broadcaster, but requires additional re-
sources on the media publisher side.4

Table 2.1 lists some of the common audio codecs used for streaming [24]. MP3 is the old-
est of them, but still the most widely used codec. It is supported on a lot of consumer
devices, and thus easy to integrate into a streaming application. AAC+ was developed
to provide higher perceived quality at lower bitrates than MP3. [6] gives a nice overview
of the algorithms behind the MP3 and AAC+ codecs. The only non-patented codec that
is widely used is Ogg Vorbis [15]. Its main advantage is that it can be used without
licensing costs; therefore it is often used in open-source projects as well as commer-
cial applications such as Spotify5. WMA was implemented by Microsoft in 1999 as a
competitor to the MP3 format which was widely used at that time, because it could
be integrated in their Windows operating system without paying licensing fees to the
Frauenhofer Society.

Codec Creator First Release Patented Typical Bitrates

MP3 Fraunhofer Society 1993 Yes, Non-Free 128 to 320 kbit/s
AAC+ MPEG Audio Committee 1997 Yes, Non-Free 16 to 320 kbit/s
Ogg Vorbis Xiph.Org Foundation 2000 No, Free 32 to 320 kbit/s
WMA Microsoft 1999 Yes, Non-Free 32 to 320 kbit/s

Table 2.1: Comparison of audio codecs.

2.1.2 Content Distribution Networks

An interesting aspect of live streaming is how the content is distributed from the media
publisher over the network to the listeners. The internet is designed according to the
end-to-end principle [18]. Most of the functionality is implemented at the endpoints,
the servers and the clients, while keeping the network infrastructure as simple as pos-
sible. This allows building extremely efficient infrastructure, specialized in forwarding
data packets.
4 This is why transcoding on the media publisher leads to significant additional costs.
5 Spotify: http://www.spotify.com/

http://www.spotify.com/
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While the end-to-end principle is in general a good fit for the internet, it poses some
problems for the use case of live streaming. The media publisher has to provide hard-
ware resources and bandwidth for every incoming connection, and thus for every single
listener of the stream.

To improve this situation, one can use a content distribution network (CDN). A tradi-
tional CDN consists of a collection of edge servers that attempt to offload work from
the origin servers by delivering content on their behalf [12]. The edge servers cache
content of the origin servers at different locations around the network (see Figure 2.1).
Requests can then be routed to an “optimal” edge server, where the notion of opti-
mal can include geographical, topological or latency considerations. [10] describes the
techniques used in a CDN: web caching, server load-balancing, request routing, and
content services.

Although not originally developed for this purpose, peer-to-peer (P2P) systems can also
be used as a CDN. One of the central characteristics of P2P systems – which reflects
upon issues of performance, availability and scalability – is their ability to function,
scale, and self-organize in the presence of a highly transient population of users, with-
out the need for a central server administration [2]. This makes them particularly suit-
able for content distribution in streaming systems, because listeners often join and
leave streams. Another advantage of P2P content distribution networks is that they
do not require lots of edge servers, but can exploit connections between nearby users
directly.

Figure 2.1: Content distribution networks. Left: Traditional streaming without a content dis-
tribution network. Center: Content distribution network with edge servers. Right:
Peer-to-Peer content distribution network.

2.1.3 Streaming Protocols

The communication between a client application and the media publisher works ac-
cording to a streaming protocol. Several streaming protocols exist for different pur-
poses.

The de-facto standard for live audio streaming is SHOUTcast [16]. It is based on the
client-server model and TCP as a transport protocol. The server broadcasts a stream
of bytes with raw audio data (usually MP3), and metadata that is interleaved therein
periodically. Its simplicity makes SHOUTcast easy to implement for client applications.
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Listening to SHOUTcast streams is supported in Winamp6, iTunes7, VLC8, Amarok9, and
various other music players.

An alternative to SHOUTcast, with a similar purpose, is HTTP Live Streaming [3]. It works
by dividing the stream into small HTTP-based file downloads that each contain a chunk
of the audio data. The same chunks are available in different bitrates, allowing a client
to continuously choose an appropriate format according to the available bandwidth.
HTTP Live Streaming is the preferred format for Apple mobile devices10 and is also avail-
able on Android since version 3.0.

The Real Time Messaging Protocol (RTMP) is a streaming protocol developed by Adobe
[1]. RTMP is supported by Adobe Flash Media Server and Flash Player. The transport
protocol is TCP-based and supports low-latency audio and video distribution as well as
a remote procedure call interface.

A streaming protocol extensively used in internet telephony and video teleconference
applications is the Real-time Transport Protocol (RTP) [11]. RTP is designed to support the
real-time transmission of audio and video signals over IP networks. It is used together
with a control protocol, e.g. the RTP Control Protocol (RTCP), that monitors transmission
statistics, synchronizes multiple streams and controls quality of service.

2.2 Mobile Devices

2.2.1 Platforms

Table 2.2 gives some insight into the global smartphone sales in the second quarter of
2011 [9]. One can clearly see that Android is the predominant smartphone operating
system as of 2011, with the biggest growth compared to 2010. The second most im-
portant platform is iOS, which grew from 14 to 18 percent market share. Symbian, on
the other hand, lost its position as market leader. Therefore, Android and iOS with a
combined market share of more than 60 percent are currently the primary targets for
mobile application development.

2.2.2 Radio Streaming Applications

Even though smartphone producers often bundle web radio compatible media players
with their devices, radio streaming applications are still popular in the Android Market
as well as the Apple App Store.
6 Winamp: http://www.winamp.com
7 iTunes: http://www.apple.com/itunes/
8 VLC: http://www.videolan.org
9 Amarok: http://amarok.kde.org/
10 For example iPod, iPhone, and iPad.

http://www.winamp.com
http://www.apple.com/itunes/
http://www.videolan.org
http://amarok.kde.org/
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Q2 2010 Q2 2011

Platform Units (Thousands) Market Share (%) Units (Thousands) Market Share (%)

Android 10’652.7 17.2 46’775.9 43.4
Symbian 25’386.8 40.9 23’853.2 22.1
iOS 8’743.0 14.1 19’628.8 18.2
RIM 11’628.8 18.7 12’652.3 11.7
Bada 577.0 0.9 2’055.8 1.9
Windows 3’058.8 4.9 1’723.8 1.6
Others 2’010.9 3.2 1’050.6 1.0

Total 62’058.1 100 107’740.4 100

Table 2.2: Global smartphone sales by platform, second quarter 2010 vs. second quarter 2011.

On Android, TuneIn Radio is by far the most used radio streaming application with more
than 10 million installations11. XiiaLive appeals with a custom interface12. Both appli-
cations work with the SHOUTcast online radio station directory and, therefore, are able
to browse, search and play more than 50’000 radio stations [16].

Pandora is the most popular radio streaming application for the iOS platform13. Pan-
dora generates a personalized stream for every listener, and is in this sense not com-
parable to the other radio streaming applications, even though most of the streaming
considerations still apply. iheartradio focuses on the US market with a custom listing
of 750 radio stations of all genres14.

Figure 2.2: Mobile radio streaming applications. From left to right: TuneIn Radio (Android), Xi-
iaLive (Android), Pandora (iPhone), iheartradio (iPhone).

One can see several trends with popular radio streaming applications. They either pro-
vide a personalized stream like Pandora, or a directory of radio stations that allows the
user to browse and find new stations. Also to note is that the user interface seems to
be crucial for achieving widespread adoption, resulting in beautifully designed appli-
cations (see Figure 2.2).
11 TuneIn Radio: https://market.android.com/details?id=tunein.player
12 XiiaLive: https://market.android.com/details?id=com.android.DroidLivePlayer
13 Pandora: http://itunes.apple.com/us/app/pandora-radio/id284035177
14 iheartradio: http://itunes.apple.com/us/app/iheartradio/id290638154

https://market.android.com/details?id=tunein.player
https://market.android.com/details?id=com.android.DroidLivePlayer
http://itunes.apple.com/us/app/pandora-radio/id284035177
http://itunes.apple.com/us/app/iheartradio/id290638154
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2.3 Automatic Language Conversion

During the implementation phase of this thesis, the need arose to convert a large code-
base from Java to C++ due to performance reasons. Doing this work by hand would be
an enormous task, especially maintaining a port alongside the upstream development
version. Therefore, we investigated frameworks that can translate Java code to native
code automatically. Table 2.3 lists some projects in this area.

Converter Publisher License Shortcomings

Toba University of Arizona Free Unmaintained, only JDK 1.1
Java2C Vishia LGPL Alpha state
GCJ Free Software Foundation GPL Difficult to integrate custom C++
JFE Edison Design Group Commercial Expensive, unmaintainable C code

Table 2.3: Automatic programming language converters.

One of the first projects in this domain was Toba15. It starts from Java bytecode and
translates it to C header and source files. The generated code is not meant for human
readability, but rather for optimizing compilers. Furthermore, the project is unmain-
tained and only supports Java 1.1.

The Java2C project is a recent effort to create a similar solution, released by the author
as an open source project [20]. In contrast to the Toba project, Java2C starts from the
Java source code and thus generates a human readable output. However, Java2C is
currently only in alpha state and not yet tested with large codebases.

There is also a Java frontend for the GCC compiler called GCJ16. It is available under an
open source license. The main problem with GCJ is that it produces binaries directly,
meaning that integrating custom C++ components is difficult.

The most promising solution for our application is JFE from the Edison Design Group17.
It builds an intermediate representation from Java code, allows performing transfor-
mations, and has C and C++ generation backends. It is also widely used in the industry,
for example by ARM Ltd., Hewlett-Packard or Texas Instruments. Unfortunately, the JFE
is not intended to produce maintainable C or C++ code, and the licensing costs for the
technology are between 40’000 and 250’000 dollars.

15 Toba: http://www.cs.arizona.edu/projects/sumatra/toba/
16 GCJ: http://gcc.gnu.org/java/
17 Edison Design Group: http://www.edg.com

http://www.cs.arizona.edu/projects/sumatra/toba/
http://gcc.gnu.org/java/
http://www.edg.com


3
Content Distribution for Mobile

Devices

There are many possible ways of implementing a content distribution system for mo-
bile devices. This chapter describes the requirements we identified for our streaming
solution, and the concepts and technologies used to implement them. It also presents
a prototype application that was developed to gain insights into the main problems
that have to be solved, especially when dealing with mobile devices.

3.1 Requirements

We start by defining the essential requirements for our streaming solution.

Scalability In order to satisfy the growing demand for streaming content on the in-
ternet, our solution should scale well with the number of listeners. This means,
in particular, that the server infrastructure must support thousands of listeners
with modest hardware requirements.

Reliability Like every infrastructure technology, a content distribution system must op-
erate with high availability. In an environment with lots of mobile users, the sys-
tem should be resilient to listeners joining and leaving in short intervals, different
bandwidth limitations due to wireless connections, high mobility of clients, and
heterogeneous client devices.

Resource Usage Conserving device resources is particularly important on mobile de-
vices. CPU and RAM usage significantly impacts the battery life and should there-
fore be reduced wherever possible.
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3.2 Content Distribution Network

In order to achieve the necessary scalability and reliability, we chose to use a peer-to-
peer content distribution network, namely Pulsar. Pulsar is an efficient and robust peer-
to-peer streaming system built by the Distributed Computing Group at ETH Zürich [13].
It allows the delivery of audio and video streams to a large number of clients, while
keeping the load on the servers low by letting the clients retransmit data to other peers
in an elaborate way. It thus scales better than conventional systems for a large number
of users while still offering high-quality media streams.

Pulsar was developed for desktop systems. Of course, mobile devices have quite differ-
ent requirements for a streaming solution. Therefore, it was necessary to adapt and
optimize parts of the Pulsar framework to reduce resource consumption and make it
usable on resource-constrained devices.

3.3 Target Platform

Android was chosen as the target platform for the development. With a market share
of more than 40 percent of smartphone sales in 2011, Android is distributed on a lot of
new mobile devices and the user base is growing rapidly [9]. Besides that, the Android
platform is an appealing target for the following reasons:

• Android is an open-source platform1. There are free development tools and a lot
of resources available.

• Android enables the implementation of applications in the Java programming
language. This is an advantage because the Pulsar framework is also written in
Java, simplifying the initial porting effort.

• There are many different devices available to test against. This is not only limited
to smartphones, but the same applications can also run on tablet devices and
netbooks.

3.4 Application Prototype

As a first step, we implemented a prototype application for the Android platform which
is based on a straightforward port of the desktop version of the Pulsar framework. A
background service connects to Pulsar streams, and a simple user interface displays
metadata and some controls (Figure 3.1). The notable conclusions were:

• The application successfully received a Pulsar stream and played it back on an
Android smartphone.

1 Android Open Source Project: http://source.android.com/

http://source.android.com/
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Figure 3.1: The user interface of the application prototype.

• It is currently not possible to integrate a custom streaming protocol into the de-
fault media player application.

• The high-level media player component that is available for application devel-
opers is not capable of using a custom streaming protocol. Unfortunately, this
means that we can not utilize the integrated audio codecs.

• The available sound APIs are limited. They make it easy to play back local files or
a stream in a format supported by the platform. Otherwise, audio data has to be
decoded by the application and delivered to the system in raw PCM frames.

The major problem with the application prototype was performance. Even with all
security mechanisms disabled, no audio decoding and no audio output, the application
still used more than 30 percent of the CPU on a Nexus One smartphone. On a Motorola
Defy, which runs the older version 2.1 of the Android platform, the application used 100
percent of the CPU. Of course, that is unacceptable for a production application.

The performance problems led us to the decision of implementing the Pulsar frame-
work in native code. Compiling a C++ codebase with an optimizing compiler before-
hand should avoid some performance problems that turned up with the Dalvik virtual
machine (Dalvik VM)2 used on the Android platform. This also makes it possible to run
the same code on devices that do not support Java in the first place.
2 Dalvik VM: http://code.google.com/p/dalvik/

http://code.google.com/p/dalvik/
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Manually implementing Pulsar in C++ is a lot of work and has the disadvantage that a
port is difficult to maintain because upstream changes have to be adapted in the port
as well. It was therefore decided to create a tool that can convert the Pulsar codebase
from Java to C++ automatically (see Chapter 4).



4
Java to C++ Converter

Converting between programming languages is an inherently difficult problem. Te-
dious to do by hand, it is even harder to get right for a computer program. This chapter
presents our new converter capable of translating Java source code to C++. It is built
upon well-known, freely available components where it makes sense, but provides su-
perior functionality compared to similar products in areas such as readability of the
generated code, performance, or the broad set of supported Java features like thread-
ing and synchronization, exception handling, UDP networking, and generics.

4.1 Requirements and Scope

We first define some requirements for our converter.

• The converter shall produce semantically correct C++ source and header files. The
generated codebase can be compiled with the GCC compiler [7].

• The generated code shall be human-readable and semantically as close as possi-
ble to the original Java code.

• The converter shall support all common Java language features. If something can
not be converted due to technical reasons, the converter shall display an appro-
priate error or warning message.

Furthermore, there are some additional guidelines that we followed during develop-
ment. For obvious reasons, the generated code should be easy to debug. This is helpful
to find problems in the generated code as well as in the converter itself. Class, field
and method names are preserved, and the filenames clearly indicate the classes they
contain. The converter also keeps Javadoc comments intact.



16 4.2. ARCHITECTURE

Another area of concern is portability. High-level libraries and platform-specific APIs
such as the Standard Template Library (STL)1, Boost2 or the Winsock API3 are avoided
due to our use of the generated code on mobile device platforms. Because these mobile
device platforms often use older compilers and libraries, the generated source code also
can not take advantage of the new C++11 features4.

Translating the entire feature set of the Java language and all its libraries is out of scope
for this thesis. The following areas were intentionally not investigated:

• There is no support for NullPointerExceptions. The translated code will gener-
ate a segmentation fault in this case.

• Class nesting is only allowed for a single level. This means that nested classes
are allowed, but the use of an inner class or an anonymous class within a nested
class is not.

• There are some limitations to the use of generics. See Section 4.4.8 for more
details.

• Only parts of the Java standard libraries are included. Notably missing are the
filesystem API, regular expressions, the TCP network stack, serialization, and ob-
ject streams.

• We did not attempt to integrate or translate a user interface framework such as
SWT5 or Swing6.

4.2 Architecture

Figure 4.1 shows the overall architecture of the converter. It consists of three main
parts: the converter program itself, a backend and the runtime implementation.

The converter program generates the C++ source files from the original Java files in
five steps. First, the analyzer checks the Java code for compatibility and potential trans-
lation problems. The parser then creates an abstract syntax tree (AST) intermediate
representation of the code. The AST is a tree datastructure of all constructs in the orig-
inal Java code. Multiple rewriters transform the AST into a suitable form for C++. The
optimizer step can do some additional performance optimizations on the intermediate
representation. In the end, the flattener traverses the AST and produces C++ header
and source files accordingly.

There are currently two backends that process the generated C++ files. The GCC com-
piler backend generates shared libraries and binaries. The Android export backend cre-
ates suitable build files that can then be compiled with the Android toolchain.
1 STL: http://www.sgi.com/tech/stl/
2 Boost: http://www.boost.org/
3 Winsock: http://technet.microsoft.com/en-us/library/cc958787.aspx
4 ISO/IEC 14882:2011 on http://www.iso.org/
5 SWT: http://www.eclipse.org/swt/
6 Swing: http://download.oracle.com/javase/tutorial/uiswing/

http://www.sgi.com/tech/stl/
http://www.boost.org/
http://technet.microsoft.com/en-us/library/cc958787.aspx
http://www.iso.org/
http://www.eclipse.org/swt/
http://download.oracle.com/javase/tutorial/uiswing/
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Figure 4.1: Java to C++ converter architecture.
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The runtime implementation contains the Java libraries and all the code that is required
to support the Java language features. The biggest part is contained in the Java run-
time and gets converted to C++ together with the original Java source code. Some
advanced features such as memory management, threads, and network sockets are
implemented in C++ directly and added to the C++ source code before the backend
step.

4.2.1 Analyzer

The analyzer is the first step in the translation process. It makes sure that the Java code
can be compiled. Additionally, it detects code that can not be converted or that could
lead to runtime problems in the generated code:

Missing Symbols If a required Java class can not be accessed by the converter, there are
missing symbol errors. This is usually a problem in the input configuration.

Nested Classes A nested class must not contain another inner class or an anonymous
class, because this structure can not properly be converted to C++.

Static Initialization Unlike in Java, the order in which static fields are initialized is unde-
fined for C++. Therefore, static fields referencing members or functions of other
classes lead to warnings.

Regular Expressions Methods that take string patterns as arguments7 only work for
constant strings and not for regular expressions. If the analyzer can not resolve
such arguments to a constant string, or the argument is a regular expression, a
warning indicates possible runtime problems.

4.2.2 Parser

A central part of the converter are the Java parser and the AST. Instead of implementing
these components ourselves, we used the ones provided by the Java Development Tools
(JDT) from Eclipse [23].

The purpose of the parser is to process a Java input file and create a corresponding
AST. Figure 4.2 demonstrates the structure of an AST created for a simple program. In
the rewriter and the flattener steps, the AST is traversed by classes implementing the
visitor pattern [8].

7 For example String#split().
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1 while (b != 0) {
2 if (a > b)
3 a = a − b;
4 else
5 b = b − a;
6 }
7 return a;

Figure 4.2: Abstract syntax tree (AST). Left: Java source code. Right: Visualization of the corre-
sponding AST datastructure.

4.2.3 Rewriters

To suitably transform the Java code for C++ code generation, several rewriters selec-
tively replace or alter nodes in the Java AST. They fulfill the following purposes:

• Replace expressions not supported in C++ with equivalent statements. For exam-
ple, a foreach loop is transformed to a loop over an iterator, or a string concate-
nation expression is replaced by a helper method that serves the same purpose
(see Sections 4.3.5 and 4.4.5).

• Add language features provided by the Java virtual machine (JVM) explicitly to
the code. This includes things like enumeration methods, autoboxing of basic
types or accessing the enclosing object from an inner class (see Sections 4.3.4
and 4.4.1).

• Accord for subtle differences in syntax. Besides others, C++ has different suffixes
for number literals and does not allow naming methods with a language key-
word.
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4.2.4 Optimizer

The exact workings of the optimizer step are omitted here because they are not rel-
evant for the topic of the thesis, but Table 4.1 lists some of the operations we do to
further optimize the produced code. These operations prepare the code for optimiza-
tions by the C++ compiler, for example by simplifying the inheritance hierarchy, making
methods non-virtual, or reducing visibilities.

Optimizer Description

Dead code Remove unreachable members, methods and classes.
Final Methods Make methods that are not overridden by any subclass final.
Final Classes Make classes that have no subclasses final.
Non-Object Remove the Object supertype if it is not needed.
Interface Remove interfaces that are implemented only by a single class.
Visibility Reduce the visibility of members and methods.

Table 4.1: Automatic performance optimizations done in the optimizer step.

4.2.5 Flattener

The flattener is responsible for producing C++ source code from the Java AST. It is based
on the Java flattener from JDT [23]. In general, each block in the AST corresponds to a
block in C++, and each statement in the AST corresponds to a C++ statement. State-
ments that are not supported in C++ are removed or replaced by the rewriters in a
previous step (see Section 4.2.3).

The flattener generates C++ header and source files for every top-level class and enu-
meration in the AST. The basic syntax of Java and C++ is fortunately quite similar. Thus,
most of the simple statements like if/else, for, switch/case, try/catch, new, and
many more can be kept with minimal modifications to the original Java code.

Most of the complexity in the flattener originates from the fact that we use a Java AST
as the intermediate representation. This choice allows us to reuse the JDT components
from Eclipse, but has the disadvantage that there is no representation for C++-specific
language features. As such, the flattener is responsible for adding these on the fly.8

Another difficulty is determining which parts of the code have to go into the header or
the source files. By default, all declarations are in the header file, and all definitions are
in the source file. However, there are cases were the definitions also need to move to
the header file, notably inner classes, generic classes and generic methods (see Section
4.4.8).
8 For example, member initialization lists for constructors are generated in the flattener (see Section

4.4.7).
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4.2.6 Backend

The GCC backend uses the tools of the GNU Compiler Collection (GCC) to create static
libraries and executables on desktop platforms. In a first step, every source file is com-
piled on its own by invoking GCC. After that, the backend either creates a static library
by adding all object files, or a distributable binary by additionally invoking the linker.

The Android backend exports the source files into a directory tree that can be built with
the Android Native Development Kit (NDK)9. It copies the source and header files into
appropriate directories and creates buildfiles that are understood by the NDK build
system. To make use of the resulting code within an Android application, one still has
to include this directory tree in the application folder and invoke the ndk-build tool
included with the NDK.

4.2.7 Runtime Implementation

The runtime implementation contains all code that is required to support the Java
language features as well as implementations for Java libraries. Table 4.2 gives an
overview of the contents in the runtime implementation.

Component Contents Package Language Dependencies

Basic Types Integer, Long, Double, Short, . . . java.lang Java
Exceptions Exception, RuntimeException java.lang Java, C++
Strings String, Character, StringBuilder java.lang Java, C++
Object wait(), notify(), synchronized() java.lang Java, C++ pthreads
Threads Thread, Runnable java.lang Java, C++ pthreads
Math round(), log(), sqrt() java.lang Java, C++ libm
System System.out, arraycopy() java.lang Java, C++ stdio
IO Streams InputStream, OutputStream, . . . java.io Java
Collections ArrayList, HashMap, HashSet, . . . java.util Java
Network InetAddress, DatagramSocket java.net Java
BigInteger BigInteger java.math Java
NIO ByteBuffer java.nio Java

Sync synchronized C++ pthreads
TCF try-catch-finally C++
GC Garbage Collection C++ Boehm GC
UDP DNS resolving, UDP sockets C++ BSD sockets

Table 4.2: Contents of the runtime implementation.

There are two possibilities to implement the Java libraries for the runtime implemen-
tation. One could wrap C++ libraries, such as the STL, to provide the same interface as
Java. This approach promises the best performance but has several drawbacks. The
wrapper classes would need to be implemented by hand, which is a lot of work for all
the interfaces required by the Java libraries. It would also yield some dependencies on
9 Android NDK: http://developer.android.com/sdk/ndk/index.html

http://developer.android.com/sdk/ndk/index.html


22 4.3. DATA TYPES

third-party libraries that may not be available or not properly supported on all target
platforms.

The approach we chose is thus to translate as much as possible from a Java imple-
mentation. Fortunately, open source implementations of the Java libraries exist. One
of them is Apache Harmony10, a well-established Java runtime that is also used in the
Dalvik VM on Android. It is therefore a good choice as the foundation for our runtime
implementation.

However, not all parts can be implemented in Java. Components like memory man-
agement, threads, and network sockets have to be implemented in C++ directly. The
question arises how to interface the code translated from Java with the C++ parts. The
Java Native Interface (JNI)11 is a standard to interface Java with native code. JNI allows
Java methods to be declared as native, meaning they are implemented in C or C++.
Together with a C library that provides access to fields and method calls on objects in
the JVM, this allows including native code in a Java program or library. Our converter
supports the JNI syntax by acting as a bridge between the generated C++ codebase
and the manually implemented C++ components. This permits us to convert Java code
that uses JNI, and thus to develop parts of the runtime implementation in C++.

4.3 Data Types

4.3.1 Basic Types

Java has both primitive types and wrapper objects for basic types. This means an inte-
ger can be represented as an int, carrying just the value, or as a full-fledged Integer

object that provides additional methods such as conversion from or to strings, and con-
version between different number types12.

Table 4.3 shows the data types that are used for the Java primitives in C++. They are
chosen so that the number of bits are the same. As such, operations on primitive types
can be copied from Java directly, including bit-operators like shift and xor. We adapted
the wrapper objects from Apache Harmony with a custom implementation of the na-
tive code accessed through JNI13.

4.3.2 Object Types

There are two possibilities how to store objects during the runtime of a program: on
the heap or the stack. Allocating objects on the heap usually has some overhead be-
cause used and unused memory regions have to be managed by the operating system.
10 Apache Harmony: http://harmony.apache.org/
11 Java Native Interface: http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
12 For example converting an integer to a double.
13 We do the conversion of numbers from and to strings through standard C++ methods, whereas Apache

Harmony uses an additional floating point and math library.

http://harmony.apache.org/
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
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Java Type C++ Type C++ Type Alias Bits Range

boolean bool jboolean Java 1, C++ 8 true, false
byte int8_t jbyte 8 -128. . . 127
short int16_t jshort 16 -32 768 . . . 32 767
int int32_t jint 32 −231 . . .231 − 1
long int64_t jlong 64 −263 . . .263 − 1
float float jfloat 32 -
double double jdouble 64 -
char uint16_t jchar 16 \u0000. . . \uffff

Table 4.3: Basic types in Java and C++. In the generated C++ code, a type alias is used to further
unify the look of the Java and C++ code.

In Java, objects are always stored on the heap and accessed through references. C++
allows storing objects on the heap or on the stack, and they can be accessed through
either pointers or references. The converter keeps all objects on the heap like it is done
in Java. This has several advantages, the main one being the simplicity of the generated
code as all objects are stored and accessed the same way. Java addresses objects by
reference. Despite the name, Java references are more like pointers in C++14. Therefore,
Java references are translated to pointers.

4.3.3 Arrays

Arrays can be allocated for all primitive and object types in Java. They are instantiated
with a certain size and can not be resized later. This can nicely be mapped to C++ arrays,
which behave the same way.

The JVM allows getting the length of an array during runtime. Unfortunately, that
is not possible with C++ arrays, so we had to implement it ourselves. Our solution
allocates an additional integer to store the length in 4 bytes before every array (see
Figure 4.3). On 64-bit systems, four bytes of additional padding have to be inserted
before the actual content of the array to fulfill pointer alignment rules15.

Figure 4.3: How arrays are stored in memory. On a 64bit system, 8 bytes are allocated in front
of each array to hold the length (4 bytes) and some padding.

14 A C++ reference can only point to a single object for its lifetime, whereas pointers can point to an arbi-
trary object like a Java reference.

15 Pointers have to be aligned to the size of a pointer. On a 64bit-system, the size of a pointer is 8 bytes
and the size of an integer is only 4 bytes, so the padding is required to align the array content.
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4.3.4 Enumerations

Enumerations are considered to be objects in Java. They implicitly inherit methods
from the Enumeration class. In contrast, C++ enumerations are primitives. To support
Java-style enumerations, there are two possibilities. Either keep using C++ enumer-
ations and provide the additional methods in a helper object, or skip them altogether
and build our own enumeration solution. In this case, we took the second approach be-
cause it is closer to the Java model and leads to more readable code. Listing 4.1 demon-
strates how an enumeration is converted to a class with the enumeration methods.

4.3.5 Strings

Lots of methods exist to represent strings in C++. We need the following functionality
to translate strings from Java:

• Constructing a string from a literal in the source code.

• Constructing a string from an array of bytes as it is produced by serializing a
string in the JVM16.

• String manipulations, for example substrings or converting to lower case.

• String search, for example checking if a string contains another string.

• String concatenation.

• Writing a string to the standard output.

One possibility is to wrap an existing third-party string library to provide the same API
as in Java. STL or Boost strings would both work for this approach, but they would
require manual wrapper classes for String and Character, as well as Unicode support.
Additionally, it is cumbersome to achieve compatibility with strings serialized by the
JVM.

Therefore, our solution uses a C++ part that represents characters as UTF8-encoded
shorts, and can convert from and to C-style strings17. Support for Unicode, string ma-
nipulations, search, and concatenation use the translated Java implementation from
Apache Harmony. Writing to the standard output and handling string literals in the
source code is done through C-style strings.
16 Compatibility with Java clients, for example when communicating over the network.
17 0-terminated character arrays, stored as char*.
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1 // provided by the JVM
2 public abstract class Enum {
3 private final String name;
4 private final int ordinal;
5

6 protected Enum(String name, int ordinal) {
7 this.name = name;
8 this.ordinal = ordinal;
9 }

10

11 public final String name() {
12 return name;
13 }
14

15 public final int ordinal() {
16 return ordinal;
17 }
18 }
19

20 // enum keyword implicitly extends Enum class
21 public enum TestEnum {
22 T1,
23 T2;
24

25 public int val() {
26 if (this == T1)
27 return 1;
28 return 2;
29 }
30 }

1 // provided by the runtime implementation
2 public abstract class CppEnum {
3 private final String name;
4 private final int ordinal;
5

6 protected CppEnum(
7 String name, int ordinal
8 ){
9 this.name = name;

10 this.ordinal = ordinal;
11 }
12

13 public String name() {
14 return name;
15 }
16

17 public final int ordinal() {
18 return ordinal;
19 }
20 }
21

22 public final class TestEnum extends CppEnum {
23

24 public final static TestEnum T1 =
25 new TestEnum("T1", 0);
26 public final static TestEnum T2 =
27 new TestEnum("T2", 1);
28

29 private final static TestEnum[] VALUES =
30 new TestEnum[] { T1, T2 };
31

32 public static TestEnum valueOf(String name) {
33 // omitted for brevity: iterate over
34 // VALUES, return matching one
35 }
36

37 public final static TestEnum[] values() {
38 return VALUES;
39 }
40

41 TestEnum(String name, int ordinal) {
42 super(name, ordinal);
43 }
44

45 public int val() {
46 if (this == TestEnum.T1)
47 return 1;
48 return 2;
49 }
50 }

Listing 4.1: Converting enumerations. The Java enumeration (left) is converted to a class, and
the enumeration methods supported by the JVM are added explicitly (right).
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4.4 Language Features

4.4.1 Classes and Interfaces

A Java class contains both declaration and definition, whereas in C++ classes are typ-
ically declared in a header file and defined in a source file. We use two separate AST
visitors in the flattener to create header and source files. The header visitor inspects
the Java AST and creates appropriate declarations, and the source visitor creates the
definitions in the source file.

Listing 4.2 shows how a class is converted to C++. In general, the following rules apply
to translate classes:

• The class is declared in a header file.

• Class members are declared in the header file. If they are initialized with an ex-
pression, this is moved to the member initialization list of the constructor in the
source file.

• Static members are declared in the header file. If they are initialized with an ex-
pression, the initialization statement is added to the source file.

• Methods, including static ones, are declared in the header file and defined in the
source file.

• Abstract methods are declared as pure virtual methods18 in the header file.

• Native methods are declared in the header file. A wrapper around a call to an ex-
ternal implementation through the JNI naming convention is added as the defi-
nition to the source file.

Note that there is no possibility to declare a class as abstract in C++. Instead, classes
with pure virtual methods or subclasses thereof can not be instantiated unless they
implement all pure virtual methods. Furthermore, there is no interface type in C++, so
Java interfaces are converted to classes that only contain pure virtual methods.

Nested classes also exist in C++. They are fully defined in the header file and must not
contain nested classes themselves. Anonymous classes are assigned a unique name
and then added as a separate class to the source file. Generic classes and generic meth-
ods are an exception to these rules (see Section 4.4.8).

4.4.2 Inheritance

In Java, a class can only inherit from a single superclass, but can implement multiple in-
terfaces. Since interfaces are represented as regular classes with pure virtual methods
in C++, multiple inheritance is required, which is fortunately supported by standard
18 A pure virtual method has “=0” added to its declaration and does not have a definition in the source

file.
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1 public abstract class TestClass {
2

3 private int i1 = 0;
4 private int i2;
5

6 private static int si = 1;
7

8 public TestClass() {
9 i2 = 2;

10 }
11

12 public static int getStatic() {
13 return 42;
14 }
15

16 public int get() {
17 return getNative();
18 }
19

20 public abstract int getAbstract();
21

22 public native int getNative();
23 }

1 // testclass.h
2 class TestClass : virtual public CppObject {
3 public:
4 TestClass();
5

6 static jint getStatic();
7 virtual jint get();
8 virtual jint getAbstract() = 0;
9 virtual jint getNative();

10 private:
11 jint i1;
12 jint i2;
13 static jint si;
14 };
15

16 // testclass.cpp
17 jint TestClass::si = 1;
18

19 TestClass::TestClass() : i1(0) {
20 this−>i2=2;
21 }
22

23 jint TestClass::getStatic(){
24 return 42;
25 }
26

27 jint TestClass::get(){
28 return this−>getNative();
29 }
30

31 jint TestClass::getNative(){
32 return Java_package_TestClass_getNative

(getCNIEnv(), this);
33 }

Listing 4.2: Converting classes from Java (left) to C++ (right).

C++. A class first inherits its superclass and then all its interfaces. Only public inheri-
tance is used because this is semantically equivalent to Java.

One of the difficulties that arises due to multiple inheritance is the diamond problem
[14]. It occurs if a class inherits from the same superclass through more than one inher-
itance paths19. To avoid ambiguities in this case, C++ allows using virtual inheritance,
which makes sure only a single object of the superclass is allocated and provides facil-
ities for proper casts (see [22] for more details). For simplicity reasons, the converter
initially uses virtual inheritance everywhere. To prevent the performance penalty that
this imposes, the optimizer step detects and removes most of the unnecessary virtual
inheritance relationships (see Section 4.2.4).
19 For example an interface that is implemented directly and is also implemented by a superclass.
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4.4.3 Polymorphism

Polymorphism is a fundamental concept in modern object-oriented programming lan-
guages. In Java, polymorphism is used together with inheritance. A variable of a cer-
tain type can also hold an object of a subclass of the declared type. Calling a method
on this variable will not necessarily call the one from the declared type, but the one of
the subclass if it overrides this method.

All method calls in Java use polymorphism. This is not true for C++, where methods
have to be explicitly declared as virtual due to the additional overhead at runtime.
To preserve semantic compatibility with Java, all non-private methods are initially de-
clared virtual. The optimizer step might identify methods that do not need to be virtual
for better performance (see Section 4.2.4).

4.4.4 Packages and Imports

All Java classes declare a package statement. Classes can then be referred to by their
fully qualified name, which is the package name followed by a period (“.”) and the class
name. An import statement takes a fully qualified class name and makes the class
available without explicitly specifying the package in the current file. The directory
structure of the source files reflects the package naming by creating a directory for
every group delimited by a period in the package name20. Although this suggests that
there is a hierarchy of packages, this is not the case in Java. Semantically, a package can
not be embedded inside another one.

C++ namespaces provide a similar functionality as Java packages. They group classes,
objects and functions under a common name, essentially dividing the global scope into
parts which have to be addressed explicitly with the name of the namespace. Because
there is no package hierarchy in Java, it is sufficient to transform every package into
its own namespace, replacing periods in the package name with underscores21. Like in
Java, classes can be referred to by a fully qualified name, which is the namespace fol-
lowed by the scope resolution operator (“::”) and the class name. Similar to the import
statement, it is possible to omit the namespace by importing a type with the using

declaration, or by importing an entire namespace with the using namespace directive.

4.4.5 Loops

Loops are semantically very similar in Java and C++. Therefore, for and while loops can
be used the same way they are defined in Java. A special case is the foreach loop. It
allows iteration over the elements of an array or any iterable collection using a special
syntax of the for loop22.
20 The class org.mycompany.myproject.MyClass resides in src/org/mycompoany/myproject/MyClass.java.
21 Other naming strategies would be possible as well, although periods are not allowed in a namespace

name.
22 Example: for (int i: arr) {...} where arr is an array of integers.
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1 int sum = 0;
2

3 // foreach loop for an array
4 int[] arr = new int[]{1, 2, 3};
5 for (int i: arr) {
6 sum += i;
7 }
8

9 // foreach loop for an iterable collection
10 List<Integer> list = new ArrayList<Integer>();
11 list.add(4);
12 list.add(5);
13 for (Integer i: list) {
14 sum += i;
15 }

1 int sum = 0;
2

3 int[] arr = new int[] { 1, 2, 3 };
4 for (int _i0 = 0; _i0 < arr.length; ++_i0) {
5 int i = arr[_i0];
6 sum += i;
7 }
8

9 List<Integer> list = new ArrayList<Integer>();
10 list.add(4);
11 list.add(5);
12 Iterator<Integer> _it1 = list.iterator();
13 while (_it1.hasNext()) {
14 Integer i = _it1.next();
15 sum += i;
16 }

Listing 4.3: Converting foreach loops. In the rewriter step, foreach loops (left) are replaced by
traditional for loops (right).

Because there is no equivalent to the foreach loop in C++, all occurrences thereof are
replaced by conventional for loops in the rewriter step. Iterating over an array uses
an additional int variable to store the current position, and iterating over an iterable
collection uses an additional iterator variable (see Listing 4.3).

4.4.6 Exceptions

In C++, any object or primitive type may be thrown as an exception. Nevertheless, hav-
ing a common superclass for all throwable objects, like the Exception class in Java, has
several advantages. We use the classes from Apache Harmony to express exceptions
in the runtime implementation, and subclass them for user-defined exceptions in the
original Java code.

Exception handling with the try-catch pattern can be done the same way as in Java.
However, supporting the finally keyword is a difficult problem. C++ does not provide
a finally construct because it is deemed unnecessary as there is the resource acquisi-
tion is initialization (RAII) technique to achieve the same effect [21]. Although RAII can
be used when developing C++ code from scratch, it is of no help for us when translating
from Java. Therefore, we implemented a number of macros that can be used to achieve
Java-style finally blocks (see Listing 4.4).

Another non-trivial problem that occurs with exceptions are stack traces. They are ex-
tremely useful for debugging purposes, although not supported by standard C++. The
GNU libc library23, commonly used on modern linux desktop distributions, can gen-
erate stack traces. Therefore, an optional module that adds stack traces to exceptions
was implemented. It is automatically added to the build if the build system detects the
23 GNU libc library: http://www.gnu.org/s/libc/

http://www.gnu.org/s/libc/
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1 boolean b1 = false;
2 boolean b2 = false;
3

4 int i = 0;
5 try {
6 if (b1)
7 throw new

Exception();
8 if (b2)
9 return i;

10 } catch (Exception e) {
11 i++;
12 } finally {
13 i += 2;
14 }
15

16 return i;

1 jboolean b1=false;
2 jboolean b2=false;
3

4 jint i=0;
5

6 // defines what happens after the finally
7 enum TFR_FUN{NOTHING, RETURN,

BREAK, CONTINUE};
8

9 // thrown to reach the finally block
10 // without returning afterwards
11 struct TFR_NR {
12 TFR_FUN fun;
13 TFR_NR(TFR_FUN f): fun(f) {}
14 };
15

16 // thrown to reach the finally block
17 // and return the value of v afterwards
18 struct TFR {
19 int value;
20 TFR(int v): value(v) {}
21 };
22

23 try {
24 try {
25 if (b1)
26 throw new CppException();
27 if (b2)
28 throw TFR(i);
29 throw TFR_NR(NOTHING);
30 } catch (CppException∗ e) {
31 i++;
32 throw TFR_NR(NOTHING);
33 }
34 } catch (...) {
35 i += 2;
36 try {
37 throw;
38 } catch (TFR const& aResult) {
39 return aResult.value;
40 } catch (TFR_NR const& aNR) {
41 }
42 }
43 return i;

1 jboolean b1=false;
2 jboolean b2=false;
3

4 jint i=0;
5 tcf_finally_start
6 tcf_try {
7 if (b1)
8 throw new

CppException();
9 if (b2)

10 tcf_return(i)
11 tcf_try_end
12 } catch (CppException∗ e) {
13 i++;
14 tcf_catch_end
15 } tcf_finally {
16 i += 2;
17 tcf_finally_end
18 }
19 return i;

Listing 4.4: Converting finally from Java (left) to C++ (center). On the right the code gener-
ated by the converter with some macros to increase readability.
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GNU libc library. As such, stack traces are currently only supported on Linux systems,
but not on the Microsoft Windows and Android platforms.

4.4.7 Initializers

There are various initializers that deal with setting up objects when they are instanti-
ated. Java allows setting the initial value of a field in the declaration, which is called
field initialization. The converter transforms all field initializations into a member ini-
tialization list that is added to every constructor of the corresponding class in C++.

Another kind of initializers is used for arrays. Initializing arrays with some elements
between curly brackets is supported in both Java and C++. However, due to our custom
implementation of arrays (see Section 4.3.3), we need to store the length of the array
as well. The approach taken by our converter is to count the number of elements in
the flattener, and then invoke the newArrayFromValues helper method with both the
number of elements and the array elements themselves to create the array with the
length information.

To do non-trivial object initialization, Java also allows to define so-called object initial-
izers. An object initializer is a block within curly braces inside a Java class that gets
executed by the JVM whenever a new object of that class is created. A static initializer
can be defined by adding the static keyword before an initializer block. Static initial-
izers are executed when a class is loaded by the JVM, and can be used to initialize static
members. To reproduce this behavior in C++, the initializers are converted to methods
that are called as field initializers (see Listing 4.5).

1 public class Initializers {
2 private int i;
3 private static int si;
4

5 // object initializer
6 // executed when a new object is created.
7 {
8 i = 1;
9 }

10

11 // static intializer.
12 // executed when the class is loaded.
13 static {
14 si = 2;
15 }
16

17 }

1 public class Initializers {
2 private int i;
3 private static int si;
4

5 // object initializer
6 private boolean __oI = __objectInit();
7 private final boolean __objectInit() {
8 this.i = 1;
9 return true;

10 }
11

12 // static initializer
13 private static boolean __sI = __staticInit();
14 private static final boolean __staticInit() {
15 si = 2;
16 return true;
17 }
18

19 }

Listing 4.5: Converting object and static initializers. In the rewriter step, object and static initial-
izers (left) are converted to methods that are called through field initializers (right).
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4.4.8 Generics

Java introduced generics as a mean to abstract over types in the JDK 1.5. The most
common examples are container types, such as Lists or Maps. The Java compiler imple-
ments generics as a front-end conversion called erasure. The full details of erasure are
beyond the scope of this thesis, but one can think of it as a source-to-source translation
that transforms the code to a non-generic version. [5]

Because in Java generics are implemented using erasure, their scope is quite limited.
Therefore, it is possible to express most of their functionality with C++ templates. C++
templates differ from generics in that the compiler produces different versions of a
class or a function for every type argument used in the program. This requires special
attention when translating generics and causes some limitations described below.

Generic classes are converted to template classes in C++. From a compiler’s point of
view, referring to a template class might require adding a new version of this class
if the type argument was not seen before. Therefore, it is necessary to have the full
definition of a template class available in the header file. The converter thus converts
generic classes to header-only template classes.

Special attention has to be given to static methods. Calling a static method on a generic
class is possible in Java without specifying the type parameter, whereas in C++ it is
never possible to access a template class without a type parameter. The converter uses
a rewriter that creates a non-generic superclass for every generic class and moves all
static methods to this new class.

Similar to generic classes, generic methods are converted to template methods in C++.
The same argument for the compiler applies – template methods have to be fully de-
fined in the header file. The Java compiler also allows to omit the type arguments for
generic methods if they can be deduced from the actual arguments or the required re-
turn type. Therefore, all type arguments of generic methods are added explicitly to the
source code in the rewriter step.

Nevertheless, there are some limitations to what can be successfully translated to C++.
Generic type bounds24 can not be expressed in C++. The analyzer step issues a warning
if it encounters type bounds, and then the converter replaces them by the exact type
bound. There is also no equivalent for the wildcard generic type.

4.4.9 Threads and Synchronization

The Java thread and synchronization features need low-level threading primitives such
as mutexes and conditions, as well as support for creating, joining and stopping user-
level threads. Therefore, it makes sense to incorporate a threading library into the gen-
erated codebase. Our solution is based on the POSIX threads (pthread) API. It has the
24 Generic type bounds permit to restrict the allowed types by specifying a supertype or a subtype. For ex-

ample, an interface MyInterface<T extends String> would only accept subtypes of String as type
arguments.
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advantage that it is available on all leading desktop platforms including Linux, Mac OS
X, Microsoft Windows25, as well as on the iOS and Android smartphone platforms.

The implementation of threads is based on the Thread and Runnable classes from
Apache Harmony, and a native C++ component based on the pthread API. The native
component sets up new threads, runs them and exits them properly. Additionally, the
current thread can be identified, and there is preliminary support to interrupt threads
on platforms that support it26. The start procedure of a user-created thread is as fol-
lows:

1. The start method is invoked on a Thread object.

2. Control is transferred to the native thread component.

3. A new pthread handle is allocated for the thread.

4. A temporary struct with references to the Thread and the pthread handle is cre-
ated.

5. A new thread is created through the pthread_create API call. An internal thread
setup function is set as the entry point. The temporary struct with the required
references is passed to the thread setup function.

At this point, the thread that called the startmethod returns, and the rest of the setup
procedure is run in the new thread. The internal thread setup function in the new
thread does the following:

1. Stores a reference to the Thread object in thread-local storage, so we can later on
find out which Thread belongs to which pthread.

2. Sets the pthread handle into a field of the Thread object, so we can later on find
out which pthread belongs to which Thread.

3. Adds itself to the list of active threads.

4. Sets the active flag of the Thread object.

5. Calls the run method of the Thread object.

To achieve synchronization between multiple threads, Java provides the synchronized
keyword. It is based on a so-called intrinsic lock associated with every object. A thread is
said to own an intrinsic lock in the time between acquiring and releasing the intrinsic
lock of an object. As long as a thread owns an intrinsic lock, no other thread can acquire
the same lock. The other thread will block when it attempts to acquire the lock. When a
thread executes a synchronizedmethod it acquires the intrinsic lock for that method’s
object and releases it again when the method returns or throws an exception. It is also
possible to explicitly specify the intrinsic lock to acquire in a synchronized block. [17]

The first step in translating the synchronized keyword to C++ is converting all syn-
chronized methods to explicit synchronized blocks. We then need to find an equivalent
25 Through the Pthreads-w32 open source implementation that is included with the converter.
26 Interrupting a thread using the Java semantics requires the pthread_cancel function, which is not

available in the pthread implementation that comes with Android.
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primitive to the intrinsic lock. We chose to use a pthread_mutex, because it can be con-
figured to behave like the synchronized keyword, namely providing mutual exclusion,
being reentrant, and blocking on acquire. Therefore, a pthread_mutex is added to every
object.

Just acquiring the mutex at the beginning and releasing it at the end of a synchronized
block, however, is not enough. Statements like return, break, continue, or throw can
transfer the control flow without releasing the mutex at the end of the synchronized
block, preventing other threads from accessing the lock in the future. The solution is
to use the Scoped Locking pattern [19]. A helper object is allocated on the stack that
acquires the mutex in the constructor and releases it in the destructor. Because the
C++ language guarantees that the destructors of all objects on the stack are invoked
when they go out of scope, even in the case of exceptions, the mutex is always released
exactly as required.

Other fundamental building blocks of concurrent Java applications are the wait(),
notfiy() and notifyAll() methods provided by the Object class, and thus being
available for all objects. They require another pthread primitive for every object: a
pthread_condition. Threads can wait on this condition, and the condition can sig-
nal one or all threads waiting on it. All these operations, exactly like in Java, require the
calling thread to own an accompanying mutex, which is already present in our case in
the form of the intrinsic lock.

4.4.10 Network Stack

Similar to threading, implementing the network stack requires access to a low-level
network communication API. The Berkley sockets API, also known as the BSD sockets
API, provides a socket-based interface for inter-process communication that is primarily
used for communications over the network. The main advantage of using BSD sockets
is portability: They are available on almost all Unix-based operating systems (Mac OS
X, Linux, iOS, Android) as well as on Microsoft Windows.

There are two main native components that are needed to support the Apache Har-
mony networking classes. First, the InetAddress family of classes needs DNS resolving
for hostnames. This can be achieved with the getaddrinfo call of the BSD sockets API.
Second, the DatagramSocket class needs the ability to send and receive UDP packets
through local sockets. The socket and bind calls are used to set up UDP sockets, and
the sendto and recvfrom calls are used to send and receive packets.

All TCP-related functionality is currently not included, although it could be added with-
out major changes to the converter or the runtime implementation.

4.4.11 Garbage Collection

There is no explicit memory management needed in Java. Objects that are not ref-
erenced anymore are automatically deleted by the garbage collector, and associated
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memory is freed for later use.

In C++, memory management has to be done by the programmer, meaning that all
objects that are created have to be deleted explicitly. Although there is no standard
garbage collector, various third-party solutions exist.

We chose to integrate the Boehm garbage collector [4]. It is widely used, notably in
other virtual machines such as Mono27, and available on many platforms. The sources
of the Boehm garbage collector are added to the generated source code before the
build, and all allocations and frees are redirected to call the respective methods in the
garbage collector28.

27 The Mono Project: http://www.mono-project.com/
28 All allocations and explicit deletes have to go through the garbage collector.

http://www.mono-project.com/




5
Adapting Pulsar for Mobile Devices

This chapter presents an extended version of the Pulsar streaming technology that was
adapted specifically for mobile devices. Various tweaks were done to the Pulsar frame-
work according to the scalability, reliability, and resource usage requirements (see Chap-
ter 3). They mostly evolve around performance and resource usage constraints that are
more important on mobile devices than on desktop systems.

5.1 Player Abstraction

As a first step, the client side player infrastructure was decoupled from the rest of the
Pulsar framework. It can be accessed through a new player interface (Player API) that
contains only the minimum features needed to interact with the Pulsar framework:

• Join or leave streams.

• Play, pause or stop the playback.

• Register listener objects that are informed when the player state, metadata or
the error state changes.

This decoupling allows different implementations of the API. Currently, there is a Java
implementation, a C++ implementation based on code generated by our Java to C++
converter, and a SHOUTcast implementation. The player abstraction also facilitates to
create different user interfaces on top of it, for example the HTML interface that can be
accessed from browsers on desktop systems or the native Android interface.
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5.2 Performance

To improve the performance of Pulsar streams, various refinements were done on the
Pulsar framework itself. The main goal here was to reduce resource consumption.
Starting from measurements done with the YourKit Java Profiler1 on a Linux desktop,
the following areas were investigated and improved where possible:

Reduce memory allocations Because the garbage collector has a significant impact on
the resource usage of a mobile device, memory allocations were intentionally
reduced. For example, frequently used objects like media packets are now pooled
and reused instead of created as throw-away objects.

Reduce wakeups To conserve battery life on mobile devices, it is important to let the
CPU sleep as often and as long as possible. Therefore, it is desirable to reduce the
number of tasks that are executed in regular intervals, as well as batch executing
several ones instead of waking up for every one of them. Achieving this was eas-
ier than expected because Pulsar already uses an internal “scheduler” to execute
tasks, which was optimized for the use-case on mobile devices.

Performance optimizations Some tweaks were done on hot paths, for example do-
ing expensive method calls outside the audio processing thread2. Other perfor-
mance optimizations include caches for often-accessed objects and avoiding de-
bugging constructs in the release configuration.

5.3 Codec

The desktop version of Pulsar uses the MP3 audio codec. Because the input signal for
a stream is often already in the MP3 format, this choice avoids the additional overhead
involved with transcoding the signal on the server side (see Section 2.1.1). However,
using MP3 on mobile devices has the disadvantage that it does not produce very good
results at low bitrates.

Therefore, we decided to add support for the Ogg Vorbis codec to Pulsar. Ogg Vorbis
is available as open source software and is patent-free. The libvorbis library is used
to implement the transcoding component on the server side, which automatically en-
codes the stream signal into the Ogg Vorbis format.

To decode the Ogg Vorbis format on the client side, there are two different implemen-
tations. For desktop systems, the same libvorbis library is used for decoding. It uses
a lot of floating point operations, which are very optimized on desktop processors with
dedicated Floating Point Units (FPU). In contrast, most mobile processors as used in
smartphones or tablets do not have dedicated FPUs. On these devices, another decod-
ing component based on the Tremor decoder is used3. Tremor is an integer-only Ogg
1 YourKit Java Profiler: http://www.yourkit.com/
2 The audio output thread should not invoke long-running, blocking operations because it leads to audi-

ble stuttering.
3 Tremor Ogg Vorbis decoder: http://xiph.org/vorbis/

http://www.yourkit.com/
http://xiph.org/vorbis/
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Vorbis decoder that is optimized for ARM devices without FPUs. Because Tremor is also
available as open source, it could easily be integrated with the rest of the codebase.

5.4 Multiple Bitrates

In order to reduce the overall amount of data that has to be transmitted over mobile
data connections4, it makes sense to use a lower bitrate for audio content. On desktop
systems, where usually more bandwidth and processing resources are available, the
audio quality should not be reduced by such a procedure. Therefore, we need a solution
that can incorporate high-bitrate desktop clients and low-bitrate mobile clients.

To understand what was finally implemented, we first look at how stream overlays and
streams work in Pulsar. A stream overlay is used to establish connections between dif-
ferent listeners of the same content. A stream, on the other hand, is part of a single
stream overlay and transmits data of a certain well-defined type and format. To inte-
grate listeners with different bitrates, we have three possibilities:

• Use a different stream overlay for every available bandwidth. Establishing con-
nections between peers is easy, because all peers need to receive the same audio
stream in the end.

• Use a single stream overlay for an input source and create different streams for
every available bandwidth. Let low-bandwidth listeners only download the low-
bandwidth stream, while high-bandwidth listeners also download and distribute
parts of the low-bandwidth stream.

• Use a scalable audio codec. In this scenario, the audio data is split into a base-
quality layer and several enhancement layers. Compared to the solution above,
the advantage is that high-bandwidth listeners do not have to re-download the
low-bandwidth stream, because they already have the base-quality layer neces-
sary to seed the low-bandwidth listeners.

Using different stream overlays for every bandwidth has a serious disadvantage: Low-
bandwidth listeners usually also have limited upload capacity, resulting in poor peer-
to-peer behaviour and higher load on the servers. Currently, we have no working im-
plementation of a scalable audio codec. Consequently, we implemented the second
solution. In every stream overlay, there are two streams for 32kbit and 128kbit Ogg Vor-
bis audio content5. Listeners on desktop computers get the whole 128kbit signal for
playback, and the additionally download and distribute part of the 32kbit stream for
mobile listeners. Mobile listeners only download and optionally distribute the 32kbit
signal.6

4 For example Edge, 3G, HSDPA, or 4G.
5 The bitrates and the audio encodings are configurable. For example, it would be possible to add a

320kbit signal as well.
6 For mobile listeners, re-uploading into the P2P system can be disabled conditionally, for example by a

settings option or depending on the connection type.
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5.5 Security

In Pulsar streams, packets are authenticated against the public key of the media pub-
lisher. The exact authentication mechanisms are out of scope for this thesis, but they
are based on DSA signatures that are verified on the client. Verifying signatures is a
performance-intensive operation, especially on mobile devices. For these reasons, we
changed the signature algorithm to RSA. RSA signatures are about twice as expensive
to compute as DSA, but at least five times faster to verify [25].
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Radio Streaming Application

On top of the adapted version of Pulsar, we built a feature-complete radio streaming
application for the Android platform. It plays both Pulsar and traditional SHOUTcast
streams and provides the user with a nice user interface to manage and listen to his
favorite radio stations. Although implementing an Android application requires quite a
lot of in-depth knowledge about the platform, Android-specific implementation details
are omitted here because they are not particularly relevant for the topic of the thesis.

6.1 Architecture

The radio streaming application consists of three main parts: the service, the user in-
terface, and protocol implementations for different streaming protocols (Figure 6.1).

The protocol implementations provide uniform access to streaming protocols. Cur-
rently, there is a protocol implementation for Pulsar streams and one for SHOUTcast
streams (see Sections 6.2 and 6.3).

The service encapsulates everything related to radio streaming besides the user inter-
face, such that it can be run in the background even when the application itself is not
visible to the user. It contains a central stream player component that uses the individ-
ual protocol implementations based on the urls that are passed to it. The user interface
can access the player component through the Player API (see Section 5.1). Additionally,
the service controls the audio backend and the platform integration.

The audio backend is responsible to transfer the decoded audio samples of the stream
player to the sound card of the device. Specifically, it uses the AudioTrack API of the
Android platform, which works across all devices that run at least version 1.5 of Android.
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Figure 6.1: Architecture of the radio streaming application.

The platform integration component integrates the application with different features
provided by the Android platform. It controls the lifecycle of the service1, makes the
application aware of various system properties such as connection or battery state,
and advertises its availability to interested applications.

The user interface is built on top of the Android GUI components. User-initiated actions
are invoked on the underlying service, and different callbacks are registered to update
the screen content.2

6.2 Pulsar Streams

The support for Pulsar streams is mostly implemented in C++ and added to the appli-
cation by means of the Android Native Development Kit (NDK)3. We use the adapted
Pulsar codebase for mobile devices as it is available in Java, and translate all lower level
components up to the Player API to C++ using our Java to C++ converter. The generated
C++ codebase is then wrapped with a hand-crafted C++ interface.

To make the Pulsar streams accessible from the application, which runs in the Dalvik
VM, the protocol implementation for Pulsar streams interacts with the native codebase
using JNI. All method calls are forwarded to the native code, and the callbacks invoke
the respective methods in the objects living in the Dalvik VM.
1 Starting up when a user interface connects; making sure the service is not suspended or killed while it

is playing music.
2 For example meta data of the currently playing track.
3 Android NDK: http://developer.android.com/sdk/ndk/index.html

http://developer.android.com/sdk/ndk/index.html
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6.3 SHOUTcast Streams

Providing a protocol implementation for SHOUTcast streams is comparably easy be-
cause Android provides a media player component to receive SHOUTcast streams since
version 2.2. On earlier versions of the platform, we use a local proxy to convert the
SHOUTcast stream to a standard HTTP stream4. These shoutcast receivers are then
wrapped into a protocol implementation that provides the same API as the Pulsar pro-
tocol implementation, so they can be swapped transparently.

6.4 User Interface

The user interface of the application is divided into three tabs, namely the stations
view, the player view and the tracks view (see Figure 6.2). These are easily accessible
from a unified tab strip along the top, or by swiping horizontally.

The stations view shows all the radio streams associated with the application. The
player view displays the artist and title information of the currently playing track, and
fetches associated cover art. Recently played tracks are listed in the tracks view.

Figure 6.2: User interface of the radio streaming application. Left: The stations view displays
the list of radio stations. Center: The player view visualizes the currently playing
track. Right: The track view displays a list of recent tracks.

4 The SHOUTcast to HTTP stream proxy is part of the open-source NPR news application released by
Google under the Apache License: http://code.google.com/p/npr-android-app/

http://code.google.com/p/npr-android-app/
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Evaluation

Evaluating mobile applications is not an easy task – the available tools are often limited.
In particular, there is no profiler available that can generate traces for multithreaded
native applications on the Android platform. Nevertheless, this chapter provides some
insights into the performance of the code generated with our Java to C++ converter as
well as the radio streaming application developed for the Android platform.

Device OS Kernel CPU RAM Java

Desktop Kubuntu 11.04 2.6.38 Intel Core i5, 2.67GHz 4Gb Sun 1.6.0_26
Nexus One Android 2.3.6 2.6.35 Snapdragon, 1GHz 512Mb Dalvik 2.3.6
Motorola Defy Android 2.1 2.6.29 Cortex A8, 800MHz 512Mb Dalvik 2.1

Table 7.1: The devices used for the evaluation.

Table 7.1 lists the devices used for the evaluation. The desktop system should give an
impression of performance on a modern PC. Two smartphones were used to evaluate
the system on mobile devices, the Nexus One and the Motorola Defy (see Figure 7.1).
The Nexus One smartphone runs the newest Android version available and therefore
uses an up-to-date Dalvik VM with a just-in-time (JIT) compiler. On the other hand, the
Motorola Defy runs Android version 2.1 which does not yet include the JIT compiler for
Dalvik. For this reason, we expect substantial performance differences for Java code
running on these devices.
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Figure 7.1: The smartphones used for the evaluation: Nexus One (left), Motorola Defy (right).

7.1 Generic Testcases

To get an impression how the code generated by the Java to C++ converter performs
on real devices, we developed four generic testcases:

Prime Sieve A simple test that calculates all prime numbers smaller than 10’000’000
using the Sieve of Eratosthenes. It mostly does integer arithmetic and lots of loop
iterations.

Array Sort This test sorts an array of 100’000 random integers using the sort method
of java.util.Arrays. The implementation is based on a tuned version of the
Quicksort algorithm that iterates over arrays and uses recursion.

ByteBuffer This test allocates a java.nio.ByteBuffer for 10’000’000 bytes on the
heap. Random bytes are put into the buffer one after the other. It then retrieves
all the bytes again and checks that they match the original random source.

BigInteger Verifies the statement of Freeman Dyson1 up to 250: the reverse of a power
of two is never a power of five2. This test uses different arithmetic operations on
java.math.BigInteger objects.

We implemented the testcases in Java, and then converted them to C++ with our Java
to C++ converter. The Java version was run in the Sun JVM on the desktop system and
the respective Dalvik VMs on the Android phones. The C++ code was compiled using
the GCC compiler with optimizations enabled3. Table 7.2 shows the results of running
these testcases on the desktop and smartphone devices. The values for a single test-
case are measured as follows:

• In the warmup phase, the test is run ten times to warm up the caches and let the
JIT of the virtual machines (where available) precompile the code.

1 Statement of Freeman Dyson: http://www.edge.org/q2005/q05_9.html
2 For example, 131072 is a power of two, the reverse of it is 270131, which must not be a power of five.
3 Using the -O3 compiler flag.

http://www.edge.org/q2005/q05_9.html
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• The test is run 100 times. Only the time taken to execute the run method is
measured, while expensive setup and cleanup operations are done in separate
methods for every run.

• The average and standard deviation are calculated afterwards.

Java C++

Device Testcase Time (ms) Std. Dev. (ms) Time (ms) Std. Dev. (ms)

Desktop Prime Sieve 34.86 0.38 39.04 0.54
Array Sort 9.19 0.77 8.10 0.30
ByteBuffer 27.43 0.50 128.24 1.34
BigInteger 2.25 1.13 2.45 0.50

Nexus One Prime Sieve 955.63 5.36 281.54 8.75
Array Sort 71.59 2.36 31.45 2.24
ByteBuffer 3298.90 105.59 918.15 20.34
BigInteger 128.00 41.27 53.27 2.09

Motorola Defy Prime Sieve 4538.80 47.36 181.80 10.94
Array Sort 1401.50 169.20 31.10 0.60
ByteBuffer 8362.50 279.41 1059.60 49.75
BigInteger 370.20 123.23 50.30 0.44

Table 7.2: Evaluation results for the generic testcases.

The results of the generic testcases on the desktop system are visualized in Figure 7.2.
Except for the ByteBuffer test, the average times per test are about the same. After the
warmup period of ten runs, the JVM can execute the tests at about the same speed as
the native code generated by the Java to C++ converter. The ByteBuffer test highlights a
particular disadvantage of the converter: The put and get methods of the ByteBuffer

class are declared abstract in Java and implemented by the HeapByteBuffer subclass.
The converter generates virtual functions in this case (see Section 4.4.3), which are a
lot slower to call than statically bound methods.

On the Nexus One smartphone running Android 2.3, the generated C++ code is already
a lot faster than the Java code running in the Dalvik VM. Figure 7.3 visualizes the results
on this device. All testcases are executed at least two times faster on average. The dif-
ference is especially noticeable with the ByteBuffer testcase that does a lot of function
calls, where the C++ code performs three times better than the Dalvik VM.

Running the same tests on the Motorola Defy smartphone yields an even bigger dif-
ference between the Java and C++ versions. Without the JIT compiler, the Dalvik VM
performs much worse than the C++ code in all testcases (see Figure 7.4). The Prime
Sieve test, for example, takes 25 times longer to complete in the Dalvik VM than in
native code.

To summarize, one can clearly see how the converted codebase yields a better perfor-
mance for the generic testcases on both smartphones used for the evaluation. On desk-
top systems the difference is small, with a slight advantage of the JVM.



48 7.1. GENERIC TESTCASES

 0

 20

 40

 60

 80

 100

 120

 140

Prime Sieve Array Sort ByteBuffer BigInteger

R
u
n
ti

m
e
 [

m
s]

Java
C++

Figure 7.2: Generic testcases on the desktop system.
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Figure 7.3: Generic testcases on the Nexus One smartphone.
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Figure 7.4: Generic testcases on the Motorola Defy smartphone.

7.2 Radio Streaming Application

As seen in the previous section, using the Java to C++ converter on the Android smart-
phones is appealing due to high potential performance gains. To assess the impact of
the conversion to C++ we implemented two versions of the radio streaming applica-
tion: one based on the original Pulsar framework in Java, and the other one based on
the automatically converted codebase. Excluded therefrom is the audio codec, because
we use the same Tremor Ogg Vorbis decoder in both applications.

Figure 7.5 compares the CPU usage of these two applications on the Motorola Defy and
the Nexus One smartphones. One can clearly see the performance gain achieved by
converting the Pulsar framework to C++, although the effect is not as pronounced as
with the generic testcases. On the Motorola Defy, the C++ based version brings the
CPU usage down from 35.2% to 25.3%. The Nexus One, where the Java code runs in the
newer Dalvik VM with the JIT compiler, shows a smaller difference of about 4 percent,
from 19.8% down to 15.9%.

In a second step, it makes sense to investigate which components of the system have
the biggest impact on the overall performance of the application. Because no suitable
profiler is available for native code on the Android platform, the different layers of the
Pulsar architecture and the application itself were activated one after another, mea-
suring overall performance with each step. This allows calculating the effect of each
component on its own. Table 7.3 shows the results for this evaluation.

Figure 7.6 summarizes the impact of each component on the overall CPU usage. With
6.7%, the Ogg Vorbis codec consumes by far the the most resources, even though we al-
ready use a version optimized for mobile devices. The sound output also has a notable
impact. This is because we have to transfer the sound samples from the Ogg Vorbis
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Figure 7.5: CPU usage of the radio streaming application, Java vs. C++.

CPU (Inclusive) CPU (Exclusive)

Component Total (%) User (%) System (%) Total (%) User (%)

Protocol 7.1 3.7 3.4 7.1 3.7
Security 7.8 4.3 3.5 0.7 0.6
Playback 8.4 4.6 3.8 0.6 0.3
Codec 14.6 11.3 3.3 6.2 6.7
Sound Output 15.9 13.8 2.1 1.3 2.5

Total 15.9% 13.8% 2.1% 15.9% 13.8%

Table 7.3: CPU usage evaluation results for the radio streaming application on the Nexus One
smartphone. The CPU usage is measured every 10 seconds as it is reported by
/proc/cpuinfo, and averaged over runs of five minutes.
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decoder, which runs in native code, back into the Dalvik VM to pass it to the Android
system for playback.

Based on the data in Table 7.3, it is possible to further analyze the impact of the Java
to C++ converter. Recall that on a Nexus One, the Java version of the application uses
19.8% of the CPU, versus 15.9% with the C++ version. Subtracting the 7.5% caused by
the codec and the sound output, which are equal in both scenarios, the C++ version is
32% faster.
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Figure 7.6: CPU usage of the radio streaming application on the Nexus One smartphone, by
component. Comparison of Pulsar and SHOUTcast based streaming.

Furthermore, it is interesting to compare the Pulsar-based streaming application to tra-
ditional SHOUTcast streaming. Running a SHOUTcast stream in the media player com-
ponent provided by the Android platform uses around half of the CPU resources of the
Pulsar based streaming. We suspect that this speedup is possible because the platform
media player uses proprietary, device-specific audio decoders that run in prioritized op-
erating system threads.
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Conclusion

Within the scope of this thesis, we implemented a feature-complete radio stream-
ing application for the Android platform. Starting with an overview of current media
streaming solutions, we defined the basic requirements for a content distribution sys-
tem for mobile devices. The Pulsar peer-to-peer streaming system was chosen as the
foundation for our work, and further adapted for use on mobile devices. To achieve
acceptable performance, the Pulsar codebase was translated from Java to C++ auto-
matically with a converter program implemented specifically for this purpose.

8.1 Achievements

In the beginning, we defined three main requirements for a streaming solution tailored
to mobile devices: scalability, reliability and low resource usage. The Pulsar peer-to-
peer content distribution system provides the necessary scalability and reliability.

Various tweaks and adaptations were implemented on top of Pulsar to make it usable
on mobile devices. This includes Ogg Vorbis as the new audio codec, adding a low-
bitrate stream, as well as improving the performance of the security mechanism and
other parts of the framework.

We developed a tool to convert Java source code to C++ automatically. Compared to
similar products, our solution works on the source code level, allowing us to preserve
the overall structure and comments, leading to a human-readable port of the original
codebase. This is beneficial for various reasons, including easier integration of compo-
nents written in C++, debugging, and the ability to compile the generated code on vari-
ous platforms using different compilers and target libraries. Most language features of



54 8.2. FUTURE WORK

Java are supported, including exceptions, generics, threads and synchronization primi-
tives, garbage collection, and UDP networking.

First evaluation results show a lot of potential performance gains when using the con-
verted C++ code on mobile devices. On an Android smartphone, generic computation-
intensive testcases run up to 40 times faster in native code than in the Dalvik VM. For
the Pulsar codebase, the difference is smaller but still noticeable. Subtracting the CPU
usage of the audio codec, which is the same in both the Java and the C++ version, the
Pulsar protocol runs about one third faster in native code than in the Dalvik VM.

8.2 Future Work

The presented radio streaming application still has a lot of room for future improve-
ments. One area that we only covered briefly in this thesis is the user interface. For
example, it would make sense to include a directory of radio stations, and facilities to
browse and search them. One could integrate an Ogg Vorbis decoder optimized for
ARM-based devices to further improve the performance. An example for such a de-
coder is Tremolo1.

There is a lot of room for more optimizations in the Java to C++ converter. Besides
smaller optimizations in the optimizer and flattener steps, the most could probably
be gained by using a C++ AST. This would allow us to use C++-specific constructs in
the intermediate representation, which would simplify further optimizations across
the rewriter, optimizer and flattener steps. Furthermore, the converter could be made
more general such that it can be used for other projects. The main point here would be
to extend the runtime implementation, for example by including a TCP network stack
or filesystem access.

Because the converter already produces portable C++ code, ports of the Pulsar frame-
work to other smartphone platforms should be possible with minimal effort. Prelimi-
nary tests showed that the same codebase already compiles and works on Mac OS X,
different Linux distributions as well as on Microsoft Windows using the MinGW com-
piler. In essence, simply adding a user interface and the appropriate packaging should
be enough to get a similar streaming application on iOS, Blackberry or Symbian plat-
forms.

Other areas of interest are on-demand streaming, which is already supported by Pulsar
on the protocol layer, video streaming, or the integration of a scalable audio codec.

1 Tremolo Ogg Vorbis Decoder: http://wss.co.uk/pinknoise/tremolo/

http://wss.co.uk/pinknoise/tremolo/
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