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Abstract

The main goal of this semester thesis was to extract the core functions of the
JUKEFOX music player. This included the decision of what the core functions
are and how to separate them from the rest of the source code. After successful
extraction and the port to native Java, JUKEFOX can be used on platforms other
than Android.

Other parts of this project included to rewrite some of the code structure in a
more readable form and to support the new cross-platform abilities.

This paper gives an overview of the new JUKEFOX code structure as well as
some insights into the current state of JUKEFOX and finally some theoretical
considerations that influenced the architectural decisions.
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CHAPTER 1

Introduction

1.1 Motivation

On the project page JUKEFOX is described as follows:

JUKEFOX is an Android mobile application designed to change your
music experience. At the first glance, it looks like an ordinary music
player. A closer inspection, however, reveals some striking differ-
ences. JUKEFOX is based on the revolutionary concept of a music
similarity map that facilitates some entirely new ways to interact
with your music collection.

Over 100’000 downloads and the high user rating demonstrate that JUKEFOX
convinces many customers of the Android Market. One of JUKEFOX’s major
features is its ”smart shuffle” mode, which tries to determine the perfect next
song to play.

As a user of the outstanding features of JUKEFOX you will at some point be faced
with the question whether you can use this player on a different platform, such
as a personal computer.

Previously, JUKEFOX was a pure Android application and therefore depended
heavily on the Android API, which makes porting of the source code difficult.
This project’s goal was to extract all the core functions of this music player.
These functions had to be restructured and finally adapted to ensure that they
continue to work both on Android as well as other platforms that support native
Java.

Furthermore, this music player has been developed by many different people
and teams, so over time the structure of the project became more and more
unorganized. To counteract this trend, not only the core features were extracted
and ported to native Java, but they were also rearranged in a new and more
structured way.

'Project page http://wuw.jukefox.org
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1.2 Objectives

The main objective of this project is to extract the main functions of JUKEFOX
code and cut it free from the underlying Android system to get a cross-platform
application. This has to be done without changing its functionality.

The other objective is to clean up the code structure to a more readable form.

1.3 Task description

The easiest way to describe the assignment of this project is to quote the official
informal description from our advisors:

Imagine how wonderful it would be if your music player automati-
cally found out which music you want to listen to right now and just
played such songs? JUKEFOX, a versatile music player developed in
our group, is capable of this wonderful feature - it is called smart
shuffle. Moreover, it can display all your music in a 2-dimensional
map according to the similarity of your songs and has many other
novel features (see www.jukefox.org for more information).
However, our JUKEFOX (so far) only occurs in the sealed habitat of
the Android platform for mobile phones. We would like to release
JUKEFOX from its prison to let it roam the wilderness of other plat-
forms.

JUKEFOX has been developed in the Java programming language,
specifically targeted for the use on Android mobile phones. Unfor-
tunately, the underlying API is not abstracted in a way that allows
to use it on a regular home computer. The main goal of this project
is to extract JUKEFOX’s powerful music similarity API to obtain a
stand-alone version of the music database, which can easily be used
in other players or in plug-ins for other players. A second goal is to
use the extracted application to implement a plug-in for your most
favourite music player.?

2Motivation and Informal Description for Software Engineering: Help Our Jukefox To Con-
quer New Habitats!, http://disco.ethz.ch/theses/hs11/jukefoxAPI_Assignment.pdf
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CHAPTER 2

Background

2.1 Android

Android applications are written in the Java programming language, but this
does not mean that they run on any Java Virtual Machine. Google’s Virtual
Machine Dalvik is a lightweight version of the Java VM and is designed to use
less memory and to be executed in parallel to give every application its own
Virtual Machine. Besides basic core libraries of Java, Android provides a set of
additional libraries including special functionality for mobile devices.

2.1.1 API

Via the application framework the developers have access to a set of C/C++
libraries, for example a SQLite database or OpenGL.

An Android application has four different components: Activities, Services, Con-
tent providers and Broadcast receivers. Each of them provides a point through
which the system can enter the application. Activities are front-end components
with a user interface in contrast to Services, which run in the background to
perform long-running operations such as data-fetching over the network or play-
ing music. Content Providers are the components for sharing application data
with other applications and are for example used in the music library framework.
Finally, Broadcast Receivers are responsible for reacting to different broadcast
announcements like “low battery” messages. All those components are imple-
mented as a subclass of Java base classes provided with the Android API. The
communication between those components is handled through messages called
Intents. Different specialized data types are used, for example ContentValues
are handover objects for different interfaces and only a ContentResolver can
process them.! 2

"http://developer.android.com/guide/topics/fundamentals.html
“http://en.androidwiki.com/wiki/
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Figure 2.1: Android architecture

2.1.2 Porting from Android to native Java

To port an Android application to native Java we need to get rid of the Android
API dependencies. Focusing on the core function of an application and ignor-
ing the user interface, most API dependencies can be found on the data access
level, for example an interface to a database, a media library or a network. The
Android API provides a lot of helper classes for those data interfaces.

The dependency on those classes can be eliminated by using helper classes based
on the standard Java libraries. Another way to make the code Android inde-
pendent are self implemented interfaces, so called wrappers, who forwards those
functions to the corresponding helper class. These helper classes are the specific
implementation of those interfaces for their related platform.

All used data types have to be provided by the Java libraries and may need to
be translated back to Android specified data types in certain interfaces.

2.2 MVC

The idea behind a pattern oriented software architecture is to get a standard
design approach. There exist many patterns to achieve different structural goals.
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The Model View Controller (MVC) design pattern has the goal of decoupling
the user interface, the underlying business logic and the model domain. This
pattern has, as shown in figure 2.2, three basic sections which are separated
from each other.? 4

e Model This is a collection of classes which provide a data structure of
some specified type. Further, one can also implement some Model internal
business logic, for example a conversion of different data types.

e View This section is used to display the output of the application, but is
not responsible for the logical calculations. A function call from the View
will be forwarded to the corresponding controller. The View has access to
the Model and will usually be notified, if there are changes of the data in
the Model.

e Controller These classes manage and control all important processes, in-
terpret user interface inputs and inform the Model and the View to change
their states based events.

Beside the MVC pattern there exist some similar patterns for example the
Model View ViewModel (MVVM). The difference to MVC is that the View
in this pattern is completely separated from the model domain and vice versa,
as the View only knows the ViewModel and the ViewModel again only knows
the Model. This architectural pattern is used to eliminate all the logical code of
the View because the displayed information is directly selected from the View-
Model without the need for modification. This improves the cooperation between
designers and programmers compared to other architectures.’

Shttp://msdn.microsoft.com/en-us/library/ff649643.aspx
‘http://en.wikipedia.org/wiki/Model-view-controller
*http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
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CHAPTER 3

Implementation

3.1 Main goals

Before the implementation of the previously specified designs, the most impor-
tant rules on which all future implementation decisions will be based had to be
defined. These guidelines are the result of considering what the user needs, in
which context something is used and the current state of the project.

1. All core functions should run independently from the operating
system

The primary and most important goal is to secure the independence of all
core functions from the underlying operating system as much as possible.
This can be done by splitting all problematic parts into two or more inde-
pendent implementations which will run under one or more platforms or
rewriting existing code so it can be executed on all platforms in the same
way. The rule here is simple: It is advantageous to have only one function
defined for all platforms instead of different ones because it allows easier
maintenance.

2. Reduce performance penalty on Android systems

The second goal is to minimize the speed losses in the Android version
due to the new implemented abstract structures. In the current state the
program runs mainly on smart phones which have very limited resources.
Any negative performance changes on these systems has to be avoided. On
the other hand, the targeted new platforms are mainly desktop computers
and laptops which have a lot more available resources. So any negative
effects caused by altering of the source code have not the same big impact
as on a smart phone.

3. Restructuring the source code

Another goal of this project is to clean up the source code to avoid large
and unreadable code structures. To enhance the readability it is important

6
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to add comments to all central classes and interfaces. This has no effect on
the final product but since this project is not yet completed, it will help
future development.

Additionally, the entire project is reorganized according to a suitable ar-
chitecture pattern to simplify its structure.

3.2 Core functions of jukefox

The logic of the play modes is the main point that makes all the difference be-
tween JUKEFOX and other music players. This feature requires a basic music
management system with additional information like MUSICEXPLORER' coordi-
nates and an infrastructure supporting play statistics.

The current music management contains a framework for a music collection and
an import algorithm to update the songs with additional information from the
Internet and store them in the database. The interface to the database and other
storage mediums is also provided through the core of JUKEFOX.

In summary the core functions are all classes that are essential for the music
player including all play modes, the music library management and the database.
Not included are all classes which contains elements of the visual output namely
all classes from the View.

3.3 Extraction of the core functions

The new design should include a better overview and handling of the source code.
Additionally, it should satisfy the new opportunities and needs of alternative
platforms.

A better overview can be achieved with the above mentioned design patterns,
whereby parts of the code are divided into new sections.

Furthermore, it is important to note that this project does not need to be rebuilt
from scratch. Instead, the already existing source code is adapted to the new
requirements. Therefore, the existing code was analysed.

3.3.1 Before extraction

The analysis showed that in the current state, the project can be roughly divided
into two different blocks: The View, which includes all visual designs and is
responsible for the actual output of the program. This part is optimized only for
Android devices and therefore heavily depends on Android specific code. The
other block contains most of the logical processes and data structures, namely the
Model and the Controllers. The View depends also on the Model and Controller

"http://www.musicexplorer.org
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Figure 3.1: Source code structure before extraction

parts but neither the Model nor the Controllers depends on functions of the
View. This strict separation allows a more or less operation system independent
implementation of all data structures and most of the controllers.

For this project only the Model and the Controllers are relevant, because to
design a new visual concept for the music player on another platform is beyond
the scope of this project.

Model class

This central class offers access to all data objects used by the controllers and
playmodes, such as songs or playlists. Another task is to control major pro-
cesses, such as importing new songs or loading resources. The disadvantages
resulting from such a class are its size and the illegible structure.

Although the class primarily provides access to Android-independent data, it
is heavily dependent on Android’s internal functions. This dependence is a
result from the manager classes which are attached to it as well as the class
JukefoxApplication which is the standard start up class for this Android ap-
plication and includes some important global variables used in other functions.
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Figure 3.2: Central model class

Music data structure

The data structure of all the music player objects is already well organized as
shown in figure 3.3. However in the current state there are many different classes
which access and modify the data, mainly the previous mentioned model class.
To reduce the resulting disorder it is necessary to define a structured way to
access these music data classes.

Database

The access to the SQLite database provided by Android is given by an API class,
which specifies a customized function for every kind of query. In addition, there
are numerous help classes to manage the database, create and delete tables. The
known Java Database Connectivity? (JDBC) standards are not considered, prob-
ably because the optimization for mobile devices and some needed controlling
features are missing.

Besides some auxiliary classes, the database access in JUKEFOX is handled by
one very large class called DbWrapper. It consists of over three thousand lines of
code and is a collection of prepared SQL statements. The class is disorganized
and therefore poorly manageable, many functions are similar to others or even
duplicated. The Android dependency is only given through the execute functions
of the corresponding API class for database access.

*http://docs.oracle.com/javase/1.3/docs/guide/jdbc/
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Figure 3.3: Music data structure
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3.3.2 Design and implementation of the new jukefox core

To ensure a clear separation between the different platforms, it was necessary
to create three Java projects. On the one hand a main project with the cross-
platform core functions of JUKEFOX. On the other hand the two platform spec-
ified projects which build on the main project. Functions with platform depen-
dencies are written in an abstract form in the main project and then implemented
in the specified project according to its underlying operating system.

Software architecture

When selecting a suitable new software architecture there are different relevant
aspects, the most important would be the currently used architecture. Although
it is quite possible to change to a completely different design, this would have the
distinct disadvantage that the cost would be in a very poor relation to the yield.
Another important aspect is to gain an advantage compared to the situation
before, for example a better overview or a faster running program.
A modified version of the MVC software architecture pattern was therefore an
obvious choice. The development of a new visual design for a different platform
does not require any changes in the underlying logic, due to the separation of
the View from the rest of the code.
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The amount of work to change the current source code remains limited because
it already has a very similar structure. Additionally, the separation of the data
structure and the controllers makes it possible to get a cleaner Model structure
which is independent from the operative part of the code and also from the used
software platform.

Finally, the following three sections according to MVC and based on the 3rd
main goal have emerged:

e The Model, which holds all data classes, their corresponding access providers
and the model manager which own links to all providers. (see figure 3.4)

e The View which had to be adjusted only in some details, and still contains
all elements used for the visual representation of the application.

e The Controller, which contains all the other classes including the data
portals in the Java package data, the player controllers in the package
controller and the manager classes in the package manager. Additionally
there exists a package commons which includes all auxiliary functions which
can be used by any class.

Naming

To avoid confusion, it is important to define a globally used naming scheme to
support the software architecture.

e Manager A class which grants both read and write access to a specific
resource or topic.

e Provider A class which grants access to a specific resource. In contrast
to a manager class, this is a read-only function.

e Data portal A class used to access and modify external data sources.
e Prefix: “Android” A prefix for Android specific classes.
e Prefix: “Abstract” A prefix for classes which contain abstract functions.

e Prefix: “I” A prefix for interfaces.



3. IMPLEMENTATION 12

Model
Collection Player

BaseAlbum

BaseArtist PlayerPlaylistManager

BaseSong PlayLo

BaseTag (v} 9

CompleteAlbum
()
Provider Data Portal and Manager
‘AIbumPrcwIdar| ‘ ArtistProvider ‘ |GanraProvIder‘ ‘ DbDataPortal (SQL) ‘ ‘ DirectoryManager ‘
.=
‘ SongProvider | ‘ TagProvider ‘ | ‘ ‘ PraloadedDataManager‘ ‘ ‘
CollectionModel Manager PlayerModelManager
- dbDataPortal: IDbDataPoral - id: int
- albumProvider: AlbumProvider - playLog: PlayLog
- playerModelManagers: [...)
HashMap<String, AbstractPlayerMode/Manager= + getld(): int
{...) —=>| + getPlayLog(): PlayLog
+ AbstractModel Manager(IDbDataPortal)
+ getAlbumProvider(): AlbumProvider
+ getPlayerModelManager(String):
AbstractPlayerModelManager

()

1

any controller, e.g. ViewController, ImportManager, ...

Figure 3.4: The model domain

Model domain

There are two main changes. First the newly introduced providers are used to
control the access to all kinds of model objects and serve as an abstracted layer
above the data portals. This was previously a task of the rather large model
class.

Simultaneously, each provider is used for a particular type of resource, for ex-
ample the SongProvider for all song objects. This improves the overview and
enhances the handling of many resources. This improvement is therefore mainly
based on the 3rd rule of the main goals.

The second big change is to divide the Model into two separate parts:

1. Collection

This includes all static information about model objects, which are similar
for all users and can be used regardless of the currently used player. An
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example would be a song object with all its MP3-tag information and
additional parts like file path.

2. Player

In contrast to the collection all objects placed here are in some way depen-
dent of the current player. An example here would be statistics related to
a song, for example, how many times it was played or skipped.

Database

The goal of restructuring the DbWrapper class was clear, having to write as
little code as possible according to the 1st main goal. Nevertheless, it must
be possible to freely choose what kind of database technology is used behind
the IDbDataPortal interface. For the Java port it seems natural to chose the
standard JDBC classes because they are supported by many different database
manufacturers.

The main class of the SQL data portal is abstract and mainly includes the code
of the former DbWrapper. All adapted database functions are abstract and simi-
lar to the corresponding Android functions. Based on the 2nd rule, the original
structure is still unchanged and makes it easy to reintegrate the base class into
the original Android project. Functions like execSelect or insertOrThrow are
then implemented in the corresponding subclass of SqlDbDataPortal for a trans-
lation to the JDBC interface or to be forwarded to the Android API.

The return value of the database functions is another wrapper interface, called
ICursor, which provides access to the corresponding Cursor in Android or
ResultSet in JDBC.

As a result, it is now possible to replace the used SQLite database with any
other SQL database with a corresponding JDBC driver. The design also allows
to exchange the SQL implementation for another database technology.

3.3.3 Reintegration into Android

The reintegration of the modified source code into the Android project is possible
without further adaptions. The basic functionality of JUKEFOX is not impaired
by the reorganization of the software architecture or the usage of the newly im-
plemented interfaces and wrapper classes. Furthermore, no performance penalty
is noticeable on an Android device.
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Database Structure
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Figure 3.5: The database structure in overview

3.4 Interfaces / API

The playmodes of JUKEFOX are exchangeable classes, which are responsible for
the calculation of the next song based on the current state. The old struc-
ture, in which the player controller is controlled by the playmodes, is not de-
sired any more. The central control unit is now the PlayerController. The
PlaybackController is now responsible for handling the player and for pro-
cessing the user input. With the help of the playmodes, the PlaylistManager
manages the playlist and always keeps the next song prepared. The reason of
this reconstruction is the need for a hierarchical structure. The playmodes are
now part of the cross-platform core and act as an advisor unit.

3.4.1 Playlist commands

The communication between playmodes and controllers is organized over playlist
commands. These are a set of commands, which are performed in a predeter-
mined order on a playlist to get the desired result. An example of a command
set would be to attach a new song at the end of the list and play it afterwards.
All necessary functions are covered by six commands: ADD_SONG, REMOVE_SONG,
PLAYER_ACTION, SET_POS_IN_LIST, SET_POS_IN_SONG and SET_PLAY_MODE. They
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Figure 3.6: The new hierarchical structure of the player and the playmodes

are used to add or delete a song at a certain position on the playlist. Likewise
it is possible to set the current position in the list or jump to a exact position
within a song. With PLAYER_ACTION the command for the music player like
PLAY, PAUSE or STOP are given. The complete set of commands is represented
by a list and can be processed point by point from the receiver, in this case the
PlaylistController.

3.4.2 API
Structure

On a personal computer, there are often various media players installed and ev-
ery user has his favorites. Most of them are free of charge and can be extended
with so-called plugins. The functionality of features like smart-shuffle can be
realized as a plugin without further ado, assumed that the core capabilities of
JUKEFOX are somehow available. Running this core functions as a service in the
background and access them via a known API is one possibility. How such a plu-
gin API will look like is still unclear. However, the fact that playmodes no longer
controls the player and only suggests the next action, helps to create a useful
interface based on the PlaylistController and the PlaybackController.

CLI player

A command line interface (CLI) is one possible implementation of the API, which
is simple but effective. The current CLI for the PC project is not intended to be
an API but a simple test user interface. Many of the possibilities you have on
the Android user interface are also available on the command-line player. For
example choosing the folders of your music library, changing playmode, saving
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Figure 3.7: The new hierarchical structure of the player and the playmodes

and loading of a playlist and all standard music player commands like PLAY,
PAUSE or NEXT. The CLI player is the beginning of JUKEFOX on a PC and helps
to test the interaction between all important core functions.

The natural CLI library® as well as a pure-java audio player library? are the
basis of JUKEFOX CLI player.

3.4.3 Testing

In a project of this size it is not only useful, but absolutely necessary to have
test classes. Using jUnit was an obvious choice because it is already perfectly
integrated in the used development environment. Different database functions
and the newly implemented settings management are the main part of the testing.
The CLI player turned out to be quite helpful to test related core functions such
as for example the import process of new songs. The interplay between all the
corresponding functions used in this process can not be covered efficiently with
unit tests. The CLI player can also support the testing of new features in future
development.

3http://naturalcli.sourceforge.net/
“http://code.google.com/p/java-audio-player/


http://naturalcli.sourceforge.net/
http://code.google.com/p/java-audio-player/

CHAPTER 4

Conclusion

All three main goals were achieved as planned. Firstly, the functional CLI player
on a home computer shows that all core functions run independently from the
operating system. Secondly, the successful reintegration into Android without
major impacts on the performance proves that the applied changes do not effect
the functionality in a negative way.

Many of the newly implemented and most of the important original classes are
now provided with comments and ordered in a newly structured way. This im-
proves the overview as stated in the 3rd main goal.

However, many adaptions are still necessary to be able to comfortably use JUKE-
FOX on a desktop computer. The complex and dynamic data management and
the multi-user capability on a computer requires some additional changes in the
JUKEFOX core. The current database structure is designed for a single user which
is the default for Android devices. Furthermore, the problem of temporarily un-
available data on external storage or even network storage is not yet resolved.
To attract people to use JUKEFOX on a PC it is necessary to create a convenient
user interface, for example a plugin for a popular music player.

17



APPENDIX A

Appendices

A.1 Used programs

e eclipse (Indigo Service Release 1) http://www.eclipse.org
— Android SDK (16.0.0) http://developer.android.com/sdk/index.
html
— subclipse (1.6.18) http://subclipse.tigris.org
UMLet (11.3) http://www.umlet.com
— Fat Jar (0.0.31) http://fjep.sourceforge.net

e Enterprise Architect (9.2) http://www.sparxsystems.com

A-1


http://www.eclipse.org
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://subclipse.tigris.org
http://www.umlet.com
http://fjep.sourceforge.net
http://www.sparxsystems.com
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