455
ETH e
(1
pi gn

o o g
Distributed [#gw®
Eidgendssische Technische Hochschule Ziirich . r‘i““\“ -l
Swiss Federal Institute of Technology Zurich Computmg (LECE

Master Thesis

COLLABORATIVE GO

Alex Hugger

December 13, 2011

Supervisor: S. Welten

Prof. Dr. R. Wattenhofer
Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Zurich

Abstract

The game of Go is getting more and more popular in Europe. Its simple rules and the
huge complexity for computer programs make it very interesting for a study about
collaborative gaming. The idea of collaborative Go is to play a simple two player
game in a setup of teams behaving as one single player instead of one versus one.

During this thesis, we implemented a framework allowing to play collaborative Go.
The framework is heavily based on the existing Go Text Protocol allowing an inte-
gration into already existing Go servers or a competition with existing Go programs.
Multiple players are merged through the use of different decision engines into one
single player. Two decision engines were implemented based on different interac-
tion schemes. One is based on a voting process whereas the other one decides on
the final move of a team by applying a Monte Carlo simulation.

The final experiments show that collaborative gaming is very interesting and atten-
tion attracting for the players. Especially the voting mechanism used in the collab-
orative player achieved a high user satisfaction. For an automated decision engine,
we found out that it is very important to make the decision process as transparent
as possible to all users, as this increases the level of the acceptance even when a bad
decision was made.

Acknowledgments

During the accomplishment of this master thesis, a lot of people supported and
guided me to a successful completion of the work. Therefore, | would like to thank
the following people:

The people from the Distributed Computing Group for testing the software and pro-
viding feedback on the overall game play. Professor Roger Wattenhofer and Samuel
Welten for allowing me to participate in such an interesting topic and providing
me constantly with new ideas and problem solutions. Bea Meier, Marc Bruggmann,
Christian Helbling and Marcel Hugger for all the perusal and the corrections of this
paper. Last but not least | want to thank the Go Club Zurich, especially their presi-
dent Lorenz Trippel, for the provided feedback about the client interface, their vision
of collaborative Go and the extensive testing and evaluation sessions.

Zurich, December 13, 20m

Alex Hugger

Contents

Introduction 1
11 Introductiontothe GameofGo 1
12 ComputerGo L 3
13 GoalofthisThesis 4
1.4 Outline. 4
Related Work 5
21 ComputerGo L 5

211 Detailed ComparisontoChess 6

2.2 EarlyComputerPrograms 6

213 Monte Carlo Methods in ComputerGo 7
2.2 Collaborative Gaming 8
System 1
31 Framework 12
3.2 GoTextProtocol 13

3.21 RequiredCommands 14

3.2.2 Collaborative Go Extension 14
3.3 GoServer ... 16
3.4 Collaborative GoPlayer 18
3.5 Collaboration Schemes 19

3.51 VotingSchemao 19

3.5.2 Monte-CarloSchema 20
3.6 Client. 21
3.7 WebFramework 21
Experiments 23
40 CollectedData 23
4.2 Collaboration Schemes 25

4.21 Monte Carlo Decision Schema 26

4.22 Voting DecisionSchema 26
4.3 TimeManagement L L o o 27
4.4 MonteCarlo. 28
Conclusion 35
51 FutureWork 36

Glossary 39

1.1

3.1
3.2
33
3.4
3.5
3.6
3.7

4.1
4.2
43

List of Figures

CapturingofStones 2
Basic System Overview L o 1
Collaborative Playeron KGS 13
GolibraryUMLo o 17
Voting Decision Engine L oL oo 20
Monte Carlo Decision Engine, 20
Graphical UserInterface 21
Settings FormintheWeb Server 22
Percentage of Actions performed in the Time Limit. 27
TestGoGame e 29

Problematic Situation for a Monte CarloEngine 33

1.1

2.1
2.2

23

3.2
3.1
33

4.1
4.2
43
4.4
4.5

List of Tables

GoRankingSystem 3
Comparisonof Goand Chess 7
Rules for plain MonteCarloGo 8
Rules for a successful Collaborative Game 9
Regenmove Specification o oo 14
Required GTPcommands 15
The Colgo GTPExtension 16
logged DataduringaGame 25
Setup for Monte Carlo Experiment1. 29
Result of the Monte Carlo Experiment1 31
Result of the Monte Carlo Experiment2 32

Simulation Values of the Played Moves from Black 32

Introduction

The game of Go is a very popular ancient board game. It origins in China and is over
2000 years old. The basic idea of the game is that two warlords try to conquer a
shared area by controlling the opponent and capturing free space on the board. For
understanding the attraction of the game of Go, one needs to know two important
facts about it. First of all, the rules are easy to understand and can be taught to a
complete beginner in less than five minutes. This allows beginners to participate in
the game after a short instruction. The second factor is the wide range of different
tactics during different states of the game’, which results in very distinct games
even when playing multiple times against the same opponent. Due to these factors,
Go is one of the most played board games for two players in the east of Asia. But
Gois notonly in Asia widespread, in the German language area the game is getting
more and more popular.

1.1 Introduction to the Game of Go

The game of Go is based on a few main rules. The rules are not standardized, which
leads to different rule sets in different regions of the world. They differ mostly in
areas that are not critical to the main game play. The following rules are the most
important ones to know. Other more complex rules (like estimating the final score
of a game) are not listed in this section. If the reader is interested in a more de-
tailed explanation of the rules of Go, the corresponding Wikipedia page® gives a
good overview.

e Gois aboard game3 played by two players using black and white stones.

' There are much more options than for example in a game of chess at any time in the game.
2 Wikipedia - Rules of Go: http://en.wikipedia.org/wiki/Rules_of Go
3 The board is a square of a size between g and 19.

http://en.wikipedia.org/wiki/Rules_of_Go

2 1.1. INTRODUCTION TO THE GAME OF GO

e Stones are placed alternating on the board intersections. Black always starts
placing the first stone.

e When a stone or a group of stones loses the last liberty* to a stone of the
opponent, the group is removed from the board.

Figure 1.1: lllustration of positions where black stones can be captured.

e Suicide moves> are not allowed. When a stone placed in a suicide position
removes the last liberty of at least one opponent stone, it is not a suicide move
and is therefore legal.

e The game is finished when both players consecutively pass or one player re-
signs.

e The winner is the player with the higher score. The result is then expressed by
the difference between both scores.

For allowing interesting games between different players, Go has a clever handicap
system. Each player has a rank reflecting his Go playing strength. Table 1.1 shows
all different types of ranks and the corresponding user stages. The transition be-
tween the different ranks is specified differently in each country, therefore there are
no universal statements telling how to receive which rank. When the rating of the
two players is not the same, the player with the worse ranking receives a certain
amount of handicap stones on the board according to the difference of the two rat-
ings. These stones are placed on the board before the game actually starts. The
amount of stones is defined by the difference of the two handicaps. Of course the
handicap stones are also adapted to the size of the board, because four handicap
stones on a 9xg board are worth much more than on a board with size 19x19. When
both players have the same rank, no handicap stones are given to any player.

The starting player has a statistical advantage over the opponent for which the Go
rules specify a correcting Komi value. The Komi value is normally a 5 point® advan-
tage over the opponent. This advantage is included in the final calculation of the
score and has no direct influence on the game play.

The calculation of the final score is highly depending on the used set of rules. The
most common one is the territory scoring defined by the traditional Japanese rules.
The mainideais to count the amount of empty spots that one player has surrounded
minus the stones the opponent has captured. This gives a score value for each player.

4 The liberty of a stone or a group of stones is defined as the number of empty spots next to the group.

5> A move that removes the last liberty of a group of stones where the played move and the group of
stones are from the same player.

6 Especially in tournaments 5.5 is used as the Komi instead of 5. This removes the chance of having a
draw at the end of the game.

CHAPTER 1. INTRODUCTION 3

Level Range Stage
Student 30k -20k Beginner

20k-10k Casual player

10k - 1k Intermediate amateur
Master 1d - 7d Advanced amateur
Professional 1p-9p Professional player

Table 1.1: The Go ranking system.

The final score is then expressed by stating the difference between the two values
and the point of view 7.

The most commonly used Go terms in this thesis are listed and explained in the
Glossary A.

1.2 Computer Go

Computer Go is interesting because of the simplicity of the problem and the fact
that it is very difficult to implement a good computer player. As stated in Section 1.1,
the game of Go consists of a few easy rules. Nevertheless, the computer programs
playing Go have much more problems to beat their human opponents than for ex-
ample chess programs. Currently the best computer program on the KGS Go Server®
is 'zen19D’ with a rating of 5d9. This means, that the best current program is able to
compete with advanced amateur players. The problems arising when programming
an artificial intelligent player for Go can be broken down to the following key points:

o Size of the board

The normal Go board has a size of 19 which gives 361 possible locations for
a stone on the board. During the game, almost all possible locations are le-
gal moves. In the beginning, the number of possible moves can be reduced
significantly, because of the symmetry of the board. But with the loss of the
symmetry on the board, the options rise up again to 361 minus the stones al-
ready laying on the board. This is mainly a problem for all approaches that try
to make use of a minmax search on the game tree.”

o Nature of the game
In chess, the difficulty of the game is constantly decreased by removing fig-
ures from the board. In the end game, only few figures are left and all of them
have a limited number of possible moves. In Go, there is the possibility that
with each move the current situation gets more difficult.

e Tactics
The game of Go is very complex regarding the effects of one stone to a sit-
uation on a completely different board location. For example capturing one

7 When the player W scores 45.5 points and player B 40, the final result is W+5.5

8 KGS Go Server: http://www.gokgs.com/

9 The KGS Go Server periodically generates a list of computer programs playing on the online server. The
whole list is available under: http://senseis.xmp.net/?KGSBotRatings

19 So far, the biggest board that has been completely solved is a 5x5 resulting in a complete win by
the computer program. More information can be found at: http://erikvanderwerftengen.nl/sxs/
5xgsolved.html

http://www.gokgs.com/
http://senseis.xmp.net/?KGSBotRatings
http://erikvanderwerf.tengen.nl/5x5/5x5solved.html
http://erikvanderwerf.tengen.nl/5x5/5x5solved.html

4 1.3. GOAL OF THIS THESIS

stone of the enemy can give the opponent the possibility to strengthen his
stones at another location. Also some moves seem to be useless on the cur-
rent board, but they can have a huge effect in a later game state.

1.3 Goal of this Thesis

Since the creation of a computer player is very difficult, we are interested in whether
it is possible to create a good player by combining several novices to the game of Go
into one single player. As it is not clear how a successful collaboration schema looks
like, we need to have a system that allows us to perform the required experiments
and to test different kinds of collaboration schemes.

The main goal of this thesis is therefore to provide a framework that allows to play
games of Go in a new collaborative way. Until now there are only multi-user Go
games, in which you compete with all of your opponents or do not share any knowl-
edge between team members at all. The idea of the collaborative Go is to provide
two teams of Go players with a new way of playing Go. Each team consists of multi-
ple human players. Each one of them provides his team with a move suggestion. The
team then can (based on different collaboration schemes) decide which one of the
moves will be picked. The opponent only receives the information that the shown
move has been selected by the players.

The framework is based on Java and the existing Go Text Protocol, which allows an
easy integration to many online Go servers. The framework must provide a way to
insert new types of collaboration schemes and an initial set of features usable for
ensuring the correctness of the played game and analyzing Go situations. On top of
that, it is required to have an easy to use client that allows unexperienced users to
participate in a game of collaborative Go. In order to allow as much Go players as
possible to participate in the collaborative Go project, we provide a web server that
allows to start own collaborative Go games without the complex integration into an
existing online Go server.

1.4 Outline

This thesis is organized as following: Chapter 2 covers related work and background
information. The overall system including the used technologies, the different col-
laboration schemes, the GTP protocol and its extension are covered in Chapter 3.
Chapter 4 describes what kind of data was gathered during the experiments. Chap-
ters 4 and 5 are used to show the results gathered during this thesis and provide a
small outlook on what can be done in the future.

Related Work

In this section, the focus lies on the related work done so far. First of all, it is im-
portant to know that computer Go is a very challenging current research topic and
therefore consists of a huge amount of different work completed so far. Section 2.1
highlights some of the most important research in the past years that had an influ-
ence on how this thesis was conducted and what may had an effect on the decisions
throughout this thesis. The presented work, mainly the section about the Monte
Carlo approaches used in computer Go, influenced and assisted us to build an au-
tomatic decision engine. Without the presented work, such an engine would not
exist because the underlying problem is too difficult and the creation of a computer
program playing Go is not part of this work. Thanks to several conducted studies,
we realized that the construction of an automated decision engine based on Monte
Carlo is possible even in a short period of time.

Sadly, the field of collaborative gaming is not as popular and has therefore less work
to influence this thesis. Nevertheless, there are multiple researches on the effects
of collaborative gaming especially in MMORPG' and classical board games. Since we
want to integrate the positive effects of collaborative gaming in our implementation
of collaborative Go, we will take a small glimpse on what makes classical games
more interesting.

2.1 Computer Go

Computer programs playing chess (or any other kind of board game) typically use
a combination of tree searches and an evaluation function for the resulting state.
Because Go is not only different to normal board games in many small features,
but is also completely different in the nature of the game; instead of focusing on
killing a fixed piece on the board (e.g. the king in chess), Go is often focusing on

' Massive multiplayer online role playing games

6 2.1. COMPUTER GO

expanding into free territory of the board. This results in a lot of moves that effect
the stones in an indirectly manner. This means, that the played stones often cut off
opponent groups from each other instead of attacking one single stone by reducing
its liberties.

2.1.1 Detailed Comparison to Chess

Avery intuitive way to show why playing Go is a tricky task for computer programs is
to compare it to the game of chess. Jay Burmeister wrote a technical report [3] about
the game of Go where he takes a deeper look into the difficulty of the game itself.
The Table 2.1 explains the main differences in detail according to his research. Due to
these differences, the classical chess solutions, being a combination of a fixed depth
tree search with an evaluation function on the resulting board, can not be used for
playing Go.

Even a simple evaluation of the current board is a very tricky part in Go. A player
needs to identify the structures on the board, decide whether they are alive or dead,
remove the dead structures and then perform an area count to estimate the current
value of this board position. Also, the player needs to think about which one of the
empty areas may be big enough to contain a structure, which one is alive and if
it is possible for the opponent to place such a structure in there. An even simpler
evaluation, namely who wins the game when the current board state is final, has
been shown to be polynomial-space hard [8].

2.1.2 Early Computer Programs

The first computer program playing Go was invented by Albert Zobrist in 1968 during
the completion of his PhD [13]. Together with this program he invented the Zobrist
hashing? which is nowadays used for detecting different positions. This hash func-
tion allows to evaluate each board state only once (for example in chess) or can be
used to detect superkos3. The evolution of the computer programs was pushed by
several annual competitions* which offered a quite large price money for the winner
of the tournaments.

The initial attempt for building a Go player was to provide the computer program
with Go knowledge. In Go, there are a lot of rules and guidelines on how to play in
a given situation. Each played move has a corresponding answer and each existing
structure has rules on how to deal with it. The programmers then implemented all
of these guidelines [9]. When an analysis of a structure on the board matched a
specified rule, the program played according to this rule. With a fast pattern recog-
nition and a useful amount of rules, the bots played on a reasonable level. But this
approach led to several issues. First of all, the program can never play better than
the person who implemented it and the resulting program was specially vulnerable
to human opponents. This is because the human detects missing rules or patterns
of bad behavior and starts exploiting these. The result of this process is, that after
a few games the computer program was beaten consistently by the human player.

2 The details of this hash function can be found at: http://en.wikipedia.org/wiki/Zobrist_hashing

3 The term superko stands for a repetition of an older board state over several moves. In short, the last
move that creates a board state that is an exact copy of any previous board is illegal.

4 One of the most famous ones, is the Ing Prize offered by a Taiwanese banker and Go player: http:
//en.wikipedia.org/wiki/Ing_Chang-ki

http://en.wikipedia.org/wiki/Zobrist_hashing
http://en.wikipedia.org/wiki/Ing_Chang-ki
http://en.wikipedia.org/wiki/Ing_Chang-ki

CHAPTER 2. RELATED WORK

Feature Chess Go
Board size 8x8 19 X19
moves per game Approx. 80 Approx. 300

Branching factor

Small (approx. 35)

Large (approx. 200)

End of game and scor-
ing

Checkmate (simple definition
- quick to identify)

Counting territory (consens
by players - hard to identify)

Long range effects

Pieces can move long dis-
tances

Stones do not move, patterns
of stones have long range ef-
fects (e.g. ladders)

State of board

Changes rapidly as pieces
move

Mostly changes incremen-
tally (except for captures)

Evaluation of board
positions

Good correlation with num-
ber and quality of pieces on
board

Poor correlation with number
of stones on board or terri-
tory surrounded

Programming ap-
proaches used

Amenable to tree searches
with good evaluation criteria

Too many branches for brute
force search, pruning is diffi-
cult due to the lack of good
evaluation measures

Human lookahead

Typically up to 10 moves

Even beginners read up to 60
moves

Horizon effect

Grandmaster level

Beginner level

Human grouping pro-
cesses

Hierarchical grouping [4]

Stones belong to many
groups simultaneously [10]

Handicap system None Good handicap system

Table 2.1: Comparison of the differences between Go and chess according to Jay Burmeister

(3]

Furthermore, the fact that the amount of time and effort required to program a rea-
sonable computer player is about five to ten person-years [9], led to think about new
approaches in computer Go.

2.1.3 Monte Carlo Methods in Computer Go

One of the most discussed new approaches is the use of Monte Carlo methods for
playing Go. An implementation without any Go knowledge was able to reach a 25k
level on a 9xg board [2]. The rules for playing were very simple and are listed in Table
2.2.

At first, it is unclear if a random game from a fixed starting point can provide some
useful information. For explaining why it is not a bad idea to play random games, we
provide you with an example. Let us assume that we have a board with a situation
on it that is currently not finished. This means that a group of black stones on the
board is neither alive nor dead. As a next step we assume that when black plays the
right move, the group of black stones is alive. On the other hand, if black plays a
different move and white has the possibility to play that move, the group has to be
considered dead. The outcome of the counting function used for evaluation of the
board therefore relies heavily on whether black plays this move or not. The average

8 2.2. COLLABORATIVE GAMING

| Moves are performed randomly with probabilities assigned
by the method of simulated annealing.

Il The value of a position in which the game is over is defined
by counting.

Il To find the best move in a given position play the game to
the very end as suggested by (1) and then evaluate as in (I1);
play many such random games, and the best move will be
the one which does best on average.

Table 2.2: The rule set used in plain Monte Carlo Go by Bernd Bruegmann [2].

result of the outcome then differs by the value of this black group. These differences
in the outcome of a game allow to detect the good moves on the board. Monte
Carlo Evaluation was conducted in many different ways, even without any adaption
of the probability a move is selected [1]. Despite the fact that this approach leads to
relatively good results, considering the small amount of Go knowledge required to
build such a program, the final solution behaved badly especially in situations where
the order of the moves was important. Monte Carlo may be able to detect multiple
good next moves, but the order in which these moves are required to be played is
undetectable. Since our decision engine has only to select a single move out of a
list of reasonable proposals from the players and therefore not to worry about a bad
move ordering, we decided to build our engine on top of a Monte Carlo decision
engine presented in [1].

Current Go programs build on top of multiple different approaches from many dif-
ferent fields. These fields contain methods from temporal difference learning [11] up
to upper bound confidence for tree searchers [6]. Of course, also the classical meth-
ods are still used and required for having a good computer player. The current top
computer players (like Zen1gD5) are in almost all cases closed source and provide no
information which approaches are used in them.

2.2 Collaborative Gaming

The huge success of online multiplayer games have once again shown that playing
with friends can be interesting not only when competing with each other. Because
the MMOGS are very complicated to analyze, most studies have been conducted on
classical board games. These board games are much clearer considering the struc-
ture and the action of the games. If a computer game is required for a study, "Age of
Empires" is a very popular candidate because it is well known and easy to play. When
analyzing games, there are two very often used terms, namely competitive and co-
operative. Cooperative games require a team play of all members to successfully
achieve the goal of the game, whereas in competitive games, the players are com-
peting with each other. In cooperative games, each player can have his own goal
and payoff. This is the difference between cooperative and collaborative gaming. In
collaborative gaming, each player has the exact same goal and payoff. If the team
wins, everyone wins and vice versa. According to a recent research [12] the following
rules in Table 2.3 are required for a satisfying collaborative game. Of course, not all

> ZemgD Bot on KGS: http://senseis.xmp.net/?Zen
6 Massive Multiplayer Online Game

http://senseis.xmp.net/?Zen

CHAPTER 2. RELATED WORK 9

of them can be perfectly integrated in a simple game like Go but we will try to stay
as close to these rules as possible.

1 To highlight problems of competitiveness, a collaborative game should in-
troduce a tension between perceived individual utility and team utility.

2 To further highlight problems of competitiveness, individual players
should be allowed to make decisions and take actions without the con-
sent of the team.

3 Players must be able to trace payoffs back to their decisions.

4 To encourage team members to make selfless decisions, a collaborative
game should bestow different abilities or responsibilities upon the players.

Table 2.3: The rules for a successful collaborative game according to [12].

System

For playing collaborative Go, a new system must be built because the existing im-
plementations of Go servers only allow playing two regular engines based on GTP'
against each other. For our purpose, a more complex system according to the Figure
3.1is required.

Go server

Collaboratiye Playér 1 Coljaboratilve Play¢r 2

Individual Go Players

Figure 3.1: The required system using one Go server and two collaborative players with differ-
ent users. The black lines stand for a GTP communication link.

' Go Text Protocol - More information about this standardized protocol for playing Go can be found in
Section 3.2.

12 3.1. FRAMEWORK

The overall system consists of several independent software programs that commu-
nicate with each other over different channels. This chapter explains the detailed
construction of each part and the way they interact with each other. The different
collaboration schemes are explained in detail including all required GTP extensions
used on the communication channels and the control flow between the different
participants of the decision process. All parts of the system are implemented in Java
except for the web framework which is built on a LAMP? stack.

3.1 Framework

The term framework stands for the overall system including external software used
forintegrating the implemented system with other servers like the KGS online server.
The Go server, the collaborative player and the client exchange all necessary data
over the Go Text Protocol (GTP). This gives the possibility to completely separate the
different programs from each other. It allows to easily manage the failure of a client
without any interference on the Go server or the other clients. Also, it provides the
collaborative Go player with the possibility to include any Go playing software and
play software assisted games.

The Go server is the control instance of any game. It serves as an access point for
both collaborative players (or any other GTP capable Go program) and is responsible
for managing the correct sequence of actions and operations. The collaborative Go
player behaves as a normal Go program from the perspective of the Go server. Its
main responsibility is to process, merge and interact according to the type of collab-
oration schema with all registered users.

Because the collaborative Go player implements the standard GTP interface, it can
be easily connected to the KGS online server. There it is possible to participate as
a computer program in unranked matches against users from all over the world.
Figure 3.2 clarifies this setup. Because the players participating in the collaborative
player change all the time, playing ranked games would make no sense as the real
rank of the collaborative player will change with players joining and leaving the col-
laborative player.

To increase the fun factor and evaluate whether a communication channel can aug-
ment the overall team skills, we decided to integrate a very small chat server into
the collaborative player. The chat allows communication between all team mem-
bers. Neither private chat messages to a single player nor communication to the
other team are currently allowed.

2 Alinux system running an Apache web server working with MYSQL and PHP.

CHAPTER 3. SYSTEM 13

<
KGS Connector NS
0

/4

KGS Onlir;\e Server Collaborative Playjer

KGS Players Individual Go Players

Figure 3.2: The setup connecting a collaborative player to the KGS online server as a computer
player with the KGS Connector.

3.2 Go Text Protocol

The Go Text Protocol (GTP) is an attempt to standardize the communication mes-
sages required for playing Go over different communication channels. The current
version is 1.0. For version 1.0, a clear definition of the protocol is missing. There is
only the existing implementation in GNU Go 3.0.03. The only available document
describing the complete protocol is the draft for version 2.0%. Since there is no more
discussion on the mailing list> and GNU Go 3.8.0 is implementing the draft of the
2.0 version, any implementation of GTP in this software is based on the current draft

(5].

The GTPis an asymmetric protocol using a master and a slave. In a normal setup, the
master is the host of the game and the playing Go program serves as the slave. Every
communication origins from the master. The slave has to answer every request with
aresponse. When multiple requests arrive at the same time, the slave has to answer
all of them in the order of arrival.

A command has typically the following syntax
[id] command_name arguments \n

and is responded with either a success
=[id] respomnse \n\n

or an error message
7[id] error_message \n\n

The id is an optional number identifier. If it is provided in the command, the re-
sponse must start with the same identifier as in the corresponding command. If the
id was not sent with the command, it may be omitted when sending the response.

3 GNU Go: http://www.gnu.org/s/gnugo/
4 Go Text Protocol: http://www.lysatorliu.se/~gunnar/gtp/
5 GTP mailing list: http://lists.lysator.liu.se/mailman/listinfo/gtp

http://www.gnu.org/s/gnugo/
http://www.lysator.liu.se/~gunnar/gtp/
http://lists.lysator.liu.se/mailman/listinfo/gtp

14 3.2. GO TEXT PROTOCOL

The following Section explains the required commands in detail. The GTP specifica-

tion draft defines a lot more commands, especially for the tournament subset. If a

Go program wants to play tournaments, it is required that it knows about the place-
ment of handicap stones (fixed_handicap, place_free_handicap, set_free_handicap)
and the supported time command (time_settings). As these features are not re-
quired in our system, they were omitted.

3.2.1 Required Commands

The commands listed in Table 3.1 must be implemented by any system that supports
the GTP. These commands provide a Go playing system with the basic actions that
can be performed when playing Go. Of course, playing Go is possible with a smaller
set of commands. The implemented game server described in Section 3.3 works per-
fectly fine even when only the four basic commands boardsize, play, genmove and
quit are understood by the client.

3.2.2 Collaborative Go Extension

For playing collaborative Go, the existing Go Text Protocol needs to be extended. Of
course, the amount of required extensions used while playing is heavily based on
the type of collaboration scheme. The one command required in any type of collab-
orative setup is the reg_genmove command specified in Table 3.2. This command is
part of the regression subset defined by the GTP version 2.

Name reg_genmove

Input Color (String)

Output Vertex (String)

Remark This command is almost the same as the genmove command. The only
difference is, that the genmove command plays the selected move on the
board, while the reg_genmove only proposes this move.

Table 3.2: The reg_genmove command specification in detail.

For collaboration schemes that include a voting mechanism, some new GTP com-
mands are required. Together with the ones used for initializing and controlling the
GUI client, these commands are packed in a GTP extension that we named Colgo.
Table 3.3 lists all protocol commands used in the extension. For a participation in
a collaborative Go game, only few of them (colgo-my_name, colgo-vote) must be
supported. The other commands are only used for controlling the behavior of the
user interface and have no effect on the actual game play.

The chat protocol used between the client and the collaborative player is not part of
the GTP. This is because a chat protocol is typically not asymmetric at all. Any client
must be able to send the information he wants at any time. Because of the nature
of the chat, it is also important to immediately deliver the received message to all
chat participants. When the chat protocol would be integrated into the GTP, one
could have the problem that he first needs to answer the received vote command
before replying to a chat message. As the chat message may be important during
the process of voting, this behavior would not be acceptable.

CHAPTER 3. SYSTEM 15

Name protocol_version

Input -

Output Version number (Integer)

Remark Most of the current implementations return "2".

Name name

Input -

Output Name (String)

Remark The name of the software without any version number.

Name version

Input -

Output Version (String)

Remark Version number of the software. ("3.8.1")

Name known_command

Input Command name (String)

Output Isthe command known? (Boolean)

Remark There is no distinction between unimplemented and unknown.

Name list_commands

Input -

Output List of commands (List[String])

Remark Allimplemented commands are returned (including private extensions).

Name quit

Input -

Output -

Remark The response to this command must be sent before closing the connec-
tion.

Name boardsize

Input Size (Integer)

Output -

Remark One has to clear the board manually after resizing it.

Name clear_board

Input -

Output -

Remark Clears the board to the initial state.

Name komi

Input Komi (Float)

Output -

Remark All values for the komi are accepted.

Name play

Input Move (Color and vertex of the move)

Output -

Remark Example for a move string: "white hg" or "B F4"

Name genmove

Input Color (String)

Output Vertex (String)

Remark "pass"and "resign” are also valid vertices.

Table 3.1: List of all required commands a valid GTP implementation has to provide.

16 3.3. GO SERVER

Name colog-player_name

Input Name (String)

Output -

Remark Inform the player about his team name.
Name colgo-my_name

Input

Output Name (String)
Remark Inform the collaborative player about the user name.

Name colgo-opp_name

Input Name (String)

Output -

Remark Inform the player about the team name of the opponents.

Name colgo-gui_state

Input Message (String)

Output -

Remark Inform the user about the current state of the game and the required ac-
tions he has to perform.

Name colgo-level

Input -

Output User rank (String)

Remark Inform the collaborative player about the user ranking.

Name colgo-user_list
Input Names of all current team members (List[String])
Output -

Remark Inform the user about all users currently participating in his team.

Name colgo-chat

Input Port (Integer)

Output -

Remark Inform the user about the port where the chat messages must be deliv-
ered to.

Name colgo-vote
Input All proposed vertices (List[String])
Output Selected vertex (String)

Table 3.3: List of all GTP commands provided by the Colgo GTP Extension.

3.3 Go Server

The Go server is the game controlling part of the framework. Its main purpose is to
ensure the correct game flow. Therefore, the main part of it is the game logic. Also,
it serves as a Go library, which provides different functionalities to the collaborative
player and the GUI client. The last component of it is a logging framework which
allows to store the played game in different locations using different formats.

Due to the fact that currently no open source Java library for the game of Go exists
and the ones used in most of the Go playing programs cannot be extracted and used
in an easy way, the first task of the server is to provide the game logic in a clear and
structured way. The design of this part is very close to the physical representation
of board and stones, which makes it much easier to use the provided classes than in
existing implementations.

CHAPTER 3. SYSTEM 17

Figure 3.3 shows the most important points of the architecture of the Go library.
As this library will be used in the decision engines of the collaborative Go player, it
contains more features that may be helpful when implementing new collaboration
schemes, which are not shown in the diagram (for example listing all neighbors of
a stone or simulating a move on the current board). Some features have not been
implemented because of the difficulty of the underlying problem. For example, the
scoring function is not able to distinct between stones that are alive or dead. This
simplifies the scoring to a simple area count on the board. For getting correct scores
it is therefore required to play until both players agree that the current state of the
board is final®.

Game
«uses» _
-white : Player Board
T T -black : Player [~~1 -
Y -board : Board | «uses» |*SiZ€ L
«interface» 1 -komi
+start | «uses»
Player start) } +reset() ! Stone
[P -
+generateMove() L__> +playMove() >"d
+play() +isFinished() -colc?rA
+getName() +getScore() -position
+getLevel() +isSuicide() +isAlive()
+getVersion() +isKoSituation() +setDead()
+quit() +getSize() +isLegal()

Figure 3.3: The main parts of the integrated Go library displayed in UML.

Also, a missing feature in the Go server is the whole time management. This is be-
cause there are several different time settings used in Go and due to the complexity
of some popular setups. In Go tournaments the rules often specify a time setting
like "60" + 30” byoyomi". This means that the first hour of the game one can play as
slow as one wants to. After this hour every move has to be completed in under 30
seconds. It is also very popular to specify a certain amount of byoyomi times. Lets
say a user gets five 1" byoyomi times. This means that when the user plays his stone
in under 1" he keeps his total amount of byoyomi times. If it takes him longer to play
the number is reduced. When a player has no more byoyomi times left, it is con-
sidered as a resign and the player loses the game. Further information about time
management in Go can be found at [7].

The Go server also provides the implementation of the GTP and several different
types of players. In general there are three different types of players. The first is the
normal network player. This player is used for including players over a communica-
tion link based on a host name and a port number. The underlying logic is almost
the same as the local player. The local player takes a command which will be exe-
cuted and the standard input and output are mapped to the controller instead of
the network sockets. The last type of player is a SGF player. SGF7 is a widespread
format for storing all different types of board games. This type of player is mainly
for debugging and testing of the Go library, but it can also be used to replay games

6 Final means, that all stones lying on the board are alive. This decision has to be made by the two players
by playing each unclear structure until there is no more discussion about the state.

7 More information about the Smart Game Format and the detailed specifications can be found at: http:
//www.red-bean.com/sgf

http://www.red-bean.com/sgf
http://www.red-bean.com/sgf

18 3.4. COLLABORATIVE GO PLAYER

from a game log and run different types of analyses® on them.

The logging part of the server is quite useful for many different types of applica-
tions. For example every played game is available as a SGF file. This allows to replay,
discuss and analyze each played game®. This is especially in a collaborative setup
very interesting, as the players may discuss the bad moves after the game and learn
from their mistakes. Of course, the voting information is not stored in the SGF log
of the game, as this process happens completely in the collaborative player. For that
reason, the game is logged into a SOL database allowing to couple the logs of the
collaborative players together with the plain game log of the Go server.

3.4 Collaborative Go Player

The collaborative player is the point where information and proposals from all clients
get together and are processed according to the different collaboration schemes
specified in Section 3.5. The software provides two different interfaces depending
on the point of view. From the Go server perspective, the collaborative player looks
like a regular Go playing software supporting the minimal requirements from the
GTP specification. From the other side, it looks like a Go server with an integrated
chat server, which understands all commands from our extension set of the GTP.

This separation from the Go server and the fact that a collaborative player can be
run completely independent from any other part of the system, gives a huge advan-
tage when it comes to computer supported playing'. Let us assume that we use
a very complex and computational heavy way to decide which move will be played
or proposed to the user. Thanks to the independence of the collaborative player we
can run it on a powerful machine, where only our decision process is consuming re-
sources and there is no need to share resources with the Go server or any other part
of the system.

Computer supported playing can then be achieved by inverting the two phases of
the current decision process. One could evaluate each possible move on the board
and provide the user with the top five moves according to this evaluation. The user
then selects a move from the suggestions instead of suggesting a move to the col-
laborative player. The computer assisted playing would therefore result in only a
change of the underlying collaboration schema.

The main requirement of the collaborative player is to provide an easy way to ex-
change different types of collaboration schemes. This can be achieved by providing
an interface for all schemes and a very simple way to integrate the new schema into
the current software. Extending the feature set of the player can be done by adapt-
ing only the main class. No other changes at any location in the code (except when
the GTP extension needs to be adapted) are necessary.

Another requirement is to ensure that the speed of the game is in a reasonable
range. As the byoyomi time management is very difficult to support in a collab-

8 Forexample, it can be interesting to compare every move of two good players to the output of a com-
puter Go program. This allows to identify where a computer program may still have some difficulties.

9 There are a lot of tools named SGF Editors that allow to modify, comment and mark the informa-
tion stored in the SGF. A good list of available products is available under: http://senseis.xmp.net/
?SGFEditor

' This would help users to get a feeling for the game of Go especially when some arbitrary (and not
always good) moves are mixed under the suggestions.

http://senseis.xmp.net/?SGFEditor
http://senseis.xmp.net/?SGFEditor

CHAPTER 3. SYSTEM 19

orative setup with multiple users, the collaborative player is using a much simpler
time management with fixed time slots. This means that the software is enforcing a
time limit of 30 seconds per action. After that, the user is considered not responding
and the software discards the possible input from a not responding user.

3.5 Collaboration Schemes

The collaboration schemes are the heart of the collaborative player. They contain the
information according to which the next move is selected. The current approach is
to allow each user to provide a suggestion of the next move. After that, the deci-
sion engine selects one move out of the suggestions. This process can be with the
support of the users (for example by voting) or the engine can decide completely by
itself.

All decision engines must implement the DecisionMaker interface. This interface
consists of only two operations. One to add a move as a proposal (addMove) and
one to get the final move from the decision engine (getMove). If a decision engine
wants to perform any operation including a user interaction, other Java classes may
need to be changed too. The following two schemas show the different approaches
that can be used in a decision engine to select a move. Of course they serve only as
an example of what can be achieved and are not necessarily the best and the most
interesting approaches to the problem.

3.5.1 Voting Schema

With the voting decision maker, a two phase decision engine was implemented. The
first phase consists of a request for move proposals to each user. All suggestions are
then collected and merged together in the decision engine. In a second phase, the
decision engine informs all users about all moves that were proposed. To reduce
influences from the user level, the moves are displayed anonymously with only one
additional information, telling which move was proposed how many times. Because
of the anonymity of the suggestions the user cannot just pick the move proposed
from the best player in the team, but he has to select the best move according to his
knowledge. If for some reasons different moves receive the same amount of votes,
the system decides arbitrarily which move will be played. The Figure 3.4 explains
how the control flow looks like. The clients are displayed in blue and the collabora-
tive player in gray.

20 3.5. COLLABORATION SCHEMES

Send request Send list of Count the
Get next
for move moves and votes and Answer move
move >
proposals ask for select move request

decision accordingly
A

Figure 3.4: The control flow of the Voting Decision Engine.

3.5.2 Monte-Carlo Schema

As stated in Chapter 2, Monte Carlo is an important approach for current Go prob-
lems. To verify if this approach is also satisfying for a normal user when it comes
down to selecting the best move from a list of suggestions, the second decision en-
gine is based on a Monte Carlo approach. The first phase of the collaboration process
is exactly the same as before. This means that each user is again queried for his pro-
posal. After that, Monte Carlo methods are used to evaluate the estimated value of
each move. The move with the highest value will then be selected by the engine.

Figure 3.5 explains the overall approach of the decision engine. The first part of the
evaluation is to create clones of the board for each proposed move. The proposed
move will then be played on one of the clones. This new board is then inserted
into a simulator. This simulator plays a fixed number of pseudo random games to
the end. In detail, each simulation process performs random moves up to a level,
where no more legal moves are available. After that, a scoring function according
to the used rule set in the game is used as a score estimator. This score is then
interpreted as a value of the board before the simulation process. All score values of
the simulated boards are then merged into a single value of the initial board state
by using the arithmetic average. This score value is calculated for each proposed
move. The decision engine then picks the one move that did result in the highest
score value.

//Get . Send request Split each Compare ~
for move proposed . score values / Answer move
move N Simulate
proposals move into a Boardand and select request

simulation
board

calculate the best move

score vaue

Figure 3.5: The control flow of the Monte Carlo Decision Engine.

CHAPTER 3. SYSTEM 21

3.6 Client

The client is the only part of the system that interacts with the user directly. The
setup dialog is mainly used to enter the access code which is required to connect
to the collaborative player. The user name is to identify a team member in the chat
and in the member list. This has no effect on the game play, it just serves the need
of the users to be able to distinct their team members clearly from each other or
even matching them to a known person and therefore increase the fun factor of the
game. The question about the user ranking is currently not used at all, as it might
influence the user behavior during the game. Nevertheless, it is meant to allow
a detection of distinct user behavior between different skilled players. Figure 3.6
shows the client software during an actual game.

5] ColabGo Player = B S

Game Game Chat | Team Members

Board Size: 13 Ao
Komi: 55 Daniel
| Y

T 1
— (| | Game Location: colgo.ethz.ch
"___(1= Access Code: 38618

% Player
= Black White

— Cats Dogs

= """V ‘ "~ Information
BBt

I {I ? | | The opponent is playing..

AT
?__

Figure 3.6: The graphical user interface provided to the player.

The whole client is based on the SWT toolkit" developed by eclipse. One of the main
challenges during the implementation of the client was to create one single, exe-
cutable JAR-File that runs on Linux, Windows and OS X. This is solved by including all
possible SWT libraries (Linux, Windows, OS X each with 32 and 64 bit) and including
the correct library after the system start by using reflection.

3.7 Web Framework

The web framework is designed for user groups that do not have the possibility to
run the game server and the collaborative players on their own machine or just want
to play a short game of collaborative Go. The main task is therefore to allow the par-
ticipation in games of collaborative Go without worrying about any kind of software
or setup configurations. This should lower the initial work to an absolute minimum
and therefore increase the overall interest in the game. The only thing the web
server does, is taking the desired settings of the groups provided in the web form
and run the required parts of the software with these settings. Figure 3.7 shows the
minimal requirements of the settings for playing a game of collaborative Go.

" SWT stands for the standard widget toolkit and is released by the eclipse foundation under the Eclipse
Public License. More information can be found at: http://eclipse.org/swt/

http://eclipse.org/swt/

22 3.7. WEB FRAMEWORK

Board Size (Number between 8 and 19)
Team 1 Team 2
Team Name

Type of Collaboration Woting * Voting -
Start the Game

Figure 3.7: The user interface for launching a new game of collaborative Go.

The framework behind the form is mainly responsible for managing the available
ports for gaming. Other than that it just executes the JAR files of the game server
or the collaborative player with the correct input parameters. Of course, the web
framework takes also part of removing old processes. Especially because the launch
of a game cannot be stopped after clicking on the "Start the game" Button. One has
either to play the game to the end or wait for the web framework to kill the process
after a certain time.

Experiments

Throughout the development process and the testing of the framework, we con-
ducted several experiments. The experiments can be split up into two classes. The
first one was a real user experiment with several experienced' and some intermedi-
ate players for gathering personal feedback. These tests allowed us to integrate the
huge know-how from the players into the final software.

The second tests were more on a technical basis. An evaluation of the usefulness
of the Monte Carlo Decision Engine was conducted and is explained in a graphical
way in Section 4.4. One of the goals of these tests is to explain why the Monte Carlo
approach works and why there is still a need for better ways to play computer Go.
Other tests were conducted by using the gathered data during test runs in the Go
Club Zurich. These tests are mainly used to underlay the personal feedback provided
by the players. In Section 4.3, we took a look at the timing constraints of our system
and how they were accepted by the players used to the classical Go time manage-
ment.

In very few words, the overall feedback was very positive and especially the experi-
enced players had a huge set of new ideas and features that may be integrated into
the system.

4.1 Collected Data

During a game of Go with our software, each action performed by a player? is logged
into a SOL-Database. As an action, we consider a user behavior which includes an in-
tegration of the other participants through a GTP call or a result of another complex

' Anexperienced Go player plays between three and five times a week. Also, he should be playing longer
then three years. The ranking of the player should be in the low Dan level.

2 Here, a player stands for a single user participating in a collaborative player and the collaborative player
itself.

24

4.1. COLLECTED DATA

operation like a Monte Carlo simulation. Table 4.1 explains the logged data in detail.
The logging features of the game server are required for analyzing and replaying the
game. In the collaborative player, the collected data serves for evaluating the differ-
ent collaboration schemes and taking a deeper look into the behavior of the users.

Action Start of a new game

Logged by Go server

Table game

Type insert

Data gameld - Identifier of the game
startTime - Time stamp

Action Game is finished

Logged by Go server

Table game

Type update

Data endTime - Time stamp

Action Move from a player

Logged by Go server

Table move

Type insert

Data gameld - Identifier of the game
color - Color of the played stone
position - Position of the player stone
timeStamp - Time stamp

Action Player joins a game

Logged by Collaborative player

Table userJoin

Type insert

Data gameld - Identifier of the game
name - User name
userlevel - Ranking of the user
team - Team name
timeStamp - Time stamp

Action Player leaves the game

Logged by Collaborative player

Table userLeave

Type insert

Data gameld - Identifier of the game
name - User name
team - Team name
timeStamp - Time stamp

Action A request for the next move is sent to the players

Logged by Collaborative player

Table genmove

Type insert

Data gameld - Identifier of the game

player - Name of the collaborative player
timeStamp - Time stamp

Continued on the next page

CHAPTER 4. EXPERIMENTS 25

Action Answer of the move request is received

Logged by Collaborative player

Table moveResponse

Type insert

Data gameld - |dentifier of the game
player - Name of the team
moveld - Number of the move
position - Position of the player stone
timeStamp - Time stamp

Action Request for vote is sent to the players

Logged by Collaborative player

Table vote

Type insert

Data gameld - |dentifier of the game
player - Name of the team
moveld - Number of the move
timeStamp - Time stamp

Action Response of a voting request is received

Logged by Collaborative player

Table voteResponse

Type insert

Data gameld - ldentifier of the game
player - Name of the team
moveld - Number of the move
position - Position of the player stone
timeStamp - Time stamp

Action Monte Carlo engine has selected a move

Logged by Collaborative player

Table decision

Type insert

Data gameld - ldentifier of the game

player - Name of the team

moveld - Number of the move
position - Position of the player stone
timeStamp - Time stamp

Table 4.1: The data which gets captured during a game of collaborative Go.

4.2 Collaboration Schemes

The first question we needed an answer to, was whether the two implemented
collaboration schemes are interesting from a user perspective. This is not an obvi-
ous question because there are no games involving players with such collaborative
schemes. Additionally, this question is crucial to the success of the software and the
idea of collaborative gaming, because games are mostly played because of the fun
they provide. If the collaboration process is boring or disappointing the players, then
the game will never become popular.

26 4.2. COLLABORATION SCHEMES

This experiment was conducted with two very distinct user groups. One user group
consisted of six experienced people of the Go Club Zurich and the other of complete
novices to the game of Go. The idea behind these two groups was, that the feedback
provided from the players is valid for all kinds of Go players regardless of how long
they have been playing Go. The Monte Carlo decision schema was only tested on
the experienced Go players, because we are mainly interested in the fact whether
the moves selected by the engine are reasonable3 or not.

For both user groups, the chat functionality was the feature that lead to the biggest
discussions. Both groups wanted to send chat messages to the opponent because
this would increase the fun of the game especially when all participants know each
other. The experienced group also mentioned that the chat should also provide the
players with the possibility to discuss and analyze the game after it is finished.

4.21 Monte Carlo Decision Schema

The Monte Carlo decision was found very fair, because both teams had the same
evaluation function for their proposed moves. All six players stated that the evalu-
ation lead to some strange moves. Especially the moves located near to the already
played stones seem to be preferred by the evaluation. The main conclusion was that
when it is automatically decided which move is picked, the team needs to be in-
formed why this move was picked. This can be done by providing all values of the
Monte Carlo evaluation to all players. Also it would be nice to see what moves were
proposed by the other players, even when there is no possibility to influence the de-
cision engine. Furthermore, the engine must be very careful when a user suggested
a pass move. This is because a pass is only good when all groups on the board are
alive or dead. In all other situations the play of a pass is a huge disadvantage. It
was suggested that a pass or resign move is only selected when all provided move
suggestions are pass or resign moves.

4.2.2 Voting Decision Schema

The voting decision was found very interesting and catching for both the good and
the bad players. This is, because both can learn a lot about the game and the han-
dling of the different situations without taking full responsibility when something
goes wrong. Especially at the group of the good players, it showed how different
certain situations can be handled and that it is not always clear which move is the
best one.

During the test run of the experienced group, one team was locally separated and
only connected trough the Internet, the other one was sitting right next to each
other but without seeing on the neighbors screen. The members stated that for
having success as a team, sometimes the communication channels are required.
The separated group made therefore heavy use of the chat function whereas the
other group mainly communicated through voice. One tester also requested the op-
tion that the chat can be completely disabled during the game and gets active only
after the end of the game. This may generate situations - especially when there are

3 It is for non-experienced players very difficult to decide whether a played move was the best of all
the options or not. This is because a rule of thumb says, that one should always play the move that
conquers the biggest size. For deciding how many stones one can achieve by a given move, a lot of
game experience and know-how is required.

CHAPTER 4. EXPERIMENTS 27

huge experience differences in the team - in which it is unclear on how to perform
and the effect of going one or the other path would be clearer. One huge disadvan-
tage without the chat function is, that the team has to consider a simpler strategy
because it is not possible to agree on the next twenty moves. In complex scenarios,
one single bad move can lead to a whole different situation and therefore the focus
needs to be much closer to the current situation taking one move after the other.

4.3 Time Management

For enforcing the going-on of the game, a time management has to ensure that the
players perform the corresponding actions in a certain period of time. Therefore we
had to implement a system easily understandable to all kinds of players that also
fulfills the requirements of experienced Go players. The time management imple-
mented in our system is different to what has been used so far in Go playing tour-
naments. Because of that, we were interested in whether our setup also matches
the needs of the different kinds of players. The longest possible period one team
has to wait for the action of the other team is one minute. This can happen when
at least one player misses the time limit in the move suggestion as well as in the
voting phase of the collaborative process. For testing our setup, we asked both test
groups the same questions regarding the time limits. Both considered the waiting
period of at most one minute as reasonable. Especially since it is the case that when
the action was performed faster from all players no one has to wait for the end of
the time limit. In order to check whether the provided answers match our collected
data, we looked at the number of exceeded time limits per team during a game. The
Figure 4.1 shows the results of the experienced players. We do not show the results
of the beginner group, as this group never exceeded one single time limit. This is
mainly because beginners think less about their actions and play normally guided
by their instinct, which leads to a very short response time for each action.

100
80
60 B Missed the time limit

40

% of Actions

M Performed in the time limit
20

A B

Figure 4.1: The percentage of actions performed in the fixed time limit of 30 seconds. Team A
communicated only through the chat of the GUI whereas team B sat on the same
table and was able to discuss all actions.

The experienced players mentioned that in the regular case a time of 30 seconds is
long enough for suggesting a move or making a selection. But during a game of
Go, there are always some moves which may have a huge impact on the game and
where a good player likes to think more about the current situation. For supporting
such a game play the byoyomi time management would be perfect. Also, a com-

28 4.4. MONTE CARLO

pletely different approach based on something close to the fisher time#4 could be a
possible solution. This would mean that you can increase the time available for the
next action by performing the current action faster then the given time limit. Of
course it is unclear whether this approach is really working with a large amount of
users. An interesting fact is that the missed time limits from team B are mostly due
to a heavy discussion about the current situation and therefore not realizing that
an action needs to be performed. This was later in the game solved by enabling the
system speakers of the devices running the client software. The system beep then
reminded the players that an action needs to be performed.

As a final result regarding the time management, one can say that the existing ap-
proach works for all kinds of players independent of their skill level. The experienced
players prefer - as expected - the more complex time managements they know from
various online servers and tournaments. The beginners don’t care about time man-
agement at all.

4.4 Monte Carlo

An interesting question is, whether the Monte Carlo engine selects a useful move.
For testing whether the selection process is of any use, we decided to create a test in
which we replayed a game of Go between two high ranked KGS players. The game
we took is available on the KGS online server. Two 7d players> played against each
other. For simplifying the test to the reader, we will only look at the black players
moves and actions. The figure 4.2 shows the final board of the game.

4 Fishertimeis a time management named after its creator Bobby Fischer. The basicidea is that you gain
with every action performed a small amount of time. If you perform actions very fast the amount of
time available will steadily grow whereas a slow player constantly looses time. A detailed explanation
can be found at: http://senseis.xmp.net/?FischerTiming

> Aranking of 7d stands for a strong and experienced player. As this is the KGS ranking, the real level
may be around 5d. This is because the algorithm of KGS constantly produces levels that are a bit better
than the real one we are used to in Switzerland.

http://senseis.xmp.net/?FischerTiming

CHAPTER 4. EXPERIMENTS 29

ok
57"
3
) dhd
-
0.0,

+gt
o
b
8t
*
*O
e
1ot

4d
9,

o
008
20

B 449

¢ %3¢
o tele!
0r0e0-+-18¢

4
Del'S

QOO
o, 0l
I*o**o*
OO
DO
4428

Q

el
oY
5% v
292

e
4
.+

*
*
o

b
Salie ™
0800 ¢

*

O

01*0*

o
)
%

‘

o

1

o

o+

S
s+
o o

, Joles
000 LRGSO 2
)4

o+-aik,
OO
O TTRI8QI TS

Figure 4.2: Final state of the Go game between likam2 (white) and twoeye (black), both ranked
7d, used for testing the Monte Carlo engine.

The experiment was based on several snapshots we took during this game. Basically,
we stopped after a certain amount of moves and then looked at the current board
state. First, we extracted all possible moves® and then we simulated all moves with
our Monte Carlo engine. This process was repeated with several different setups of
the simulator. The first results showed in Table 4.3 were created with the following
setup displayed in Table 4.2. The heat maps on the left show the values for positions
inthe corresponding color. For a deeper understanding of the process, it is important
that it is clear that the resulting score value of the simulation may be way off com-
pared to the real result of the game. This can be seen in the simulation of the move
302, where most results are colored in red which stands for a loss around -30 points.
In the end, black wins the game with 5.5 points despite of the fact that according
to our simulation the result should be around W+30. This is because the simulation
does not have a good evaluation function that can decide whether a group is alive
or dead. For the decision which move is the best one, only the differences between
all the moves are relevant. Therefore, it is possible to select a move even without
knowing how much it is actually worth. The important fact is, that it is worth more
than all other moves.

Game likam2 (w) vs. twoeye (b) - 04.05.2011 on gokgs.com
Final score B+5.5
Simulated moves 2,52,102, 152, 202, 252, 302

Number of simulations 100

Table 4.2: The simulation setup of the first game.

6 As a possible move we considered all moves that are legal on the current board, except the ones that
filled own eyes.

4.4. MONTE CARLO

30

Current board

Simulation

Move

E

e
O®a
Y08

T

o
CTTTOY®T T

ias
o

%o

1
1
hd

O+ @0

1]
008
+_

[TTT

:%*P}

4‘
i

52

o~
Q

152

I
o
~N

Continued on the next page

CHAPTER 4. EXPERIMENTS 31

Move Simulation Current board

252

302

Table 4.3: The results of the Monte Carlo simulations. The white spots in the heat maps in-
dicate spots where due to the illegal position no scores are available. Green rep-
resents a high simulation value and red stands for a very low one. The positions
marked by a are the locations where black played the next move.

When looking at the heat maps, one is able to spot positions on the board where
black can gain multiple points. Let us take a deeper look into the simulation of the
252nd move. The Monte Carlo simulation detects on T8 a good move with a value
much higher than all other options. When we now take a look at the board state
fifty moves later, we detect that the area around T8 was played and conquered by
the black player. Also we can see that the actual best move proposed by T8 was
never played. Instead, black played all moves around this spot. T7 would be a much
better move because it connects the two groups of black stones lying next to each
other. Nevertheless, the Monte Carlo method was able to correctly detect a hot spot
on the board.

As we are highly interested in whether this bad behavior is a problem of the Monte
Carlo approach or if the number of simulations was just to small to correctly de-
tect and evaluate the situation, we conducted a second experiment with almost the
same setup. We will simply increase the number of game simulations from 100 to
1000 games per move. The rest of the setup will stay the same as before. The Table
4.4 shows a reduced set of the results from the second experiment. As we can see,
not much has changed. The differences in the color range are now much smaller.
This is due to the fact that the results are much smoother because of the increased
number of simulations. When we now look at the situation around T8 we can detect
some new results. First of all, T8 is no longer the best available move. The values of
the moves from T7 to Tg are very close together. The two moves that attract atten-
tion are Ts and T1o. Ts is very bad, because after a black stone was placed at Ts white
can play T7 and kill the two black stones in between. T10 is considered a good move
to the simulator as it appears to block the white player from accessing the T row. In-
creasing the number of simulations has shown to decrease the standard deviation.
During the first experiment, the standard deviation was around 40 points. When

32 4.4. MONTE CARLO

increasing the amount of simulations to 1000 games, this value drops to 6 points.

Move Simulation Current board

252

Table 4.4: The results of the Monte Carlo simulations. Only the second and the move 252 are
displayed. By increasing the number of simulations the results get smoother and
more accurate.

Table 4.5 shows the simulated values of the moves the black player actually played
and compares them to the overall values of the simulation. An important fact to
know is that a Go player not always plays the best move first. Sometimes moves that
preserve the order of playing are inserted. These moves are called to have "sente”
which will force the opponent to answer to the played move and therefore preserve
the previous situation on other board locations. During the endgame, these moves
are much more important than in the beginning of the game. When looking at the
detailed scores, we detect that (except for the move 202) the simulation agreed that
the selected move is better than a random move. Our Monte Carlo decision engine
therefore gets better results from a team than an arbitrary decision engine.

- # of better moves

Move Played position | Value | Worst Best Average (Total moves)

2 Q3 | 59 | 25 67 52 | 95 (346)

52 N8 | 74 | o7 8 59 | 76 (301)

102 H8 | 150 | -02 153 83 | 7 (256)

152 Q17 | 44 | 92 95 32| 84 (213)
202 D1 | 134 | 263 13 95 | 97 (181)

252 K8 | -29.4 | -470 -26 -283 | 62 (129)
302 D1 | 299 | -564 -45 -363 | 15 (85)

Table 4.5: The simulated values of the played moves by black and some statistics on the cal-
culated scores of the simulations for each board.

CHAPTER 4. EXPERIMENTS 33

Throughout these experiments, we learned that Monte Carlo is indeed a reasonable
way for implementing an automated decision engine. This is especially because the
engine does not have to choose a move from all possibilities but receives a small set
of moves and can pick the best out of them. The Figure 4.3 shows a situation that is
very bad for all kinds of Monte Carlo engines, because the order in which the moves
are played is crucial to the success. But when the player suggests the move, it is very
easy for the engine to detect that the suggested move is indeed a good one.

Figure 4.3: Situation, where it is difficult for a Monte Carlo engine to select the correct move.
This is because the value of the black move at a and the white move at b is mainly
based on which move was played first.

Conclusion

The main goal of this thesis was to build a system that allows to evaluate different
collaboration schemes by playing the game of Go. Due to the lack of an existing Go
library, the first step was to build a reusable Java library with the complete game
logic required for gaming. Throughout the elaboration of the system, we experi-
enced that an easy to use and open source library supporting the basic features of
the game of Go is a need of the current Go community. Of course, implementing
the game from scratch was not part of the initial time table and therefore caused a
reduction of the time that was spent developing and testing alternate collaboration
schemes. Nevertheless, the implemented system fulfilled all requirements we had
in our initial draft. Especially the separation of all system parts (server, collaborative
player and client) allowed us to be very flexible on what can be achieved with our
software.

As a second step, we took a deeper look into the use of Monte Carlo methods for
playing Go. The conducted experiments provide an understanding on why Monte
Carlois such a wide spread topic in computer Go. Also the fact, that thanks to the Go
library, a simple program running some simulations on a board can be implemented
very easily, allows interested Go players without a computer science background to
understand and evaluate this approach by themselves.

Since most of the Go players are interested in the current research in computer Go,
we learned that once the players do know about a new system, they are quite in-
terested to use it. A huge drawback is the current lack of popularity in Switzerland
and the rest of Europe. Because of that, it was quite a challenge to advertise the
implemented system and motivate the players to participate in the collaborative Go
project. Especially since for an interesting collaborative Go game at least six players
are required.

36 5.1. FUTURE WORK

5.1 Future Work

Since one of the most mentioned requirements of the local Go scene was an open
source library implementing the logic and some basic functionalities of the game of
Go, the integrated Go library could be extended and completed by some interesting
features like a score estimator or a life/death decision tool.

For increasing the popularity of the collaborative Go, some new features especially
on the client side will be required. For some users, it is important to play the game
without downloading a software. They would like to play the game directly through
the browser. Furthermore, an integration into a social platform like Facebook or
Google+ would increase the popularity by allowing known user groups compet-
ing with each other. The other approach for increasing the popularity is to provide
a mobile solution which runs on current mobile devices with iOS or Android. Be-
cause these applications are mostly installed from the corresponding market places,
afancy userinterface would be required in order to get popular. Ahigh rankingin the
markets could automatically attract new players even when they are not integrated
in a local Go community that already knows about the collaborative Go project.

The last (and from a technical perspective the most interesting) extension of the
current work will definitively be some new collaboration schemes. These collabora-
tion schemes could integrate some different approaches like marking hot spots on
the board or highlighting groups with low liberties. An extended version of the cur-
rent collaborative schemes may involve schemes that adapt the task a user needs to
perform in each move according to his skill level. Also an interesting point would be,
whether it is possible to create a collaboration schema in which the players perform
better as a team than the best player by himself.

(1]

Bibliography

B. Bouzy and B. Helmstetter. Monte-Carlo Go Developments. In ACG. Volume
263 of IFIP, pages 159 —174. Kluwer Academic, 2003.

B. Bruegmann. Monte carlo go, 1993.

J. Burmeister and J. Wiles. CS-TR-339 Computer Go. Technical report, Depart-
ment of Computer Science, The University of Queensland, 1995.

W. G. Chase and S. A. Herbert. Perception in chess. Cognitive Psychology, 4:55-
81,1973.

C. Farnebaeck. Specification of the Go Text Protocol, version 2, draft 2. http:
//www.lysator.liu.se/~gunnar/gtp/, 2002.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with patterns
in Monte-Carlo go. Technical report, 2006.

R. Hunter. Byoyomi explained. British Go Journal, 106:43 — 44, 1997.

D. Lichtenstein and M. Sipser. Go is polynominal-space hard. Journal of the
ACM, 27:393-401, 1980.

M. Mueller. Computer Go. Artificial Intelligence, 134, 2002.

J.S.Reitman. Deducing memory structures from inter-reponse times. Cognitive
Psychology, 3:336 — 356, 1976.

N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal Difference Learning
of Position Evaluation in the Game of Go. In Advances in Neural Information
Processing Systems 6, pages 817-824. Morgan Kaufmann, 1994.

J. P. Zagal, J. Rick, and I. Hsi. Collaborative games: lessons learned from board
games. Simul. Gaming, 37:24—40, 2006.

A. Zobrist. Feature extraction and representation for pattern recognition and the
game of go. PhD thesis, The University of Wisconsin - Madison, 1970.

http://www.lysator.liu.se/~gunnar/gtp/
http://www.lysator.liu.se/~gunnar/gtp/

Glossary

The following list explains the most common Go terms used in this thesis.

block A block of stones are connected stones of the same color.

board The board on which the game is played. Normally a size of
19x19 is used, but 9xg and 13x13 are also very popular.

byoyomi A very popular time management system.

connection Two stones are connected when they share at least one side.
Stones that are diagonally adjacent to each other are not

connected.

dead A group of stones that cannot survive an attack by the
opponent.

eye Empty spot on the board surrounded by stones of only one
color.

gote A move has gote when the move was forced by a sente
move.

group A group are connected stones of the same color.

ko A repetition of an old board state by a cycle of two moves.

komi A fixed number of points (normally 5.5 or 6.5) to the

player not starting the game, because of the first players
advantage.

40

liberty

life

sente
stone

superko

A free spot next to a stone or a group. The liberty of each
stone in a group is the sum of the liberties for all individual
stones.

A group of stones with at least two eyes or a group that can
survive any attack by the opponent.

A move has sente when it forces the opponent to respond.
Marker of one team in either white or black color.

A repetition of an old board state by a cycle of more than
two moves.

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction to the Game of Go
	Computer Go
	Goal of this Thesis
	Outline

	Related Work
	Computer Go
	Detailed Comparison to Chess
	Early Computer Programs
	Monte Carlo Methods in Computer Go

	Collaborative Gaming

	System
	Framework
	Go Text Protocol
	Required Commands
	Collaborative Go Extension

	Go Server
	Collaborative Go Player
	Collaboration Schemes
	Voting Schema
	Monte-Carlo Schema

	Client
	Web Framework

	Experiments
	Collected Data
	Collaboration Schemes
	Monte Carlo Decision Schema
	Voting Decision Schema

	Time Management
	Monte Carlo

	Conclusion
	Future Work

	Bibliography
	Glossary

