
Localizing your smart phone

Bachelor Thesis

Patrick Tremp

June 30, 2011

Advisor: Johannes Schneider

Supervisor: Prof. Dr. Roger Wattenhofer

Department of Computer Science, ETH Zürich

Abstract

Not just since the growing distribution of smart phones, tablets, navi-
gation systems and similar, localization turns out to be more and more
an important topic. For an outdoor environment the global positioning
system, or often just called GPS, is probably best known and used by a
large share of the population. Nevertheless with an accuracy of about
one meter at best and almost no help for indoor environments there is
still room for improvement. In the thesis described within this docu-
ment we wanted to lay our focus to a more fine grained localization in
a more restricted area.

By using smart phones with built in magnetic field sensors and the
help of external magnets, we wanted to localize the phone in a small
area with accuracy in the range of centimetres. The results lead to an
implementation of a small and simple game. With a hit rate of more
than 90 per cent and an accuracy of less than three centimetres the
game works fine.

Additionally we want to examine another form of indoor localization
using sound. Measuring the round trip time of a sound signal to de-
termine distances is well known. However, less work has been done
using multiple distance measurements as well as the orientation to lo-
calize the phone. When a phone is rotated, it should automatically
determine the environment and its position within. Using a chirp sig-
nal as sound source we could measure the distance with an accuracy
of approximately ten centimetres. With a measurement to all walls in
a room we were finally able to draw the surroundings of the room on
the phone.

Finally we briefly evaluated the possibility of locating obstacles be-
tween two mobile phones using signal strength and Bluetooth. Doing
so, we could identify obstacles in a range of about five meters.

i

Contents

Contents iii

1 Introduction 1

2 Using the Magnetic Field Sensor for Localization 3
2.1 Introduction . 3
2.2 Applications . 4

2.2.1 Testing Application . 4
2.2.2 Snake Game . 9
2.2.3 TicTacToe Game . 9

2.3 Experiments . 11
2.4 Evaluation . 11
2.5 Conclusion . 14

3 Localization using Sound 17
3.1 Introduction . 17
3.2 Application . 19

3.2.1 The Algorithm . 20
3.3 Experiments and Evaluation . 22
3.4 Conclusion . 26

4 WiFi/RSSI with Bluetooth for Detection of Obstacles 29
4.1 Introduction . 29
4.2 Application WIFI Shooter . 30

4.2.1 WIFI TEST . 31
4.2.2 BLUETOOTH TEST . 31
4.2.3 Record . 32
4.2.4 GSM TEST . 33

4.3 Experiments . 33
4.3.1 Blackboard Experiment 34

iii

Contents

4.3.2 Living Room Experiment 34
4.4 Evaluation . 35
4.5 Conclusion . 36

5 Summary and Conclusion 39

A Appendix 41
A.0.1 Map of exercise room 41
A.0.2 Map and images of the living room experiment 42
A.0.3 Magnets in White-Board Eraser 44
A.0.4 Set-Up for the TicTacToe Game 45

Bibliography 47

iv

Chapter 1

Introduction

This Bachelor thesis focus on three different mechanisms for indoor localiza-
tion using a smart phone. So far different strategies have been studied such
as localization using GSM [6] or via received signal strength values (RSSI)
of wireless networks (see e.g., [8]). All these approaches realize an accuracy
of about 1 - 5 meters.

We like to present another idea of indoor localization where less work has
been done yet. Using sound for distance measuring and additionally the
orientation in order to localize the phone within a room. We developed an
application which uses the round trip time of sound signals combined with
the orientation to draw the room the phone is currently in. The proposed
algorithm could then be further used to orient oneself in a given room.

Detecting obstacles between two phones or a sensor and a phone is another
field of interest which we cover in this thesis. We experiment with Bluetooth
and signal strength values in order to find an algorithm which is able to
detect such obstacles.

The general idea of indoor localization has an accuracy of room level or
the range of one meter at best. We wanted to go to an even smaller area.
Therefore this thesis also discusses algorithms and experiments with mag-
netic fields using the magnetic field sensor built in many smart phones these
days. We present around device interaction (ADI) as well as localization in
a magnetic field in the plane with a range of 30 to 40 centimetres and ac-
curacy of less than five centimetres. For demonstration we developed two
small games one for ADI and one for the magnetic field.

1

1. Introduction

In this paragraph we will discuss the variety of tools we used. We were
working with the Android software development kit (SDK)1 provided by
Google with Android 2.2. As for testing and developing we used the devel-
oper phone Nexus One2. If for an experiment a second phone was needed,
we worked with a HTC Desire phone.3 Since the application programming
interfaces (API’s) for Android are all written in the programming language
Java, we as well used this language for all our applications. For develop-
ment we were working with the integrated development environment (IDE)
Eclipse in the version 3.6.1 with the Android development tools (ADT) plug-
in installed. (For a detailed description on how to install the Java develop-
ment kit, Eclipse, the SDK and the ADT please consider the developer site
developer.android.com.) Screen shots of the mobile phone were also taken
using the ADT. Pictures of the experiments were either taken by the Nexus
One or the HTC Desire built in camera. For illustrating the results and
plotting values we used the numerical computing environment Matlab by
MathWorks.4 Finally to write this thesis we used LATEX and worked with the
IDE TeXnicCenter5.

After having briefly introduced what this thesis is all about Chapter 2 will
discuss in detail our work on the magnetic field localization. Chapter 3 then
describes the algorithm we have developed and experiments done for the lo-
calization using sound. The research on the obstacle recognition using Blue-
tooth and signal strength is explained in Chapter 4. Each of these chapters
describe the applications which we developed, experiments and evaluations
as well as a conclusion and possible future work. In Chapter 5 we share our
experiences on working with the Android platform and the different prob-
lems which we encountered during the thesis. Finally in the appendix we
put additional images, maps of our experiments and code snippets.

1For tutorials, class descriptions and other useful tips and tricks about the Android SDK
visit the developer site: developer.android.com

2See the description on Google phone gallery: www.google.com
3The official website of HTC www.htc.com.
4The official website of Matlab: www.mathworls.com
5TeXnicCenter: www.texniccenter.org

2

http://developer.android.com/sdk/installing.html
http://developer.android.com/index.html
http://www.google.com/phone/detail/nexus-one
http://www.htc.com/www/product/desire/overview.html
http://www.mathworks.com/products/matlab/
http://www.texniccenter.org/

Chapter 2

Using the Magnetic Field Sensor for
Localization

2.1 Introduction

This chapter discusses the studies made with the magnetic field sensor of
the Nexus One phone and external magnets. As smart phones with a lot
of sensors are more and more common, additional input possibilities for
application and games are in demand. Around device interaction (ADI)
using magnets and the compass sensor is already known[4]. During our
studies we were able to use ADI for input with an external magnet too. We
used ADI in order to adapt the game ’Snake’ taken from the Android sample
code [2] in a way that one can control the game with a magnet.

The more we laid our focus on localization aspects in magnetic fields. We
worked on the problem of discovering the phone in a magnetic field gener-
ated by two magnets in a plane. The magnetic field sensor in the Android
phones is usually used as a compass measuring the magnetic field of the
earth. Values are mostly in the range of 30 to 60 micro Tesla (µT). The
magnets used for this study create much stronger fields and may go as high
as the limits of the sensor (i.e. 2000µT). All magnets used are bar magnets.
Such a magnet creates a magnetic field which looks like the one in Figure
2.1.1 The magnetic field of a bar magnet is approximated by the formula

B =
B0AL
(2πr3)

Here B is the magnetic field, L the length of the magnet, B0 the field at a
pole, A the area and r the diagonal distance to the closer end. We arranged
two magnets on the table in a 90 degree angle between them in order to
create a magnetic field in a plane. We expect the resulting magnetic field

1Image taken from Wikipedia: http://en.wikipedia.org/wiki/File:Magnet0873.png

3

http://en.wikipedia.org/wiki/File:Magnet0873.png

2. Using the Magnetic Field Sensor for Localization

to be the superposition of the fields generated by two magnets according
to the above formula. Since the magnets used for this research are rather
weak we expected to measure the generated field in a range of up to around
35 - 50 centimetres. The measurable values are expected to be quite high
close to the magnets - especially in the corner between the two magnets -
and to decrease fast with increasing distance to the magnets. Using stronger
magnets was not an option because the limits of the built in sensors are to
low and we already reach them with the weak magnets.

In order to present our results for the magnetic field studies we developed a
small Tic Tac Toe game. This game is completely controlled by the position
of the phone within a three times three game board lying in the magnetic
field. For the localization algorithm two approaches are discussed in the
according section.

Figure 2.1: Iron filings that have oriented in the magnetic field produced by a bar magnet

2.2 Applications

2.2.1 Testing Application

In order to get some information about the strength of the magnetic field
measured by the phone we developed a testing application. This rather big
application includes different smaller sub applications. These are used for
example to print the measured values to a Matlab file. This file then can
be further processed by the Matlab software to produce a graphical output.
Another sub application displays the measured values on the display of the
phone. Furthermore there are sub applications which are used to recognize
different movements with the magnets around the device as well as move-
ments with the phone in the magnetic field spanned by the two magnets.
In Figure 2.2 an overview of the main view is given in order to orient the
reader with the different small applications.

4

2.2. Applications

Figure 2.2: Screen shot of the main view of the Magnet Test application. (1) Record sensor
values, (2) calculate frequency of different modes, (3) + (4) attempts to read and interpret ADI
input, (5) + (6) attempts to locate phone in magnetic field with different amount of magnets,
(7) test of machine learning approach for locating the phone in a magnetic field spanned by two
magnets.

View and Record Readings

In a first sub application (number 1 in the figure) we display x-, y- and z-axis
values read by the magnetic field sensor of the phone. Besides the values
of the three axes we also display the number of significant changes. Such
a change is defined by a threshold depending on the event one is looking
for. We used 2.0 as a standard value. These numbers helped us to identify
special events such as an interaction with an external magnet. Since heavy
listings of sensor values consume a lot of battery life we introduced buttons
to pause and resume measuring. By pressing the save button we store the
readings for each axis in a text file in the download folder of the SD card.

5

2. Using the Magnetic Field Sensor for Localization

Count Frequency

The count frequency defines the sampling frequency. It can be one of four
values defined in the SensorManager class. To measure the impact for dif-
ferent values we created another sub application. For a defined time (we
used ten seconds as a standard value) the number of reading events by the
magnetic field sensor get counted for each delay rate. The results are dis-
played on a pop up message as shown in Figure 2.3. After the fourth run
has finished, automatically the main view gets displayed again.

Figure 2.3: Screen shot of a pop up message in the frequency application for the SEN-
SOR DELAY GAME delay rate.

Recognize ADI Input

The two sub applications highlighted with the numbers 3 and 4 are two dif-
ferent attempts to recognize ADI input with an external magnet. The goal of
these two applications is to recognize the following movements: Movements
from left to right and vice versa, movements from top to bottom and vice
versa as well as a ’clicking’ movement from close to the phone to further
apart. In the application 3 we tried the approach to consider always the last
one hundred values collected. For all the five movements described above
we check whether the current values match the reference values of an event.
Because the measured values have different peaks depending on the posi-
tion to the phone we can recognize where the magnet currently is. If e.g.
we observe the magnet first on the left hand side of the phone and later on
the right hand side, we can report such a move. Then again in application
4 we immediately set a boolean value for the position of the magnet when

6

2.2. Applications

a special position is detected. The algorithm then further checks on each
sensor event if e.g. the boolean value for right and left is true. Each position
of the magnet has not only a boolean value as described but as well a time
stamp of the moment it was set. Therefore we can detect if the movement
was in our example from left to right or vice versa. When there is no special
event detected for a given time a timer goes off and the boolean values are
reset. Using this approach we were even able to detect diagonal movements
additionally to the already described ones. For both approaches the inter-
face looks the same. The around device interaction worked out really nice
and we were able to adapt the Snake game described in the next sub chap-
ter. Therefore we wanted to lead our studies to something different were
not much work has been done yet. We switched from moving magnet and a
more or less inactive phone to the opposite. The following four applications
hence describe the interaction of the phone in a magnetic field spanned by
a different number of magnets.

Movements in Magnetic Fields in One to Three Dimensions

In order to test movements in a magnetic field spanned by three magnets
we developed the small application marked with the number 5 in Figure 2.2.
The interface looks the same as in the previous two applications. Here we
tried to identify movements in all the three axis. In other words movements
to the left or right, forth or back as well as up or down. The algorithm
remembers the last couple of values as well as values at a given time. When-
ever a timer runs off we check, if there has been a significant change on
the values in any direction from the current values to values from the last
timeout. If so, we again report the direction of the move. The values are
saved and we wait for the next timer to expire. The reason for the timer is
to guarantee that the user interface (UI) is always responsive. All in all this
approach did not work out proper and neither did a similar algorithm a the
one described for application 3.

Since three dimensions did not work out as desired we then first focused on
a setting with just one magnet. Therefore we developed a small application
(number 6 on the left) which tries to identify where a phone is located in
front of a single magnet. Figure 2.4 illustrates the setting for this test where
just the magnet on top in the figure was used. In the UI we again display
the current sensor readings. Whenever a user presses a so called ’Hit me’
button the algorithm determines in which field the phone is in and displays
this information. The algorithm is quite simple and uses four boolean flags
for each of the single fields. On every sensor reading we check with a few
if-statements whether we have found values that are typical for a certain
field. If so we set all flags to false except for the detected one. Doing so we
just have to check which flag is set when the user hits the according button.
Simple as that this solution seemed to work out very well.

7

2. Using the Magnetic Field Sensor for Localization

Figure 2.4: The setting for the localization of the phone using one or two magnet. For test
using one magnet, it is positioned on top of the field. Tests with two magnets have them left
and on top of the field. Four different zones are used for testing.

Machine Learning and Nearest Neighbor Approach

With this small success we finally worked on two dimensions and solved
the problem of locating the phone in a magnetic field spanned by two mag-
nets. The setting for the application on the right hand side of number 6 is
described in Figure 2.4. Here we use both magnets the one on top and the
one left to the board. We used a similar algorithm than in the case with just
one algorithm. For each field we set a boolean flag indicating whether the
phone is currently in that field or not. By pressing the ’Hit me’ button we
just check which flag is set. On each sensor reading we check if the actual
reading is within a polygon defined by some predefined values for the four
fields. If so we set the right flag. Unfortunately this approach worked not
so well. Hence we decided to start over and implement yet another one.

The machine learning approach defined in the application with the number
7 in Figure 2.2 is based on user input at first for calibration.2 There are
two versions supported at the moment, one for four fields and one for six
fields. If future work in this field is to be done this application can easily
be enlarged to nine fields or even more. As for both versions the same
algorithm is applied, we focus in the following on discussing the one with
four fields. On starting the application we get to the first phase of calibrating.
Here we see four buttons which stand for the four fields and a counter for
the number of collected points so far. The user is asked to position the phone
in one of the four fields and hit the according button. For the algorithm to
work proper it is best to collect at least two points in each field. After having
collected a couple of data points the user hits the finish button and is lead to
another view. In this second view the algorithm does his work. Whenever
one hits the test button in the middle of the screen the algorithm calculates
the field the phone is in. This is done by scanning through the data points

2For a definition of machine learning please consider Wikipedia.

8

http://en.wikipedia.org/wiki/Machine_learning

2.2. Applications

and calculating the nearest neighbor. The data is organized in different
clusters or collections according to the corresponding fields. So whenever
we found a nearest neighbor, we can just look up the field it belongs to
by identifying the cluster the point lies in. After the algorithm finishes it
presents the calculated field on the screen together with a simple question
if the given answer is correct. If so we just acknowledge and proceed with
the next test. If the algorithm calculated a wrong field we can now tell it
the correct value. This additional information gets saved along the others
in order to improve the results further on. As we do not want to calibrate
and save the initial values all the time, we also added the functionality to
save and load collected data to a file on the SD card. An approach like this
turned out to work really well with four and six fields. Therefore we used
this algorithm for the tic tac toe game.

2.2.2 Snake Game

In order to show the possibilities of the around device interaction (ADI)
using the magnetic field sensor of the phone we developed a small game. In
the Android sample code [2] applications there is an implementation for a
’Snake’ game. We took this application and made some small adaptations
of the input methods. Now one can play the game not only by using the
track ball of the Nexus One but as well by moving a magnet around the
phone. The ’Snake’ game, as known from former mobile phones, contains
of a snake crawling over a game board. The player needs to conduct it to
some fruits to allay its hunger. With eating fruits the snake gets longer and
longer. The games ends when the player conducts the snake either to the
an edge of the board or to the snake itself. Goal of the game is to eat as
many fruits as possible. The gestures necessary to control the games are the
following. Movements in the x-axis from left to right or vice versa let the
snake move right or left respectively. Movements in the y-axis from top to
bottom or vice versa let the snake move down or up. The move from top to
bottom is also applied to start a new game.

The implementation might not be perfect and some gestures may not be rec-
ognized but still this application shows the possibilities that ADI offers. In
this case we only make use of four different gestures in the two dimensional
space. With some more effort we could also make use of gestures in the
vertical direction and hence make use of all the three different dimension.
These gestures might be used for zooming in a gallery view or similar.

2.2.3 TicTacToe Game

In order to show the results of the studies on localizing the phone in a mag-
netic field in a plane, we developed a TicTacToe game. The game is designed
for two players. Alternately one player has to set crosses to the fields and

9

2. Using the Magnetic Field Sensor for Localization

the other circles. When someone manages to have three of his symbols in a
row (no matter if horizontally, vertically or diagonal), then that player wins.
As already described in the introduction the game board contains of three
fields times three fields. The game board has on the left and on the top bar
magnets which together span the desired magnetic field. To achieve best
results the board should be about 15 centimetres by 15 centimetres whereas
each field is five centimetres by five centimetres. A picture of the board used
for our experiments and testing of the game is attached in the appendix.

For detecting the phone in the field we used two different approaches which
both need some user feedback at first. We will discuss them separately in
this section.

Machine Learning and Nearest Neighbor

The first approach to the problem is to solve it by means of machine learning
as described in the last application of the testing application. When the user
starts to play for the first time he is asked to give some feedback. The
collected data in this step is saved for further games. The user may change
it anytime by recalibrating the system. Using a clustering approach the
player first needs to tell the system in which field the phone currently is in.
This has to be done for each field at least two times. In a second step of
the calibration the player may lay the phone somewhere on the board and
ask the algorithm about the location. If all fields are recognized correctly
we are good, can save the data and proceed to the game. If some locations
are falsely estimated the player can correct it immediately. The algorithm
itself works like this. We save the x, y and z values of the magnetic field
sensor data obtained together with the field number (1 to 9) the user told
us. After the calibration, we have a set of about 20 to 50 or even more data
points all over the board. Localization than uses a nearest neighbor search
(also known as proximity or closest point search)3 where the vector of the
readings of the actual position is compared to the given data. The given
data point which is closest to the reading is chosen and its field is selected
as output. The feedback needed from the players in this approach is quite
high. For a public game this may be a killer. Still the algorithm gives good
results and the game can be played fluently with very few false inputs.

Four Corners

The second approach then tried to use less feedback from the user. Here the
calibration is reduced to just four readings at each corner of the board. The
values measured by the sensor decrease rapidly at first and little later on the
bigger the distance gets between the magnets and the phone. Therefore we

3See nearest neighbor search on Wikipedia

10

http://en.wikipedia.org/wiki/Nearest_neighbor_search

2.3. Experiments

can estimate the field by trying to fit the measured values in the according
curves generated by the four collected values. Since we have just four points
to compare to this approach is not as accurate as the machine learning one.

Game Modes

There are three different game modes to play. Two are local on the phone.
The player can either play against the computer or against another human
player on the same phone in an alternative manner. For the third mode two
phones connect to one another via Bluetooth and may play on two different
game boards. Here of course calibration needs to be done on both phones
separately and the data points are not synchronized because sensor readings
may differ from phone to phone.

2.3 Experiments

In order to get results for both around device interaction (ADI) as well as
the localization in magnetic fields we made many small experiments. As
described in the test application section, we wrote applications to display
the values read by the sensor and to produce Matlab files. On testing in
the magnetic field we especially made some recordings of moves along all
three axes as well as turning the phone 360◦ in a circle. The magnets used
for these experiments were built in white board erasers. (We put a few
pictures of the erasers in the Appendix.) The magnets lay still and the phone
was moved in the magnetic field generated by them. Depending on the
particular experiment one, two or three magnets were used. If multiple
magnets were used, we arranged them in a way that each magnet covered
one dimension. Hence two magnets were arranged in a ninety degree angle
to each other. A possible third one was put below the two in order to span
the third dimension. For ADI we usually held the phone in one hand or
put it on a table. Then we moved a magnet with the other hand around
the phone. Again movements from left to right and vice versa as well as
from top to down and vice versa were tested. Additionally we made a few
experiments with diagonal movements over the phone as well as movements
in the z axis closer and further away from the phone. All in all the entire
procedure of developing the algorithms needed for the games and the study
where heavily based on countless small experiments. A description of each
individual experiment would blast this thesis and is therefore omitted.

2.4 Evaluation

Some small evaluations of the different applications were already presented
in the testing application subsection. In this section we like to present the

11

2. Using the Magnetic Field Sensor for Localization

outcome of a few small experiments in order to give the reader an insight to
the Matlab files. These files and the resulting graphs helped a lot to fine-tune
the algorithms and to set the right values.

First we like to present the reader the outcome of some ADI tests made.
In Figure 2.5 we can see a movement from the right of the phone to the
left. We observe a sinusoidal like curve for the x-axis values. Figure 2.6
shows a movement from the bottom of the phone to the top. Here we can
observe the y-axis making a huge jump from negative values to positive.
Combining these two observations as well as results from other movements
and plots lead to the different thresholds for our around device interaction
applications.

Figure 2.5: Matlab plot of an ADI move from the right of the phone to the left.

The outcome of the tests made for the phone in a magnetic field was quite
similar. Figures 2.7 and 2.8 show the results for a 360◦ turn within the field
as well as a move from the right hand side into the field and back out again.
In Figure 2.7 we can observe that the z-axis values always stay more or
less on the same level. Since we just have magnets to span two axes, this
makes perfectly sense. The more we see that as long as the phone moves
on the same plane as the magnets are positioned, we may omit the z-axis
for the algorithm. The curve of the x-axis first goes to negative values and
then smoothly increases to its maximum before it falls again to the starting
values. A similar curve can be observed by following the y-axis. These
smooth curves helped us a lot to define some thresholds and how a certain
movement should look like. Figure 2.8 shows one such movement namely a
movement with the phone from right to left. Since in comparison to the 360◦

12

2.4. Evaluation

Figure 2.6: Matlab plot of an ADI move from the bottom of the phone to the top.

turn we are initially outside the magnetic field, the z-axis has a somehow big
curve in this figure too. Regarding the x-axis curve we can observe that the
values first grow when we come into the field. As soon as we get close to
the left magnet, they drop to very high negative values. This behavior was
utilized for the definition of the movements and certain thresholds as well.
By closely examining these two and many other similar graphs we were able
to adjust our algorithms to produce good results.

For the tic tac toe game we made different tests in order to get the nearest
neighbor problem to work. We heavily used the calibration tool where we
gave the algorithm a few fix points and then analyzed whether it determines
new values correctly. For every measurement we had direct feedback and
could adjust our algorithm very well. In the end we were able to determine
more than 90% of the positions correctly. In other words, this means that
we could detect the position of a phone on a board in a range of less than
five centimetres. This is quite an improvement compared to GPS and cer-
tain other indoor localization approaches. Nevertheless such an approach
requires a magnetic field and a lot of user input which does not make it
very beneficial for real-life applications. Still in an environment where us-
ing magnetic fields is not a problem this approach would work just fine.

13

2. Using the Magnetic Field Sensor for Localization

Figure 2.7: Matlab plot of a 360◦ turn of the phone in a magnetic field spanned by two magnets.

2.5 Conclusion

The studies on the magnetic field sensor showed that these are not just use-
ful for a compass and orientation but may also be used for additional input
methods as well as localizing the phone in a close area. Experimenting with
around device interactions using the magnetic field sensor confirmed the
results of Katebdar[4] and showed what might be possible with future stud-
ies. With localization using magnetic field sensor we were able to be quite
accurate in the range of less than five centimetres. Hence such an approach
is a very interesting possibility for indoor localization. The algorithm based
on machine learning in a testing phase and a nearest neighbor approach for
position detection was very accurate. Unfortunately it forces a user to go
through a long calibration process. So in order to make games and other
applications interesting for all the impatient people out there possibly needs
some improvements here.

Certainly not everything just worked out as it should. One of the biggest
problems that we encountered during the studies was the recalibration of the
magnetic field sensor. This happens when values larger than the maximum
value of ±2000 were detected. This leads to incorrect localization. Also for
ADI the sensor looked as if it would recalibrate quite often which turned
given thresholds unusable.

14

2.5. Conclusion

Figure 2.8: Matlab plot of the phone moving from right into the magnetic field close to the left
magnet and back out of the field again.

As for future work we like to experiment with stronger magnetic field sen-
sors to work on a bigger scale. The localization within magnetic fields could
not only be used for smart phones and the like but as well for other applica-
tions. HTC will soon publish their new tablet called Flyer with an additional
pen for different input possibilities[3]. With some more work in the field of
ADI using an enhanced magnetic field sensor we can imagine that soon de-
vices might be published which come with magnetic rings or similar and
allow the user to use the entire space around the phone for input. Another
interesting research topic is the usage of multiple magnetic field sensors to
detect multiple magnets as input in a more accurate manner. This may lead
to similar possibilities as multi touch gestures on the screen but in the three
dimensional space.

15

Chapter 3

Localization using Sound

3.1 Introduction

This chapter discusses our efforts to localize a smart phone in a room by
means of measuring sound echoes which return from a wall of the room.
Since simply measuring the distance from the phone to a wall has already
been developed for the IPhone[5] we wanted to focus on something different.
Hence we went one step further and use the distance measuring to find the
position of the phone in a room. To figure out the position we make a 360
degree turn while continuously measuring the distance to the wall. Using
this data, an algorithm will generate a map of the room and the position of
the phone therein. Such an application may not only help people to take the
measurements of a room but as well assist other algorithms for exact indoor
localization.

For the sound output we used a chirp signal. A chirp is in our case a signal
with a linearly increasing frequency over time. As we use a linear chirp
the frequency varies like this: f (t) = f0 + k · t with t being the time, k the
chirp rate or frequency increase rate and f0 the starting frequency.1 The cor-
responding time-domain, sinusoidal function is:

x(t) = sin
[

2 · π · (f0 +
k
2
· t) · t

]
.

Figure 3.1 is taken from Wikipedia2 and shows such a chirp.

In order to analyze the recorded data and to calculate distances we used
the fast Fourier transform (FFT). The FFT is an efficient way to calculate the

1This is taken from Wikipedia. For more information please consider the entry about
chirps. www.wikipedia.org

2www.wikipedia.org

17

http://en.wikipedia.org/wiki/Chirp
http://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Linear-chirp.svg/500px-Linear-chirp.svg.png

3. Localization using Sound

Figure 3.1: A chirp signal. Image taken from Wikipedia.

discrete Fourier transform (DFT) as well as its inverse. 3 This DFT breaks
down the data into components of different frequencies. For x0 . . . xN−1 be-
ing complex numbers the DFT is calculated like this:

Xk =
N−1

∑
n=0

xn · e−i·2π·k n
N , k = 0, . . . , N − 1

This usually takes as an upper bound O(N2) operations. Typical FFT algo-
rithms like, the one used in this application, usually have an upper bound
of O(N · log N) operations.

Another crucial thing for measuring distance using sound is the speed of
sound. Depending on the temperature, humidity, air pressure and density
of the gas the speed of sound may vary. For our purposes we just consider
the temperature and set the speed of sound according to this formula:

cair = (331.3 + (0.606◦C−1 · ϑ))m · s−1

In this formula cair describes the speed of sound and ϑ the current tempera-
ture.

We knew about the success of the SonarRuler[5] application for the IPhone.
Therefore we wanted to achieve an accuracy of around ten centimetres. The
application shall work accordingly in most of the measurements and the
resulting drawing shall look similar to the real room.

3This information is mainly taken from www.wikipedia.org

18

http://en.wikipedia.org/wiki/Fft

3.2. Application

3.2 Application

The application which we developed lets the user calculate the distance from
the phone to the wall. This is possible by means of the time it takes for
listening to a sound output and its echo from the wall. In order to draw a
picture of the room the phone is in, all it takes is to measure all directions
of the room. Eventually one can hit the draw room button and a new view
will try to predict the size and shape of the room. Figure 3.2 shows the
main functionality of the application. There is a slide bar where one can
enter the current temperature of the room to vary the speed of sound. The
initial value is set to 23 degree Celsius. There are two buttons to measure
the distance to the wall, one for using the fast Fourier transform and another
to measure the distance without FFT. Because of the heavy calculations the
measurement can take a while, so try to keep the phone still for at least
two seconds. Furthermore the calculated distance is displayed as well as
possible other information. When measuring the distance, we need to hold
our phone in an upright position. This leads to rather weak results from the
orientation sensor. Therefore we added another button to the view. The user
now has to measure first holding the phone upright. Then he or she needs
to turn it to a horizontal position and press the set orientation button. Best
results were achieved when holding the phone horizontally and pointing
the microphone directly to the wall. In order to direct the sound output to
the wall as well we used a cardboard as a cover. This is illustrated in Figures
3.3 and 3.4.

In a second application the user can estimate the distance to the wall and
give some upper and lower bounds. This helps the algorithm to find the
correct echo and measure the distance with a better precision. To accomplish
this, the input for the temperature in this view is done by a text field. Two
slide bars let the user define the lower and upper bounds. The rest of the
application is the same as with the original one described above. In this
second view we just work without FFT.

In order to do accurate measurements a user has to make sure that as many
as possible of the following facts hold.

• The item to measure the distance to has to be at least as big as one
square metre and consist of a strong and solid area. Carpets, curtains
and drapery of any kind potentially absorb sound too much.

• The phone has to point directly to the object to measure in a ninety
degree angle.

• Try to hold the phone so that the microphone faces directly the object
to measure.

• Use a cover (a cardboard or similar) to direct to sound output from the

19

3. Localization using Sound

Figure 3.2: A screen shot of the AuDistMes application.

speaker to the object to measure.

• There are as few disturbing noises as possible in the surroundings.

3.2.1 The Algorithm

The algorithm works as follows. First we need to produce a sound output
that is strong enough to generate echoes from the wall. After a few experi-
ments with alternating, edgy, strong and low signals we finally decided to
use chirps as our sound output. These have the advantage that they are
some sort of a sine curve. Therefore we do not have huge jumps from a low
to a high value. In addition a chirp has an increasing frequency. Hence we
do not just use one frequency in the signal, but multiple, which increases
the quality of the echo. Once we have a constant sound output, we can now
try to record the echoes. We can do so by accessing the built in microphone
of the Nexus One and using the AudioRecord 4 class of Android. After ini-
tializing the recorder with the same frequency and audio formats as on the
sound output, we are able to read one sample at a time. Depending on a

4See AudioRecord on developer.android.com

20

http://developer.android.com/reference/android/media/AudioRecord.html

3.2. Application

Figure 3.3: Set up for measuring the
distance to an object front view .

Figure 3.4: Set up for measuring the
distance to an object side view.

flag in the code we can print the read sample to a file on the SD card for
further edition on Matlab. Once we have the data from a record we have
to determine the sent chirp and the echoes from different walls. Identifying
these turned out to be the most difficult part of the entire application. We
used several different approaches from simply calculating maximums in the
given data up to running the fast Fourier transformation on the product of
the chirp and the record.

Depending on which button the user presses, the current algorithm takes
the readings and does some pre-processing. In case of using the fast Fourier
transform, first the FFT of the sound output is calculated. Then we calcu-
late the FFT of the listening. Finally the inverse FFT of the conjugate of the
their product is calculated. For the fast Fourier transform we used an algo-
rithm from the book ”Introduction To Programming in Java”[9], which uses
a radix two Cooley-Turkey algorithm. This is probably not the most efficient
algorithm for memory usage, but it is solid and was easy to integrate to our
project. The last step in pre-processing the data is, independent of using
FFT, to filter the data by taking the absolute values of the entries.

The next step is to find the largest peak, recorded immediately when the
sound is played on the phone. In other words we look for the peak coming
without any reflections from the speaker directly to the microphone. If we
found such a peak, which is high enough according to a threshold, we know
that there have to be some echoes in the listening. We do search these echoes
by maximizing the height of a newly peak minus the minimum value found
in the data after the initial peak. Again this procedure is independent of
using FFT on pre-processing.

When finally we have identified the chirp and its echoes in the data, we
use the following simple function in order to calculate the distance from the

21

3. Localization using Sound

phone to the wall. Here ϑ stands for the current temperature.

distance =
(Peak o f echo)− (Peak o f chirp)

(Frequency used)
s ∗ (331.3 + (ϑ ∗ 0.606))

m
s

Finally, all we need to do is displaying this value to the screen and keep
it together with the current compass value in mind for further processing.
The angle between the North Pole and the current direction the phone is
pointing to is received by a sensor listener on the orientation sensor. As
described above the orientation is set by a new button separate to the actual
measuring. When there have been enough distances collected, we can finally
draw the room. The view then takes the calculated distances and angles and
tries to estimate the shape of the room. To do so we calculate the direction
of each point, take the distance into account and anticipate the walls. In the
end all the calculated lines get drawn on the screen.

For the second view, where users have to estimate a lower and upper bound
of the distance, we changed to above algorithm slightly. Pre-processing of
the data and finding the initial peak of the sound played directly from the
speaker to the microphone has been done exactly the same way as described
above. For finding the echoes we just looped over the estimated region of
the data instead of searching in the entire data. This reduced the execution
time and increases the accuracy. For finding the echoes, again the same
algorithm as described above was applied.

3.3 Experiments and Evaluation

During the development of the application countless experiments have been
accomplished. Most of them were simple recordings of a sound output and
its echo with the application itself. We measured the distance from the wall
to a certain point in the room by a measuring tape and tried to find the ac-
cording echo in the data. To do so, we let the application save the readings
to files on the SD card. After loading those files to our laptops, we examined
the curve using Matlab. Many different experiments have been done includ-
ing studying different sound outputs, different approaches for reading the
data, different types of calculating the distance between the sound output
peak and the echo peak, using the fast Fourier transform and so on. The
rich amount of variant experiments and data allowed us to fine tune our al-
gorithm and to quickly identify falsely parts within it. As described before,
the most difficult part of the algorithm was to determine which echo to use
and to get the distance. Since not all readings actually contained any kind
of peak, this was a hard task to do by hand just having the Matlab plots
too. Figure 3.5 shows a Matlab plot where a echo is actually visible. An FFT
output for another reading is shown in Figure 3.6.

22

3.3. Experiments and Evaluation

Figure 3.5: An output of a reading visualized. The strength of the signal is indicated on the y
axis, the time on the x axis.

Figure 3.6: An output of a reading with FFT turned on. The strength of the signal is indicated
on the y axis, the time on the x axis.

23

3. Localization using Sound

Figure 3.7: An output of a reading where peak and echo merge. The strength of the signal is
indicated on the y axis, the time on the x axis.

Finally we have done two experiments described in the following. For both
experiments we did measurements without FFT. This is, because FFT needs
a lot of time for calculation and the results are not much better if at all.

In the first experiment we were facing a wall directly. Next to us we put
a cord to physically measure the distance. Then we used our phone to
measure using sound. If we are closer to the wall then approximately 50
centimetres, the phone has a hard time to measure the distance. The peaks
of the direct sound output and the echo merge and hence the phone can
barely identify any echoes. Such an output is shown in Figure 3.7. This is
the reason for the big amount of ”Could not find an echo. Please try again”
error messages during our tests. In the range of 50 - 200 centimetres we
were able to achieve in 80% of the successful measurements within accuracy
of 5 - 12 centimetres. For the other 20% the accuracy dropped to around 15 -
20 centimetres. In this region the error message hardly ever occurred. When
we measure further apart from the wall than the two meters, the accuracy
decreases as well. And again the phone is more often not able to find a
sufficient enough echo.

During the second experiment we were in an office and measured the dis-
tance to each of the four walls from a given point with a cord. Then we used
our application to do the same. All of the four to eight measurements in
each run had an accuracy between 3 - 12 centimetres. One of the generated
drawings for the room is shown on Figure 3.8. Figure 3.9 shows the original
floor plan of the room. We can see that they look almost the same. There are
edges on the left and the right hand side of Figure 3.8 close to the measure-
ments. They exist because our algorithm tries to detect the walls and edges

24

3.3. Experiments and Evaluation

Figure 3.8: A screen shot of the drawn room by measuring all four walls of an office.

of a room instead of just connecting the measurements with a direct line.

According to our experiments we could measure the distance to the wall
with an accuracy of about ten centimetres in around 80% of the measure-
ments. The drawing of the room and hence the localization of the phone in
the room did work but there is still room for improvement. The reason for
this possibly is the fact, that the speaker of the Nexus One is fitted on the
rear of the device, whereas the microphone is at the bottom. In order to play
the sound output directly to the wall, we need to hold the phone in an up-
right position. This might lead to some confusions of the orientation sensor.
This problem led to the separation of the measurement and the orientation,
which is not really user friendly. Using a cover and pointing the microphone
directly to the wall was one approach to solve the problem. But a user might
not always have something in range to use as a cover. So again this solution
is not very user friendly. The physical configuration of the speaker and the
microphone might also be a source of errors in the measurements. We can-
not point the speaker and the phone both to the wall at the same time. This

25

3. Localization using Sound

Figure 3.9: The floor plan of the room.

might be one reason, why our algorithm seems to perform worse than the
three centimetres accuracy promised by the developers of the SonarRuler[5]
IPhone application.

3.4 Conclusion

We knew right from beginning, thanks to the Sonar Ruler application for the
IPhone[5], that measuring the distance using sound and echoes is possible,
but whether perfectly accurate nor easy. Therefore we have laid our focus
localization in a room. In the end we were able to deliver an algorithm
that measures the distance to the wall with the desired accuracy. Distance
measurements in the range of 50 centimetres to two meters are as precise
as about ten centimetres. Closer to the wall and further apart it is hard for
the algorithm to find the right echo to measure due to peak merging and
noise. With the additional button for the orientation and a patient handling
of the application the drawing of the room worked out as well. We had big
issues on this part for a long time because of the physical circumstances on
the phone.

Regarding indoor localization we can state that using sound is a real alter-

26

3.4. Conclusion

native. Nevertheless loud rooms lead to big noise signals and make mea-
surements very hard. Moreover a user has to do quite an effort to get the
localization data (do multiple measurements for sound and orientation, turn
around, etc.). By improving the algorithm we can get a quite accurate local-
ization method.

For future work we would be highly interested in possibilities for improv-
ing the accuracy of the distance measuring by sound and echo. Trying to
filter out noise or improving on the method using the fast Fourier transform
would be reasonable approaches. The more using a different approach for
the sound output instead of clicking noises and chirp signals as we used
them would be another interesting topic.

27

Chapter 4

WiFi/RSSI with Bluetooth for
Detection of Obstacles

4.1 Introduction

In this chapter we describe how to detect obstacles between two phones
using Bluetooth RSSI values. There are many applications, which may make
use of an obstacle detection algorithm. To demonstrate this, we chose to
implement a small shooter game. In this game two or more participants
play against each other. The goal is to walk around in- or outdoor and try
to shoot all the other players (In some shooter games this is called a death-
match). When a player hits the shoot button the position of all the players
is known by GPS or some indoor localization algorithms. In addition, the
orientation sensor of the phones will provide us with the direction the player
is pointing at. But how can we detect if the shot will hit the opponent or if
there is a wall or another obstacle between the two participants? One idea
is to use predefined maps. But are they up to date and accurate enough?
What about moving obstacles? Another possibility is to use the built in
camera. This approach is used for example to help blind people to detect
abnormalities such as steps and obstacles on the floor.[7] Using such an
approach the participants would have to hold there smart phone camera in
front of them all the time. Like this, finding the direction with the orientation
sensor gets quite hard. Therefore we try to come up with a solution based
on Bluetooth RSSI values.

In order to obtain results, a small application called WIFI Shooter (The name
is related to the planed shooter game) was developed. Using this applica-
tion we made two experiments in different locations and using different
obstacles.

In the experiments and implementation we seek for the Bluetooth received
signal strength indicator (RSSI) value which indicates the power present in

29

4. WiFi/RSSI with Bluetooth for Detection of Obstacles

a received radio signal. We expect the range of the Bluetooth connection
between the phones described below to be up to 20 meters. In this range we
expect the signal to decay with about 1

xa where we assume a to be in the set
{2, 3, 4}. At the same time we expect the signal to noise ratio 1 to increase
in the same range. Hence we hope to detect obstacles in at least a range of
about ten meters between the two phones. This is needed in order to be able
to play the game.

4.2 Application WIFI Shooter

As mentioned before, we used a Nexus one device running Android 2.2.2
for testing purposes. The application was developed for Android 2.2 (Build
8).

The WIFI Shooter application contains four different small views that are
accessible through buttons in the main view.

• The so called WIFI TEST, where one is able to search and compare all
the WIFI networks in range.

• The similar BLUETOOTH TEST view, where one can search and com-
pare Bluetooth devices in range.

• The record view allows the user to record the RSSI values obtained
from Bluetooth devices in range. The recorder values are saved to a
text file on the SD card of the phone and can (if the phone has an active
Internet connection) be displayed as a Google chart.

• The GSM TEST is a small view that just displays the signal strength of
the closest GSM antenna.

All the different views are closer described in the following subsections. For
the evaluation and the detection of obstacles using Bluetooth RSSI values
only the BLUETOOTH TEST and record view was used. The two others
were just used for comparison between WIFI and Bluetooth or GSM and
Bluetooth respectively. The reason for this is that in order to detect obstacles
between two phones the GSM signal strength is not usable. This is because
there is no direct connection between the two phones. In the WIFI case we do
have the problem that tethering is in fact possible with the Nexus one, but it
is impossible to listen to another WIFI network while tethering. Possible we
can detect obstacles from a phone to the tethering one. Assuming symmetric
values it is also possible to send the obtained values back to the tethering
phone. Hence we may find obstacles between a tethering phone and one
which is connected to it. But this just works for two participants. As soon as
we have more phones, which probably will be the case in our game example,

1For more details consider Wikipedia/Signal-to-noise-ratio

30

http://en.wikipedia.org/wiki/Signal-to-noise_ratio

4.2. Application WIFI Shooter

we would need to take another approach. As far as we know for Android
2.2 one would have to use the Android native API to better control tethering.
Because the implementation for Bluetooth was way easier we decided to
leave WIFI aside.

4.2.1 WIFI TEST

On opening the WIFI TEST view the users gets a list of the names of all
WIFI networks in range. Additionally the user gets the signal strength
RSSI values to each network. A pop-up message displays the name of
the strongest network in range. For the scanning of the networks the an-
droid.net.wifi.WifiManager class is used. After initializing the manager and
starting the scan we can obtain all the networks. Then all the data such as
the SSID name of the network, the RSSI level in dBm and frequencies as well
as capacities can be read using the ScanResult. The following listing shows
the usage of the WIFIManger in the view.

1 WifiManager wm = (WifiManager) getSystemService (WIFI SERVICE) ;
2 wm. s t a r t S c a n () ;
3 Lis t<ScanResult> l i s t = wm. getScanResul ts () ;
4 // loop over a l l l i s t i tems . l i s t . get (i)
5 // i s the i−th network in the l i s t
6 l i s t . get (i) . SSID ;
7 l i s t . get (i) . l e v e l ;

A refresh button gives the user the possibility to repeat the scan and to
measure the RSSI values in different locations. The list gets cleared and
rebuilt with each refresh.

4.2.2 BLUETOOTH TEST

This view is very similar to the WIFI TEST. On staring this view, the user
is asked to allow the phone to activate Bluetooth and to make it visible for
other phones for 300 seconds. The mobile phone keeps a list of paired de-
vices, which can easily be accessed without scanning. Hence those can be
displayed first using their name and MAC address. Unfortunately this does
not provide us the RSSI value that we seek for. Hence we need to do a scan
similar to the WIFI case. Doing so is a little bit more complex though and
involves starting an Intent with an ACTION REQUEST ENABLE and regis-
tering a BroadcastReceiver for the IntentFilter ACTION FOUND that signals
a discovered remote device. Once this has been done, the actual discovery
can be started. Whenever a new device is discovered the BroadcastReceiver
adds the name and the RSSI value of the device to the list. The following
listings show the code construct for the set up and the BroadcastReceiver.

31

4. WiFi/RSSI with Bluetooth for Detection of Obstacles

1 p r i v a t e BluetoothAdapter b adapter = BluetoothAdapter .
getDefaultAdapter () ;

2 p r i v a t e I n t e n t F i l t e r f i l t e r = new I n t e n t F i l t e r (BluetoothDevice .
ACTION FOUND) ;

3 // enable Bluetooth
4 i f (! b adapter . isEnabled ()) {
5 I n t e n t b t i n t e n t = new I n t e n t (BluetoothAdapter .

ACTION REQUEST ENABLE) ;
6 s t a r t A c t i v i t y (b t i n t e n t) ;
7 }
8 // get paired devices
9 Set<BluetoothDevice> pairedDevices = b adapter . getBondedDevices () ;

10 // R e g i s t e r the BroadcastReceiver
11 r e g i s t e r R e c e i v e r (mReceiver , f i l t e r) ;
12 i f (b adapter . s t a r t D i s c o v e r y ()) {
13 // do something
14 }
15 b adapter . cancelDiscovery () ;

1 // Create a BroadcastReceiver f o r ACTION FOUND
2 p r i v a t e f i n a l BroadcastReceiver mReceiver = new BroadcastReceiver ()

{
3 publ ic void onReceive (Context context , I n t e n t i n t e n t) {
4 S t r i n g a c t i o n = i n t e n t . getAct ion () ;
5 // When discovery f i n d s a device
6 i f (BluetoothDevice .ACTION FOUND. equals (a c t i o n)) {
7 // Get the BluetoothDevice o b j e c t from the I n t e n t
8 BluetoothDevice device = i n t e n t . g e t P a r c e l a b l e E x t r a (

BluetoothDevice . EXTRA DEVICE) ;
9 // Get the RSSI of the device

10 shor t r s s i =0 ;
11 i f (i n t e n t . hasExtra (BluetoothDevice . EXTRA RSSI)) {
12 r s s i = i n t e n t . ge tShor tExt ra (BluetoothDevice .

EXTRA RSSI , Short .MIN VALUE) ;
13 }
14 // add i t to the l i s t . . .
15 }
16 }
17 } ;

4.2.3 Record

The record view is the most important of the application since we use it
the most. The functionality is, as its name suggests, to record obtained
Bluetooth RSSI values to a text file for further evaluation purposes. The
more, after a sequence has been recorded, it has the possibility to show the
results in a chart using the Google Visualization API 2. To start and stop
recording one can just use the according buttons. The files get saved with a

2Google Visualization API

32

 http://code.google.com/apis/visualization/interactive_charts.html

4.3. Experiments

unique, increasing number in the DownloadsBluetooth Recording directory
of the SD card in the phone. From there one can load the files to a computer.
Using Matlab one can produce a graph with the RSSI values on the y-axis
and the time on the x-axis.

To obtain the Bluetooth RSSI values turned out to be way more complex
than in the WIFI case. With the Android Bluetooth API it is only possible to
obtain the RSSI value of a Bluetooth connection upon discovery of a device
(at least this was the case with version 2.2 that we used all over the thesis).
We had to start a new thread when the user starts recording. This thread will
then repeatedly start a discovery, discover the devices and finally cancel the
discovery again. The BroadcastReceiver saves the obtained RSSI values for
each discovered device in a list. Finally when the user stops the recording
the thread gets killed and the data gets saved to file. In the file the date, time
and duration of the recording is saved together with, for each device found,
the name, address and the collected RSSI values with a time stamp.

To get rid of the repeatedly scanning there would be another way to access
the RSSI value of a connected device. But this is out of the SDK and involves
native API as well as to write JNI wrapper code to our function in order
to access the Bluez API the underlying Bluetooth framework in Android
(and almost any Linux system). This information is taken from a blog on
stockoverflow.com.3 As we found a reasonable way to get the information
needed, even though it is not a pretty one, we decided not to leave the
Android SDK.

4.2.4 GSM TEST

This view displays the signal strength one receives at any moment from
your Carrier provider as a pop up message. Most of the code of this view
was taken from a tutorial on [1] as mentioned in the code. The Telephony-
Manager class and a PhoneStateListener are used to obtain the necessary
information needed.

4.3 Experiments

For the evaluation and to get some observations we made two experiments.
The first one was executed in an exercise room and tested the influence of a
blackboard being between two mobile phones. In the second experiment we
placed one phone on a stool in the middle of the living room and walked
away through the corridor with the second phone. In both experiments we
made several runs with different obstacles. The phones used in the exper-
iments were a HTC Desire that was not moving and a Nexus One which

3Consider this website.

33

http://stackoverflow.com/questions/2149295/android-2-1-how-do-i-poll-the-rssi-value-of-an-existing-bluetooth-connection

4. WiFi/RSSI with Bluetooth for Detection of Obstacles

we moved around. Both phones were running Android 2.2, had Bluetooth
enabled and were visible to one other. In the following we will describe the
two experiments in detail.

4.3.1 Blackboard Experiment

As described above we made this experiment in an exercise room at the
ETH.4 We put the Desire phone close to the wall (approximately ten cen-
timetres away) in the front of the room. On a first run we walked with the
Nexus One from close to the Desire to the rear of the room with no obsta-
cles in between. To record the Bluetooth RSSI values of the Desire on the
Nexus One the record view was used. For the results obtained by this exper-
iment we need to consider that, because the phone is close to the wall, many
echoes are probably produced that may influence the results. In a second
run we put a blackboard between the phone and the rest of the room. Since
the blackboard is around 20 centimetres away from the wall, on top there is
no obstacle. Nevertheless the direct line between the two phones contains
an obstacle. We walked the same way back to the rear of the room, as in the
first run. Finally a second blackboard was installed between the phone and
the rest of the room. The second blackboard is about 30 centimetres away
from the wall and the same problem as before occurs. Again we walked
the same way as before. All three runs were made two times to avoid some
possible special events to influence the results. The results of each run were
saved on the SD card of the Nexus One as text files.

4.3.2 Living Room Experiment

For this experiment we put the Desire phone on a stool in the middle of
the living room.5 Then we walked out of the door and along the corridor
of the flat (about 12 meters of length) with the recording Nexus One. All
doors to other rooms as well as all windows where closed. In the following
we describe the door between the living room and the corridor as door.
Whenever the door is described as closed, we started the recording outside
the door which makes the walk approximately two meters shorter. This time
six runs were made with different obstacles6:

• Door is open. There are no obstacles and hence direct view between
the two phones.

• Door is closed. There are no other obstacles introduced.

• Door is closed. There is a metal basket around the Desire phone as an
additional obstacle.

4A map of the exercise room is available in the Appendix
5A map of the flat and a picture of the setting is available in the Appendix
6Pictures of the obstacles are available in the Appendix

34

4.4. Evaluation

• Door is open. There is a metal basket around the Desire phone.

• Door is closed. There is a plastic bowl around the Desire phone as an
additional obstacle.

• Door is open. There is a plastic bowl around the Desire phone.

4.4 Evaluation

The results of the first experiment are shown in Figure 4.1. The figure shows
all the runs done. The blue lines (record 5 & 6) show the result for direct
view and no obstacles and the red and green ones (record 7 - 10) show the
results for the case where one or two blackboards where present as obstacles.
On the x-axis of the graph we see the time. Since we walked approximately
15 meters in about 30 seconds, this means that after 10 seconds (the 1 on the
x-axis) the two phones were about five meters apart of one another and after
20 seconds (2 on the scale) until the end the two phones were approximately
10 - 12 meters apart.

Figure 4.1: The evaluation of the first experiment for Bluetooth RSSI values

In this graph we can see that at first, within a range of approximately five

35

4. WiFi/RSSI with Bluetooth for Detection of Obstacles

meters, the obstacle can be clearly identified. If one considers the lower of
the red curves, then there is even a small difference observable of having one
or two blackboards as an obstacle. As soon as we walked further apart with
the second phone the curves almost converge. The blue line stays highest
during the entire recording period as expected, but the difference is quite
small to the end.

For the second experiment in the flat the results are shown in Figure 4.2.
Again the figure shows all the 12 runs made for the experiment. In the leg-
end of the figure ’open’ and ’closed’ describe the state of the door between
the living room and the corridor. ’No’ means that there were no additional
obstacles between the two phones, ’MB’ describes that the metal basket was
on top of the Desire phone and ’PB’ that the plastic bowl was covering the
Desire phone.

Looking at this graph, we can clearly see that the main influence in the
curves is due to the door being open or closed. If we consider the case where
no additional obstacles were introduced (the blue and the green curves), we
see a difference of about 20 dBm. This would definitely be recognizable by a
good algorithm. Furthermore we can observe that the plastic bowl was not
at all recognized as an obstacle. The yellow curve compared to the blue one
has almost stronger results. On the other side the metal basked had a bigger
influence to the values in the case, where the door was open, at least when
the distance between the phones was small. But if we compare the magenta
curve with the green one, we can observe that in the case of a closed door,
there is almost no difference at all. Here the closed door or wall between the
two devices clearly has a higher impact on the results. If we consider the
results, where the phones were further apart of one other, we again observe
that the curves all in all tend to converge. Still the difference of the state
of the door is recognizable if we compare the red and blue curve with the
green and magenta one. This experiment shows that we can detect walls
between the two phones even in distances between the phones of about 10 -
15 meters. But other obstacles such as the metal basket or a plastic bowl can
just be detected in a range of around five meters.

4.5 Conclusion

The obtained results were not quite what we expected, since we were able
to detect obstacles only in a range of about five meters distance between
the two phones instead of the expected ten meters. When going further
apart the values are more or less in the same range and the signal to noise
ratio increases. This makes it very hard, if not to say impossible, to detect
an obstacle with an algorithm. Since we initially wanted to demonstrate
this detection of obstacles in a game with two or more moving participants,

36

4.5. Conclusion

we have bigger distances most of the time and using Bluetooth seems to
be inapplicable. WIFI definitely has a wider range. As we discussed in
the WIFI TEST application section without using the Android native API an
implementation just works for two participants. Hence in our case also WIFI
was not a good option. Still we claim that with some more research on the
topic and possibly some other information about the location of the phone,
one could realize an algorithm that detects, if two phones are in the same
room or have any obstacles in between them.

For future work in this field we suggest to use a combination of WIFI RSSI
values and the Bluetooth data to get the best results. Using some WIFI
fingerprinting may help the algorithm to localize the phones within room
accuracy. In a room the five meters for detecting obstacles may probably be
sufficient. On the other hand an algorithm working with the Bluetooth RSSI
values may also support other algorithms for indoor localization.

37

4. WiFi/RSSI with Bluetooth for Detection of Obstacles

Figure 4.2: The evaluation of the second experiment for Bluetooth RSSI values

38

Chapter 5

Summary and Conclusion

In this thesis we have seen that indoor localization can be as accurate as
less than five centimetres working in a magnetic field. Using test data and
a nearest neighbor algorithm we can develop algorithms that fulfill exactly
these requirements. But still there is a need for other algorithms to be able to
better use such an approach in real-life applications. The more we approved
the results of Ketabdar[4] and demonstrated as well, that around device
interaction with magnets is possible even with today’s hardware.

Using sound to measure the distance between a phone and a wall turned
out to be harder as expected with the current hardware in the Nexus One.
The different physical location of the speaker and the microphone makes
it hard to get very accurate results. Nevertheless we were able to have an
accuracy of about ten centimetres for around 80% of the measurements. The
more we were able to draw a map of the room, the phone is in.

Finally we discovered that finding obstacles between two phones using Blue-
tooth signal strength values is possible in a range of about five meters. Going
further apart it gets really hard to distinguish between an obstacle and just
being far away from each other.

All together we can say that indoor localization is absolutely possible. There
are many different ways for localizing one self within a room including
WIFI/RSSI, magnetic field measurements, sound, Bluetooth/RSSI and many
more. But the choice for the best method to use is highly dependent on
the accuracy one is seeking for. Whereas magnetic field localization turned
out to be very accurate up to a range of less than five centimetres, they
are not really applicable in a large scale. Localization using sound is less
accurate but can be used independent of other equipment such as WIFI
routers or magnets. WIFI/RSSI fingerprinting is used a lot nowadays. Here
an accuracy of meters is certainly possible but depending on the building
and the amount of deployed WIFI routers the accuracy may go down to

39

5. Summary and Conclusion

room level or below. The same goes for Bluetooth/RSSI. If one really needs a
good and solid indoor localization algorithm we suppose that a combination
of multiple methods would fit best.

Working with Android and the Nexus One had a lot of pros but also some
cons. We really liked the fact that Android uses the Java programming lan-
guage and provides tools for integration in Eclipse. This made development
easy and smooth since Java is well known and there are plenty of tutorials
for almost every problem that might occur. Google also provides a lot of
demo material for starting to program with Android. As well on developer
conferences like the Google IO new features get shared with the developers
immediately and make their lives easier. Another fact, which we loved on
working with Android, is the easy way to test applications either with the
emulator on the PC or by just plug and play to the Nexus One. The more
the debugging mode turned to be our biggest friend in finding bugs. This
is also the reason for the many log messages in our code. The openness of
Android really makes it easy to save and load any kind of files onto the SD
card which we used for the Matlab plots and the like.

After praising Android that much we also like to mention some problems
which we encountered during writing this thesis. We often missed a detailed
description of some Android classes which turned out to be important for
our applications. The lack of those documentations made it really hard to
guess the right attributes sometimes. Let us make a small example which
was not particularly important for our applications but shows perfectly our
point. For the sound output using the MediaPlayer there is a method called
setVolume(float leftVolume, float rightVolume). The documentation tells
about balancing the output but there is no description of minimum and
maximum values, some standard values and the like. So there is still a lot of
space for improvements on the APIs. Then there was the problem described
in the Bluetooth chapter. With the API for Android 2.2 it was not possible to
continually get the RSSI values of a Bluetooth connection. We can say that
for some details which might be quite important for developers there is still
a lack on useful methods in some APIs.

We did really like the Nexus One device and are astonished on what is
already possible on such small devices. Nevertheless we came quickly to its
limits in the matter of CPU power as well as the limits of the built in sensors.
It is still a phone and not a computer. As a programmer we should always
be aware of this fact and try to make our programs faster and more efficient
in terms of storage and CPU power.

40

Appendix A

Appendix

In this section we provide additional images that did not fit well into the
text in the according chapter.

A.0.1 Map of exercise room

Figure A.1 shows a map of the exercise room that we used for our first
Bluetooth experiment with the blackboards to determine obstacles between
two mobile phones. The Desire phone that was not moving throughout the
experiment is marked with a yellow box close to the right wall.

Figure A.1: The map of the first experiment in the exercise room

41

A. Appendix

A.0.2 Map and images of the living room experiment

On Figure A.2 there is a map of one of our flats and Figures A.3 - A.5 show
pictures of the obstacles used in the second experiment for the detection of
obstacles using Bluetooth RSSI values.

Figure A.2: The map of the flat used for the experiment.

42

Figure A.3: The plastic bowl used as
obstacle

Figure A.4: The metal basked used
as obstacle

Figure A.5: The setting used for the experiment

43

A. Appendix

A.0.3 Magnets in White-Board Eraser

Figures A.6 - A.7 show the magnets built in white-board erasers used for the
magnetic field studies.

Figure A.6: LegaMaster white-board eraser.

Figure A.7: LegaMaster white-
board eraser. Picture taken from
www.legamaster.com

Figure A.8: LegaMaster white-
board eraser. Picture taken from
www.legamaster.com

44

http://www.legamaster.com/
http://www.legamaster.com/

A.0.4 Set-Up for the TicTacToe Game

Figure A.9 shows the set up for the tic tac toe game developed for the mag-
netic field sensor studies. On the left and on top one can see the two bar
magnets built in white board erasers. The game board contains of nine fields
ordered in a three by three manner. They are numbered from one to nine
starting at the top left corner. The distance between the magnets and the
board should be around 5 - 10 centimetres in order for the game to work
properly.

Figure A.9: The set up for the TicTacToe game

45

Bibliography

[1] George from Firstdroid tutorial. Get GSM Signal Strength
Android Tutorials. http://www.firstdroid.com/2010/05/12/

get-provider-gsm-signal-strength/, 2010. [Online; accessed
17-March-2011].

[2] Google. Android Sample Code. http://developer.android.com/

resources/browser.html?tag=sample, 2007. [Online; last accessed 11-
May-2011].

[3] HTC. HTC Flyer tablet. http://www.htc.com/www/product/flyer/

specification.html, 2011. [Online; last accessed 11-May-2011].

[4] Hamed Ketabdar, Kamer Ali Yüksel, and Mehran Roshandel. MagiTact:
interaction with mobile devices based on compass (magnetic) sensor. IUI ’10.
ACM, New York, NY, USA, 2010.

[5] LAANLABS. Sonar Ruler. http://labs.laan.com/wp/2009/08/

sonar-ruler-iphone-app-measure-with-sound/, 2009. [Online; last ac-
cessed 29-June-2011].

[6] Veljo Otsason, Alex Varshavsky, Anthony LaMarca, and Eyal de Lara. Ac-
curate GSM Indoor Localization, volume 3660 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2005.

[7] En Peng, Patrick Peursum, Ling Li, and Svetha Venkatesh. A Smartphone-
Based Obstacle Sensor for the Visually Impaired, volume 6406 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2010.

[8] F. Reichenbach and D. Timmermann. Indoor localization with low com-
plexity in wireless sensor networks. In Industrial Informatics, 2006 IEEE
International Conference on, pages 1018 –1023, aug. 2006.

[9] Kevin Wayne Robert Sedgewick. 9.7 Data Analysis, volume 1. July 2007.

47

http://www.firstdroid.com/2010/05/12/get-provider-gsm-signal-strength/
http://www.firstdroid.com/2010/05/12/get-provider-gsm-signal-strength/
http://developer.android.com/resources/browser.html?tag=sample
http://developer.android.com/resources/browser.html?tag=sample
http://www.htc.com/www/product/flyer/specification.html
http://www.htc.com/www/product/flyer/specification.html
http://labs.laan.com/wp/2009/08/sonar-ruler-iphone-app-measure-with-sound/
http://labs.laan.com/wp/2009/08/sonar-ruler-iphone-app-measure-with-sound/

	Contents
	Introduction
	Using the Magnetic Field Sensor for Localization
	Introduction
	Applications
	Testing Application
	Snake Game
	TicTacToe Game

	Experiments
	Evaluation
	Conclusion

	Localization using Sound
	Introduction
	Application
	The Algorithm

	Experiments and Evaluation
	Conclusion

	WiFi/RSSI with Bluetooth for Detection of Obstacles
	Introduction
	Application WIFI Shooter
	WIFI_TEST
	BLUETOOTH_TEST
	Record
	GSM_TEST

	Experiments
	Blackboard Experiment
	Living Room Experiment

	Evaluation
	Conclusion

	Summary and Conclusion
	Appendix
	Map of exercise room
	Map and images of the living room experiment
	Magnets in White-Board Eraser
	Set-Up for the TicTacToe Game

	Bibliography

