
Distributed
    Computing 

Extending the Personal Music
Collection by Free Music

Bachelor’s Thesis

Dominic Langenegger

dominicl@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Samuel Welten

Prof. Dr. Roger Wattenhofer

June 10, 2012



Acknowledgements

My thanks go to my supervisor Samuel Welten who made it possible for me to
work on the Android music player jukefox1 and extend it with some work of my
own.

Many other people helped me during the development and writing process
of this thesis with their expert knowledge, support and feedback. I would like to
thank all of them.

During the development of this extension, I used some libraries of others to
simplify my work. I’d specially like to thank the developers of the following
openly licensed libraries:

(i) Google Gson, a simple and fast JSON serializer and deserializer. 2

(ii) SAX, the Simple API for XML, and its Java version provide an interface
for very fast and efficient event based XML parsing. 3

(iii) MySQL Connector/J, an uncomplicated MySQL driver that handles JDBC
(Java Database Connectivity) calls to access a MySQL database. 4

1http://www.jukefox.org/
2http://code.google.com/p/google-gson/
3http://www.saxproject.org/
4http://dev.mysql.com/usingmysql/java/

i



Abstract

Today, people listen to music on their mobile phone or other playback devices.
Jukefox is a special music player running on Google’s smart phone operating
system Android. It’s capable of recognizing similarities between multiple songs,
albums and artists using data based on a huge music similarity map [1] which
classifies songs into a high-dimensional space. Songs with small distance are sim-
ilar, while widely separated coordinates mean, that two songs are very different.

This thesis shows how the service of jukefox can be extended with the func-
tionality to explore new music that is similar to the one the user already has in
his own music collection. It describes, how artists and songs that fit into the
current mood and the overall music taste of a user, can be found based on the
already available music similarity map and how a user can listen to them without
the need of downloading every single piece of music manually.

As sources for new music, services like Jamendo5, the Free Music Archive6,
ccMixter7 or SoundCloud8 with music licensed under the Creative Commons
perfectly qualify. In this thesis a proof-of-concept implementation for Jamendo
as music source is introduced, while the architecture and design allows for simple
extension by other sources.

Keywords: music taste, mobile, android, streaming, creative commons, extend-
ing music collection, jukefox

5http://www.jamendo.org
6http://freemusicarchive.org/
7http://ccmixter.org
8http://www.soundcloud.com/

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Free Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Jukefox 5

2.1 Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Music Similarity Map . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Music Taste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Jamendo 7

3.1 Music Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 The Free Music API . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Goals 9

5 Realization 10

5.1 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1.1 Database Import . . . . . . . . . . . . . . . . . . . . . . . 10

5.1.2 Application Programming Interface . . . . . . . . . . . . . 12

5.2 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2.1 Finding similar Artists . . . . . . . . . . . . . . . . . . . . 14

5.2.2 Result Presentation . . . . . . . . . . . . . . . . . . . . . 14

5.2.3 Music Streaming . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.4 Music Download and Integration . . . . . . . . . . . . . . 16

iii



Contents iv

5.2.5 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Future Work 19

6.1 Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1.1 Improve quality of suggested albums . . . . . . . . . . . . 19

6.1.2 View updating . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2.1 Include more data sources . . . . . . . . . . . . . . . . . . 20

6.2.2 More possibilities for similar music finding . . . . . . . . . 20

6.2.3 Artist blacklisting . . . . . . . . . . . . . . . . . . . . . . 20

6.2.4 Quality testing . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Conclusion 21

Bibliography 22

A Appendix Chapter A-1

A.1 Database Structure . . . . . . . . . . . . . . . . . . . . . . . . . . A-1



Chapter 1

Introduction

This chapter introduces the background of this work. It gives a short overview
on the idea of Free Music and its impacts. Furthermore it shows some related
works, mainly from commercial applications that already exist.

1.1 Motivation

Over the last years, the market for mobile smart phones has grown rapidly. This
opened many new possibilities for users. Many people are listening to their music
in digital form on their smart phone.

At the same time, the music industry has changed a lot. When users were
buying physical compact disks to get the songs of their favorite band 10 years ago,
the trend nowadays goes towards downloading and streaming over the internet
(legally or illegally).

With the popularization of the internet, the spreading of new music has
become a lot easier for artists. Many artists over the whole world have chosen
to make their music freely available under an open license such as a Creative
Commons License. However, it remains very difficult for users, to keep track of
the huge amount of music that is available. And it’s even harder to find new
music that pleases the user’s taste and mood.

This thesis introduces an extension of the Android music player jukefox, that
opens the possibility to explore new music which is both freely available and
fitting in the music taste of the user.

Jukefox classifies music tracks into a high-dimensional coordinate system
where small euclidean distances stand for high similarity of songs. This so called
Music Similarity Map provides the perfect footing for finding new songs that are
similar to those, a user already has in his collection. If there are some - to the
user yet unknown - songs near to an accumulation of songs in the user’s music
collection, they are potentially fitting very well into the user’s music taste.

1



1. Introduction 2

The aim of this thesis is to use this situation to suggest new music titles to
users and let them obtain them for use in their own music collection.

1.2 Free Music

This section introduces the idea of free music. Contrary to what the words Free
Music suggest, the word “free” does not refer to price but to freedom of copying,
distributing and modifying for personal and noncommercial purposes. 1

However for our purpose, we obviously prefer Free Music that is readily avail-
able without any cost to the user. This allows for unrestricted use for streaming
and downloading whenever a user feels like listening to new music.

There exist several copyright licenses for Free Music. The most common
ones are the Creative Commons Licenses. 2 The creative commons organization
provides six basic licenses that differ in small points like commercial distribution
or redistribution under the same license. Their goal is to make it easier for people
to share and build upon the work of others.

Many media portals over the whole internet offer artists the possibility to
share their work under creative commons licenses. Some of them are listed here:

Jamendo
Jamendo has a collection of about 350,000 songs in various genres under
creative commons licenses.
http://www.jamendo.com/

SoundCloud
SoundCloud is - according to their own website - “the world’s leading so-
cial sound platform where anyone can create sounds and share them ev-
erywhere.” Many artists that offer their music on SoundCloud license it
under one of the Creative Commons Licenses.
http://www.soundcloud.com/

Free Music Archive
The Free Music Archive offers free high-quality music downloads. It tries
to offer a similar service to what public Radio always did and still does -
free access to new music - in a way that fits into the age of the internet.
http://freemusicarchive.org/

ccMixter
The “cc” in ccMixter stands for Creative Commons and that’s exactly the

1The Free Music Philosophy v1.4
Available at: http://www.ram.org/ramblings/philosophy/fmp.html [Accessed June 30, 2012]

2Creative Commons Website
Available at: http://creativecommons.org/ [Accessed June 1, 2012]



1. Introduction 3

dedication of that project. Its another platform where users can upload
their creations and retrieve those of others - all under Creative Commons
Licenses.
http://ccmixter.org/

In the extent of this thesis, Jamendo served as the source for free music in
the proof-of-concept implementation.

1.3 Related Work

This section covers some preexisting services that offer a similar functionality
what this work adds to jukefox. The main aspect here is, that a compared
service offers the possibility to find new music that is similar to the collection
one already possesses.

iTunes Genius 3

With iTunes, Apple has a widely used music player for both Windows and
Mac operating systems. It’s feature Genius is capable of automatically
generating a playlist of songs from the users music collection which are
similar to a selected song. The same feature is also used to make recom-
mendations for purchases in the iTunes Store, where the user can directly
buy and obtain new music.

Last.fm 4

Last.fm’s whole concept is, to recommend users new music, that most likely
fits into their music taste. It learns about the music taste of a user with so-
called “scrobbles”, which contain information about a listened song and are
sent from a music player that has “scrobbling”-support or their own radio
services to last.fm. On the website, a user can then see recommendations
of songs, albums and artists.

Spotify 5

Spotify offers digitally restricted music streaming of multiple millions of
songs from different record labels all over the world for a monthly fee - or
for free with usage time limitations and ads. The service offers multiple
recommendation methods. One is a dynamic radio station that plays songs
similar to those of a selected artist or fitting into a picked genre.

3iTunes Genius on the iTunes features website
Available at: http://www.apple.com/itunes/features/#genius [Accessed June 2, 2012]

4Last.fm website
Available at: http://www.last.fm/ [Accessed June 2, 2012]

5Spotify website
Available at: http://www.spotify.com/ [Accessed June 2, 2012]



1. Introduction 4

The main difference between most of these highlighted similar services and
the one introduced with this thesis, is that they don’t provide freely available
music. They either require a user to already possess songs or to buy the right to
listen to them.



Chapter 2

Jukefox

This chapter introduces jukefox, a music player that was developed at the Swiss
Federal Institute of Technology Zurich1 (ETH Zürich) for Google’s smart phone
operating system Android. Furthermore a brief overview of Android and the
possibilities of application development for it is provided.

2.1 Android

In 2008, Google 2 introduced Android 3, an operating system for mobile devices
like smart phones and tablets. It is based on a Linux kernel and developed by the
Open Handset Alliance4. Since the system is widely open for modifications and
customizations (released under the Apache License 5), it’s a popular choice for
smart phone manufacturers and an often chosen target system for applications
by third party developers. Applications for the Android system are primarily
written in Java6.

Developers can take advantage of the huge Software Development Kit 7 (SDK)
Google offers for Android. Many functionalities to access the devices resources
or do often used tasks, like music streaming, are integrated into the operating
system. Therefore a developer can move on a relatively high level of abstraction
and is able to focus on his own project instead of having to deal with low level
details.

1http://www.ethz.ch
2http://www.google.com/
3The philosophy of Android on their web page

Available at: http://source.android.com/about/philosophy.html [Accessed June 2, 2012]
4http://www.openhandsetalliance.com/
5http://www.apache.org/licenses/
6http://www.java.com/
7Android SDK overview on their web site

Available at: http://developer.android.com/sdk/ [Accessed June 2, 2012]

5



2. Jukefox 6

2.2 Music Similarity Map

One of the nearly 320,000 applications (as of September 2011 [2]) that are avail-
able in Google’s Play Store 8, the official online market place for Android appli-
cations, is jukefox.

Jukefox is not only a standard music player. The workings of it, are based
on a huge, so called Music Similarity Map, which offers coordinates in a 32
dimensional euclidean space for over 1.1 million songs and thousands of artists.
These coordinates were built using probabilistic latent semantic analysis (PLSA)
on social tags and listening behavior of songs on last.fm. [1] Other works like
[3, 4] or [5] are solely based on acoustic measures for music classification and
miss the social aspect used for jukefox.

Out of this work resulted a music similarity map, that classifies songs into an
euclidean space where points that are in small distance to each other, suggest a
high probability that they are similar. Based on this, it’s possible to do similarity
searching by finding near(est) neighbors to some given point.

2.3 Music Taste

Ongoing research tries to classify and describe a users music taste in some mathe-
matical way. With a music similarity map, like the one jukefox offers, at hand, an
approach using a k-means algorithm (like the one by Stuart Lloyd from 1982 [6])
is one possible choice. This method performs cluster analysis by trying to clas-
sify a number of given objects, here songs or artist with their coordinates, into
k groups.

Thanks to the work of my supervisor Samuel Welten, jukefox is capable
of doing exactly this for a given set of weighted coordinates. The so called
SimpleMusicTaste that results out of this analysis, contains multiple class cen-
ters and radii, building up multiple hyperspheres embracing clusters that are
representative for the given set of points.

When initiated with song or artist coordinates of a users music collection,
the result is a reasonable description of the users music taste. To rate a song
or artist in comparison to the calculated music taste, the relative distance of it
to the nearest class center in comparison to the class centers radius, is a fair
measure. This is used in this thesis to rate the similarity of possible artists for
suggestion (see section 5.1.2).

8https://play.google.com



Chapter 3

Jamendo

Jamendo 1 is an online platform that offers artists on the whole world a place to
share their creations. A major aspect of the platform’s philosophy is free music,
namely the Creative Commons Licenses (See section 1.2), under which all work
available on Jamendo is licensed. The following sections give a brief overview of
the music collection Jamendo offers and their interface for third party services
to gather information from their database.

3.1 Music Collection

In table 3.1 an overview of Jamendo’s music collection and jukefox’ data set
about music, is shown. One of the main criteria when selecting a music provider
for this work, was the cardinality of the available data set. Since the music
suggestion methods used are based on artists rather than tracks (see section 5.1),
the critical value is the number of artists available on Jamendo, that already have
coordinates in the jukefox database. As of June 2012 this number is 8, 108 which
is about 30% of all Jamendo artists.

Jamendo Jukefox Jukefox with Coords Both

# Artists 27,061 2,703,315 1,246,901 8,108
# Albums 55,545 2,390,874 n/a n/a
# Tracks 346,351 12,036,631 1,119,450 n/k2

Table 3.1: Comparison of Music Collections as of June 2012

1Offical Jamendo Website
Available at: http://www.jamendo.com/ [Accessed June 2, 2012]

2Not known since not determined

7



3. Jamendo 8

3.2 The Free Music API

To retrieve detailed information about tracks, albums and artists, Jamendo of-
fers a simple Application Programming Interface (API) with support for many
different output formats like JSON, XML or even plain text. It is internally
called “The Free Music API” 3 and represents a direct interface to their back-
end database. Queries are very similar to a standard SQL SELECT and include
a list of fields, tables, optional joins and filters together with the return format.

This provides a huge opportunity and a simple usage inside of the jukefox
mobile application. As explained in section 5.2.1, “The Free Music API” is used
to gather information about available albums and tracks for suggestion to the
user.

3Overview of the jamendo.get2 API
Available at: http://developer.jamendo.com/de/wiki/Musiclist2Api/ [Accessed June 4, 2012]



Chapter 4

Goals

The Goal of this thesis, is to extend the Android application jukefox with a
feature that can suggest new, free music to a user based on his music taste. This
extension should be easy to handle and provide a clear user interface.

The user should be able to see a list of suggested albums from which he can
select the ones he would like to explore. When he is indicating that he wants
to listen to some of them, jukefox should automatically generate a playlist and
begin streaming the music over the internet. If a song or album pleases the
taste of the user, he should be able to either listen to more of the same artist or
directly download whole albums into his music collection for later offline use.

With this extension, jukefox should not change into a streaming player that
offers extensive search and exploring features. This means, it should not act as
a client to some streaming portal(s), but rather as a special music player, that
is capable of suggesting new music to the user that he might like.

9



Chapter 5

Realization

The following sections provide insight in the functionality and methods of this
jukefox extension. The first sections explain details of the tasks done on a web
server and the following ones cover client modifications.

5.1 Server

Since the jukefox application itself doesn’t have the whole coordinate data set
locally available, a server has to provide some services to enable a good recom-
mendation system. Additionally a server can take care of calculations that would
require a lot of performance on a smart phone, and would therefore drain the
battery excessively.

The basic task of the server for this extension is, to know about all free
music that could possibly be interesting for any kind of user and could directly
be streamed to a device. When a user provides his music taste to the server, it
should then find good matches of free music.

The next subsections will introduce the methods used to enable jukefox with
this functionality.

In a first phase of planning we decided to base the recommendation system
on artists rather than songs. Songs would most likely have allowed for more
precise matches but artists provide a bigger source of data once one is chosen.
Additionally most artist write most of their songs in a similar genre.

5.1.1 Database Import

Jukefox already provides a huge data set of coordinates for more than a million
songs and artists. For external artists to be comparable to a music taste of a user,
their coordinates need to be known. Therefore only artists whose coordinates in
the music similarity map are known are interesting for our application.

10



5. Realization 11

As a first step of development we have to learn about available free music.
This contains the following tasks:

(i) gather data about what music is available for free

(ii) see what subset of this music is present in the jukefox database with coor-
dinates

(iii) store this subset for later use

The following sections describe the details of each task and how the whole
process can be extended to easily support for incremental updates.

Data gathering

Luckily the selected music provider Jamendo has full database dumps in xml
format ready for download. Those even get updated every work day.

We implemented a small application to automatically retrieve the newest
dump and process it using a Java SAX library.

If there was no such complete source of data available, data gathering could
have been much harder. However many other providers of free music have full
API support, which could be used to get an idea of which artists are offering
their music for free. In a worst case scenario, a web crawler could be used to
scan the web interface of a music provider for available music.

Data processing and storage

The main task of data processing is, to select the subset of artists that are already
known to jukefox and have an own place in the music similarity map. Artists
that fulfil this requirement can then directly be stored into a database.

For so called external artists we chose to only store their id in the music
provider database and a unique identifier for the music provider together with
a link to the artist entry that is already present in the jukefox database. This
saves storage capacity and still offers the possibility to uniquely identify him for
later use.

Data updating

Since Artists may close their account or new artists may provide new music, the
Jamendo database may change very frequently. Therefore we included a method
to update our data set.



5. Realization 12

One method to update the Jamendo data, was to always keep the last version
of the xml dump until a new one is processed. With the SAX parser, it’s possible
to build a fast data structure like a hashset containing all artist ids, in very short
time. When processing the new dump, one can simply determine if an artist was
already in the last dump and therefore no action has to be taken; or if he wasn’t
present and has to be inserted. With a loop through all artists of the old dump
version, it’s easy to see what artists aren’t present anymore and therefore have
to be removed from the database.

A benefit of this approach, is that it’s not database intensive and therefore
doesn’t affect real-time and critical applications. It allows for regular execution
by a job scheduler like cron1 or runwhen2 to keep the database up to date.

5.1.2 Application Programming Interface

For jukefox to retrieve a list of similar artists, the server has to provide an
interface which accepts special queries. We decided to use the Java Script Object
Notation (JSON) as the data format for all queries and responses.

For the implementation a Java HTTP-Servlet 3 was deployed on a Tomcat4

web server.

Request

The android phone sends a query containing the user’s music taste (see sec-
tion 2.3) and a blacklist of artist identifiers that are already present in the user’s
music collection and therefore should be excluded from the result set.

Data Processing

A reasonable approach to find the best-fitting artists for a submitted music taste
would be to do a k-nearest neighbor search on the class centers of the music taste
with all available artist coordinates as data set. Some thoughts about k-nearest
neighbor search and similar artist finding are listed here:

1Crontab reference
Available at: http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html [Ac-
cessed June 5, 2012]

2The runwhen website
Available at: http://code.dogmap.org/runwhen/ [Accessed June 5, 2012]

3Oracle about Java Servlets
Available at: http://www.oracle.com/technetwork/java/overview-137084.html [Accessed June
2, 2012]

4Apache Tomcat Website
Available at: http://tomcat.apache.org/ [Accessed June 2, 2012]



5. Realization 13

(a) The performance of exact k-nearest neighbor algorithms usually decreases
very fast with increasing feature set dimension count. Since jukefox uses a
32 dimensional coordinate system, solutions using, for example, kd-trees or
R-trees are likely to degenerate to a complexity of O(n) with n being the
number of data points. [7] However some work using a VA+-file technique
from 2004 by Ferhatosmanoglu, that seems to be capable of doing more
efficient nearest neighbor search in high dimensions, exists.[8]

(b) Many data structures that allow for fast nearest neighbor searches are mem-
ory intensive. Each data point has to be stored in memory together with
some additional overhead for the data structure itself. Especially methods
like locality sensitive hashing [9, 10], which would be very fast even for high
dimensional spaces, have big space requirements.

(c) Even if performance and space measures are completely ignored, a result set
should include some sort of randomness to provide a client with new data
on every new query.

The final approach taken, was to use an artist cache containing only a limited
number of external artists with their coordinates. From this random subset, the
best fitting artists (about 20 - 50) are chosen using the distance from an artist
to the nearest class center of the submitted music taste. The selection process
prefers artists whose music was more often listened to, according to the jukefox
play logs, over those that have a smaller listen count. By periodically replacing
the artists in the cache by new ones, a certain degree of randomness is provided.

The current implementation uses a greedy algorithm on the data set in the
cache. Since the cache is rather small (200-500 artists) a query is still fast
(multiple measurements showed processing time of < 50 ms, on an Intel Core
2 Quad system at 2.3 GHz, per query). Other approaches may result in better
performance and would be capable to run on bigger data sets, but the detailed
evaluation of the methods on-hand exceed the scope of this work and is still an
interesting and ongoing research area.

Response

Out of the selected artists, only a unique identifier for their data provider, their
name and their rating according to their listen count and the music taste of
the user are present in the response. All further work is done by the client
application.



5. Realization 14

5.2 Client

The following sections explain the tasks of the jukefox Android application in
order to provide the user with new free music. The client has to deal with a) cal-
culating the users music taste and querying the server API for similar artists;
b) finding albums of these artists and presenting them to the user; c) providing
the possibility to directly stream the music; and d) downloading and integrating
music in the music collection of the user.

5.2.1 Finding similar Artists

Since the suggested music should not only fit into the users basic music taste
but also his current mood, jukefox by default uses the last 100 listened songs to
calculate a music taste. This way only the songs that were recently played and
reflect the current mood of the user are considered. Additionally it automatically
generates a small variation between multiple queries if music was listened to in
between. This music taste is then used to retrieve a list of artists via the server
API (see section 5.1.2).

5.2.2 Result Presentation

After getting a set of artists that fit the music taste of a user, they have to be
preprocessed for presentation to the user.

The built recommendation system supplies a list of albums. They are pre-
sentable in a good way by including their album cover. Out of this list, the user
can select those albums that seem promising to him and let jukefox generate a
random playlist out of the songs of all selected albums.

A possible appearance of this list of albums can be seen in figure 5.1.

Good Music

A major aspect of the album list presentation is the gathering of good albums
to present. As a base only the list of artists and their rating from the API call
is available.

A possible approach is to get a list of albums for every artist and select
a limited number of them for display. Jukefox uses exactly this method while
taking advantage of Jamendo’s own rating system, based on user interaction,
that is directly accessible over API calls. This opens the possibility to only
select the albums with the highest Jamendo rating.



5. Realization 15

Figure 5.1: The album list contain-
ing suggested albums.

Figure 5.2: The jukefox music
streaming view.



5. Realization 16

In a huge music set like the one Jamendo offers, there is always music that
isn’t of very good quality. It’s a promising approach to use user data to determine
which music could be prosperous. That’s why we chose to rely on this external
rating system to increase the quality of the albums jukefox suggests to users.

Together with the basic information like album name and artist name, an
album cover, a list of social tags, the album rating and a download button (more
about downloading of albums in section 5.2.4) is displayed for each album in the
list. All album covers are downloaded asynchronously and cached on the phones
memory card for recurring use.

5.2.3 Music Streaming

With the overview of suggested albums, the user is only one step away from
listening to some new music. With a click on the play button in the control
elements, jukefox automatically starts generating a playlist out of the best tracks
of all the selected albums. With Jamendo as its data source, it again uses their
provided song ratings. As soon as the playlist is generated, the player changes
to the special music streaming view and starts playing the streamed songs. An
example of such a playlist can be seen in figure 5.3.

Figure 5.2 shows the player with two special control elements to both sides
of the track jump buttons. The left one allows to abort exploring music and
returns to the standard player while clearing the playlist. The right button
opens a download dialog like in figure figure 5.4.

5.2.4 Music Download and Integration

If a song pleases the taste of the user, he may want to get more of the same
kind. With a click on the download button a dialog as seen in figure 5.4 shows
up. This opens the possibility to either directly download the whole album into
the own music collection, listen to the whole album the song originates from or
see a list of all work the writer of the current song did. An example of such a
list can be seen in figure 5.5.

The downloading process takes place in the background. Nevertheless the
user is constantly informed about the current progress over a notification in
Android’s notification center. A download in progress may look as shown in
figure 5.6

To complete the integration of downloaded songs into the own local music
library, jukefox needs to scan the files and import them as it did with all the
music that is already in the collection. This includes retrieving detailed data like
coordinates for every song and can possibly take some time.



5. Realization 17

Figure 5.3: Example of generated
playlist.

Figure 5.4: The download dialog.

Figure 5.5: List of albums by one
chosen artist.

Figure 5.6: An album download in
progress.



5. Realization 18

5.2.5 Error Handling

For special situations like the loss of the internet connection or if a server is not
reachable, some error messages are provided to keep the user informed about
what is happening. Examples are visible in figure 5.7.

(a) Error notification after
a failed download.

(b) Error fetching album
covers.

(c) API call failed.

Figure 5.7: Examples of error messages in subfigures (a), (b) and (c).



Chapter 6

Future Work

Jukefox is a ongoing research project that additionally pleases thousands of users
over the whole world. This work adds the basic functionality to let a user explore
new songs over the internet. In this chapter, some possible improvements and
extensions are discussed.

6.1 Possible Improvements

6.1.1 Improve quality of suggested albums

The current approach of finding similar artist uses a greedy algorithm on a
reduced data set. This is not optimal and could be improved with some novel
techniques such as locality sensitive hashing. The application of locality sensitive
hashing in the huge data set jukefox offers, could open an interesting research
project. Especially a combination with algorithms to rate the quality of a given
resource is promising and could evolve into a qualitatively good similarity feature.

Even when jukefox got a list of artists that are similar to the present ones,
it’s a hard task to find the best subset of available albums and songs for these
artists that should be suggested to the user. This functionality currently relies
on a rating provided by an external source. It would be interesting to see if the
data jukefox itself has available - or an intelligent combination - could result in
better results. Especially if other music providers would be included, some sort
of common measure should be implemented.

6.1.2 View updating

In some cases, the album list view fails to correctly update when either the refresh
button is clicked or all check boxes are checked or unchecked via the respective
buttons. Unfortunately this behavior could not be tracked down by the time,
this thesis was submitted.

19



6. Future Work 20

6.2 Extensions

Apart from possible improvements, the introduced music exploring feature of
jukefox could be extended in various places. Some possible future extensions are
described here.

6.2.1 Include more data sources

With the current implementation, jukefox only uses data from Jamendo to find
and offer similar music. Like indicated in section 1.2, there are various providers
of free music available. Some offer very good music in certain genres. Together
they could complement each other to offer a big and solid set of music for sug-
gestions to the user.

A possible extension would be to include more of these services into jukefox
and therefore offer better and more extensive music suggestions.

6.2.2 More possibilities for similar music finding

It would be a novel feature, if a user could request similar free music for every
song, album or artist he has in his music collection. This could be implemented
by initializing the SimpleMusicTaste with only a certain set of coordinates that
correspond to the users selection.

6.2.3 Artist blacklisting

If a user stumbles upon a song he doesn’t like at all, he might prefer to never be
suggested songs of the same artist again. Therefore the current implementation
is lacking a custom blacklisting feature for external artists, which would be easy
to add and might save users some pain.

6.2.4 Quality testing

At the moment there is no measure used to rate the quality of the suggested
songs according to their real similarity. Mathematically most of them are similar
according to the 32 dimensional music similarity map, but it would be interesting
to have real people rate the similarity of songs in a study. This could allow for
improvement of the similar music finder or even the music map itself.



Chapter 7

Conclusion

Jukefox already offers a lot of functionality and is continuously extended. This
extension was implemented to serve as a proof-of-concept that jukefox’ underly-
ing logic, especially the music similarity map, is suited to suggest new and free
music to the user.

With this extended music player, it’s now possible for a user to listen to new
music with just a few clicks and no big effort. He doesn’t have to browse around
in the web and search for songs he might like. This whole service is available on
Android smart phones with internet connection. As hours of testing during the
development phase have shown, the music - in most cases - even is a good match
to the users music taste.

This is a valid contribution, since few services exist that can offer a similar
feature for free.

21



Bibliography

[1] Kuhn, M., Wattenhofer, R., Welten, S.: Social Audio Features for Advanced
Music Retrieval Interfaces. In: ACM Multimedia, Florence, Italy. (October
2010)

[2] research2guidance: Android Market Insights September 2011. In: re-
search2guidance Android Market Insights. (September 2011)

[3] Tsunoo, E., Tzanetakis, G., Ono, N., Sagayama, S.: Audio genre classifi-
cation using percussive pattern clustering combined with timbral features.
In: ICME. (June 2009)

[4] Slaney, M., Weinberger, K., White, W.: Learning a Metric for Music Simi-
larity. In: International Conference of Music Information Retrieval (ISMIR).
(September 2008)

[5] Pohle, T., Schnitzer, D., Schedl, M., Knees, P., Widmer, G.: On Rhytm and
General Music Similarity. In: International Conference of Music Information
Retrieval (ISMIR). (September 2009)

[6] Lloyd, S.: Least squares quantization in PCM. In: IEEE Transactions on
Information Theory. (March 1982)

[7] Indyk, P., Goodman, J.E., O’Rourke, J.: Nearest Neighbors In High-
Dimensional Spaces. In: Handbook of Discrete and Computational Ge-
ometry. (April 2004)

[8] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., Abbadi, A.E.: High Di-
mensional Nearest Neighbor Searching. In: Information Systems Journal.
(December 2004)

[9] Paulevé, L., Jégou, H., Amsaleg, L.: Locality sensitive hashing: a compari-
son of hash function types and querying mechanisms. In: Pattern Recogni-
tion Letters. Volume 31., Elsevier (August 2010)

[10] Gionis, A., Indyk, P., Motwani, R.: Similarity Search in High Dimensions
via Hashing. In: 25th VLDB Conference. (June 1999)

22



Appendix A

Appendix Chapter

A.1 Database Structure

Figure A.1: Database structure on the server showing the relation between the
new external artist table and the preexisting artist tables

A-1


	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Free Music
	1.3 Related Work

	2 Jukefox
	2.1 Android
	2.2 Music Similarity Map
	2.3 Music Taste

	3 Jamendo
	3.1 Music Collection
	3.2 The Free Music API

	4 Goals
	5 Realization
	5.1 Server
	5.1.1 Database Import
	5.1.2 Application Programming Interface

	5.2 Client
	5.2.1 Finding similar Artists
	5.2.2 Result Presentation
	5.2.3 Music Streaming
	5.2.4 Music Download and Integration
	5.2.5 Error Handling


	6 Future Work
	6.1 Possible Improvements
	6.1.1 Improve quality of suggested albums
	6.1.2 View updating

	6.2 Extensions
	6.2.1 Include more data sources
	6.2.2 More possibilities for similar music finding
	6.2.3 Artist blacklisting
	6.2.4 Quality testing


	7 Conclusion
	Bibliography
	A Appendix Chapter
	A.1 Database Structure


