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Abstract

One of today’s biggest challenges in the field of high performance computing
is the efficient exploitation of the heavily increasing parallelism on socket level,
especially when both CPU and GPU resources are to be applied – a challenge
becoming very real for the physical processes of ASUCA. ASUCA is the Japan
Meteorological Agency’s next-generation weather prediction model, which is to
be accelerated using GPU while keeping CPU compatibility, high CPU perfor-
mance as well as an easily adaptable implementation. In this thesis we will
examine the new OpenACC industry standard for hybrid GPGPU/CPU code-
bases, show why it is not an ideal solution for our use case and instead propose the
“Hybrid Fortran 90” framework. This new framework will be shown to offer su-
perior usability while enabling optimal GPU performance as well as near-optimal
CPU performance through compile-time reordering of loop positions and data
access patterns. A complex, bandwidth limited example module from ASUCA
performs with 5× speedup on Tesla M2050 versus six core Westmere Xeon while
only loosing 5% of performance when executing the same codebase on CPU.

Keywords: Weather Prediction, GPGPU, Hybrid, OpenACC, CUDA, TSUB-
AME, Fermi, Westmere, ASUCA
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Chapter 1

Introduction

The years 2004 through 2006 mark an interesting shift in the world of comput-
ing: Single threaded performance growth has slowed down significantly since
that period in time when CPU architectures arrived at their thermal design lim-
its. Where single threaded floating point performance would grow by 64% per
year before, it only gains roughly 21% per year since then [1]. This lead to a
paradigm shift towards more parallelism on the socket level, a development for
which Graphics Processors, out of necessity, have always been at the forefront.

In recent years there has been a push in the high performance computing
(HPC) community into using Graphics Processing Units for General Purpose
(GPGPU) Computing. The Tokyo Institute of Technology’s TSUBAME 2.0 Su-
percomputer (currently ranking 14th in the TOP500 list [2]) is a prime example
of this development.

The GPU instruction sets - and in extent the software development models
- have not yet come to a point where they are generally applicable to programs
orignally written for CPUs without significant restructurings however. Key play-
ers of the HPC industry have at the end of 2011 pushed towards a higher level
programming model for GPUs through the “OpenACC” standard, and their
compilers have now reached a point where this new GPGPU programming model
becomes of interest for HPC software development.

1.1 Structure of this Thesis

In this thesis the applicability of GPGPU computing to the physical core of
Japan’s next generation weather prediction model “ASUCA” will be examined
in light of these recent developments in GPGPU programming models (cha. 2). A
suitable high performance toolset based on these examinations will be developed
for this usecase with possible applications in other areas of scientific computing
(cha. 3, cha. 4). The usability and performance of this framework will be verified
(cha. 5), before pointing out the achievements and future work of this thesis
(cha. 6).

1



1. Introduction 2

The following chapter will describe the ASUCA weather prediction model
(sec. 1.2), state the motivation and goals for this thesis (sec. 1.3), introduce the
key technologies and terms used throughout (sec. 1.4) and point to related work
(sec. 1.5).

1.2 ASUCA Weather Prediction Model

The Japan Meteorological Agency (JMA) currently operates a nonhydrostatic 1

regional weather prediction model called “JMANHM”. This model has been
used since the 1990s. The rapid increase of parallel architectures on the socket
level, as mentioned in the preface, have lead to the motivation to renovate the
weather model in order to make best use of these new levels of parallelism [4, p.
3].

The new nonhydrostatic model, to be called “ASUCA”2, is being developed
with the following objectives [5, p. 1],[4, p. 4]:

1. Higher accuracy.

2. Higher efficiency.

(a) Less data communication.

(b) Suitable to the current computer architecture.

ASUCA uses a three-dimensional, horizontally and vertically staggered grid 3,
consisting of the two relatively widely spaced horicontal dimensions I and J and
the densely spaced vertical dimension K. The equations are discretized using
the finite volume method (FVM). [7, p. 2]

Fig. 1.1 gives an overview over the program flow in the ASUCA model. Phys-
ical and dynamical processes4 are executed for each timestep. Each long timestep
also contains a short time integration loop for processes that require a higher
time resolution5. These short timestep processes also employ a second-order
Runge-Kutta scheme as depicted in the figure. [7, p. 2]

1Nonhydrostatic as in the opposite of models using the hydrostatic approximation, i.e. the
entire vertical momentum equation is being kept in the model [3, p. 138].

2ASUCA is a System based on a Unified Concept for Atmosphere.
3The type of grid used for ASUCA is called “Arakawa C”, also being used by the European

Consortium for Small Scale Modeling (COSMO) for the weather prediciton model of multiple
European nations [6, p. 4].

4“Physical” processes can be understood as in they produce input parameters for the dynam-
ical processes based on the last timestep’s dynamics results, boundary conditions and constant
factors.

5Horizontal sound wave and gravity wave propagation.
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Figure 1.1: Overview ASUCA Model Program Flow.

1.3 Motivation and Goal of Thesis

The dynamical core (containing the dynamical processes depicted in fig. 1.1) was
already extended for the GPU using CUDA C 6 by Shimokawabe et al. [8, p. 2]

Consequently, the next task will be the development of algorithms for the
physical processes suitable for GPGPU computing. The main motivation for
this development is to

1. eliminate host-to-device communication during the entire time integration
loop.

2. gain speedups in execution time.

Being able to run this process faster on the same amount of computing nodes
by employing GPGPU technology would lead to cost and energy savings and
possibly an increased grid resolution, giving the model a higher accuracy.

The following characteristics can be observed about the dynamical in com-
parison to the physical core:

1. The dynamical core accounts for a higher fraction of the runtime.

6See sec. 1.4.2.
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2. The dynamical core employs less lines of code.

3. The dynamical core tends to be more “stable” over time, i.e. the dynamical
processes are not under constant development while this is the case for
various physical modules.

For these reasons the dynamical processes are a prime candidate for deep
performance optimizations, while porting the physical processes brings different
challenges:

• How can the physical processes be ported while keeping a familiar devel-
opment environment for the JMA researchers, i.e. Fortran 90?

• How can the physical processes be ported with the least amount of code
changes compared to the current code?

• How can the physical processes be ported to the GPU while still keeping
the code executable on CPU?

• How can all of the above be achieved while still enabling a high GPU
performance?

• How can the CPU performance of the hybridized code be kept at the same
level as with code that has been specifically optimized for the CPU? This
would enable a heterogenous execution of the code on systems with both
highly capable CPU and GPU resources such as TSUBAME 2.0. Specifi-
cally for the case of JMA’s ASUCA this is a very important aspect, since
it is planned to gradually move towards GPU execution while still main-
taining CPU compatibility.

The main goal for this thesis is to find and verify a strategy with which
the questions above can be answered. In this thesis single socket parallelism will
be discussed. Multi socket / multi node parallelism will be solved through MPI
communication, which will not be covered here.
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1.4 GPGPU Computing on the NVIDIA Fermi Ar-
chitecture

The Tokyo Institute of Technology’s TSUBAME 2.0 Supercomputer has been
used as a development and test platform. This system currently uses NVIDIA
Fermi7 based GPUs, of which three are added to each computing node, as well
as “Westmere” generation Intel Xeon CPUs. More details about the hardware
specifications and models can be found in sec. 2.4.

When it comes to GPGPU software library and tooling support, NVIDIA’s
Fermi GPU architecture is currently regarded as the most mature. Therefore,
this thesis mainly concentrates on the available software technologies for NVIDIA
GPUs on TSUBAME 2.0. However, it must be noted that vendor independant
solutions would naturally be of an advantage - something that will be kept in
mind for later conclusions.

1.4.1 NVIDIA Fermi

The main difference between CPU and GPU computing lies in the GPU’s mas-
sively parallel nature. NVIDIA Fermi employs 16 so called “Streaming Multipro-
cessors” (SMs) with 32 computing cores each, resulting in 512 threads running in
parallel8. Each core, naturally, has a much lower complexity than any x86 core,
which is reflected in the reduced scheduler, cache and register resources available
to it. Figure 1.2 shows the ressources of one SM.

The following hardware characteristics are very important when it comes to
discussing the programming model:

1. GPUs employ a scheduling scheme similar to SIMD9: Each instruction is
executed by a number of threads multiple of 32 (up to 512 in Fermi’s case)
for a whole block of data. However, compared to SIMD, these threads
can be scheduled more freely, e.g. allowing branching10. The memory
architecture is optimized for coalesced loads / stores of data blocks with
a multiple of 32 × 4 byte size. A 32 thread unit, reflected in the SM
architecture, is thus very important for Fermi GPGPU computing, and is
being called “Warp”.

7The Fermi architecture has been introduced in 2010 and has been highly popular in the
HPC world, in part because of high double precision performance and support for ECC Memory.
Four systems in the current top 20 use Fermi cards [9].

8The number of possible threads is half of that number for double precision execution in
case of Tesla branded Fermi GPUs, significantly lower even for the GeForce brands.

9Single Instruction Multiple Data, the classic scheme for vector processors.
10Branches will however degrade the performance of GPU code, since only one code path of

the branch will be executed in parallel - threads that are not in that path will simply execute
“nop” instructions during that time.
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2. The cost of thread context switching is orders of magnitude lower than on
x86, to a point where it becomes negligible for most use cases.

1.4.2 CUDA Programming Model

“Compute Unified Device Architecture” (CUDA) is an integrated hardware and
software technology developed by NVIDIA for writing general purpose programs
on their GPUs. Since thread switching is very cheap, as discussed in sec. 1.4.1,
CUDA programs are usually written in a way, such that for every data point
in the parallel domain one thread (or a series of threads, executed sequentially)
is created. Threads are bundled into one-, two- or three dimensional thread
blocks, such that each block is executed on one SM. One of the first tasks when
adapting a program for CUDA, is usually to map the involved data structures
onto threadblocks, such that memory reads can be optimized into coalesced
fetches of at least 32 × 4 bytes. This is usually accomplished using simple one
dimensional or multi dimensional arrays.

CUDA Programs consist of the following parts:

Host code is code that will be executed on the host system CPU(s). It is
being compiled through third party compilers, with NVIDIA providing a
runtime library for interactions with the device11, such as device memory
allocations, device data transfer and kernel calls.

Kernel functions define the program of one GPU thread. Memory access is
usually specified by using an index that encodes thread ID and block ID of
one thread. In conventional programming terms, CUDA kernel definitions
best correspond to parallelizable for loops.

Device functions define subroutines that can be called from a Kernel function.
These subroutines need to be inlineable by the CUDA compiler.

Kernels (including the inlined device functions) will be compiled to an inter-
mediate device code representation called “PTX” through the CUDA compiler.

1.4.3 OpenACC Programming Model

OpenACC is a relatively new standard introduced in 2011, with the intention to
bring the power of directive based parallelization, such as OpenMP, to GPGPU
computing [11]. The standard has been developed by CAPS, Cray and The
Portland Group in association with NVIDIA [12]. Before the OpenACC stan-
dardization, the aforementioned companies each developed their own proprietary

11In GPGPU Computing, the word “device” is generally used for the GPU.
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GPU parallelization directives for their compiler solutions. Current OpenACC
compilers only support NVIDIA CUDA implementations of OpenACC user code.

The main functionality of OpenACC is the abstraction of GPU kernels through
directives added to for loops (do loops in case of Fortran code). Adding such
directives delegates the responsibility of implementing a GPU kernel to the
OpenACC compiler. As an added benefit, the codebase becomes hybrid, i.e.
executable on both CPU and GPU. Device data handling is solved through ad-
ditional directives.
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1.5 Related Work

Naoya Maruyama, Tatsuo Nomura et al. Physis: An Implicitely Parallel
Programming Model for Stencil Computations on Large-Scale GPU-Accelerated
Supercomputers: This paper describes a compiler-based programming frame-
work that automatically translates user-written structured grid code into
a parallel implementation code for multi-GPUs, using a DSL embedded in
C language code. [13]

Tobias Gysi (Super Computing Systems AG) A Stencil Library for the
New Dynamic Core of COSMO : This talk examines the stencil DSL li-
brary that has been developed for the European Consortium for Small
Scale Modeling (COSMO), the maintaining gremium of the climate model
for seven European countries. This stencil DSL library heavily relying on
C++ templates has been applied to the Dynamical Core of the COSMO
model and enables hybrid execution on CPU and GPU. [14]

Takashi Shimokawabe, Takayuki Aoki et al. An 80-Fold Speedup, 15.0 TFlops
Full GPU Acceleration of Non-Hydrostatic Weather Model ASUCA Pro-
duction Code: This paper examines the portation of the dynamical core
of the ASUCA weather prediction model to GPGPUs on TSUBAME 1.2
(Tesla S1070, AMD Opteron). Single GPU vs. single core CPU execution
achieved a speedup of 26.3 in double precision. The multi-GPU implemen-
tation achieved an overall single precision performance of 15.0 TFlops on
only 528 GPUs - a remarkable achievement compared to the 50 TFlops
record at that time on more than 18’000 Jaguar nodes with nearly 150’000
CPU cores. To achieve this performance, optimization methods for over-
lapping communication and computation, as well as asynchronous compu-
tation of variables were explored. [7]

Takashi Shimokawabe, Takayuki Aoki et al. 145 TFlops Performance on
3990 GPUs of TSUBAME 2.0 Supercomputer for an Operational Weather
Prediction: This paper examines the results of the ASUCA dynamical core
portation, first introduced in [7], applied to the TSUBAME 2.0 architec-
ture. Single precision performance improved by 10% while double precision
performance improved by 65% on single Tesla M2050 compared to the Tesla
S1070 of TSUBAME 1.0. On multi-GPUs, 145 single precision TFlops on
3990 GPUs and 76.1 double precision TFlops on 3936 GPUs have been
achieved. As a future real world application, a typhoon over Japan has
been simulated on a very high mesh resolution of 500m. [8]

John Michalakes, Manish Vachharajani GPU Acceleration of Numerical Weather
Prediction: In this paper Michalakes and Vachharajani describe the GPU
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portation of the so-called WRF12 Single Moment 5-tracer (WSM5) module
using NVIDIA CUDA C. This lead to a 7.7× performance increase for that
module and 1.23× performance increase for the overall WRF model. [15]

John C. Linford, John Michalakes et al. Multi-core Acceleration of Chem-
ical Kinetics for Simulation and Prediction: In this paper the implementa-
tion of a computationally expensive chemical kinetics kernel was compared
on three multicore platforms: NVIDIA Tesla C1060 GPUs, Cell Broad-
band Engine (CBEA) and Intel Quad-Core Xeon. The CBEA achieved the
highest speedup of 41.1× compared to the serial implementation in single
precision. The GPU architecture was hampered because of low availability
of on-chip memory and achieved a speedup of only 8.5× compared to the
serial implementation in single precision. [16]

Stefan Kronig, Michel Müller Feasibility and Performance of Weather Com-
putations using GPGPU Programming : This semester thesis, conducted in
collaboration with Tobias Gysi of Super Computing Systems AG, contains
a preliminary examination for a GPU port of the Dynamical Core of the
COSMO Weather model, using a sample algorithm. [17]

12“The Weather Research and Forecast” model, the world’s most widely used weather pre-
diction model.



Chapter 2

Evaluation of Existing
Frameworks

In order to determine a viable GPU implementation strategy for the physical
core of ASUCA it has been necessary to analyse the available industry standards
and whether they are already suited for JMA’s needs as is (see also sec. 1.3).

Sec. 2.1 lists the evaluation criteria. In sec. 2.2 the investigated GPGPU
software frameworks are being introduced. The CPU compilers used for com-
parison are listed in sec. 2.3. Sec. 2.4 introduces a performance model for the test
hardware. Sec. 2.5 lists the test cases used for the evaluation. Sec. 2.6 compares
the frameworks in terms of usability while sec. 2.7 compares the frameworks by
performance. Sec. 2.8 draws a preliminary conclusion about the viability and
performance of the tested frameworks for the purpose of an ASUCA physical
process implementation.

2.1 Criteria for an ASUCA Physical Process GPU
Portation

The following criteria are important to consider when choosing a framework for
the GPGPU portation of the ASUCA physical process codebase:

1. The framework should offer a GPGPU interface for a Fortran 90 codebase.

2. The framework should make a hybrid codebase possible, i.e. the user code
should be compilable to both GPU and CPU. This allows the verification
of results on the CPU before porting, testing and debugging the GPU
implementation.

3. Required code changes to the existing codebase should be as small as pos-
sible in order to lower the portation cost.

11
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4. It should offer viable execution time performance, i.e. it should be as close
to fully platform optimized code as possible. If possible, the performance
should be viable both on CPU and GPU. This would give two additional
advantages:

(a) The modules could be ported one-by-one and integrated into the cur-
rent production environment, allowing for a smoother transition and
easier validation.

(b) Heterogenous execution would become an option at a later point, such
that the code would become portable to a wide range of clusters /
supercomputers.

5. It should be as platform and software vendor agnostic as possible, e.g.
Open Source frameworks and industry standards are preferred.
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2.2 Investigated GPU Frameworks and Compilers

The frameworks presented in this section have been evaluated with respect to
the criteria stated in sec. 2.1.

2.2.1 OpenACC

For an introduction to CUDA please refer to sec. 1.4.3. For the implementation
criterias stated in sec. 2.1, OpenACC is the solution the most promoted by the
industry right now. Though it must be noted that currently, no compiler com-
pletely supports the OpenACC 1.0 standard. The support has been improved
over the course of this thesis, however. It is also promising, that MeteoSwiss,
responsible for the Swiss weather prediction model in association with the Eu-
ropean Consortium for Small Scale Modelling (COSMO), is also involved in an
OpenACC portation project for their physical processes. Lst. 5.2 in cha. 5 shows
a sample OpenACC implementation.

For this evaluation the following OpenACC capable compilers have been
tested:

1. PGI Workstation (pgcc and pgf90), version 12.4

2. CAPS HMPP, version 3.1.0

Both compilers offer C as well as Fortran frontends for OpenACC. PGI com-
pilers have been executed with the following flags when used for OpenACC com-
pilation, if not stated otherwise:

-acc Enables OpenACC compilation.

-ta=nvidia,cc20 Specifies the target platform, in this case NVIDIA GPUs with
computing capabilities version 2.0.

-O4 The highest optimization level for PGI compilers.

The HMPP framework is essentially a preprocessor that creates CUDA ker-
nels for parsed OpenACC directives and passes the host code to an underlying
compiler of the user’s choice. For fair comparison, pgcc was chosen as the un-
derlying compiler using the same settings as presented above.

2.2.2 CUDA C

CUDA C is NVIDIA’s proprietary C language extension. For an introduction to
CUDA, please refer to sec. 1.4.2. As an implementation strategy for the ASUCA
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physical process it is not viable, since it violates the criterias 1 and 3 stated
in sec. 2.1. However, it was used as a performance validation, since CUDA C
implementations can generally be optimized the closest to GPUs from NVIDIA,
other than writing PTX device instructions.

For this thesis we have tested NVIDIA’s CUDA framework in version 4.1.

CUDA C requires a third party C compiler for host code compilation. For the
tests discussed in this chapter, pgcc has been used with the following compiler
flags:

-Mcuda=cc20 Enables CUDA compilation for 2.0 CUDA device architecture.

-O4 The highest optimization level for PGI compilers.

2.2.3 PGI CUDA Fortran

PGI CUDA Fortran is a Fortran 90 wrapper framework developed and main-
tained by The Portland Group. It creates CUDA C code from Fortran kernel
and device function definitions. The CUDA C version is then compiled using a
NVIDIA CUDA compiler. In that regard, CUDA Fortran can be expected to
perform on the same level as CUDA C for a given feature set - however the imple-
mented features tend to lag behind those released by NVIDIA, such as support
for printf in kernels as well as device code debugging.

PGI CUDA Fortran, like CUDA C, would require deep restructuring of the
ASUCA Physical Process codebase, however it has been used in order to compare
the usability and performance to OpenACC implementations.

Again, PGI Workstation version 12.4 has been used for testing the CUDA
Fortran framework. The following compiler flags have been used for pgf90 when
compiling for CUDA Fortran:

-Mcuda=cc20 Enables CUDA Fortran compilation for 2.0 CUDA device ar-
chitecture.

-O4 The highest optimization level for PGI compilers.

-Minline=levels:5,reshape Enables inlining for routines defined in the same
module as their caller. The reshape option enables the compiler to perform
array reshaping when passing them to the callee.



2. Evaluation of Existing Frameworks 15

2.3 Investigated CPU Compilers

The version 11.1 of Intel C (icc) and Intel Fortran (ifort) compilers have been
used for reference purposes throughout this thesis.

Various experiences have shown that this compiler offers the most consistant
optimizations (without the need to adjust and experiment with various tuning
screws) when used on the vendor provided hardware. For this reason the Intel
compilers appear to be a reasonable choice for the determination of the CPU
performance reference on Intel hardware. icc and ifort have been used with
the following compiler flags, if not stated otherwise:

-fast Enables the compiler to use the optimization settings leading to the highest
performance based on its internal heuristics. This includes vectorization
and inlining of routines as well as enabling the -O3 arithmetic optimization
level.
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2.4 Hardware Model

Since the scope of this thesis has been to implement and analyse single GPU as
well as single CPU performance, only one CPU socket and one GPU has been
used for the performance analyses in sec 2.7 as well as chapter 5. This section
gives an overview over the hardware performance model used for performance
estimates throughout this thesis.

2.4.1 Overview FP Performance and Memory Bandwidth

For all tests, single Tsubame 2.0 nodes have been used in the following configu-
ration [18, p. 4]:

1. One Dual socket Intel Xeon X5670 CPU with 6 cores per socket. One Xeon
X5670 socket offers the following performance metrics 1:

(a) 1 Core Sustained Memory Bandwidth2: 9.8 GB/s

(b) 1 Socket Sustained Memory Bandwidth: 20.5 GB/s

(c) 1 Core Single Precision Peak Performance: 23.4 GFLOPS

(d) 1 Core Double Precision Peak Performance: 11.7 GFLOPS

(e) 1 Socket (6 Core) Single Precision Peak Performance: 140.1 GFLOPS

(f) 1 Socket (6 Core) Double Precision Peak Performance: 70.1 GFLOPS

2. Three NVIDIA Tesla M2050 GPUs. One Tesla M2050 offers the following
performance metrics [22]:

(a) Sustained Memory Bandwidth3: 108.4 GB/s

(b) Single Precision Peak Performance: 1030 GFLOPS

(c) Double Precision Peak Performance: 515 GFLOPS

It is important to note that the peak computational performance usually
does not directly translate into sustained performance, however it is reasonable
to take the relative ratios into consideration: One might expect a Tesla M2050
to enable the following speedups:

11.1 times faster for memory bandwidth bounded algorithms compared to sin-
gle core CPU execution.

1Theoretical CPU performance is based on the assessment for X5650 in [19, p. 4], with the
computational performance numbers scaled by 2.93 GHz�2.66 GHz in order to adjust for the
Xeon X5670’s higher frequency [20].

2Single core stream memory bandwidth is based on [21, p. 7].
3The Tesla M2050’s sustained Memory bandwidth has been evaluated using the bandwidth

test program provided in the CUDA SDK.



2. Evaluation of Existing Frameworks 17

5.3 times faster for memory bandwidth bounded algorithms compared to single
socket / six core CPU execution.

44 times faster for computationally bounded algorithms compared to single
core CPU execution.

7.4 times faster for computationally bounded algorithms compared to single
socket / six core CPU execution.

However there are many architectural differences that have not been taken
into consideration for this line of thought. For this reason it is necessary to
do tests with the actual programs in order to make reasonably well founded
performance predictions.

2.4.2 System Balance

For further discussions the notion of “System Balance” will be defined as follows:

System Balance is the number of floating point instructions per floating point
fetch or store, that leads to a maximum floating point throughput while utilizing
the maximum sustained memory bandwidth.

That is, system balance is defined using the following formula4:

System Balance =
Peak FLOPS

Sustained Memory Throughput
Size of Floating Point Variables

(2.1)

One issue to keep in mind when taking into account peak GFLOPS numbers:
Vendors calculate these by doubling the effective throughput of floating point
operations per cycle, assuming a program would only generate multiply-add

instructions (which can be scheduled in one cycle by modern high performance ar-
chitectures). Assuming that effectively 10% of the instructions are multiply-add,
one gets a more reasonable prediction of fp performance using the following cal-
culation:

Peak FLOPS = Peak FLOPSvendor · (0.1 · 1 + 0.9 · 1

2
) ≈ Peak FLOPSvendor · 0.55

(2.2)

Considering the metrics introduced in sec. 2.4.1, the system balances become

4This notion of System Balance is based on the Roofline model by Patterson [23]. Patterson
uses the notion of “operations per byte” as an indicator for boundedness. The test hardware
used for this thesis offers double precision peak performance exactly half of single precision peak
performance, both for CPU and GPU - therefore the memory bandwidth is being adjusted by
the length of the floating point values such that the balance estimate can be used both for
single and double precision execution.
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5.3 for single core CPU execution (using the following calculation:

23.4 GFLOPS · 0.55
9.8GB/s

4Bytes/FLOP

(2.3)

).

15.0 for six core CPU execution (using the following calculation:

140.1 GFLOPS · 0.55
20.5GB/s

4Bytes/FLOP

(2.4)

).

20.9 for GPU execution (using the following calculation:

1030 GFLOPS · 0.55
108.4GB/s

4Bytes/FLOP

(2.5)

).

These assumptions are valid for both double and single precision since both the
computational power and the fetched data per floating point value scale by a
factor of two. One must note however, that the above calculations are rather
simplistic. One would have to account for many details specific to the architec-
tures, such as operation scheduling, in order to get a more precise performance
model - especially in the CPU case, because of its rather intricate architecture,
this would be an undertaking not feasible within the scope of this evaluation.

For qualitative measures it is enough to say that algorithms whose fp in-
struction to fetch/store ratio is significantly below System Balance, are expected
to be bounded by memory bandwidth while algorithms above System Balance
are expected to be computationally bounded - the most important distinction to
make when trying to optimize for performance.

2.5 Test Cases Used for Comparison

As discussed in sec. 2.2.1, OpenACC appears to be the most obvious choice for
a portation of the ASUCA physical process. Three modules have been used for
evaluating performance and usability of OpenACC:

1. 3D Diffusion

2. (Single Stage) Particle Push

3. ASUCA Shortwave Radiation
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CUDA C is generally considered to perform the closest to the hardware limit
on NVIDIA GPUs since its hardware vendor maintained compiler usually receives
new features first. For this reason, CUDA C implementations of the algorithms
for single stage particle push as well as 3D diffusion have been used in order
to determine a baseline performance benchmark for the OpenACC frameworks
to compare to.

Since it is easier to compare two C implementations instead of C vs. Fortran
implementations, the OpenACC implementations for these two algorithms have
been made using the OpenACC C language frontends as well. It is reasonable
to assume the results of that comparison in C to be an indicator for Fortran
GPU implementations as well, since at least PGI CUDA Fortran and PGI
OpenACC use an intermediate CUDA C code representation in order to make
use of NVIDIA’s nvcc compiler.

The ASUCA shortwave radiation module has been used as a benchmark
for a real world application, which lead to insights not only for performance but
also for the usability of the tested frameworks. The frameworks have been tested
in their Fortran incarnations (as described in sec. 2.2.1 and sec 2.2.3) for this
module since the final goal is a GPGPU implementation of the ASUCA Physical
Process using Fortran.

The following subsections offer more details on three test modules introduced
above.

2.5.1 3D Diffusion

Lst. 2.2 shows the 3D diffusion routine used as the first performance benchmark.

This routine is executed with the following specifics:

• 256 × 256 × 256 data points are being calculated for each timestep. This
number has been chosen to be divisible by 32 (to make it best suitable
for GPU warps as introduced in sec. 1.4) and to result in a long enough
execution time such that measuring inaccuracies are not influencing the
conclusion.

• The input and output pointers are being swapped after every timestep. No
data is being copied in between timesteps.

• 6553 timesteps are being calculated.

• Single as well as double precision arithmetics have been evaluated.

A few notes about this algorithm:
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• The algorithm is expected to be bounded by memory bandwidth. Disre-
garding the boundary computations (which only account for 3

3+258 ≈ 1%
of calcutions in this configuration) the algorithm leads to seven fetches
and one write per 13 floating point computations, giving a computation-
to-fetch ratio of 1.85, which is clearly in the memory bandwidth bounded
region for all metrics displayed in sec. 2.4.

• The computation results have been validated against an analytical solution.
In case of double precision numerical calculation, the result had a root
mean square error of 1.1 · 10−6, which is expected to be the error of the
numerical approximation used here. For single precision calculation, the
error was in the order of 10−5, with slight differences between CPU and
GPU execution. (The GPU interestingly calculated with a higher accuracy,
1 · 10−5 vs. 2 · 10−5 root mean square error).

1

2 /* ======================

3 SETUP OF ONE XY -PLANE

4 ======================

5 x marks the origin of the coordinate system (beginning of halo)

6 ___________________________________

7 ______x|______haly_______________|pad+halx|

8 pad+hal| | |

9 | | |

10 | dimX * dimY | |

11 | | |

12 |_________________________|________|

13 _______|______haly_______________|

14

15 */

16

17 /*

18 #define ADDR_FROM_XYZ(x, y, z): calculate coordinates in the data

19 structure shown above , using X-,Y-,Z-dimensions , haloes and

paddings

20 */

21

22 void diffusion3d_timestep (

23 float *f, /* dependent variable */

24 float *fn , /* updated dependent variable */

25 int nx , /* x-dimensional grid size */

26 int ny , /* y-dimensional grid size */

27 int nz , /* z-dimensional grid size */

28 float kappa , /* diffusion coefficient */

29 float dt , /* time step interval */

30 float dx , /* grid spacing in the x-direction */

31 float dy , /* grid spacing in the y-direction */

32 float dz /* grid spacing in the z-direction */

33 ) {

34

35 int j, jx , jy , jz , NX = nx + 2, NY = ny + 2;
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36 float ce = kappa*dt/(dx*dx), cw = kappa*dt/(dx*dx),

37 cn = kappa*dt/(dy*dy), cs = kappa*dt/(dy*dy),

38 ct = kappa*dt/(dz*dz), cb = kappa*dt/(dz*dz),

39 cc = 1.0 - (ce + cw + cn + cs + ct + cb);

40

41 for(jz = 1; jz < nz + 1; jz++) {

42 for(jy = 1; jy < ny + 1; jy++) {

43 for(jx = 1; jx < nx + 1; jx++) {

44 j = ADDR_FROM_XYZ(jx , jy , jz);

45 fn[j] = cc*f[j]

46 + ce*f[j+1] + cw*f[j-1]

47 + cn*f[j+NX] + cs*f[j-NX]

48 + ct*f[j+(NX * NY)] + cb*f[j-(NX * NY)];

49 }

50 }

51 }

52

53 // Wall Boundary Condition

54 for(jz = 1; jz < nz + 1; jz++) {

55 for(jy = 1; jy < ny + 1; jy++) {

56 j = (NX * NY)*jz + NX*jy + 0;

57 fn[j] = fn[j+1];

58 j = (NX * NY)*jz + NX*jy + nx + 1;

59 fn[j] = fn[j-1];

60 }

61 }

62

63 for(jz = 1; jz < nz + 1; jz++) {

64 for(jx = 1; jx < nx + 1; jx++) {

65 j = (NX * NY)*jz + NX*0 + jx;

66 fn[j] = fn[j+NX];

67 j = (NX * NY)*jz + NX*(ny + 1) + jx;

68 fn[j] = fn[j-NX];

69 }

70 }

71

72 for(jy = 1; jy < ny + 1; jy++) {

73 for(jx = 1; jx < nx + 1; jx++) {

74 j = (NX * NY)*0 + NX*jy + jx;

75 fn[j] = fn[j+(NX * NY)];

76 j = (NX * NY)*(nz + 1) + NX*jy + jx;

77 fn[j] = fn[j-(NX * NY)];

78 }

79 }

80 }

Listing 2.1: 3D Diffusion Example Program.

2.5.2 Particle Push

Lst. 2.2 shows the very simple particle push timestep routine used as the second
performance benchmark.
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This routine is executed with the following specifics:

• 6’553’600 (256 · 256 · 100) particles are being calculated for each timestep.
This number has been chosen to be divisible by 32 (in order to make it best
suitable for GPU Warps as introduced in sec. 1.4) and to result in a long
enough execution time such that measuring inaccuracies can be neglected.

• The input and output pointers are being swapped after every timestep. No
data is being copied in between timesteps.

• 800 timesteps are being calculated.

• Single precision arithmetics have been used.

Some notes about this algorithm:

• Execution of the US and VS functions results in two sincos calculations
(sine and cosine calculated at the same time), assuming the compiler is
able to optimize for this. Otherwise, two sine and two cosine operations are
being executed for each data point. Since compilers will be shown to have
different characteristics with respect to that arithmetical optimization, two
code versions have been implemented and tested. Version 1 uses the code as
shown in lst. 2.2 while version 2 is hand-optimized to use sincos operations
instead of sine and cosine.

• The algorithm is expected to be computationally bounded, using the fol-
lowing assumptions:

1. A sincos operation takes≈ 30 cycles to complete with single precision
on modern CPU architectures5 and 60 cycles on GPU architectures6

without use of the Special Function Units.

2. There are 13 additional floating point operations present per particle
and timestep.

3. Two memory loads as well as two store operations are needed per
particle and timestep.

This yields an operation-to-fetch ratio of 73
4 ≈ 18.25 for the CPU and

133
4 ≈ 33.25 for the GPU - which is well above the system balance calculated

in sec. 2.4.2, thus it is safe to assume that this algorithm is computationally
bounded.

• Since there is no analytical result available, the computation results have
been validated against a reference single threaded CPU implementation,
yielding root mean square deviations in order of 10−6 for all results.

5Assumption based on [24]
6Assumption based on the fact that the GPU ALUs are much simpler in their architecture

compared to modern x86 ALUs, thus needing more cycles per operation for complex operations.
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1

2 #define US(x, y, t) ( - 2.0 * cos(M_PI*(t)/TAU) *

3 sin(M_PI*x) * sin(M_PI*x) * cos(M_PI*y) * sin(M_PI*y)

4 )

5 #define VS(x, y, t) ( 2.0 * cos(M_PI*(t)/TAU) *

6 cos(M_PI*x) * sin(M_PI*x) * sin(M_PI*y) * sin(M_PI*y)

7 )

8

9 void particle_push_timestep (

10 int np , /* number of the particles */

11 float *x, /* x-coordinate of the particles */

12 float *y, /* y-coordinate of the particles */

13 float *x_out , /* updated x-coordinate of the particles */

14 float *y_out , /* updated y-coordinate of the particles */

15 float time , /* time */

16 float dt /* time step interval */

17 ) {

18 int j;

19 float xt, yt;

20

21 for(j = 0; j < np; j++) {

22

23 xt = US(x[j], y[j], time);

24 yt = VS(x[j], y[j], time);

25 x_out[j] = x[j] + xt*dt;

26 y_out[j] = y[j] + yt*dt;

27

28 }

29 }

Listing 2.2: Particle Push Example Program.

2.5.3 ASUCA Shortwave Radiation

This test case has been used as a real world application (as opposed to the two
rather “academic” tests presented in sections 2.5.2 and 2.5.1). Implementing
this module for the GPU has lead to insights for both performance and usability
when applying GPGPU framework to larger codebases.

Diverting Goals for CPU and GPU

Fig. 2.1 depicts a reduced call graph showing only the modules concerning Short-
wave Radiation and its parent callers as well as the placement of the loops. In
the original code version, the loops over the I and J domains are placed in out-
side position, within the physical process interface module called by the main
program loop. The data is then passed K-column by K-column to multiple rou-
tines, each starting a call tree. This is well suited for multicore CPU execution
for two reasons:
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Figure 2.1: Overview ASUCA Physical Process and Shortwave Radiation.
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1. For parallel execution on CPU, “work packages” with long execution times
(in the order of 10−3 s or above) are preferred. The computation of one
K-column for all physical modules is fullfilling this requirement.

2. In case of data sharing between modules, the chance for cache hits is higher
if only K-columns are being shared instead of an entire IJK-grid of data.

For GPUs however, this program structure is ill suited for the following rea-
sons:

1. The number of hardware registers per kernel thread (the equivalent of a
an IJ loop run in this case) is very limited (a maximum of 63 registers are
available). Having code with too much complexity inside one kernel will
lead to the swapping of register data to the global memory, resulting in
performance degradation in case of memory bandwidth limited programs.

2. Kernels should ideally always operate over the same code branches. Having
branches inside kernels leads to performance degradation as well, since the
CUDA cores of one Warp always need to either operate over the same
branch or do nop for the diverted cycles.

3. NVIDIA GPU architectures up until Kepler with CUDA version 5.0 (in de-
velopment at the time of this thesis) do not allow native context switching
for calling subroutines. Subroutine calls within kernels need to be resolved
by the compiler through inlining, a process that has many limitations. As
a rule of thumb, it is best to keep kernel subroutines in the same modules
(source files) as the kernel and to keep only one level of subroutines below
the kernel.

Therefore, in order to create GPGPU implementations, the loops over the IJ

domains need to be implemented at a deeper call level, as shown in fig. 2.1.

Execution Characteristics

This module offers the following execution characteristics:

• The IJ dimensions are set to 256 · 256.

• The grid size in K direction is 63.

• The module is executed over one timestep.

• Double precision arithmetics have been used.

• The results have been verified using a reference CPU implementation - the
root mean square deviation is in the order of 10−10.
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• Over 95% of the computational time for Shortwave radiation is being spent
within the radsw subroutine. This routine consists of approximately 300
lines of code, executing multiple sweeps over the K dimension for all IJ data
points and aggregating over 22 spectra, thus containing 4th order loops. A
total of 30 ijk data grids are accessed twice (read and write) at each data
point for each of the spectra.

• As of expensive operations there are 22 reciprocals being executed per
data point per spectrum. NVIDIA does not specify the number of cycles
needed for double precision reciprocals (they are implemented in software
by the CUDA compiler). Assuming 40 cycles per reciprocal7 this results
in 22·40

60 ≈ 14.7 operations per fetch / write, keeping this kernel well within
the memory bandwidth bounded region for the GPU. For multicore CPU
we expect this module to be at the edge of being computationally bounded
(since the cheap add and mult operations also add to the balance of the
module) while for single core CPU we expect it to be clearly computation-
ally bounded (see also sec. 2.4.2).

• There are no stencil accesses with offsets in the I or J domain - only the
K data dimension is accessed with offsets. This is a common characteristic
for all ASUCA Physical Process modules that have been examined over
the course of this thesis.

Compiler flags additional to those stated in sec. 2.2:

-Minline=levels:5,reshape enables inlining for routines defined in the same
module as their caller. The reshape option enables the compiler to perform
array reshaping when passing them to the callee.

-Mipa=inline,reshape enables inlining for routines defined in different mod-
ules from their caller.

-r8 sets double precision as the default option for real symbols.

7double the number of cycles needed by the AMD K7 CPU architecture [25, p. 1]
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2.6 Comparison of Usability

In this section we compare the usability of the evaluated solutions for Fortran
GPU code: CUDA Fortran, PGI OpenACC and HMPP OpenACC.

2.6.1 HMPP OpenACC versus PGI OpenACC

The two simple examples (particle push and 3D diffusion) have not shown major
differences between HMPP OpenACC and PGI OpenACC in terms of usability.
The Fortran implementation of shortwave radiation, however, has revealed some
problems when using HMPP:

1. Compiler errors in the tested HMPP versions often do not show line num-
bers, making it unnecessarily hard to find the errors in large modules.

2. HMPP implemented OpenACC kernels are not able to reference scalars,
both imported from other modules and local ones, that haven’t been ex-
plicitely declared with OpenACC directives or passed as arguments.

3. The HMPP compiler did not accept the -r8 compiler flag which tells the
compiler to keep real variables by default in double precision, a function-
ality that has been used within the ASUCA Physical Process.

Especially item 2 in the above list would have lead to major restructuring
of the OpenACC code in order to ensure compatibility with HMPP. In light of
the performance results shown in sec. 2.7.2 and 2.7.3 it has been decided to not
pursue this endeavor.

2.6.2 Kernel Subprocedure Inlining versus Loop Restructuring

In sec. 2.5.3 a target conflict in terms of loop positionings for CPU and GPU
has been introduced. Porting a CPU implementation to GPU with the parallel
region loops in an outside position often leads to decisions between

• trying to inline the subprocedures using compiler inlining.

• inlining the subprocedures manually.

• moving the parallel loop regions into the subprocedures, thus passing the
complete data grids down to these subprocedures.

Experience has shown that inlining from other Fortran modules using Inter-
procedural Analysis (IPA) compiler options does not work reliably in conjunction
with GPU kernel generation with pgf90 and it is best not to go that path, i.e.
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subprocedure calls into different modules are a clear indicator for the necessity
of moving the loops into a deeper callgraph position for GPU execution. This
leaves the decision for inlining within the same module. Fig. 2.2 depicts the com-
patibility for inlining subprocedures with CUDA while fig. 2.3 shows the same
for PGI OpenACC.

Figure 2.2: CUDA Fortran kernel contains a device subprocedure call. Can it
be inlined and therefore be compiled to device code?

It should become clear that with these restrictions present, porting those
parts of the ASUCA physical process with deep call graphs becomes a time
consuming process. PGI OpenACC only offers limited help in that regard. Its
advantages in comparison to CUDA Fortran in terms of porting code of the
nature of the ASUCA physical process, are as follows:

1. The ability to introduce multiple parallel loops within one subprocedure.

2. The ability to use one dimensional module arrays.

3. The ability to use local arrays within kernel subroutines (not within device
subroutines called by kernels however).

Item 1 saves the introduction of some subprocedures, however one could
argue that the splitting of code into multiple subprocedures may in that case
lead to a clearer, more maintainable codebase. Items 2 and 3 allow the use
of preinitialised data and local arrays without passing them as parameters to
kernels. However experience has shown that the most significant portation cost
lays in the restructuring of data accesses, data parameters and loops to meet the
requirements of GPU execution - an area in which OpenACC does not offer an
advantage over CUDA Fortran.



2. Evaluation of Existing Frameworks 29

Figure 2.3: PGI OpenACC accelerated region contains a subprocedure call. Can
it be inlined and therefore be compiled to device code?

2.6.3 Overview Usability

Tab. 2.1 gives an overview over the usability issues we have found when porting
CPU code to the GPU using one of the aforementioned frameworks.

Issue CUDA Fortran PGI OpenACC HMPP OpenACC

Subprocedure calls in see figure 2.2 see figure 2.3 Not examined
parallel regions possible

Subprocedure calls from No No Not examined
different modules possible

Multiple parallel regions No Yes Yes
per subroutine

Automatic device data copies No Yes Yes

Use of local scalars Yes Yes Needs directives

Use of local arrays No Yes Not examined

Use of scalars imported No Yes No
from external modules

Recursive subprocedures No No No

Inline array initialisations No No No

SAVE, DATA attributes No No No

Abstraction of parallel No No No
domain dependency

Table 2.1: Usability issues with GPGPU in Fortran.
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2.7 Comparison of Performance

In this section the performance comparisons between CPU execution, OpenACC
GPU execution and CUDA will be discussed.

2.7.1 Overview of Tests

The following table gives an overview over the preliminarily investigated GPGPU
technologies and the applied test cases.

Framework Version Maintainer Test Cases

PGI OpenACC 12.4 PGI Particle Push,
For C Language 3D Diffusion

PGI OpenACC 12.4 PGI ASUCA Shortwave Radiation
For Fortran Language

HMPP OpenACC 3.1.0 CAPS Particle Push,
For C Language 3D Diffusion

HMPP OpenACC 3.1.0 CAPS None, see sec. 2.6.1
For Fortran Language

CUDA C 4.1 NVIDIA Particle Push,
3D Diffusion

CUDA Fortran 12.4 PGI ASUCA Shortwave Radiation

Table 2.2: Overview frameworks and test cases.

For the test platform’s hardware specifications please refer to sec. 2.4.

All results shown here have been averaged over 5 runs. Only computation
time, no host-to-device data copy time has been counted, since the host-to-device
bus performance is not expected to be relevant for ASUCA (the goal is a complete
GPU portation, making data copying only necessary at the beginning and end
of the simulation, thus significantly reducing communication overhead).

2.7.2 3D Diffusion

Fig. 2.4 and fig. 2.5 illustrate the following examinations:

1. The magnitude of speedups further indicate that this algorithm is being
bounded by memory bandwidth (as estimated in sec. 2.5.1).

2. The speedups of GPU implementations versus the CPU implementation
are in line with the hardware model introduced in sec. 2.4.1 for the single
precision results. The double precision speedup is lower than expected
however (speedups of the same magnitude as single precision execution are
expected for double precision execution). Considering the execution time
results shown in fig. 2.4 the CUDA and PGI OpenACC implementations



2. Evaluation of Existing Frameworks 31

scale as expected (around a factor of two), however CPU execution as
well as HMPP do not scale as expected, indicating some overhead being
present in their single precision versions. Considering, that this algorithm
is most likely heavily bounded by memory bandwidth, overfetches are a
likely candidate for the deviations from the model - i.e. data is being read
into cache that is not needed by the active thread - a phenomenon that
is less strong with double precision execution, since the payload data is
always twice the size. It is therefore likely that this algorithm could be
further optimized by optimizing the code for cache accesses - however this
kind of optimization is very specific to the architecture.

3. PGI OpenACC performs significantly better than HMPP for this example.

4. CUDA Fortran performs significantly better than the OpenACC implemen-
tations in the single precision case. In double precision, CUDA Fortran and
PGI Fortran perform very similarly.

Figure 2.4: Execution time results for the 3D Diffusion Algorithm.
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Figure 2.5: Speedup results for the 3D Diffusion Algorithm when compared to
Single Core CPU, “icc -fast” compiled.
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2.7.3 Particle Push

Figure 2.6: Single precision execution time results for the Particle Push Al-
gorithm. CPU results are not shown here since the two orders of magnitude
difference would make it hard to distinguish the GPU results.

Figure 2.7: Single precision speedup results for the Particle Push Algorithm
when compared to Single Core CPU, “icc -fast” compiled, v1 Code.

Fig. 2.6 and fig. 2.7 illustrate the following examinations:

1. The speedups of GPU implementations versus the CPU implementation
observed with this example are significantly higher than what one could
expect from the performance metrics assessed in sec. 2.4. This indicates
the following:

(a) This algorithm is indeed computationally bounded as assumed in
sec. 2.5.2. Speedups of this magnitude for memory bandwidth bounded
problems are highly unlikely.
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(b) The provided GPU architecture as well as the CUDA compiler ap-
pear to be more optimized for Sine- and Cosine operations. This is a
reasonable assumption to make since Sine- and Cosine operations are
very important for geometrical computations, one of the key areas of
the GPU.

(c) It is likely that the CPU implementation could still be optimized by
a significant margin.

2. PGI OpenACC performs significantly better than HMPP for this example.

3. PGI OpenACC doesn’t show a significant improvement between the code
versions 1 and 2 (see sec. 2.5.2). An examination of the CUDA C code
created by the PGI OpenACC compiler has revealed that the PGI compiler
is able to perform these optimizations for the code version 1 as well.

4. The CUDA version is still faster by a factor of 2.3 compared to the PGI
OpenACC code. The code examination of PGI OpenACC’s created code
has revealed that there are additional safety branches being added to the
kernel code - which is not needed for the CUDA code implemented by hand,
since the programmer is able to configure the kernel in a way that it will
not exceed the data boundaries. One would expect this to be the reason
for the slowdown of the PGI OpenACC version.

5. The fastmath special function units (a hardware implementation of Sine-
and Cosine functions among others) are not responsible for the above men-
tioned speedup of CUDA vs. OpenACC, since enabling fastmath gives an
additional speedup factor of 2.4. Note: Doing so results in a slight loss in
fidelity (the GPU’s root mean square error versus reference result changes
from 1.62 · 10−6 to 2.33 · 10−6).
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2.7.4 ASUCA Shortwave Radiation

This section shows the performance test results for the ASUCA shortwave radi-
ation module. Since OpenACC allows hybrid execution, it was also tested how
a hybridized CUDA version compares in terms of CPU performance. Therefore
the CUDA Fortran version has been implemented using preprocessor directives
in order to hybridize that codebase8, rendering the kernel code compatible for
CPU execution after the preprocessor. This hybridized CUDA version will be re-
ferred to as “Preprocessed CUDA Fortran”. Some performance loss on the CPU
was expected since the loop structure for these implementations is optimized for
GPU execution (see also sec. 2.5.3).

Fig. 2.8 and fig. 2.9 illustrate the following:

1. The magnitude of speedups further indicate that this algorithm is being
bounded by memory bandwidth (as estimated in sec. 2.5.3 for GPU exe-
cution).

2. The speedups of GPU implementations versus the CPU implementation
are only slightly below what is expected for memory bandwidth limited
modules as outlined in sec. 2.4.1. Judging from the hardware model another
10% speedup could be expected from further optimizing the GPU version.

3. The GPU results of PGI OpenACC are only approximately 5% below those
of CUDA Fortran. This indicates that the advantage of CUDA Fortran vs.
OpenACC shrinks for larger kernels, when the additions of safety branches
(as discussed in sec. 2.7.3) are not as significant anymore compared to the
overall load.

4. Executing code with loops optimized for GPU execution on the CPU results
in a 2× performance loss in this case. The preprocessed CUDA Fortran
code handles this slightly worse than the PGI OpenACC version, loosing
another 15%.

8E.g. the CUDA kernels have been wrapped in “do”/“end do” loops over the “IJ” domain
for CPU execution.
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Figure 2.8: Double precision execution time results for the shortwave radiation
module.

Figure 2.9: Double precision speedup results for the shortwave radiation mod-
ule when compared to CPU execution of the original code version, “icc -fast”
compiled.
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2.8 Preliminary Conclusions

I would like to draw the following preliminary conclusions regarding the results
from sec. 2.6 and sec. 2.7:

1. Porting code with complex call graphs inside parallel regions to GPU will
result in the following target conflict:

(a) Optimization for GPU results in low performance on the CPU. Fig. 2.8
illustrates this point conclusively.

(b) Optimization for CPU lowers GPU performance and even breaks GPU
compatibility at some point.

2. Changing the loop structure and data accesses is considered to be the most
time consuming task for porting the ASUCA physical process to GPU.

3. In case the OpenACC route is to be pursued, the results shown in this
thesis indicate a clear advantage of PGI over HMPP, both in usability
and performance. Please note, however, that OpenACC support has still
been under heavy development during the timeframe of this thesis - later
versions would have to be reexamined.

4. PGI OpenACC is able to perform rather intricate optimizations of arith-
metics, as shown in sec. 2.7.3. Kernel code created by PGI OpenACC
might be helpful to examine in case of computationally bounded code.

5. The speedup estimates for the three test examples based on the hardware
model introduced in sec. 2.4 have proven to be reasonable and may be
taken into consideration for further analysis.

Items 1 and 2 in the above list lead to the following question: Is there a
solution offering

1. lower portation cost than OpenACC,

2. high GPU performance and

3. high CPU performance?

The following chapters will answer this question.



Chapter 3

The Hybrid Fortran 90
Framework

Chapter 2 has shown that OpenACC has some positive aspects, it will however
in many cases not achieve optimal performance and the portation in case of the
ASUCA physical process codebase is not significantly easier than the portation
to CUDA Fortran. Over the course of the evaluation phase this insight lead to
the birth of a new idea: A framework, specifically targeted at, but not limited
to, the ASUCA Physical Process, that gives the advantages of a hybrid codebase
and offers fully optimized performance both on CPU and GPU. This chapter
will describe the functionality of the Hybrid Fortran 90 framework from a
user perspective, while chapter 4 will go into implementation details.

3.1 Design Goals

This section gives an overview over the design goals of the Hybrid Fortran 90
framework.

1. Hybrid Fortran 90 offers a unified codebase for both CPU and GPU
execution.

2. The storage order must be compile time defined since CPU and GPU im-
plementations usually have different ideal storage orders.

3. The rules for creating the GPU code versions should have a low complexity,
such that optimizations performed by the user lead to predictable results.

4. The framework enables GPU performance at the level of hand optimized
CUDA Fortran while maintaining CPU performance as close as possible to
the original ASUCA physical process code.

38
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5. The implementation details are abstracted from the rest of the system,
such that other parallel programming frameworks can be supported in the
future without changes in the user code.

6. Since the ASUCA Physical Process’ stencil computations do not have de-
pendencies at offset positions in I and J direction and its original source
tree is programmed to operate over one K column with the IJ loops outside,
it is beneficial to the portation process and possibly the CPU performance
to hide or abstract IJ dependencies of arrays.

7. Since the IJ dependencies are abstracted, it becomes possible to define the
loops over the IJ domains at compile time. In other words, the framework
is to be able to switch at compile time between outside loops (better suited
for CPU caching) and inside loops (better suited for the GPU streaming
computation model).
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3.2 Hybrid Fortran 90 Directives

The directives introduced with the Hybrid Fortran 90 framework are the only
additions that have been made to the Fortran 90 language in order to achieve
the objectives stated in sec. 3.1. All other syntax elements in Hybrid Fortran
90 are a strict subset of Fortran 90.

It is necessary to introduce the following denotations before introducing the
new directives:

A domain in this context denotes a tuple containing a data dimension and its
size. For example, if we have an array a declared within the range (1, NX)
and looped over using the iterator x, we call this array to be domain
dependant in domain x. For simplicity, we assume that iterators over the
same data dimension and range are always named consistantly the same -
a coding style that has been present within all the modules examined in
the ASUCA Physical Process.

A parallel region is a code region that can be executed in parallel over a one
or more domains.

The following section lists the two directives and their available options for
later reference.

3.2.1 Domain Dependant Directive

Listing 3.1 shows the “domain dependant” directive. They are used to specify
the involved symbols and their domain dependencies. This information then
allows the framework to rewrite the symbol accesses and declarations for the
GPU and CPU cases (see example in section 3.2.3).

Notes:

1. For symbols the framework only operates on local information available
for each subroutine. As an example, whether a symbol has already been
copied to the GPU is not being analyzed. For this reason the present flag
has been introduced (see below).

2. Domain Dependant Directives need to be specified between the specifica-
tion and the implementation part of a Fortran 90 subroutine.

1 @domainDependant{ATTRIBUTE_NAME1(MEMBER1 , MEMBER2 , ...), ...}

2 ! symbols that share the attributes !

3 ! defined above to be defined here , separated !

4 ! by commas !

5 ...
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6 @end domainDependant

7

8 !Minimal Example:

9 @domainDependant{domName(x), domSize(NX)}

10 a, b, c

11 @end domainDependant

12 !-> Defines the three arrays a, b, c to be dependant in domain x.

Listing 3.1: Domain dependant directive syntax.

The following attributes are supported for this directive:

domName Set of all domain names in which the symbol needs to be privatized.
This needs to be a superset of the domains that are being declared as the
symbol’s dimensions in the specification part of the current subroutine.

domSize Set of the domain dimensions in the same order as their respective
domain names specified using the domName attribute. It is required that
|domName| = |domSize|.

accPP Preprocessor macro name that takes |domSize| arguments and outputs
them comma separated in the current storage order for symbol accesses.
This macro must be defined in the file storage_order.F90 (see section
4.1).

domPP Preprocessor macro name that takes |domSize| arguments and out-
puts them comma separated in the current storage order for the symbol
declaration. This macro must be defined in the file storage_order.F90

(see section 4.1). Note: This preprocessor macro is usually identical to the
one defined in accPP.

attribute Attribute flags for these symbols. Currently the following flags are
supported:

present In case this flag is specified, the framework assumes array data
to be already present on the device memory for GPU compilation.

An important special case are scalar parameters: In case of a CUDA Fortran
implementation, scalars must be passed by value in device functions. The frame-
work must for that reason be aware of scalar symbols, such that their specifica-
tion can be adjusted accordingly. For simplicity reasons, the @domainDependant

directive has been reused for scalars and can be used in the following way:

1 @domainDependant {}

2 scalar1 , scalar2 , ...

3 @end domainDependant

Listing 3.2: Domain dependant directive syntax for scalars.

In Hybrid Fortran 90 terms then, a scalar is a domain dependant without
domains.
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3.2.2 Parallel Region Directive

Listing 3.3 shows the parallel region directive. This directive is an abstraction
of for-loops as well as CUDA kernels that allows the framework to define these
structures at compile time. It is only allowed to be inserted in the implementation
part of a subroutine.

1 @parallelRegion{ATTRIBUTE_NAME1(MEMBER1 , MEMBER2 , ...), ...}

2 ! code to be executed in parallel !

3 symbol1 , symbol2 , ...

4 @end parallelRegion

Listing 3.3: Parallel region directive syntax.

The following attributes are supported for this directive:

appliesTo Specify one or more of the following attribute members in order to
set this parallel region to apply to either the CPU code version, the GPU
version or both.

1. CPU

2. GPU

domName Specify one or more domain names over which the code can be
executed in parallel. These domain names are being used as iterator names
for the respective loops or CUDA kernels.

3.2.3 Example

Let’s look at the following example module that performs matrix element addi-
tion as well as multiplication. Please note, that the storage order in this exam-
ple is defined at compile-time using the preprocessor macros DOM and AT. These
macros simply reorder the arguments in order to reflect the optimal storage order
for CPU and GPU case.

1 module example

2 contains

3 subroutine wrapper(a, b, c, d)

4 real , intent(in) :: a(DOM(NX, NY, NZ)), b(DOM(NX, NY, NZ))

5 real , intent(out) :: c(DOM(NX, NY, NZ)), d(DOM(NX, NY, NZ))

6 integer (4) :: x, y

7

8 do y=1,NY

9 do x=1,NX

10 call add(a(AT(x,y,:)), b(AT(x,y,:)), c(AT(x,y,:)))

11 call mult(a(AT(x,y,:)), b(AT(x,y,:)), d(AT(x,y,:)))

12 end do

13 end do

14 end subroutine
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15

16 subroutine add(a, b, c)

17 real , intent(in) :: a(NZ), b(NZ)

18 real , intent(out) :: c(NZ)

19 integer :: z

20

21 do z=1,NZ

22 c(z) = a(z) + b(z)

23 end do

24 end subroutine

25

26 subroutine mult(a, b, d)

27 real , intent(in) :: a(NZ), b(NZ)

28 real , intent(out) :: d(NZ)

29 integer :: z

30

31 do z=1,NZ

32 d(z) = a(z) * b(z)

33 end do

34 end subroutine

35 end module example

Listing 3.4: CPU version of matrix element module

Porting this to the GPU, one might want to move the loops over the x and
y domains to the add and mult subroutines, in order to eliminate the need for
inlining and optimize for register usage.

The following listing shows how this module looks like in Hybrid Fortran
90. Figure 4.3 in chap. 4 shows the (programmatically created) callgraph of this
module.

1 module example

2 contains

3 subroutine wrapper(a, b, c, d)

4 real , dimension(NZ), intent(in) :: a, b

5 real , dimension(NZ), intent(out) :: c, d

6

7 @domainDependant{domName(x,y,z), domSize(NX ,NY ,NZ), domPP(DOM),

accPP(AT)}

8 a, b, c, d

9 @end domainDependant

10

11 @parallelRegion{appliesTo(CPU), domName(x,y), domSize(NX , NY)}

12 call add(a, b, c)

13 call mult(a, b, d)

14 @end parallelRegion

15 end subroutine

16

17 subroutine add(a, b, c)

18 real , dimension(NZ), intent(in) :: a, b

19 real , dimension(NZ), intent(out) :: c

20 integer :: z

21
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22 @domainDependant{domName(x,y,z), domSize(NX ,NY ,NZ), domPP(DOM),

accPP(AT)}

23 a, b, c

24 @end domainDependant

25

26 @parallelRegion{appliesTo(GPU), domName(x,y), domSize(NX , NY)}

27 do z=1,NZ

28 c(z) = a(z) + b(z)

29 end do

30 @end parallelRegion

31 end subroutine

32

33 subroutine mult(a, b, d)

34 real , dimension(NZ), intent(in) :: a, b

35 real , dimension(NZ), intent(out) :: d

36 integer :: z

37

38 @domainDependant{domName(x,y,z), domSize(NX ,NY ,NZ), domPP(DOM),

accPP(AT)}

39 a, b, d

40 @end domainDependant

41

42 @parallelRegion{appliesTo(GPU), domName(x,y), domSize(NX , NY)}

43 do z=1,NZ

44 d(z) = a(z) * b(z)

45 end do

46 @end parallelRegion

47 end subroutine

48 end module example

Listing 3.5: example of a Hybrid Fortran 90 subroutine with a parallel region

This will be rewritten by the Hybrid Fortran 90 framework into two ver-
sions. The CPU version will be exactly like the original, while the GPU version
is shown below. Please note, that

1. the two implementations loop over the xy domains at different points, ac-
cording to the appliedTo attribute defined in the @parallelRegion direc-
tives. See figure 4.3 in cha. 4 in order to get an overview.

2. the declarations and accessors for the arrays a, b, c and d did not need to
be changed in the add and mult subroutines.

3. the left whitespace is not always preserved in the actual implementation,
it has been slightly reformatted here for improved readability.

1 module example

2 contains

3 subroutine wrapper(a, b, c, d)

4 use cudafor

5 real , intent(in) :: a(DOM(NX, NY, NZ)), b(DOM(NX, NY, NZ))

6 real ,device :: a_d(DOM(NX, NY, NZ))



3. The Hybrid Fortran 90 Framework 45

7 real ,device :: b_d(DOM(NX, NY, NZ))

8 real , intent(out) :: c(DOM(NX, NY, NZ)), d(DOM(NX, NY, NZ))

9 real ,device :: c_d(DOM(NX, NY, NZ))

10 real ,device :: d_d(DOM(NX, NY, NZ))

11

12 type(dim3) :: cugrid , cublock

13 integer (4) :: cuerror

14 a_d(:,:,:) = a(:,:,:)

15 c_d(:,:,:) = 0

16 b_d(:,:,:) = b(:,:,:)

17 d_d(:,:,:) = 0

18

19 cugrid = dim3(NX / CUDA_BLOCKSIZE_X , NY / CUDA_BLOCKSIZE_Y , 1)

20 cublock = dim3(CUDA_BLOCKSIZE_X , CUDA_BLOCKSIZE_Y , 1)

21 call add <<< cugrid , cublock >>>(a_d(AT(:,:,:)), b_d(AT(:,:,:))

, c_d(AT(:,:,:)))

22 ! **** error handling left away to improve readability *** !

23

24 cugrid = dim3(NX / CUDA_BLOCKSIZE_X , NY / CUDA_BLOCKSIZE_Y , 1)

25 cublock = dim3(CUDA_BLOCKSIZE_X , CUDA_BLOCKSIZE_Y , 1)

26 call mult <<< cugrid , cublock >>>(a_d(AT(:,:,:)), b_d(AT(:,:,:)

), d_d(AT(:,:,:)))

27 ! **** error handling left away to improve readability *** !

28

29 c(:,:,:) = c_d(:,:,:)

30 d(:,:,:) = d_d(:,:,:)

31 end subroutine

32

33 attributes(global) subroutine add(a, b, c)

34 use cudafor

35 real , intent(in) ,device :: a(DOM(NX, NY, NZ)), b(DOM(NX, NY,

NZ))

36 real , intent(out) ,device :: c(DOM(NX, NY, NZ))

37 integer :: z

38 integer (4) :: x, y

39

40 x = (blockidx%x - 1) * blockDim%x + threadidx%x

41 y = (blockidx%y - 1) * blockDim%y + threadidx%y

42 do z=1,NZ

43 c(AT(x,y,z)) = a(AT(x,y,z)) + b(AT(x,y,z))

44 end do

45 end subroutine

46

47 attributes(global) subroutine mult(a, b, d)

48 use cudafor

49 real , intent(in) ,device :: a(DOM(NX, NY, NZ)), b(DOM(NX, NY,

NZ))

50 real , intent(out) ,device :: d(DOM(NX, NY, NZ))

51 integer :: z

52 integer (4) :: x, y

53

54 x = (blockidx%x - 1) * blockDim%x + threadidx%x

55 y = (blockidx%y - 1) * blockDim%y + threadidx%y

56 do z=1,NZ
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57 d(AT(x,y,z)) = a(AT(x,y,z)) * b(AT(x,y,z))

58 end do

59 end subroutine

60 end module example

Listing 3.6: GPU version of the hybrid code shown above
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3.3 Restrictions

The following restrictions will need to be applied to standard Fortran 90 syntax
in order to make it compatible with the Hybrid Fortran 90 framework in its
current state. For the most part these restrictions are necessary in order to
ensure CUDA Fortran compatibility. Other restrictions have been introduced
in order to reduce the program complexity while still maintaining suitability for
the ASUCA physical process.

Figure 3.1: Callgraph showing subroutine types with restrictions for GPU com-
pilation.

1. No dependencies at offsets in I,J-directions (only vertical dependencies).

2. Currently no line continuations are supported for the attribute definitions
of directives. Instead, directives are designed to only require a limited
amount of attributes.

3. CUDA Fortran differentiates between different subroutine types [26, p. 4].
Following its design goal of keeping a low complexity, Hybrid Fortran
90 simply rewrites subroutines definitions to one of the CUDA subroutine
types, depending on the subroutine’s position relative to the parallel re-
gion (determined through metainformation about the entire visible source
code). This introduces some restrictions for subroutines calling, contain-
ing or being called by GPU parallel regions. For future reference these
restricted subroutines are named in the following way (see figure 3.1):

(a) Subroutines that call one or more subroutines containing a GPU par-
allel region are called “wrapper subroutines”.
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(b) Subroutines that contain a GPU parallel region are called “kernel
subroutines”.

(c) Subroutines that are called inside a GPU parallel region are called
“inside kernel subroutines”.

Now that the names of those special subroutines are defined, it is possible
to state the following restrictions. Because of CUDA Fortran restrictions,
kernel- and inside kernel subroutines may not

(a) contain symbols declared with the DATA or SAVE attribute.

(b) contain multiple parallel regions.

(c) be recursive.

(d) call other kernel subroutines.

(e) contain the recursive, pure and elemental keywords.

(f) contain array allocations, both implicit and explicit. In extension, no
inline array initialisations are allowed. All arrays need to be allocated
in the wrapper or on higher levels in the callgraph. Static data ini-
tialisations are ideally being done outside the parallel loop, typically
in init subroutines for each module that are always executed on the
CPU. Hybrid Fortran 90 directives are not needed for code parts
that are in no case to be executed on the GPU, however the compile
time storage order should be respected by using the same storage or-
der macros as specified in the domPP and accPP attributes for the
involved arrays.

4. Inside kernel subroutines called by kernel subroutines must reside in the
same Fortran module as their caller.

5. All non scalar symbols with attributes added through @domainDependant

directives may only be accessed and set inside parallel regions.

6. Arrays that are declared as domain dependant using @domainDependant

directives must be of integer or real type (however any byte length within
the Fortran 90 specification is allowed).

7. Arrays that are declared as domain dependant using @domainDependant

directives may not appear in declaration lines with mixed domain depen-
dance. Example:

1 ..

2 real (8), dimension(nz) :: a, b

3 real (8), dimension(nz) :: c

4 ..

5 @domainDependant {domName(x), domSize(nx)}

6 a, b

7 @end domainDependant
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8

9 @domainDependant {domName(y), domSize(ny)}

10 c

11 @end domainDependant

12 ..

Listing 3.7: This is ok.

1 ..

2 real (8) dimension(nz) :: a, b, c

3 ..

4 @domainDependant {domName(x), domSize(nx)}

5 a, b

6 @end domainDependant

7

8 @domainDependant {domName(y), domSize(ny)}

9 c

10 @end domainDependant

11 ..

Listing 3.8: This is not ok.

8. All source files (h901, f90 and F90) need to have distinctive filenames since
they will be copied into flat source directories by the build system.

9. Only subroutines are supported together with Hybrid Fortran 90 direc-
tives, i.e. functions are not supported.

10. It is not possible to use preprocessor directives to conditionally apply Hy-
brid Fortran 90 directives (preprocessor statements are ignored during
the h90 to F90 precompilation phase).

In general, since

1. GPU execution currently requires subroutine calls to be inlined and

2. the number of registers per GPU Streaming Multiprocessor is very limited

it is best to split deep callgraphs and large computations into multiple smaller
kernels (i.e. @parallelDomain{ appliedTo(GPU), ..}).

1h90 is the file extension used for Hybrid Fortran 90 source files.
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3.4 Device Data Handling

The goal of device data handling is to hide and abstract code that is only nec-
essary for the CUDA execution path. Hybrid Fortran 90 works similarly to
OpenACC in that respect. For all non-scalars that are marked as domain de-
pendant using the @domainDependant directive, the following rules apply with
respect to device data in case of GPU compilation:

1. If the current subroutine contains calls to kernel subroutines and the do-
main dependant symbol is declared using the intent(in) or intent(inout)
statement, a device version of the symbol will be allocated and its content
will be copied to that device array at the beginning of the subroutine.

2. If the current subroutine contains calls to kernel subroutines and the do-
main dependant symbol is declared using the intent(out) or intent(inout)
statement, a device version of the symbol will be allocated and set to zero
and the device array’s content will be copied to the original array at the
end of the subroutine.

3. If the domain dependant symbol is local for this subroutine, it will be
allocated as a device symbol and its content will be set to zero at the
beginning of the subroutine.

4. In case the domain dependant directive contains an attribute(present)

statement, no data will be copied and the original symbol will be declared
as a device symbol.
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3.5 Feature Comparison between Hybrid Fortran 90
and OpenACC

The following table gives an overview over the differences between OpenACC
and the Hybrid Fortran 90 framework.
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Feature OpenACC Hybrid Comments
Fortran 90

Enables close to fully optimized X Details, see section 5.3.2
Fortran code for GPU execution

Enables close to fully X Details, see section 5.3.1
optimized Fortran code
for CPU execution

Automatic device data X X
copying

Allows adjusted looping X
patterns for CPU and
GPU execution

Allows changing the X
looping patterns with
minimal adjustments in
user code

Handles compile time X
defined storage order

Allows to adapt X Details, see section 4.5
for other technologies
without changing the user
code (e.g. switching to
OpenCL)

Allows arbitrary access X Hybrid Fortran 90
patterns in parallel initially designed for
domains ASUCA physical process

access patterns
(no offsets in I,J domains)

Allows multiple parallel X
regions per subroutine

Allows arbitrary CPU compilers ( X) X OpenACC: Only HMPP

Generated GPU syntax is a X OpenACC compiles to CUDA C
direct mapping of Fortran 90 (PGI), introduces new
user syntax functions for device kernels.

Hybrid Fortran 90 translates to
CUDA Fortran, syntax remains
easily readable.

Allows debugging of X
device data

Framework Sourcecode X
available

Table 3.1: Feature Comparison OpenACC vs. Hybrid Fortran 90



Chapter 4

Framework Implementation

In this chapter the design of the Hybrid Fortran 90 framework is presented
from the implementation perspective. It will discuss the architecture that has
been introduced for implementing the Hybrid Fortran 90 framework, in order
to achieve the goals and behaviour outlined in sec. 3.1 and sec. 3.2.

4.1 Overview and Build Workflow

The Hybrid Fortran 90 build system involves the following components (de-
picted in fig. 4.1):

project-dir/Makefile offers a convenient interface to the build system. Please
refer to appendix A.3 for the usage of this build interface. It performs the
following operations (assuming a clean rebuild):

1. Creates a build directory containing subdirectories for CPU and GPU
builds.

2. Copies all f90 and F90 source files (pure Fortran 90 sources with-
out Hybrid Fortran 90 directives) into the CPU and GPU build
directories using a flat file hierarchy.

3. Creates the callgraph xml file as well as the colored CPU and GPU
callgraph versions in the callgraph subdirectory within the build di-
rectory.

4. Creates the graphical callgraph representations in the callgraph direc-
tory using Graphviz libraries.

5. Converts each h90 source file into F90 source files, using different
implementations and callgraph colorings for the CPU and GPU case.
The F90 files are created in their respective build subdirectories (CPU
or GPU).

53
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Figure 4.1: Hybrid Fortran 90 Components and Information Flow.
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6. Copies the project-dir/buildtools/Makefile into the CPU and
GPU source directories.

7. Copies either project-dir/buildtools/MakesettingsCPU and
project-dir/buildtools/MakesettingsGPU into the respective build
subdirectory.

8. Executes make within the build subdirectories.

9. Installs the resulting executables into the test directory, using cpu or
gpu as a postfix in the executable filename.

project-dir/buildtools/Makefile defines the dependencies between the Fortran
90 and Hybrid Fortran 90 sources.

project-dir/buildtools/MakesettingsCPU defines the compiler name, com-
piler flags and linker flags for the CPU case.

project-dir/buildtools/MakesettingsGPU defines the compiler name, com-
piler flags and linker flags for the GPU case.

Figure 4.2: Screenshot of the Hybrid Fortran 90 build system in action.

4.2 Python Build Scripts

The following python command line interface programs are part of the Hybrid
Fortran 90 build system:



4. Framework Implementation 56

annotatedCallGraphFromH90SourceDir.py goes through all h90 files in
a given source directory and builds an xml file containing meta informa-
tion about that source tree. The extracted meta information includes the
callgraph visible from h90 files as well as a parsed version of the Hybrid
Fortran 90 directives inserted by the user. Figure 4.1 depicts this program
in node python 1.

loopAnalysisWithAnnotatedCallGraph.py takes the meta information xml
file from the previous script as its input and analyses the positioning of the
user defined parallel regions relative to all subprocedures. Depending on
its input arguments it performs this analysis for either the CPU or GPU
version of the program in order for the framework to support compile time
defined positioning of loops (kernel regions in the CUDA implementation).
Figure 4.1 depicts this program in node python 2.

generateF90fromH90AndAnalyzedCallGraph.py takes one h90 source file
as well as the analyzed meta information xml file as its inputs. It goes
through the source file line by line and rewrites it in order to create com-
patible versions for CPU and GPU. The following operations are most
essential to this module:

• Rewriting of parallel region definitions to conventional loops for the
CPU or CUDA Fortran kernels for the GPU.

• Mutation of declarations and accesses of domain dependant arrays
according to their position relative to the currently active parallel
region.

• Insertion of statements to copy array data to and from the device in
the GPU case.

Parallel domain dependant Figure 4.1 depicts this program in node python 3.

graphVizGraphWithAnalyzedCallGraph.py This program has been cre-
ated in order to make debugging easier and to give the user an overview
over the codebase and the involved parallel regions. It creates a graphical
representation of the call graph from the analyzed meta information. The
nodes in these call graphs are colored according to their relative position to
the parallel regions. Figure 4.3 shows a sample of such a programmatically
created call graph representation.

4.3 User Defined Files

The following files, depicted figure 4.1, are defined by the user:
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Figure 4.3: Condensed version of a simple callgraph, programmatically created
by graphVizGraphWithAnalyzedCallGraph.py.

h90 Fortran sources A source directory that contains Hybrid Fortran 90
files (h90 extension). It may also contain files with f90 or F90 extensions.
The source directory is by default located at path-to-project/source/*.

Makefile Used to define module dependencies. The Makefile is by default lo-
cated at path-to-project/buildtools/Makefile. Note: All source files
are being copied into flat source folders before being compiled - the build
system is therefore agnostic to the source directory structure implemented
by the framework user.

storage order.F90 This fortran file contains fortran preprocessor statements
in order to define the storage order for both CPU and GPU implementation.
This file is located at

path-to-project/source/

hybrid_fortran_commons/storage_order.F90.

4.4 Class Hierarchy

Figure 4.4 shows the classes created to implement the functionality described in
section 4.2.

H90Parser parses Hybrid Fortran 90 (h90) files. The parser uses a mixture
of state machine and regular expression design patterns. More specifically:
Each line is matched against a set of regular expressions. The set of regular
expressions being used is determined by a state machine and the outcomes
of the regular expression matches in turn determine the state transitions.
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Figure 4.4: Hybrid Fortran 90 Python Class Hierarchy.

See section 4.6 for a more detailed look at the Hybrid Fortran 90 parser
implementation.

H90XMLCallGraphGenerator (subclass of H90Parser) adds routine and
call nodes to a new or existing call graph xml document. This functionality
is used by
annotatedCallGraphFromH90SourceDir.py as described in section 4.2.

H90toF90Printer (subclass of H90Parser) prints a fortran 90 file in F90 for-
mat (including preprocessor statements) to POSIX standard output. The
configuration of this class includes

1. a Hybrid Fortran 90 file as its main input (inherited from the parent
class).

2. an xml callgraph including parsed Hybrid Fortran 90 directives and
the positions of parallel regions relative ot the routine nodes.

3. a FortranImplementation object which determines the parallel imple-
mentation.

generateF90fromH90AndAnalyzedCallGraph.py uses this functionality as
described in section 4.2.

BracketAnalyzer is used to determine whether a Fortran line ends with an
open bracket.

Symbol Stores array dimensions determined at the time of declaraton for later
use and includes functionality to print adapted declaration and access state-
ments.

FortranImplementation provides the concrete syntax for a standard Fortran
90 implementation of the Hybrid Fortran 90 program.
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CUDAFortranImplementation (subclass of FortranImplementation) pro-
vides the syntax for a CUDA Fortran implementation, thus handling

• the conversion of parallel region directives into CUDA kernels,

• the conversion of subroutines called by kernels into device subroutines,

• the copying of data from and to the device,

• the synchronization of threads after CUDA kernels have finished exe-
cuting (asynchronous execution of kernels is currently not supported)
and

• error handling.

DebugCUDAFortranImplementation (subclass of CUDAFortranImplementation)
extends the CUDA Fortran implementation to include print statements to
POSIX standard error output for all kernel parameters at a user defined
data point after the execution of the kernel. This functionality enables de-
bugging of device code since barebone CUDA Fortran currently does not
offer printing or debugging for code executed on the GPU. (There is an em-
ulation mode available which runs CUDA Fortran programs on the CPU,
however it has been found to diverge too much from the device version).

4.5 Switching Implementations

Figure 4.5 shows the the most important class member functions of
FortranImplementation classes and their role with respect to the example
shown earlier in section 3.2.3. Each of these methods takes context informa-
tion objects (for example a set of symbols that are referenced on this line, or
a parallel region template containing the information users have passed with
the directives) and returns strings that will be inserted at the indicated places
into Fortran 90 files by the H90toF90Printer class. Introducing a new under-
lying technology such as OpenCL (for GPU implementations) or OpenMP (for
CPU implementations) is as simple as writing a new FortranImplementation

subclass containing these functions.
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Figure 4.5: Class member functions of “FortranImplementation” classes (Exam-
ple shown with CUDAFortranImplementation).
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4.6 Hybrid Fortran 90 Parser

In order to interpret the directives introduced in cha 3 in the right context, it
was necessary to create the parser program outlined in this section. This parser is
used by the annotatedCallGraphFromH90SourceDir and
generateF90fromH90AndAnalyzedCallGraph.py python scripts (as described in
sec. 4.2) through subclasses.

This section gives a more detailed view of that parser. Figure 4.6 shows the
state machine pattern that has been used for the parser implementation.

Figure 4.6: H90 Parser State Machine.

The state machine design pattern being used here resembles that of a Mealy
machine. However, two changes have been applied to the Mealy machine prop-
erties:

1. The output is being detached from the machine. In other words the
H90Parser class does not produce any output itself. Its subclasses (as
described in sec. 4.4) are responsible for that task. This allows large parts
of the parser code to be reused for both python programs dealing with h90
source files as described in sec. 4.2
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2. A multiplexer is introduced as an additional element in order to reduce
the number of states (which matches the way code is being reused in the
actual implementation).



Chapter 5

Usability and Performance
Validation

In this chapter the performance and usability of the Hybrid Fortran 90 frame-
work will be verified. For this reason, a sample implementation with a subset
of the ASUCA physical core’s functionality has been implemented. Sec. 5.1 will
give an idea of the scope of this implementation. Sec. 5.2 will examine the usabil-
ity of Hybrid Fortran 90 compared to OpenACC when applied to the ASUCA
physical process. Sec. 5.3 will offer an examination of the performance of the
current CPU and GPU implementations that are being applied with Hybrid
Fortran 90 in comparison to the performance of OpenACC as well as code that
has been optimized specifically for the CPU.

5.1 Scope of Sample ASUCA Implementation

Figure 5.1: Overview CPU version of ASUCA sample implementation.
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Figure 5.2: Overview GPU version of ASUCA sample implementation.

Fig. 5.1 and fig. 5.1 show the scope of the sample ASUCA implementation1.
Essentially all routines necessary for the ASUCA radiation module have been
implemented with the exception of longwave radiation. These figures allow the
following observations:

1. The CPU “sees” three loops over the IJ domains (orange nodes) - two for
initialisations and one for the actual timestep computation.

2. The GPU on the other hand sees 23 loops over the IJ domains, i.e. 23
CUDA kernels are being created.

3. One kernel, which is part of the shortwave radiation module, is responsible
for over 93% of this implementation’s computation time when executed on
CPU and over 91% when executed on GPU.

4. The extent of the shortwave radiation module is indicated by the blue
marking. This module has also been benchmarked using OpenACC as well
as manual CUDA Fortran, as discussed in cha. 2, hence its performance
will be analyzed more closely in sec. 5.3).

5. The violet marking shows three additional scalar subroutines (compared
to the original code version) that have been introduced as a GPU opti-
mization. The performance impact of their inlining will also be discussed
in sec. 5.3.

1The automatical graphical callgraph representation has been used here. This can be created
by running “make graphs” in the project directory.
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5.2 Usability of Hybrid Fortran 90 versus PGI OpenACC

In order to examine the usability differences between Hybrid Fortran 90 and
PGI OpenACC2 we will examine the code changes necessary for the portation
of an example subroutine. The abssw subroutine from the shortwave submodule
has been chosen with the following criteria:

1. The data access patterns as well as the amount of computations per data
array is representative for the ASUCA physical processes.

2. The subroutine is large enough to show typical code complexity, yet is
small enough to be shown here.

Please note, however, that this subroutine’s execution time is a small fraction
of the radiation module’s overall execution time.

We define two classes of source code modifications as follows:

Green Code Modification :

1. New code lines.

2. Code edits using a trivial find/replace operation over the entire routine
(no regular expressions are necessary).

Yellow Code Modification :

1. Code edits inside existing code that cannot be implemented in one
simple find/replace operation, i.e. there are dependencies with the
existing code present.

The following listings are used to show the usability comparison:

• Lst. 5.1 shows the original abssw subroutine code for comparison.

• Lst. 5.2 shows the OpenACC version of the abssw subroutine with the
necessary edits marked according to the definition above.

• Lst. 5.3 shows the Hybrid Fortran 90 version of the abssw subroutine,
the edits marked in the same way.

2Because of difficult usability in the tested version of HMPP OpenACC and given time
constraints of this thesis, it has been decided not to pursue a HMPP implementation for the
shortwave submodule. See also sec. 2.6.1.
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5.2.1 Original CPU Optimized Version of Example Subroutine

Lst. 5.1 shows the original CPU optimized code version of the example subrou-
tine.

1 subroutine setabssw(czeta , pmlv , gdp , qlev , qmlv , ozvt , &

2 & sh2o , so3 , tco2 , to2n , to2s)

3 use pp_vardef

4 use pp_phys_const , only: grav

5 use rad_grid , only: kmax , kmp1

6 use rad_const , only: eps , eps_2

7 use rad_bnd_tbl , only: sblco2 , sblo2n , sblo2s

8 implicit none

9

10 real (8), intent(in) :: czeta

11 real (8), intent(in) :: pmlv(kmp1)

12 real (8), intent(in) :: gdp(kmax)

13 real (8), intent(in) :: qlev(kmax)

14 real (8), intent(in) :: qmlv(kmp1)

15 real (8), intent(in) :: ozvt(kmax) ! amount of ozone (cm-STP)

16 real (8), intent(out) :: sh2o(kmp1) ! amount of water vapor (g/cm

**2)

17 real (8), intent(out) :: so3(kmp1) !amount of ozone (g/cm**2)

18 real (8), intent(out) :: tco2(kmax) ! effective optical depth of

CO2

19 real (8), intent(out) :: to2n(kmax) ! effective optical depth of

O2 (NIR)

20 real (8), intent(out) :: to2s(kmax) ! effective optical depth of

O2 (SR)

21

22 !===== local variables =====

23 integer (4) :: k

24 integer (4) :: ip

25 integer (4) :: iz

26 real (8) :: wrk

27 real (8) :: wktr(kmp1)

28 real (8) :: pp

29 real (8) :: dp

30 real (8) :: zz

31 real (8) :: dz

32 real (8) :: tr00

33 real (8) :: tr01

34 real (8) :: wcmu

35 real (8), parameter :: eps_t = 1.d0 + eps_2

36 real (8), parameter :: pzx1 = 81.d0 - eps_2

37 real (8), parameter :: rho3stp = 2.142d-3

38

39 integer (4), save :: initial = 1

40 real (8), save :: gi05

41

42 if (initial == 1) then

43 gi05 = 5.d0 / grav

44 initial = 0

45 end if
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46

47 wktr(kmp1) = 1.d0 ! work for co2 abs. in NIR region

48 sh2o(kmp1) = 1.d0 ! work for o2 abs. in NIR

49 so3(kmp1) = 1.d0 ! work for o2 abs. in S-R band

50

51 if (cmu <= 0.d0) then

52 wcmu = eps

53 else

54 wcmu = czeta

55 end if

56 wrk = 81.d0 + 40.d0 * log10(wcmu)

57

58 do k = 1, kmax

59 pp = 21.d0 + 20.d0 * log10(pmlv(k))

60 if (pp < eps_t) pp = eps_t

61 if (pp > pzx1) pp = pzx1

62 ip = int(pp)

63 dp = pp - ip

64 zz = wrk

65 if (zz < eps_t) zz = eps_t

66 if (zz > pzx1) zz = pzx1

67 iz = int(zz)

68 dz = zz - iz

69 !(co2 ,NIR)

70 tr00 = (1.d0 - dz) * sblco2(ip, iz) + dz * sblco2(ip, iz + 1)

71 tr01 = (1.d0 - dz) * sblco2(ip + 1, iz) + dz * sblco2(ip + 1,

iz + 1)

72 wktr(k) = (1.d0 - dp) * tr00 + dp * tr01

73 !(o2 ,NIR)

74 tr00 = (1.d0 - dz) * sblo2n(ip, iz) + dz * sblo2n(ip, iz + 1)

75 tr01 = (1.d0 - dz) * sblo2n(ip + 1, iz) + dz * sblo2n(ip + 1,

iz + 1)

76 sh2o(k) = (1.d0 - dp) * tr00 + dp * tr01

77 !(o2 ,Schuman -Runge band)

78 tr00 = (1.d0 - dz) * sblo2s(ip, iz) + dz * sblo2s(ip, iz + 1)

79 tr01 = (1.d0 - dz) * sblo2s(ip + 1, iz) + dz * sblo2s(ip + 1,

iz + 1)

80 so3(k) = (1.d0 - dp) * tr00 + dp * tr01

81 end do

82

83 !((CO2 and O2 ;optical depth))

84 do k = 1, kmax

85 tco2(k) = - czeta * log(wktr(k) / wktr(k + 1))

86 to2n(k) = - czeta * log(sh2o(k) / sh2o(k + 1))

87 to2s(k) = - czeta * log(so3(k) / so3(k + 1))

88 end do

89

90 !((O3 ,unscaled))

91 do k = 1, kmax

92 so3(k) = rho3stp * ozvt(k)

93 end do

94

95 !((H2O ,unscaled))

96 do k = 1, kmax
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97 sh2o(k) = gi05 * gdp(k) * (qlev(k) + 0.5d0 * (qmlv(k) + &

98 & qmlv(k + 1)))

99 end do

100

101 return

102 end subroutine setabssw

Listing 5.1: Example ASUCA subroutine (original CPU optimized version).

5.2.2 OpenACC Version of Example Subroutine

Lst. 5.2 shows the OpenACC code version of the example subroutine.

Notes:

1. Since GPU implementation requires the parallelizable loops to be close to
the computations, the IJ loops have been introduced here. In the original
code version these loops are implemented in the main subroutine.

2. Many small edits need to be introduced for array declarations and accesses
with dependencies in the IJ domain. These edits have been classified as
“yellow”, since they require a certain amount of care. Experience has shown
that the safest way to implement these changes is a find/replace operation
using regular expressions or a series of simple find/replace operations for
every IJ dependant array for every k access pattern (i.e. k, k-1, k+1).

3. DOM and AT are preprocessor macros that define the storage order, i.e. the
output of these macros equals the input strings, comma separated and
reordered according to the definitions in storage_order.F90.

1 subroutine setabssw(nx , ny , czeta , pmlv , gdp , qlev , qmlv , ozvt , &

2 & sh2o , so3 , tco2 , to2n , to2s)

3 use pp_vardef

4 use pp_phys_const , only: grav

5 use rad_grid , only: kmax , kmp1

6 use rad_const , only: eps , eps_2

7 use rad_bnd_tbl , only: sblco2 , sblo2n , sblo2s

8 implicit none

9

10 integer (4), intent(in) :: nx , ny

11

12 real (8), intent(in) :: czeta(nx, ny)

13 real (8), intent(in) :: pmlv(DOM(nx, ny, kmp1))

14 real (8), intent(in) :: gdp(DOM(nx, ny, kmax))

15 real (8), intent(in) :: qlev(kmax)

16 real (8), intent(in) :: qmlv(kmp1)

17 real (8), intent(in) :: ozvt(kmax) ! amount of ozone (cm-STP)

18 real (8), intent(out) :: sh2o(DOM(nx, ny, kmp1)) ! amount of water

vapor (g/cm**2)
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19 real (8), intent(out) :: so3(DOM(nx, ny, kmp1)) ! amount of ozone

(g/cm**2)

20 real (8), intent(out) :: tco2(DOM(nx, ny, kmax)) ! effective

optical depth of CO2

21 real (8), intent(out) :: to2n(DOM(nx, ny, kmax)) ! effective

optical depth of O2 (NIR)

22 real (8), intent(out) :: to2s(DOM(nx, ny, kmax)) ! effective

optical depth of O2 (SR)

23

24 !===== local variables =====

25 integer (4) :: i, j

26 integer (4) :: k

27 integer (4) :: ip

28 integer (4) :: iz

29 real (8) :: wrk

30 real (8) :: wktr(DOM(nx, ny, kmp1))

31 real (8) :: pp

32 real (8) :: dp

33 real (8) :: zz

34 real (8) :: dz

35 real (8) :: tr00

36 real (8) :: tr01

37 real (8) :: wcmu

38 real (8), parameter :: eps_t = 1.d0 + eps_2

39 real (8), parameter :: pzx1 = 81.d0 - eps_2

40 real (8), parameter :: rho3stp = 2.142d-3

41

42 !Note: Initialisation of static variables has been moved to init

phase.

43

44 !===== implementation =====

45 !$acc data &

46 !$acc copyin(sblco2 , sblo2n , sblo2s) &

47 !$acc copyin(pmlv , qlev , qmlv , ozvt) &

48 !$acc present(sh2o , so3 , tco2 , to2n , to2s , czeta , gdp) &

49 !$acc create(wktr)

50 !$acc kernels

51 !$acc loop

52 do j = 1, ny

53 !$acc loop

54 do i = 1, nx

55 wktr(AT(i,j,kmp1)) = 1.d0 ! work for co2 abs. in NIR region

56 sh2o(AT(i,j,kmp1)) = 1.d0 ! work for o2 abs. in NIR

57 so3(AT(i,j,kmp1)) = 1.d0 ! work for o2 abs. in S-R band

58

59 if (czeta(i, j) <= 0.d0) then

60 wcmu = 1.d-6

61 else

62 wcmu = czeta(i, j)

63 end if

64 wrk = 81.d0 + 40.d0 * log10(wcmu)

65

66 do k = 1, kmax

67 pp = 21.d0 + 20.d0 * log10(pmlv(AT(i,j,k)))
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68 if (pp < eps_t) pp = eps_t

69 if (pp > pzx1) pp = pzx1

70 ip = int(pp)

71 dp = pp - ip

72 zz = wrk

73 if (zz < eps_t) zz = eps_t

74 if (zz > pzx1) zz = pzx1

75 iz = int(zz)

76 dz = zz - iz

77 !(co2 ,NIR)

78 tr00 = (1.d0 - dz) * sblco2(ip, iz) + dz * sblco2(ip, iz +

1)

79 tr01 = (1.d0 - dz) * sblco2(ip + 1, iz) + dz * sblco2(ip +

1, iz + 1)

80 wktr(AT(i,j,k)) = (1.d0 - dp) * tr00 + dp * tr01

81 !(o2,NIR)

82 tr00 = (1.d0 - dz) * sblo2n(ip, iz) + dz * sblo2n(ip, iz +

1)

83 tr01 = (1.d0 - dz) * sblo2n(ip + 1, iz) + dz * sblo2n(ip +

1, iz + 1)

84 sh2o(AT(i,j,k)) = (1.d0 - dp) * tr00 + dp * tr01

85 !(o2,Schuman -Runge band)

86 tr00 = (1.d0 - dz) * sblo2s(ip, iz) + dz * sblo2s(ip, iz +

1)

87 tr01 = (1.d0 - dz) * sblo2s(ip + 1, iz) + dz * sblo2s(ip +

1, iz + 1)

88 so3(AT(i,j,k)) = (1.d0 - dp) * tr00 + dp * tr01

89 end do

90

91 !((CO2 and O2 ;optical depth))

92 do k = 1, kmax

93 tco2(AT(i,j,k)) = - czeta(i, j) * log(wktr(AT(i,j,k)) /

wktr(AT(i,j,k + 1)))

94 to2n(AT(i,j,k)) = - czeta(i, j) * log(sh2o(AT(i,j,k)) /

sh2o(AT(i,j,k + 1)))

95 to2s(AT(i,j,k)) = - czeta(i, j) * log(so3(AT(i,j,k)) / so3(

AT(i,j,k + 1)))

96 end do

97

98 !((O3 ,unscaled))

99 do k = 1, kmax

100 so3(AT(i,j,k)) = rho3stp * ozvt(k)

101 end do

102

103 !((H2O ,unscaled))

104 do k = 1, kmax

105 sh2o(AT(i,j,k)) = gi05 * gdp(AT(i,j,k)) * (qlev(k) + 0.5d0 * (

qmlv(k) + &

106 & qmlv(k + 1)))

107 end do

108 end do

109 end do

110 !$acc end kernels

111 !$acc end data
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112

113 return

114 end subroutine setabssw

Listing 5.2: Example ASUCA kernel subroutine in OpenACC

5.2.3 Hybrid Fortran 90 Version of Example Subroutine

Lst. 5.3 shows the Hybrid Fortran 90 code version of the example subroutine.

Notes:

1. Like in the OpenACC version, the IJ loops are introduced here, however
in an abstracted way such that they are only applied to the GPU imple-
mentation, using the @parallelRegion{appliesTo(GPU),..} directive.

2. The small “yellow” edits that need to be done manually in the OpenACC
version are applied automatically by the framework here.

3. Compared to the OpenACC version, a higher number of “green” edits are
required here. 14 of these edits can be performed using only two find-
/replace operations (kmax to KMAX_CONST and kmp1 to KMP1_CONST). The
reason for these changes is that external module symbols cannot be ac-
cessed directly in kernel subroutines with Hybrid Fortran 90 in its cur-
rent state. They would have to be passed as input parameters. In this case
it was chosen to use preprocessor constants instead in order to potentially
save registers on the GPU.

4. The only place where “yellow” edits are still needed is in the input pa-
rameter definition at the beginning of the subroutine. In other words, the
number of “yellow” edits is constant here, while in the OpenACC imple-
mentation this grows with the size of the subroutine.

5. The application of the storage order macros DOM and AT has been abstracted
by passing them to the @domainDependant directives.

1 subroutine setabssw(nx , ny , grav , eps , eps_2 , gi05 , &

2 & sblco2 , sblo2n , sblo2s , czeta , pmlv , gdp , qlev , qmlv , ozvt ,

wktr, &

3 & sh2o , so3 , tco2 , to2n , to2s)

4 use pp_vardef

5 implicit none

6 integer (4), intent(in) :: nx, ny

7 real (8), intent(in) :: grav , eps , eps_2 , gi05

8 real (8), intent(in), dimension (81, 81) :: sblco2 , &

9 & sblo2n , sblo2s

10 real (8), intent(in) :: czeta

11 real (8), intent(in) :: pmlv(KMP1_CONST)
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12 real (8), intent(in) :: gdp(KMAX_CONST)

13 real (8), intent(in) :: qlev(KMAX_CONST)

14 real (8), intent(in) :: qmlv(KMP1_CONST)

15 real (8), intent(in) :: ozvt(KMAX_CONST) ! amount of ozone (cm-STP

)

16 real (8), intent(inout) :: wktr(KMP1_CONST)

17 real (8), intent(out) :: sh2o(KMP1_CONST) ! amount of water vapor

(g/cm**2)

18 real (8), intent(out) :: so3 (KMP1_CONST) ! amount of ozone (g/cm

**2)

19 real (8), intent(out) :: tco2(KMAX_CONST) ! effective optical

depth of CO2

20 real (8), intent(out) :: to2n(KMAX_CONST) ! effective optical

depth of O2 (NIR)

21 real (8), intent(out) :: to2s(KMAX_CONST) ! effective optical

depth of O2 (SR)

22

23 !===== local variables =====

24 integer (4) :: k

25 integer (4) :: ip

26 integer (4) :: iz

27 real (8) :: wrk

28 real (8) :: pp

29 real (8) :: dp

30 real (8) :: zz

31 real (8) :: dz

32 real (8) :: tr00

33 real (8) :: tr01

34 real (8) :: wcmu

35 real (8), parameter :: eps_t = 1.d0 + eps_2

36 real (8), parameter :: pzx1 = 81.d0 - eps_2

37 real (8), parameter :: rho3stp = 2.142d-3

38

39 @domainDependant {}

40 nx , ny , grav , eps , eps_2 , gi05

41 @end domainDependant

42

43 @domainDependant {domName(i, j), domSize(nx , ny)}

44 czeta

45 @end domainDependant

46

47 @domainDependant {domName(i, j, vertical), domSize(nx , ny ,

KMAX_CONST), domPP(DOM), accPP(AT)}

48 gdp , qlev , ozvt , tco2 , to2n , to2s

49 @end domainDependant

50

51 @domainDependant {domName(i, j, vertical), domSize(nx , ny ,

KMP1_CONST), domPP(DOM), accPP(AT)}

52 pmlv , qmlv , sh2o , so3 , wktr

53 @end domainDependant

54

55 @domainDependant{domName(bnd_tbl1 , bnd_tbl2), domSize (81, 81)}

56 sblco2 , sblo2n , sblo2s

57 @end domainDependant
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58

59 !===== implementation =====

60 @parallelRegion{appliesTo(GPU), domName(i, j), domSize(nx , ny)}

61

62 !Note: Initialisation of static variables has been moved to init

phase.

63

64 wktr(KMP1_CONST) = 1.d0 ! work for co2 abs. in NIR region

65 sh2o(KMP1_CONST) = 1.d0 ! work for o2 abs. in NIR

66 so3(KMP1_CONST) = 1.d0 ! work for o2 abs. in S-R band

67

68 if (czeta <= 0.d0) then

69 wcmu = 1.d-6

70 else

71 wcmu = czeta

72 end if

73 wrk = 81.d0 + 40.d0 * log10(wcmu)

74

75 do k = 1, KMAX_CONST

76 pp = 21.d0 + 20.d0 * log10(pmlv(k))

77 if (pp < eps_t) pp = eps_t

78 if (pp > pzx1) pp = pzx1

79 ip = int(pp)

80 dp = pp - ip

81 zz = wrk

82 if (zz < eps_t) zz = eps_t

83 if (zz > pzx1) zz = pzx1

84 iz = int(zz)

85 dz = zz - iz

86 !(co2 ,NIR)

87 tr00 = (1.d0 - dz) * sblco2(ip, iz) + dz * sblco2(ip, iz + 1)

88 tr01 = (1.d0 - dz) * sblco2(ip + 1, iz) + dz * sblco2(ip + 1,

iz + 1)

89 wktr(k) = (1.d0 - dp) * tr00 + dp * tr01

90 !(o2 ,NIR)

91 tr00 = (1.d0 - dz) * sblo2n(ip, iz) + dz * sblo2n(ip, iz + 1)

92 tr01 = (1.d0 - dz) * sblo2n(ip + 1, iz) + dz * sblo2n(ip + 1,

iz + 1)

93 sh2o(k) = (1.d0 - dp) * tr00 + dp * tr01

94 !(o2 ,Schuman -Runge band)

95 tr00 = (1.d0 - dz) * sblo2s(ip, iz) + dz * sblo2s(ip, iz + 1)

96 tr01 = (1.d0 - dz) * sblo2s(ip + 1, iz) + dz * sblo2s(ip + 1,

iz + 1)

97 so3(k) = (1.d0 - dp) * tr00 + dp * tr01

98 end do

99

100 !((CO2 and O2 ;optical depth))

101 do k = 1, KMAX_CONST

102 tco2(k) = - czeta * log(wktr(k) / wktr(k + 1))

103 to2n(k) = - czeta * log(sh2o(k) / sh2o(k + 1))

104 to2s(k) = - czeta * log(so3(k) / so3(k + 1))

105 end do

106

107 !((O3 ,unscaled))
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108 do k = 1, KMAX_CONST

109 so3(k) = rho3stp * ozvt(k)

110 end do

111

112 !((H2O ,unscaled))

113 do k = 1, KMAX_CONST

114 sh2o(k) = gi05 * gdp(k) * (qlev(k) + 0.5d0 * (qmlv(k) + &

115 & qmlv(k + 1)))

116 end do

117 @end parallelRegion

118

119 return

120 end subroutine setabssw

Listing 5.3: Example ASUCA kernel subroutine in Hybrid Fortran 90

5.2.4 Usability Results

Figure 5.3: Class and number of edits compared to original CPU code for “setab-
ssw” kernel.

Fig. 5.3 shows the results for the usability examination of sec. 5.2. Even
though counting two find/replace operations as 14 edits, the Hybrid Fortran
90 version still has a lower total number of edits than the OpenACC version. We
can also see that the majority of code modifications are of the non problematic
“green” kind in the Hybrid Fortran 90 case, while in the OpenACC version
the majority of edits need to be applied more carefully.

We conclude that Hybrid Fortran 90 is more easily applicable to the
ASUCA physical core and it bears less potential for errors than OpenACC -
an important aspect to keep in mind when doing GPU portations, since debug-
ging on the GPU is not as straight forward as on the CPU, i.e. debugging for
GPU has a higher cost in developer time.
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5.3 Performance of Hybrid Fortran 90

In this section the performance of Hybrid Fortran 90 implemented code will
be examined. The shortwave radiation module has been reused for that purpose,
since benchmark implementations were already done using pure CUDA Fortran
as well as OpenACC (see sec. 2.5.3). In sec. 5.3.1 we will examine the CPU
performance, while sec. 5.3.2 will show the GPU performance. All performance
measurements have been repeated five times, the results shown here are averaged
over those five runs. Again, only computation time is shown here, no host-to-
device data copy time is being evaluated since the host-to-device bus performance
is not expected to be relevant for the ASUCA GPU implementation.

5.3.1 CPU Performance Comparison for Shortwave Radiation

In this section we compare the CPU performance of the following implementa-
tions of the shortwave radiation (see also sec. 2.7.4):

1. Original CPU optimized code.

2. OpenACC implementation compiled for CPU execution.

3. Preprocessed CUDA Fortran implementation compiled for CPU execution.

4. Hybrid Fortran 90 implementation compiled for CPU execution.

These implementations have been compiled using ifort -fast -openmp3.
The OpenACC CPU implementation has additionally been compiled using pgf90,
since it has been found to perform poorly using the OpenACC agnostic ifort

compiler. The pgf90 compiler has for that reason been used with the following
parameters4:

-Mconcur for enabling OpenMP multicore support.

-Mvect=sse for enabling SSE vectorization support.

-Minline=levels:5,reshape for enabling in-module-inlining for up to 5 levels
including array parameter reshaping.

-O4 for enabling the most aggressive compiler optimizations.

3The Intel compiler tends to be very aggressive using the “fast” setting. This already enables
the highest optimization settings as well as SSE vectorization. In general this has been found
to perform well on the Intel hardware architecture used on TSUBAME 2.0.

4These settings have been carefully tested to perform well. Compiling the test module simply
using “pgf90 -fast -O4” performs around 30% worse than the settings shown here.
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-r8 for treating real variables using double precision by default.

A few notes on the test settings:

1. Concerning the multicore measurements: Since the parallel loops over IJ

are placed outside the radiation module for the original code version as
well as the Hybrid Fortran 90 CPU implementation, the execution time
measurement for one submodule becomes non trivial in that case (thread
synchronization would have to be used for the counters, which could have
negative impact on the execution time itself). For that reason we have
used the following approximation to measure the execution time of the
shortwave radiation module in that case:

(a) The ratio of shortwave radiation module execution time versus the
overall test program execution time has been measured for all domain
sizes in single core execution. These ratios have been found to be
between 92% and 95% for all domain sizes for all test versions.

(b) These ratios have then been applied to the overall execution time in
case of multicore execution.

2. KIJ storage order has been used for CPU execution for all test cases.

3. Double precision arithmetics have been used for the computations.

Fig. 5.4 shows the single core execution time results on CPU. The following
performance characteristics can be examined from these results:

1. As expected the execution time is proportional to the area of the IJ domain.

2. The shortwave radiation module performance has been found to be heavily
dependant on the inlining method being used. As a GPU optimization
some scalar subroutines have been introduced (see fig. 5.1 in sec. 5.1) for
the Hybrid Fortran 90 version. Trying to inline these with the ifort

compiler has proven to be difficult, hence a manually inlined version was
implemented as well, essentially recreating the same code as in the original
version. Doing so lead to an improvement of factor 1.8 in CPU perfor-
mance, giving the Hybrid Fortran 90 version almost the same perfor-
mance characteristics as the original CPU version.

3. Curiously, ifort compiled OpenACC code performs more than 200% worse
than the pgf90 compiled version. One could suspect that ifort is more de-
pendant on the loop structure being optimized for CPU. In all preliminary
tests for the original code version as well as Hybrid Fortran 90 CPU im-
plementations, ifort has performed at least 30% better than pgf90. For
the following tests we therefore concentrated on pgf90 for the OpenACC
CPU implementations while keeping ifort for all other CPU implementa-
tions.
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Figure 5.4: Single core CPU Execution time results for the “radsw” subprocedure
grouped by grid sizes.
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4. The OpenACC version has also continually been optimized, both through
compiler settings and preprocessor directives for the reordering of the inner
loops of the radsw subroutine (i.e. the order of the spectral loop and the
parallel IJ loops has been optimized for CPU as well as GPU). Also, the
OpenACC version is already fully inlined, which has been found to be
optimal for CPU execution. Nevertheless we were unable to come close to
the original CPU execution times using the OpenACC program structure.
This was expected, however, because of the loop structure target conflict
explained in sec. 2.5.3.

Figure 5.5: Six core CPU Execution time results for the “radsw” subprocedure
grouped by grid sizes.

Fig. 5.5 shows the six core execution time results on CPU. For the multicore
tests we have used the best performing version of both Hybrid Fortran 90 and
OpenACC. In case of OpenACC, the OpenMP directives for multicore execution
have been added at the same place as the OpenACC accelerator directives (which
are omitted for CPU compilation). We can see that this leads to very similar
results as the single core case shown before - however the differences are less
pronounced. This is to be expected since the shortwave radiation submodule is
less computationally bound on multicore execution in comparison to single core
execution, which hides computational inefficiencies (see also sec. 2.5.3). The
performance loss graphs in fig. 5.6 and fig. 5.7 also show this characteristic.

Overall it becomes clear that complex OpenACC code portations can at best
be expected to loose between 30% and 60% when executed on CPU, even after
optimizations. The Hybrid Fortran 90 version that has been automatically
adjusted for the CPU, remarkably only shows 5% loss at best, 16% at the most.
In other words, using Hybrid Fortran 90 instead of OpenACC has been found
to result in an improvement from 26% up to 50% in CPU execution time - a
remarkable achievement.
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Figure 5.6: Performance loss for the “radsw” kernel on single core CPU (com-
pared to original CPU code compiled with “ifort”) grouped by grid sizes.

Figure 5.7: Performance loss for the “radsw” kernel on six core CPU (compared
to original CPU code compiled with “ifort”) grouped by grid sizes.
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5.3.2 GPU Performance Comparison for Shortwave Radiation

In terms of GPU performance we compare the Hybrid Fortran 90 version
with the PGI OpenACC version as well as a preliminarily implemented CUDA
Fortran version referred to as “Preprocessed CUDA Fortran”, see also sec. 2.7.4.

Some notes on the settings:

1. IJK storage order has been used throughout here, which is optimal for GPU
execution.

2. The same compiler settings as introduced in sec. 2.2.1 have been used for
the OpenACC version.

3. The same compiler settings as introduced in sec. 2.2.3 have been used for
the CUDA Fortran and Hybrid Fortran 90 GPU versions.

4. As all other tests with shortwave radiation, this comparison has been done
using double precision arithmetics.

Figure 5.8: GPU Execution time results for the “radsw” kernel grouped by grid
sizes.
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Fig. 5.8 shows the execution time results on GPU. We can make the following
observations:

1. From 32× 32 to 128× 128 IJ domain sizes the execution time scales under
proportional to the IJ area. This is an expected behaviour on NVIDIA
GPUs as their scheduler can make better use of the available bandwidth as
well as computational ressources with a higher number of threads. Between
128×128 and 256×256 the performance appears to saturate. Fig. 5.9 shows
this behaviour more clearly in terms of speedup.

2. Hybrid Fortran 90 with manual inlining shows the same GPU perfor-
mance as the PGI OpenACC version - an interesting result, since those two
versions are very similar in their code structure in terms of loop positioning.
This shows that PGI OpenACC performs well on the GPU for bandwidth
limited problems (which holds true for shortwave radiation executed on
GPU, see also sec. 2.5.3).

3. Using the new scalar subroutines inside the radsw kernel and letting them
be inlined by nvcc (which is at the base of the CUDA Fortran compiler
being used), the Hybrid Fortran 90 version is able to gain another 14%.
We expect different register allocation behaviour on the GPU depending
on code inlining to be the reason for this characteristic. We have therefore
introduced preprocessor directives to switch between manual inlining and
compiler inlining depending on whether the code is compiled for GPU or
CPU - we consider this to be still a fair comparison however, since the
OpenACC code has been optimized using preprocessor directives as well.

4. Compared to the hand-implemented CUDA Fortran version, the Hybrid
Fortran 90 gains 8% in speed. We expect a reduction in branches in-
side the radsw kernel to be the reason - this optimization has been found
while implementing the Hybrid Fortran 90 version thanks to increased
familiarity with the codebase.

5. In sec. 2.4.2 a speedup of 11.1× versus single core and 5.3× versus six core
CPU execution was estimated for memory bandwidth limited problems.
The best results (by the Hybrid Fortran 90 GPU version) shown in
fig. 5.9 and fig. 5.10 are all within 15% of those values for the saturated
case, even within 1.5% in the speedup versus single core execution. This
shows that

(a) The hardware model introduced in sec. 2.4.2 is very reasonable for
memory bandwidth limited problems.

(b) The Hybrid Fortran 90 GPU implementation for shortwave ra-
diation is close to the optimum performance that can be achieved,
validating the capabilities of this framework.
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Overall the GPU performance of the compared approaches is relatively sim-
ilar in this bandwidth limited case. CUDA Fortran implementations (both im-
plemented by hand and implemented automatically by using the new Hybrid
Fortran 90 framework) do perform between 5% and 15% better than PGI
OpenACC - a similar result has been found for the simple 3D Diffusion test
shown in sec. 2.7.2 where PGI OpenACC performed on par with CUDA C as
well. For computationally bound problems however we would expect a much
more significant advantage for CUDA code versions based on the results of the
Particle Push, shown in sec. 2.7.3, where CUDA C was found to perform 2.3×
faster than PGI OpenACC.

Figure 5.9: GPU Speedup results for the “radsw” kernel compared to single core
CPU (ifort) grouped by grid sizes.

Figure 5.10: GPU Speedup results for the “radsw” kernel compared to six core
CPU (ifort) grouped by grid sizes.



Chapter 6

Achievements and Future
Work

In this chapter the achievements of this thesis will be laid out (sec. 6.1) and
possible future improvements will be listed (sec. 6.2).

6.1 Achievements

By implementing the Hybrid Fortran 90 framework as well as validating its
usability and performance properties through a number of the ASUCA physical
core’s submodules, the goals of this thesis, as presented in sec. 1.3, have been
achieved. Namely, using this new framework, the physical core of ASUCA can
be ported to GPU while

1. keeping a familiar development for the JMA researchers, i.e. Fortran 90.

2. using a well manageable amount of code modifications.

3. keeping the code executable on the CPU.

4. having the potential for optimal GPU performance.

5. keeping the CPU performance on par with the original CPU optimized
code base.

We have also shown that Hybrid Fortran 90 is the superior choice for the
ASUCA physical processes compared to OpenACC in its current stage, in terms
of usability (sec. 5.2), performance (sec. 5.3) and flexibility (sec. 3.5).

83
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6.2 Future Work

There are three major areas where Hybrid Fortran 90 can be improved in the
future:

General Stencil Compatibility While the framework in its current form is
suitable for JMA’s needs when it comes to the physical core of ASUCA, it
will have to be extended for general stencil computation compatibility, i.e.
it will have to support stencil accesses with offsets in the parallel domains.
For this matter a third directive will have to be introduced in order to define
the offsets per array access. As an example, myArray(i+1,j,k) will then
become myArray@{i+1,j}(k) in order to keep the IJ domain dependencies
abstracted from the user code. For the CPU version, the “vertical”1 arrays
at offset positions could be passed as additional, automatically introduced
input parameters, thus enabling automatic optimization for CPU caches
through outside loops even with more complex memory access patterns.

Automatic Array Allocation and Parameter Mapping Currently the Hy-
brid Fortran 90 framework shares many code restrictions with CUDA
Fortran for the kernel and inside kernel subroutines, most prominently the
inability to allocate local arrays. Lifting this restriction by implementing
automatic array allocation in the wrapper routine and passing these arrays
to the kernel, would reduce the portation cost to Hybrid Fortran 90 even
further.

Support for More Implementations The flexibility of this framework will
become even clearer, when OpenCL is supported as an alternative GPU
implementation, thus giving the option to change accelerator hardware
vendors. We expect OpenCL support to be achievable with low implemen-
tation cost because of the abstracted nature of the implementation, shown
in sec. 4.4. In sec. 4.5 a blueprint for such an adaptation has already been
layed out.

1as in orthogonal to the parallel domains, in this example the “K” dimension.
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Appendix A

Usage of the Hybrid Fortran
90 Framework

This appendix is intended to give the informations necessary for using the Hy-
brid Fortran 90 framework.

A.1 Framework Dependencies

Hybrid Fortran 90 requires the following software components:

1. Any Fortran 90 CPU compiler.

2. For GPU compilation: PGI (pgf90) with CUDA Fortran support.

3. Python v2.6 or compatible.

4. GNU Make.

5. A POSIX compatible operating system.

6. For the graphical callgraph representation using make graphs: “pydot”
python library1 as well as the “Graphviz” program package2.

A.2 User Defined Components

The following files displayed in figure 4.1 are defined by the user:

h90 Fortran sources A source directory that contains Hybrid Fortran 90 files
(h90 extension). It may also contain files with f90 or F90 extensions. The
source directory is by default located at path-to-project/source/*.

1http://code.google.com/p/pydot/
2http://code.google.com/p/pydot/

A-1
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Makefile Used to define module dependencies. The Makefile is by default lo-
cated at path-to-project/buildtools/Makefile. Note: All source files
are being copied into flat source folders before being compiled - the build
system is therefore source directory structure agnostic, i.e. files can be
placed into arbitrary subdirectores below the source directory.

MakesettingsCPU CPU compiler settings are specified in MakesettingsCPU,
located at path-to-project/buildtools/.

MakesettingsGPU GPU compiler settings are specified in MakesettingsGPU,
located at path-to-project/buildtools/.

storage order.F90 This fortran file contains fortran preprocessor statements
in order to define the storage order for both CPU and GPU implementation.

A.3 Build Interface

make builds both cpu and gpu versions of the codebase situated in
path-to-project/source/*.

make cpu builds the cpu version of the codebase situated in path-to-project/source/*.

make gpu builds the gpu version of the codebase situated in path-to-project/source/*.

make install builds both cpu and gpu versions of the codebase situated in
path-to-project/source/* and installs the executables into the test folder
defined in path-to-project/buildtools/MakesettingsGeneral.

make install cpu Like make install, but it performs these steps only for the
cpu version.

make install gpu Like make install, but it performs these steps only for the
gpu version.

make TARGETS DEBUG=1 builds TARGETS in debug mode (use any of
the targets defined above). Uses the DebugCUDAFortranImplementation

in case of GPU compilation, which prints predefined data points for every
kernel parameter after every kernel execution.

make graphs creates the graphical callgraph representations in the
path-to-project/build/callgraphs/ directory.

A.4 Test Interface

The following files are part of the sample test interface provided with Hybrid
Fortran 90:
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accuracy.py Compares a Fortran 90 .dat file with a reference .dat file. Endi-
anness and number of bytes per floating point value can be specified using
command line parameters, see --help for usage.

allAccuracy.sh Compares all Fortran 90 .dat files in the ./out directory with
a specified reference directory.

runTestWithArchitecture.sh Use cpu or gpu as command line parameter
for running tests over multiple domain sizes for either the CPU or GPU
version. This script is intended to be edited in order to suit the specific
use case.

runTests.sh Edit this file in order to call the runTestWithArchitecture.sh

with the architectures you would like to test as well as appropriate com-
mand line definitions for logging the results.

A.5 Migration to Hybrid Fortran 90

Assuming that the starting point is a Fortran 90 source code, use the following
guidance in order to port your codebase to Hybrid Fortran 90:

1. Make a renamed copy of the example directory.

2. Make sure it compiles on your system by typing make install. Otherwise
it is likely that some dependencies are missing, please reconsider section
A.1.

3. Delete source/main.h90 and copy in your sourcecode. Please note that
all loops that are to be run in parallel and their entire callgraph should
be visible to the compiler in the source subdirectory. Your sourcecode
may be in an arbitrary subdirectory structure below the source directory
and may consist of f90 and F90 files. The buildsystem will find all your
sourcefiles recursively and copy them into the respective build directory in
a flat hierarchy.

4. Adjust buildtools/MakesettingsGeneral - the configuration options should
be self explanatory.

5. Adjust buildtools/Makefile by adding your dependencies. See the asuca-pp’s
Makefile as an example. If your previous build system was already built on
GNU Make it should be possible to copy in your dependency definitions with-
out change. If you would like to exclude some files or folders in your source
directory from compilation (in order to integrate modules one by one), you
can do this by editing the EXCEPTIONS variable in MakesettingsGeneral.
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6. Adjust the FFLAGS and LDFLAGS variables in buildtools/MakesettingsGPU

and buildtools/MakesettingsCPU to reflect the compiler and linker op-
tions that are needed to compile your codebase. Please note that currently
only CUDA Fortran with the Portland Group compiler pgf90 is supported
and tested as the GPU implementation.

7. Run make clean; make install and run your program in order to test
whether the integration of your sourcecode into the Hybrid Fortran 90
build system has been successful. It should create the cpu and gpu ex-
ecutable versions of your program in the test directory, however the gpu
version will not run on the GPU yet, since no directives have been defined
so far.

8. Integrate a test system. You can use the test scripts that have been pro-
vided with this framework (see sec. A.4) or use any other test system. If
you would like to integrate the provided system, please copy in the four
test scripts in the locations described in sec. A.4 and do the following:

(a) Edit runTestWithArchitecture.sh in order to reflect the runtime
parameters of your executable.

(b) Have a look at runTests.sh for choosing the architectures you would
like to run the tests for (cpu and gpu or only one of those architec-
tures). For the moment it is best to comment out the gpu test, since
the code will first be adapted for cpu architecture only.

(c) Add calls to the helper_functions module procedures write2DToFile
and write3DToFile to your program to be tested in order to write
your data to the .dat files in the test\out folder. Have a look at
the asuca-pp/source/test/rad_pp/main_pp.h90 file as an example.
You may choose any filename for the .dat files, the allAccuracy.py

script will find them automatically in the test\out folder.

(d) Create the test/out folder.

(e) Compile (make install in project directory) and run your program
again to make sure the files are being created. Make sure that they
actually contain data, for example by checking the file size.

(f) Repeat steps 8c, 8d, 8e in your reference source code.

(g) Copy the reference data created by the last step into a test/ref direc-
tory and make sure it is referenced correctly within
runTestWithArchitecture.sh.

(h) Run “runTestWithArchitecture.sh cpu” and check whether the
two versions match by checking the output.

(i) From now on you can run the runTests.sh skript every time you
have modified and recompiled your program.
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9. Define the parallel regions that are to be accelerated by GPU3. Rename all
files that (a) contain such regions or (b) contain subroutines that are part
of the call hierarchy inside those regions from *.f90 or *.F90 to *.h90.

10. Make sure your program still compiles and runs correctly on CPU by exe-
cuting make clean;make install_cpu; ./runTests.sh.

11. Replace the loops of your parallel region with a
@parallelRegion{appliesTo(CPU), ...} directive. See sec. 3.2.2 for de-
tails.

12. Run make graphs. You should now have a graphical representation of your
call hierarchy as “seen” from your parallel regions upwards and downwards
in the call tree.

13. Define the subprocedures within that call hierarchy that are to be ported
as GPU kernels. These subprocedures should have the following properties:

(a) They only call subprocedures from the same module.

(b) They only call one more level of subprocedures (rule of thumb).

(c) The set of these subprocedures is self enclosed for all data with de-
pencies in your parallel domains, i.e. your data is only directly read
or written to inside these to-be kernels and their callees. If this is not
the case it will be necessary to restructure your codebase, e.g. put
pre- and postprocessing tasks that are defined inline within higher
level subprocedures into subprocedures and put them into your set of
kernels.

14. Analyse for all kernels which data structures they require and which of
those structures are dependant on your parallel domain. Hint: Data struc-
tures that are local to kernels are often part of these parallel domain de-
pendants. Define @domainDependant directives for those data structures
within all kernels, kernel subprocedures and all intermediate subprocedures
between your kernels and your CPU parallel region. See sec. 3.2 for details.

15. If your kernels use local arrays, declare them in the respective kernel caller
using automatic arrays and pass them to the kernel subroutine using pa-
rameters. Use appropriate @domainDependant directives.

16. If your kernels use scalars from other modules, pass them from the kernel
caller using parameters. Use appropriate @domainDependant directives.

17. If your kernels use scalars or arrays from their own module, pass them from
the kernel caller using parameters. Use appropriate @domainDependant

directives.
3For example “do” loops that are already executed on multicore CPU using OpenMP state-

ments.
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18. If your kernels use arrays from other modules, pass them from the kernel
caller using parameters. In the current framework version, these arrays
also need to be input parameters of the kernel caller itself for appropriate
automatic device data handling. That is, they need to be passed down to
the kernels on two levels. Use appropriate @domainDependant directives.

19. Wrap the implementation sections of all your kernels with
@parallelRegion{appliesTo(GPU), ...} / @end parallelRegion direc-
tives. See sec. 3.2.2 for details.

20. Test and debug on CPU by executing
make clean;make install_cpu DEBUG=1; ./runTests.sh.

21. Switch to GPU tests in runTests.sh and test and debug on GPU using
make clean;make install_gpu DEBUG=1; ./runTests.sh.

22. Congratulations, you have just completed a CPU/GPU hybrid portation
using Hybrid Fortran 90.
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Contents of the Attachments

Measurements Measurements for graphs shown throughout this thesis.

ThesisWeatherOnCUDA.pdf Previous Semester Thesis by Stefan Kronig,
Michel Müller in field of Weather Prediction on GPU.

Example Hybrid Fortran 90 Directory Simple example codebase implemented
using Hybrid Fortran 90 as shown in cha. 3.

ASUCA Physical Process Sample Implementation Sample ASUCA im-
plementation using Hybrid Fortran 90 as shown in cha. 5.

Test Scripts Scripts to use as a sample test interface for your Hybrid Fortran
90 implementations as referenced in appendix A.4.

Particle Push Implementation Directory Particle push implementation us-
ing CUDA C and OpenACC as shown in cha. 2.

3D Diffusion Implementation Directory 3D diffusion implementation us-
ing CUDA C and OpenACC as shown in cha. 2.

Shortwave Radiation Implementation Directory Shortwave radiation im-
plementation using CUDA Fortran and OpenACC as shown in cha. 2.

Legal Disclaimer ASUCA Code Legal disclaimer concerning the attached
ASUCA source code.
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