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Abstract

Bluetooth uses a technology called Frequency Hopping Spread Spectrum (FHSS)
to rapidly switch among its 79 channels in a pseudorandom fashion. This reduces
interference between multiple networks that operate in the same area, because
each network uses a different hopping sequence. An attacker with the intention
of jamming a Bluetooth network would need to know its particular hopping
sequence to follow it and transmit at the right frequency at the right time.
In this thesis we will investigate ways for a jammer to learn this sequence by
observing some of the network’s traffic.
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Chapter 1

Introduction

More and more electronic devices today offer some form of radio connectivity.
Many of them use the unlicensed ISM1 bands. Of these, the 2.4 GHz band
is by far the most commonly used, with applications such as WiFi, Bluetooth,
ZigBee, cordless phones, remote controls, and toys. Because of the large number
of devices and the unlicensed nature of the 2.4 GHz band, there is usually a lot of
interference, especially in urban areas. It is therefore important for such devices
to adequately handle interference.

Since there are no guarantees about the availability of specific frequencies, it
makes sense to use a larger portion of the applicable spectrum, instead of relying
on a narrow frequency band being available. There are two main ways to spread
the transmission energy over some spectrum, Direct Sequence Spread Spectrum
(DSSS) and Frequency Hopping Spread Spectrum (FHSS).

The first one, DSSS, uses a fixed transmission frequency, but a wider bandwidth.
This is achieved by encoding each bit with a sequence of so-called chips obtained
from pseudonoise. This pseudorandomness is shared between the sender and
receiver. To other devices, this kind of signal looks very similar to noise, because
the spreading also reduces the signal-to-noise ratio; but the intended receiver
can use the pseudonoise to reconstruct the original information. This technology
is used by WiFi and allows several networks in the same area to use the same
channel.

By contrast, FHSS achieves the spreading by rapidly switching among a set of
channels. This is done in a pseudorandom fashion, with a hopping sequence
known to both the sender and the receiver. The goal is to minimize the time
that a source of interference has an effect on the signal and therefore prevent
long interruptions in communication. Small errors in the bitstream can usually
be corrected by using a suitable Error-Correcting Code (ECC).

FHSS is used by Bluetooth to reduce it susceptibility to interference and jam-
ming. In this thesis we will look at ways to learn the hopping sequence of a
Bluetooth network with the goal of jamming its communication.

1Industrial, Scientific and Medical
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Chapter 2

Background

2.1 Bluetooth

Bluetooth [3] communication is organized in so-called piconets. It consists of one
master node and up to seven slave nodes. A node can be the master of at most
one piconet and (additionally) act as slave in any number of piconets. Larger
networks, called scatternets, can be created when a node participates in several
piconets, as shown in figure 2.1c.

(a) A single-slave piconet (b) A multi-slave piconet

(c) A scatternet

Figure 2.1: Bluetooth network types, with master nodes in blue [3, p. 65]

Bluetooth uses FHSS to alternate among 79 channels between 2402 and 2480
MHz. They are each 1 MHz wide and unlike with WiFi they don’t overlap.
There are generally 1600 hops per second, i.e. the frequency is changed after

2



2. Background 3

each period of 625 µs, called a time slot. A Bluetooth packet covers either
one, three, or five time slots. The master always starts transmitting packets on
even-numbered slots and the slaves on odd-numbered slots.

Each device has its own native clock CLKN, which is a 28-bit counter running
at 3.2 kHz. The master’s native clock is used as the piconet’s clock CLK and
each slave maintains an offset between CLK and its own CLKN. The hopping
sequence of a piconet is essentially determined by the Bluetooth address of the
piconet’s master. The upper 27 bits of CLK are then used as an index into this
sequence.

Every device is identified by its 48-bit Bluetooth address, which are very sim-
ilar to MAC addresses in Ethernet. They are composed of a Lower Address
Part (LAP), an Upper Address Part (UAP), and a Non-significant Address Part
(NAP), as shown below.

NAP UAP LAP

48 32 24 0

Company ID Company-assigned

Figure 2.2: Format of a Bluetooth device address [3, p. 68]

2.1.1 Adaptive Frequency Hopping

Since version 1.2, Bluetooth includes a feature called Adaptive Frequency Hopping
(AFH). It allows the master node to mark channels as either used or unused.
When the master, or one of its slaves, detects repeated interference on a channel,
the master can disable it and remap it to a used channel.

AFH also includes what is called the same channel mechanism. It causes the
slaves to respond to the master on the same channel the master used to address
the slave. This effectively cuts the hopping rate in half, reducing it to 800 hops
per second.

2.2 Hopping Sequence Prediction

As we have seen, FHSS offers some protection against interference. While it is
primarily meant for countering accidental interference, it can also help against
intentional interference, also called jamming.

Let us assume a narrowband jammer that can only transmit on one channel at
a time. If such a jammer does not know the pseudorandom hopping sequence,



2. Background 4

he has no way of knowing on which channel to transmit at a given time and has
little chance of actually causing any interference.

It is of course also possible to jam all channels at once, but such a wideband
jammer needs more sophisticated equipment or numerous transmitters to cover
the wider bandwidth. In addition, the total required transmission energy grows
proportionally with the number of channels. He is thus at a disadvantage com-
pared to a legitimate sender or a smart narrowband jammer. The latter also has
the advantage of being able to selectively jam a network without affecting his
own or other “friendly” communication.

In the Bluetooth setting, a potential narrowband jammer needs to know the
relevant part of the master’s address and its CLKN. Both of these are not imme-
diately available to an observer. We will investigate ways of reconstructing these
values from observed traffic. We then use this information to follow a piconet’s
hopping sequence and ultimately disrupt an active Bluetooth connection. See
the next chapter for more details about the required steps to reach this goal.



Chapter 3

Theory of the Attack

Several steps are necessary to be able to jam a Bluetooth connection. First we
need to find out some piconet specific parameters. We might try to intercept an
FHS1 packet sent by the master to the slaves, which contains all the required
information. But these packets are only sent when the connection is initially
established, so an attacker would already need to be present at that time. Fur-
thermore, the payload of Bluetooth packets is usually encrypted, meaning an
attacker would also need to somehow determine the encryption parameters. We
therefore focus on alternatives that don’t involve FHS packets.

The algorithm2 that calculates the hopping sequence for a piconet takes various
inputs. Relevant for distinguishing between different piconets is the UAP/LAP
input. It is 28 bits wide and consists of the lower 4 bits of the Upper Address
Part (UAP) and the 3 byte Lower Address Part (LAP) of the piconet’s master.

3.1 Determining the Master’s UAP/LAP

First we need to find out the LAP of the piconet’s master. While this is not sent
over the air in cleartext, it is quite easy to recover. The access code [3, p. 110ff.]
which forms the beginning of each packet is derived from the LAP. First a 64-bit
sync word is generated from the 24-bit of the LAP. The access code then consists
of a 4-bit preamble, the sync word, and a 4-bit trailer. By reversing the sync
word calculation, which is based on Barker codes, the LAP can be obtained.

Next we also need the UAP of the master, or rather the lower half of it. Each
packet header ends with a Header Error Check (HEC). Before computing it, the
HEC generator (essentially a LFSR3) is initialized with the UAP of the master.
By using the received HEC and reversing this computation, one can obtain the
UAP.

1Frequency Hop Synchronization
2described in [3, p. 83ff.]
3Linear Feedback Shift Register
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3. Theory of the Attack 6

These calculations depend on the error-free reception of the packet to yield the
correct LAP and UAP. We should therefore capture several packets and compare
the resulting values. If most of them agree, we have likely found the correct ones.

Since these values are part of the master’s Bluetooth address, which doesn’t
change, we only have to determine them once. We can then manually specify
them in future attacks on the same piconet.

3.2 Determining the Piconet Clock

Once we know the UAP and the LAP, all that we still need to determine the
channel for a specific hop, is the value of the piconet clock; but we can already
compute the entire hopping sequence and store it in an array of channels. The
clock is then simply an index into this array.

We can now remember the pattern of observed patterns and search the precom-
puted sequence for a match. Since the algorithm for the hopping sequence is
designed to prevent repetitive patterns, we can expect to find a unique match,
once enough packets have been observed.

The lower six bits of the clock (CLK6) are also used for the so-called whitening
process, which is applied to the data before transmission to prevent long runs of
equal bits. One can now brute force search the 64 possible values for each packet
header to find likely candidates4 for the lower part of the clock. This allows the
hopping sequence search to be accelerated by only checking every 64th clock.
Additionally, we are much less likely to find matches in the sequence, which are
false positives, because those with a wrong CLK6 are never considered.

Both this and the next step are further complicated by Bluetooth’s Adaptive
Frequency Hopping (AFH) feature, explained in section 2.1.1. We have decided
to try disabling AFH, as fully supporting it is quite difficult. See section 6.4 for
some ideas of how this might be improved.

The ubertooth-follow program offers an alternative to the passive approach
above. It uses the assistance of the computer’s local Bluetooth adapter (via the
bluez libraries). It can either query the adapter’s own clock or ask it to try and
connect to a piconet, which will then reveal its clock.

3.3 Following the Piconet

Once we have determined the UAP/LAP and the clock, we can start following
the piconet. We need to synchronize our own clock to that of the piconet and
start switching channels according to the hopping sequence. If all the parameters

4when the unwhitened bits look like valid Forward Error Correction (FEC) encoded data



3. Theory of the Attack 7

are correct and the clocks are properly synchronized, we should now be able to
observe all of this piconet’s traffic. If not, we are either using a wrong sequence
or the right one but shifted.

Getting either the sequence or the clock wrong, will have the same effect, that we
only see roughly 1

79 of the traffic. This is because the sequence is pseudorandom,
and we “randomly” choose one out of 79 channels for each time slot.

3.4 Jamming the Piconet

Once we are correctly following the target piconet, we can start jamming it while
continuing to hop. The actual jamming is usually accomplished by transmitting
something that looks like noise, e.g. pseudorandom bits, at full power.

If our transmission power is high enough and we are close enough to the piconet
nodes, our signal will distort the legitimate traffic to the point where it’s indis-
tinguishable from noise. Since no more traffic is getting through, the connection
should fail at this point. Normally, when a Bluetooth master node detects in-
terference, it will try to apply AFH to avoid the jammed channels, but we are
actually jamming all the channels. Even if it still decided to remap some chan-
nels, it couldn’t inform the slaves, as the update message would also be drowned
by our jamming.



Chapter 4

Materials and Methods

In the following, we describe the hardware and software that we used for this
thesis, and explain how we conducted the tests and analyzed the resulting log
files.

4.1 Hardware

A normal off-the-shelf Bluetooth dongle does not offer the kind of low level access
to the radio that was required for this project. One option would have been to
use a Software-Defined Radio (SDR) like the USRP [2], but luckily there was a
more economical solution available. We decided to use a small USB device called
Ubertooth, which only costs a fraction of even the cheapest USRP.

4.1.1 Ubertooth

Project Ubertooth [1] was started by Michael Ossmann around 2010 to develop
an affordable 2.4 GHz device capable of sending and receiving the kind of signals
used by Bluetooth. It is completely open source, both the hardware design and
the provided example firmware and host software. For this thesis we used an
Ubertooth One, which is the latest hardware revision and successor of the Uber-
tooth Zero. It consists mainly of a CC2400 wireless transceiver, a CC2591 radio
front end, and an LPC175x microcontroller with integrated USB 2.0 support. It
is used like a USB dongle and requires a host computer to operate.

(a) Front (b) Back

Figure 4.1: Ubertooth One

8



4. Materials and Methods 9

The transceiver has an integrated modem supporting data rates up to 1 Mbps
and handling GFSK1 modulation. This is a perfect match for Bluetooth’s Basic
Rate (BR) packets. Unfortunately it does not support the 2 or 3 Mbps data rate
and DPSK2 modulation used for the payload of Enhanced Data Rate (EDR)
packets; but the Ubertooth can still decode the access code and header of EDR
packets, as those are always sent using the BR modulation mode.

A fully assembled Ubertooth One can be bought from various retailers3 for about
120 USD, at the time of writing this. We had a total of three units available, but
one is enough for following and jamming a piconet. Having several Ubertooth
devices was helpful to get familiar with the provided firmware code. We could
e.g. use two of them to send raw data back and forth, or use one as a spectrum
analyzer4 to see if the other one is actually transmitting as intended.

4.1.2 Laptops

All development was done on a ThinkPad T400 laptop running Ubuntu Linux.
The same computer was also used with an additional ThinkPad T430 for gen-
erating some test traffic via their built-in Bluetooth adapters (see section 4.3).
The T400 was also used as the host computer for operating the Ubertooth.

4.1.3 Other Bluetooth Devices

Before settling with the laptops, we also used various other Bluetooth devices to
generate some traffic for testing. This included two Android smartphones, a GPS
logger, and a pair of wireless headphones; but using the computers provided more
control over the connection parameters and allowed the testing to be automated
(see section 4.2.5).

4.2 Software

The creators of the Ubertooth also provide firmware, some host utilities, and a
Bluetooth baseband library to demonstrate various capabilities of the Ubertooth.
We used and extended these and also developed various scripts to help create
and analyze the numerous log files of our tests.

1Gaussian Frequency-Shift Keying
2Differential Phase-Shift Keying
3see http://greatscottgadgets.com/ubertoothone/ for a list
4see figure A.1 in the appendix for screenshots

http://greatscottgadgets.com/ubertoothone/
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4.2.1 Ubertooth Firmware

There are several firmwares included with the Ubertooth software. Some of
them are quite simple and meant to test individual features or to confirm the
correct assembly of the hardware. The main firmware for the Ubertooth is called
bluetooth rxtx. Upon booting, it performs some basic initialization and con-
figuration of the various peripherals on the microcontroller and the transceiver.
Afterwards it accepts commands over USB from the host computer. It operates
in different modes, one of which is particularly interesting, as it sends a stream
of demodulated bits back to the computer as they are received on the radio.

During the course of this thesis, we added some new functionality to the
bluetooth rxtx firmware. This includes the ability to send debug output to
the host computer and a method to start jamming. For the latter we used the
PRNG5 built into the transceiver to generate a noise-like signal which we then
transmitted at the highest power amplifier setting.

4.2.2 Ubertooth Host Utilities

On the host side, there are several utilities providing different functionalities.
Each of them communicates with the Ubertooth over USB, issues some com-
mands, and processes the response. This allows some of the heavier processing
to be offloaded from the microcontroller to the host CPU. The prime example
is calculating the entire hopping sequence for a piconet. It would be impossible
to do this on the Ubertooth. If we store each of the 227 entries in a byte, the
complete hopping sequence requires 128 MB of RAM, which is far beyond what
the Ubertooth has.

An overview of the different utilities that we used:

� ubertooth-util : general utility to get the version and serial number, run
some tests, reset an Ubertooth, enter DFU6 mode, etc.

� ubertooth-lap : searches received traffic for anything that looks like an
access code and calculates the LAP from it

� ubertooth-uap : for a given LAP, analyzes received packets and calculates
the UAP from their headers

� ubertooth-hop : analyzes traffic for a given LAP and UAP and determines
the piconet clock; we incorporated most of our changes into this utility and
added appropriate command line options to activate them

5Pseudo-Random Number Generator
6Device Firmware Upgrade
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� ubertooth-follow : uses the host’s Bluetooth adapter to determine a clock
value, either its own or that of a piconet by attempting to connect to it,
then uses that clock to follow the piconet

� ubertooth-dfu : utility to flash new firmware unto the Ubertooth device

� ubertooth-specan-ui : a graphical Ubertooth spectrum analyzer; see fig-
ure A.1 in the appendix

We modified some of these utilities, especially ubertooth-hop, to add various
new features and fix some bugs that we found in the existing code.

When the already implemented functionality of ubertooth-hop did not work as
intended, we added our own implementation of searching the hopping sequence.
For this we gathered packets from a single channel and recorded their arrival
times. We then converted this to a bitmap (observed bitmap) of configurable
length, where each bit represents a time slot and is set to 1 if a packet arrived
in that slot and to 0 if not. We normalized the arrival clock values so that
the first packet received always corresponded to the first bit of the bitmap. By
also representing the hopping sequence as such a bitmap (sequence bitmap), we
could compare the pattern of our observed packets with the hopping sequence.
For this we took the n-bit observed bitmap and XORed it with the first n bits
of sequence bitmap. After each comparison, we shifted the sequence bitmap

(or the portion we were looking at) one bit to the left and compared the bitmaps
again. This was repeated until we found one or several matches with fewer bit
errors than a configurable threshhold.

This approach allowed us to gain a deeper understanding of the process of de-
termining the clock of a piconet. It also helped us to identify the problems listed
in section 5.1. We could then go back and apply our newly gained knowledge to
the original Ubertooth tools.

4.2.3 Bluetooth Baseband Library

The parts of the host code that are not specific to the Ubertooth hardware are
distributed as a separate library called libbtbb. It covers the Bluetooth base-
band, meaning it contains data structures for describing packets and piconets,
methods for manipulating them, algorithms for calculating a piconet’s hopping
sequence, etc.

The Ubertooth host utilities mostly act as wrappers for the functionality in this
library and the Ubertooth library libubertooth.
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4.2.4 HCI Tools

The Host/Controller Interface (HCI) standardizes the communication between
a host’s Bluetooth stack and the actual Bluetooth chip. The most commonly
used Bluetooth stack for Linux is called bluez. The corresponding package is
installed on Ubuntu by default and includes various HCI-related utilities.

hciconfig is used to set global settings for a Bluetooth adapter, while hcitool

is used to manage per-connection parameters. hcidump allows all HCI traffic to
be captured and saved to a file, but unfortunately this gives you only a high-level
view of the traffic. Baseband-level details like packet headers, physical channel
used, and retransmissions are already abstracted away. For normal Bluetooth
operation, they are not needed and are thus not sent via HCI.

Finally we have l2test, which is a simple tool to setup L2CAP7 streams between
two computers. Since the laptops both had built-in Bluetooth adapters, l2test
was a convenient way to generate some test traffic for the Ubertooth to analyze.

4.2.5 Test Automation

In order to simplify the process of running our tests, we wrote some Python
scripts to automatically launch the various tools and save their output. We
usually ran two or three main programs in parallel. Firstly, we had to generate
some test traffic. Then we could run one of the Ubertooth host utilities to ana-
lyze the traffic. We also found it helpful to dump the traffic that was sent, so we
could e.g. compare actual and observed packet rates.

These scripts also allowed us to repeat the same test several times and vary the
parameters that were passed to the tools in each run.

4.2.6 Log Analysis

Additionally, we also created some simple scripts to analyze the log files and
calculate packet rates, etc. And finally, we wrote some more Python scripts to
graph the live packet rate of our tests similar to the graphs seen in figure B.1 in
the appendix.

4.3 Test Setup

We initially experimented with various different Bluetooth connections; but to
get meaningful results we had to create a stable test setup, which is shown in
the following illustration. We used USB extension cables to allow for flexible

7Logical Link Control and Adaptation Protocol , a low-level data transport protocol
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positioning of the Ubertooth devices. The initial position of the Ubertooth was
too close to the laptops (see section 5.1.1), so we moved it further away and
higher up. The USB cable was kept in place by taping it to a bookshelf.

We noticed in our early experiments that a person moving through the line-
of-sight of a Bluetooth connection had a pretty significant effect on its signal
strength and packet rate. We thus let the automated tests run unattended.

T400 T430

A

B
approx. 1 m

above desk

Figure 4.2: Overview of our test setup showing the relative position of the two
laptops and the initial (A) and adjusted position (B) of the Ubertooth

On the software side, we primarily used the aforementioned l2test for the test
traffic. We set it to continually send 16 byte payloads form the T430 to the
T400. The small payload ensured we would mostly have small (i.e. single-slot)
packets and thus many headers to analyze.



Chapter 5

Results

One of the intended purposes of the Ubertooth was sniffing Bluetooth traffic. So
most of the steps outlined in chapter 3 were already implemented to some degree
in the code provided with the Ubertooth. In theory we would only have had to
add the actual jamming part. But as it turned out, there were still a number of
obstacles to overcome to reach our goals.

5.1 Encountered Problems

Let us first revisit the biggest problems and obstacles that we identified.

5.1.1 Frequency Spread

After conducting some of our experiments to determine the clock we realized
that we were receiving some packets from neighboring channels. In our original
test setup (figure 4.2), the Ubertooth was positioned between the two laptops,
but this was too close as it turned out.

The signal strength of a wireless signal typically looks like a bell-shaped curve,
meaning that some portion of it is outside the nominal bandwidth. Normally,
the absolute signal strength of that portion is very low, even below the noise-
level. But at close proximity, it can be high enough so that this frequency spread
causes packets to also be received on adjacent channels.

We verified this by listening on frequencies just outside the range used by Blue-
tooth. The channels actually used by Bluetooth are numbered from 0 to 78.
When we listened on “channel 79”, we still received a few percent of the traffic,
which was presumably sent on the adjacent channel 78. The same also happened
analogously on “channel −1”. This warranted the assumption that we would also
receive traffic from adjacent channels when listening on any other channel.

Unfortunately, the channel that a packet was sent on is not part of its header.

14
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Some preliminary tests showed that one could use the RSSI1 values to differen-
tiate between packets sent on the expected channel and those sent on a different
channel; but the easier solution was to just move the Ubertooth farther away
from the transmitters. The frequency spreading effect was almost completely
eliminated by moving the Ubertooth about a meter farther away (see figure 4.2).

5.1.2 Adaptive Frequency Hopping

If AFH is already actively used when we want to start our attack, we face several
problems. If we don’t know which channels have been remapped, the pattern
matching that we use to search for the piconet clock is likely to fail. Even if we
find the correct clock, the jamming part then uses the wrong frequency for any
remapped channel.

We therefore decided to try and disable AFH, at least for our early experiments.
For the Linux computers that we used for the test traffic, this could be accom-
plished by running hciconfig hci0 afhmode 0, but it was not immediately
clear what disabling AFH meant. We initially expected such a device to behave
as if it didn’t support AFH at all; but it turned out that only the remapping of
channels was disabled, while the same channel mechanism2 was still used.

5.1.3 Drift and Jitter

When we decided to implement our own algorithm for finding the piconet clock,
we noticed that the clock on the Ubertooth exhibited significant jitter and drift
relative to the master’s clock. The drift was roughly 100 time slots per hour or
about 17 ppm, when we specifically tested for it. The bigger problem, however,
was the jitter. The clock values of observed packets as obtained from the Uber-
tooth turned out to be offset from the actual clock by ±1 time slot for about
half the packets.

As explained in section 3.2, we were able to determine the lower 6 bits of the
piconet clock (CLK6) from the whitening of packets. We could then calculate,
for each packet, an offset between the lower 6 bits of the Ubertooth clock and
CLK6. Using the relative change3 of these offsets we were able to compensate
for the jitter.

As it turned out we could actually use the drift to our advantage, as explained
in section 5.2.4.

1Received Signal Strength Indicator
2see section 2.1.1
3ideally there would be no jitter and the offset would remain constant
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5.2 Achieved Goals

5.2.1 Determining the Master’s UAP/LAP

The Ubertooth host utilities already contained good support for finding the LAPs
of any nearby piconets and finding the UAP for a specific LAP. So the first step
(as outlined in chapter 3) was very easy to accomplish and didn’t require any
further work on our part.

5.2.2 Determining the Piconet Clock

From the description of the Ubertooth tools, it looked like this part should also
have worked out of the box, but unfortunately that wasn’t the case. We spent
a lot of time investigating the possible causes for this, which are summarized in
section 5.1. As explained earlier, we eliminated the frequency spread problem
and compensated for the jitter. We had already disabled AFH, but didn’t im-
mediately realize that the same channel mechanism was still being used. The
Ubertooth tools already had some limited experimental support for AFH, par-
ticularly to adjust the hopping sequence to take the same channel mechanism
into account. But they failed to detect the usage of AFH, even though the detec-
tion was actually based on recognizing two consecutive packets arriving on the
same channel. We added an option to manually set the AFH flag for a piconet
and this dramatically improved the speed and accuracy of clock detection using
ubertooth-hop.

We also tried the active4 clock discovery offered by ubertooth-follow. This did
get the correct clock value, but failed at the next step of following the piconet for
two reasons. For one, there was a serious bug in the code, resulting in the clock
delay being sent byte-swapped. Thus, the default delay5 of 5 half-slots caused
an offset of 0x 0500 0000 to be added to the clock on the Ubertooth. Secondly,
we also had the same problem of not using the same channel mechanism, which
resulted in us missing essentially all slave packets, even when the clock was set
correctly.

5.2.3 Following the Piconet

After obtaining the correct clock, we could start hopping according to the hop-
ping sequence which we calculated earlier. In theory this would have allowed
us to sniff all the traffic of the piconet. While this wasn’t our primary goal, it

4using bluez, see the end of section 3.2
5a value additionally added to the Ubertooth clock to compensate for the delay in reading

the clock, transferring it to the Ubertooth, and applying it
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would have made the jamming step easier, by confirming that we were on the
right channel at the right time.

In practice we found it quite difficult to accurately follow a piconet. Synchroniz-
ing the Ubertooth clock to that of the piconet wasn’t very reliable and even a
properly synchronized clock drifted away from the piconet by more than a time
slot after less than a minute.

5.2.4 Jamming the Piconet

For the purpose of jamming, we didn’t absolutely need a perfect way of following
a piconet for extended periods of time. If we could just jam a piconet for long
enough so that the connection would break, we still reached our goal.

We realized that we could actually use the drift to our advantage. For our par-
ticular combination of Ubertooth and laptop, we found out that the Ubertooth’s
clock was slightly too fast relative to that of the laptop’s Bluetooth adapter. We
could now synchronize our clock and then manually rewind it by a few ticks,
before starting to jam. The Ubertooth clock then slowly caught up with the
piconet clock at which point we were jamming the piconet perfectly.

In our experiments using l2test, we were able to reproducibly jam the connec-
tion until it failed with a timeout. At the final presentation of this thesis we
showed a demonstration where we jammed an audio stream between a smart-
phone and a laptop. One could directly hear the effect on the audio stream.
First it just crackled a bit, then it stopped intermittently, and then it failed for
several tens of seconds straight. Compared to l2test, the smartphone streaming
the audio was more tenacious, continually trying to send packets, even in the
presence of a jammer. This meant that stopping the jamming process immedi-
ately brought the audio back. Even if we continued to jam, the connection would
eventually recover, as we drifted away from the piconet’s clock. We didn’t have
a single audio stream fail completely and time out like in the case of l2test.
The window during which we achieved a clean jamming was probably too short.

You can see some graphs of the packet rate during our l2test experiments in
figure B.1 in the appendix. The first one is from a run where we are purposely
using a wrong clock. As you can see, there are some periodic packet rate drops
during the jamming, but the connection never dies. The second one is from a
successful jamming run. The packet rate also shows some periodic drops before
it goes to zero, recovers momentarily, and drops back to zero. It then stays at
zero as the connection failed and timed out. We are not sure what exactly causes
the periodic drops seen in the graph.



Chapter 6

Discussion

6.1 Summary

We have shown that it is possible to jam a specific Bluetooth connection without
any prior knowledge about it. All the required parameters can be reconstructed
by analyzing observed traffic of a piconet. They can then be used to follow this
piconet and jam it.

It is not yet a universal solution, as we relied on two particular assumptions.
Firstly, we always disabled AFH on our test laptops. Further work would be
needed to also support piconets with AFH enabled. Secondly, we exploited the
drift of our Ubertooth’s clock to implement a jamming attack, which only worked
for a relatively short time. Sustained jamming would require a more accurate
clock or some other way of staying synchronized with the piconet clock.

6.2 Challenges

One of the biggest challenges of this work was the limited debugging capabilities
of the Ubertooth. I didn’t have any experience with embedded systems develop-
ment and was used to debugging software on a PC by watching variables, using
exceptions, printing debug information, etc. During firmware development for
the Ubertooth we didn’t have any of these luxuries. While the device has a JTAG
port, we didn’t have the necessary equipment available to use it. We ended up
implementing a kind of debug output over USB. But due to issues like buffering,
it wasn’t completely reliable, so that we could never be sure why some expected
output did not reach the host.

Another challenge was the lack of documentation for some of the tools we used.
The manual pages for the HCI tools in particular were quite minimal. For
some commands they mentioned parameters, but never explained what were
valid arguments; neither did they include any examples. One had to hunt for
information on the internet, which wasn’t always accurate.

18
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Finally, the code provided by the creators of the Ubertooth was not a very
polished piece of software. That’s understandable, as it is mainly meant as an
example or starting point for further development. After all, the Ubertooth is
a development platform and not a consumer product. Still, the fact that we
found a few concrete bugs in their code, meant that we couldn’t take anything
for granted and ended up double-checking many implementation details against
the Bluetooth specification.

6.3 Possible Improvements for Bluetooth

The attack that we have shown relies on the parameters necessary for the hop-
ping sequence calculation being reconstructable from observed traffic. These
parameters basically just consist of the UAP/LAP and there isn’t any notion
of secrecy involved regarding these values, they might as well be transmitted in
cleartext with each packet. The part of finding the clock can be thought of as
basically a brute force search of a 227 space. While this not a problem for modern
computers, it is actually made even easier by the possibility to determine the
lower 6 bits of the clock separately. The search is thus effectively reduced to a
221 space (and a negligible 26 space).

One could now imagine alternative ways of calculating the hopping sequence
which would make it much harder for an attacker to determine the sequence. The
parameters might e.g. be based on some shared secret established at connection
setup. For piconets of only two nodes, it could even happen during Bluetooth’s
pairing process. Furthermore, one could use a wider clock of say 64 bits instead of
the 28 bits used now. This would increase the wrap-around time of the clock from
about 23.3 hours to about 585 billion years. The search space for determining the
clock by brute force would increase accordingly (provided the clock is properly
initialized at device startup and not simply started from zero as is usually the
case with Bluetooth).

Perhaps a future version of Bluetooth will include such improved jamming resis-
tance. But as mentioned earlier, for Bluetooth the focus is on avoiding accidental
interference and not offering military-grade jamming resistance. For the latter,
79 channels of 1 MHz each is hardly enough. A determined attacker can jam the
full 79 MHz bandwidth without significant difficulty.

6.4 Future Work

There are a few areas with room for improvement. One significant simplification
that we made was disabling AFH. In a real-world scenario, where AFH might
already be active, one would first have to find a way to determine the current
AFH channel map. It’s conceivable to gather statistics about the received packets
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on several channels and using it to categorize channels as used and unused. The
clock could be determined similarly to the case without AFH, by listening on a
channel that is in fact used. But we might get false positives, if the same channel
is also used as the result of remapping an unused channel. The remapping
function that determines this depends again on the clock. So for cases with
significant remapping, we have a chicken-and-egg problem.
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Acronyms

AFH Adaptive Frequency Hopping

DSSS Direct Sequence Spread Spectrum

ECC Error-Correcting Code

FHS Frequency Hop Synchronization

FHSS Frequency Hopping Spread Spectrum

HEC Header Error Check

LAP Lower Address Part

NAP Non-significant Address Part

SDR Software-Defined Radio

UAP Upper Address Part
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Appendix A

Screenshots

(a) Spectrum when idle (with some background WiFi activity)

(b) Spectrum with an active WiFi connection (on WiFi channel 6)

(c) Spectrum while actively jamming Bluetooth channel 39

Figure A.1: Ubertooth spectrum analyzer with various activity

A-1



Appendix B

Graphs

(a) Jamming using the wrong hopping sequence or clock; jamming started around 3:00,
stopped around 6:00

(b) Jamming using the correct hopping sequence and clock; jamming started around 3:00

Figure B.1: Graph showing packet rate drop while jamming

B-1
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