
Distributed
    Computing 

Tampering with Distributed Hash
Tables
Master’s Thesis

Michael Voser

vosermi@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich
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Abstract

BitTorrent is the most popular P2P protocol for file sharing on the Internet.
Each BitTorrent client also participates in the DHT and acts as a distributed
tracker. It therefore maintains a routing table to store contact information about
other nodes in the DHT. In this thesis we propose a method to store data in the
routing table of random nodes in the DHT. Thus we are able to store and share
data on other computers without the users knowledge.
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Chapter 1

Introduction

BitTorrent is the most used peer-to-peer (P2P) file sharing protocol on the Inter-
net. It has millions of users and is responsible for approximately one third of the
global internet traffic [1]. Unlike other P2P file sharing systems, BitTorrent does
not provide a content search feature. Instead BitTorrent relies on torrent files
that contain metadata about the file to be shared. Torrent files are published
on websites for download and contain a reference to a tracker. A tracker is a
centralized server that is used as the first meeting point for peers and provides
a list of peers that are interested in the same file. The set of peers participating
in the distribution of the file forms a swarm. After joining a swarm, the peers
start to download pieces of the file from other peers in the swarm.

The use of trackers poses a single point of failure. If a server that is used as
a tracker becomes unreachable for some reason, the peers are unable to join a
swarm since the information of who already joined the swarm is unavailable as
long as the tracker is unreachable. For this reason, it is important to come up
with a solution to make the protocol more fault tolerant.

All popular BitTorrent clients also implement a “trackerless” system trough
a distributed hash table (DHT). Trackerless does not mean that no tracker is
used at all, but that the traditional centralized tracker is supplemented by a
decentralized implementation of the tracker’s functionality. To that end each
BitTorrent peer also acts as node participating in the DHT. DHTs have attracted
a lot of attention due to their inherent scalability and reliability as generic data
stores. The BitTorrent DHT is a highly specialized DHT for the BitTorrent use
case. We take a step back and ask whether it is possible to store arbitrary data
in this DHT. It is.

The method presented in Chapter 2 to store data in the BitTorrent DHT
is based on a general framework for the BitTorrent DHT. This framework is
presented in Section 2.1 of Chapter 2. It is also used in our proof-of-concept to
show that storing data in the BitTorrent DHT is possible. We experimentally
determine the performance of our methods as awell as the performance of the
DHT in general in Chapter 3. Chapter 4 summarizes our findings and points out
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1. Introduction 2

potential future work. We start by giving an overview of how the DHT operates
in the following sections.

1.1 DHT Tracker

Like a traditional hash table, a distributed hash table allows to store and retrieve
key/value pairs. The key/value pairs are distributed among a set of cooperating
computers, which we refer to as nodes. The values are indexed by keys. The
main service provided by a DHT is the look-up operation, which returns the
value associated with a given key. The DHT used with BitTorrent is based on
the Kademlia protocol [2]. The nodes exchange messages over UDP. Every node
is responsible for the storage of a set of values whose keys are in a given range.
Each node in the network has a unique node ID that is randomly chosen from
a 160-bit key space. Every value that is stored in the DHT is also assigned a
160-bit key from the same key space as the node ID (e.g., the SHA-1 hash of
some larger data). The value to this key is stored on nodes whose node ID is
closest to that key. The distance between two points A and B in the key space
is the bitwise exclusive or (XOR) interpreted as an unsigned integer:

distance(A,B) = |A⊗B| (1.1)

Smaller values are closer. Therefore the longer the prefix that two node IDs
share, the closer are the nodes in the DHT. If we say that two nodes A and B
share x prefix bits, then the first x bits of the IDs of nodes A and B starting
from the most significant bit are equal. In that case distance(A,B) must be less
than 2160−x. Table 1.1 shows the distance calculation for two IDs in the 4-bit
key space. Nodes A and B share one prefix bit. If there is a node C that shares
more than one prefix bit with Node A, then node C is closer to node A than
node B.

In Kademlia, each node N maintains a routing table. The routing table
consists of 160 lists. These lists are called buckets and are indexed from 1, .., 160.
Each bucket holds a maximum of k nodes (where k = 8 for the BitTorrent DHT).
The nodes in bucket i share i prefix bits with N . The contact information
for nodes consists of the triple 〈IP address, UDP Port, node ID〉. For each
0 ≤ i < 160, every node keeps a bucket of 8 nodes of distance between 2i and

Node ID (4-bit) Decimal value

A 0101 5

B 0011 3

(A⊗B) 0110 6

Table 1.1: Example of a distance (XOR) calculation between two 4-bit IDs.
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2i+1 from N . This structure of the routing table can be illustrated by a binary
tree (Figure 1.1). The bucket with index i contains a subset of the nodes in the i-
th sibling subtree, i.e., the subtree rooted at the sibling of the node corresponding
to the i-th bit in N ’s ID. The routing table for a 4-bit key space in Figure 1.1
is maintained by the node with ID 1001. Nodes in bucket 0 share no prefix bit
with the node 1001, nodes in bucket 1 share one prefix bit with node 1001. The
ID 1000 in bucket 3 is in brackets because there is no node with this ID. The
node with ID 1000 would be the only node sharing 3 prefix bits with ID 1001
except node 1001 itself.

Figure 1.1: Tree topology of the routing table.

Kademlia defines two different message types: queries and responses. The
protocol consists of four different queries and for each query there exists a corre-
sponding response. Each query is parameterized by one or more arguments and
each response contains one or more return values.

• The PING query has the querying node’s ID as an argument. The re-
sponse returns its own node ID. This query is used to see if a node is
online.

• The FIND NODE query takes two arguments: again the querying nodes
ID and a search ID. The FIND NODE response contains as return value a
list with 〈IP address, UDP Port, node ID〉 triples for the 8 nodes from its
routing table closest to the search ID.

• The STORE query has two arguments: the querying nodes ID and a
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key/value pair. The STORE response returns its own node ID. The STORE
message is used to store key/value pairs.

• The FIND VALUE query takes two arguments: the querying nodes ID
and a key. The FIND VALUE query behaves like the FIND NODE query,
only the responses are different. If the queried node has a value stored with
a key that equals the search ID, it returns the value and a nonce which
provides some resistance to address forgery. If there is no value stored for
the given key, the FIND VALUE response is equal to the FIND NODE
response.

Kademlia uses an iterative look-up algorithm to locate nodes near a particular
ID. We refer to this ID as the search ID. A node N1 that performs a look up for
a search ID NF , it first consults its routing table to find the closest node N2 to
NF it knows. A node NA knows node NB when it has its contact information
stored. Node N1 then queries N2 with a finde node message. N2 answers to
the find node query with the closest nodes to NF from its own routing table. If
the response from N2 contains a node N3 that is closer to NF than N2 itself,
then N1 sends another find node query, this time to node N3. This procedure
is repeated until no find node response return value contains a closer node than
the ones N1 already knows. Each query brings N1 at least one bit closer to
the search ID. Therefore the iterative look-up procedure guarantees to terminate
after O(log(n)) queries.

Figure 1.2 illustrates a look-up example. The colored dots represent the
nodes in a 4-bit key space. The search ID is 0000. In our example the red node
with ID 0000 is the closest node to the search ID. The green node with ID 1100
cannot directly contact the red node because it does not know which node is
closest to the search ID. In its own routing table it finds ID 0111. The green
node then queries this node. Node 0111 responds with the closest nodes to the
search ID contained in its own routing table. The green node now has a closer
node from the response of the first queried node. It then queries the new learned
node 0011. This node also responds with a closer node, the node with ID 0001.
After 4 find node queries, the green node receives the contact information of the
red node. The red node is also queried and responds to the find node node query,
but there will not be a closer node in this response. The black arrows show the
sent queries and the red dashed arrows illustrate the progress of each query.

Two different DHT implementations that differ in features and message for-
mat are used in the context of BitTorrent, namely Azureus DHT and Mainline
DHT. Azureus DHT is only implemented by one single client. The Mainline
DHT is implemented across mulitple popular clients and has thus a larger user
base. We therefore restrict ourselves to studying the Mainline DHT, and use
terms Mainline DHT and BitTorrent DHT interchangeably.

In BitTorrent the DHT assumes the role of a tracker. It stores the contact
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Figure 1.2: Example of an iterative lookup in a 4-bit key space.

information of peers that share a certain file. The contact information of peers
contain the IP address and the TCP Port. Other then nodes, peers communicate
over TCP. As described above the DHT stores key/value pairs. In BitTorrent
the key is the info hash of a file. The info hash is a SHA-1 hash that uniquely
indetifies content (single or multiple files) which is shared via BitTorrent. The
value of the BitTorrent DHT is a set of peers that share this content. Each
node has a unique identifier known as the node ID and is fully described by the
triple 〈IP address, UDP Port, node ID〉. Node IDs are chosen arbitrarily from
the 160-bit key space, i.e., the same key space as the info hash. The node ID
selection is supposed to be random, but as this choice is not verifiable a node
may in fact choose any ID. We will show in Chapter 2 how this can be used for
our benefit.

Each node in the BitTorrent DHT maintains a routing table with contact
information of other nodes. If a node receives a message, the sender node may
be added to the routing table of the receiving node. Therefore each message
exchange reinforces the contact information. Nodes use the contact information
from the routing table as a starting point for a node look up. Nodes are added
to the routing table by their ID. Because of the 160-bit key space, the routing
table is divided into 160 buckets. Each bucket contains a list of a maximum of
8 nodes. The bucket in which a node is inserted depends on the length of the
prefix a node shares with the ID of the node to whose routing table the node is
added. Figure 1.1 shows an example how the nodes are inserted.

Messages are exchanged between nodes with serialized datastructures. Com-
pared to Kademlia, Mainline DHT has an additional message type, the error
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Message Query arguments Response values

ping • querying nodes ID • queried nodes ID

find node
• querying nodes ID • queried nodes ID
• target ID • list with 8 closest nodes to the target id

get peers

• querying nodes ID • queried nodes ID
• info hash • token

• list of peers
or
• list with 8 closest nodes to the target id

announce peer

• querying nodes ID • queried nodes ID
• info hash
• port
• token

Table 1.2: An overview of the four queries and responses used in the BitTorrent
DHT.

messages. Error messages are used to respond to queries if for example the mes-
sage format is invalid. Mainline DHT also defines four queries and four responses,
where the names and semantics are slightly different. Table 1.2 shows the queries
and their corresponding responses that are defined for the BitTorrent DHT. The
main difference from Kademlia is how a value is stored. In Kademlia, key/value
pairs are stored with the STORE query whereas in the BitTorrent DHT, the cor-
responding query is called announce peer. The announce peer query does not
really store a value, it merely adds a peer to the set of peers at the given key.
Correspondingly, the get peers query replaces the FIND VALUE query and does
not return all peers, i.e., the actual value, but only 50 random peers from the
set of peers stored at that key.

1.2 Related Work

Crosby et al. [3] analyse the two DHTs that are used in BitTorrent which both
are based on Kademlia. Mainly the characteristicts of the two DHTs are studied
and compared but also security concerns and design issues are identified.

Lin et al. [4] propose a suite of security strategies for the DHT network in
BitTorrent system to make it less vulnerable against attacks.

Arvid Norberg1 proposes a DHT extension that combines the IP with the ID
to make it harder to launch attacks against the BitTorrent DHT.

Ratnasamy et al. [5] introduce a Content-Addressable Network (CAN) that
is fault-tolerant and completely self-organizing and demonstrate its scalability,

1http://www.rasterbar.com/products/libtorrent/dht sec.html
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robustness and low-latency properties through simulation. The CAN has a dis-
tributed infrastructure like DHTs.

Jin et al. [6] study malicious actions of nodes that can be detected through
peer-based monitoring. The simulation results show that this scheme can effi-
ciently detect malicious nodes with high accuracy, and that the dynamic redis-
tribution method can achieve good load balancing among trustworthy nodes.

Varvello et al. [7] have monitored during four consecutive days the BitTorrent
traffic of tracker-based and DHT-based traffic within a large ISP. They propose
a design of a traffic localization mechanism for DHT-based BitTorrent networks.

Stutzbach et al. [8] study the performance of the key look-up in DHTs. They
investigate how the efficiency and consistency of a look-up can be improved by
performing parallel look-ups and maintaining multiple replicas.



Chapter 2

Implementation

In this chapter we describe the methods we used to crawl the DHT and write data
into it. We also present how these methods have been implemented (in Java).
The software consists of 3 main parts descpicted in figure 2.1. A BitTorrent
framework provides the core functionality to operate a node participating in the
DHT. Two prototypical applications are developed on top of this framework:
(1) A crawler that allows us to explore the DHT overlay network and (2) a
DHaTaStream that show-cases the ability to store arbitrary data in the routing
table of remote nodes.

Figure 2.1: The 3 main software parts.

2.1 DHT Framework

The DHT framework provides the basic functionality a node requires to join the
DHT and to interact with other nodes. The node needs to be able to send and
receive queries and responses and has to maintain a routing table. Our framework
has the ability to create and control multiple nodes. A node that is controlled
by the framework is called LocalNode whereas other nodes participating in the
DHT are called RemoteNode represented by RemoteNode objects. RemoteNodes
are contolled by other clients than us, it is just a local placeholder object that
represents another node. A RemoteNode holds contact information such as node
ID, IP and Port. The number of LocalNodes that are created can be chosen by
the user of the framework. The LocalNodes are distinguished by their user-
defined node ID and port number. All LocalNodes share the same IP address.
When a LocalNode first joins the DHT it contacts a boostrap node and looks
up its own ID. A bootstrap node is a well known node that provides initial

8



2. Implementation 9

information to newly joining nodes. While performing this iterative look-up, the
routing table gets filled with RemoteNodes that have answered to the find node
queries. A RemoteNode stays at least 15 minutes in the routing table. If a
LocalNode has not received a message from a RemoteNode R contained in its
routing table, then the RemoteNode may not be reachable anymore. In that case,
the LocalNode pings R to see if R is still online. If there is no response from
R within another 15 minutes, then R is deleted from the routing table. There

Figure 2.2: Overview of the framework architecture.

are several reasons why a RemoteNode may not responds to a query. Firstly,
some do not answer at all depending on the client that is used. Secondly, some
nodes have already left the DHT but are not yet removed from the routing table
and therefore will not respond. Thirdly, some nodes have an anti Denial-of-
Service (DOS) attack mechanism. A DOS attack is an attempt to make a node
unavailable for other users. A common method of a DOS attack is to saturate a
node with a huge number of queries so that it is unable to respond. A node may
falsely detect a DOS attack and stop responding to queries that in fact were not
sent with malicious intent. Lastly, messages can be lost because of the unreliable
UDP protocol that is used for the message exchange. We thus cannot know if a
query or its response was lost during transmission when no response is received.
For that reason we have built in a retry functionality to be able to resend the
message.

Because the framework is able to run several nodes, all incoming packets
need to be routed to the targeted LocalNode. This is done by a multiplexer
that handles the UDP packets (UDP Message Handler, c.f. Figure 2.2). It reads
the port from which the packet has been received, looks up which LocalNode is
identified by this port and forwards it correspondingly. The message is then pro-
cessed by the LocalNode. Each message contains a 2 byte transaction ID which
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N S3 No. of equal prefix bits

01001101... 01011101... 3 (010........)

Table 2.1: Search ID calculation for i = 3 with a key space of 160-bit.

is included in the response to a query. This ensures that all incoming responses
can be associated with the corresponding query. The number of messages that
can be on the way is 216 per RemoteNode. Our framework is able to operate
multiple nodes in the DHT. Both the crawler and the DHaTaStream are built
upon this framework. The framework will also be included into BitThief [9] to
allow usage of the BitTorrent DHT for swarm discovery.

2.2 DHT Crawler

The goal of the crawler is to be able to contact as many nodes of the DHT
as possible, preferably in a short time, to get a representative snap-shot of the
DHT. With the collected information we want to reconstruct the DHT’s overlay
network and detect anomalies such as node IDs that are equal to an info hash
(indicates targeted positioning) or nodes with different IDs that are controlled
by the same computer, i.e., IP address. The brute force method would be to
send a message to every ID from the keyspace of 2160 IDs. This approach is of
course practically infeasable.

Our approach is thus as follows. First a LocalNode N is created with the
framework. Then we contact a bootsrap node and try to read the whole routing
table of this node. To read the routing table, we have to send a find node query
for each bucket of the RemoteNode. A bucket can be read by taking the asked
nodes ID and flip one bit at the appropriate position. We then send a find node
message to the asked node and take the ID with the flipped bit as the search ID.
The search ID is calculated with the equation 2.1.

Si = flipbit160−i(N) (2.1)

In order to get the search ID S to read bucket i we have to flip the bit 160− i
of the node N . Table 2.1 shows the search ID calculation to read the third bucket
(i = 3). The bold bit was flipped. The search ID is an argument for the find node
query that the node N answers with the find node response, i.e., the nodes it has
stored in the third bucket of its routing table. If we want to read all buckets of
a node’s routing table we would have to send a find node query for each search
ID SIDi with i = 0...160. Since almost never all buckets are filled with nodes,
we investigate the distance between the returned node IDs and the sender’s ID.
If the closest node of the returned nodes has a far smaller shared prefix than
160 bits with the asked node, then we can immediately jump to read the bucket
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where the closest node to the sender ID is stored. In the majority of cases the
first 130 bits can be skipped and we only have to send 30 (160 − 130 = 30)
queries to read the whole table. This trick reduces the time required to wait
for responses and speeds up the crawler. After sending the queries, all returned
nodes from the find node responses are then added to a task queue. The task
queue contains RemoteNodes we have not completely read yet. The node which
sent the response is added to the set of good nodes. Good nodes are nodes that
have responded to a find node query. It is important to know which nodes we
have already in the task queue in order to not enqueue the same node multiple
times. We now continue to read the routing table of nodes from the task queue
until this queue is empty. The task queue does not only contain RemoteNodes, it
stores tuples which consist of the RemoteNode and the current bucket index we
are reading. If a RemoteNode responds to a query, the bucket index is increased
by one and the tuple enqueued to the task queue. This procedure guarantees that
only one query per RemoteNode is in flight at anytime. If too many queries are
send to a RemoteNode, it may be detected as a DoS attack as explained earlier
and the node would not respond to our queries. The problem with having only
one active query is that it significantly slows down the crawler. To compensate
this loss of speed we query multiple nodes in parallel.

Figure 2.3: Node N1 wants to read single buckets from node N2 by flipping the
corresponding bit in the search ID S.
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2.3 DHaTaStream

The regular way to use the BitTorrent DHT is to add peer information (IP
address, TCP Port) to a set of peers at a certain key. Recall that all the peers of
this set share the same file with an info hash that is equal to the key. Our goal
is to use the the BitTorrent DHT to store arbitrary data. The first possibility
would be to use the TCP Port field of the peer information to store data. The
TCP Port field has a data size of 2 bytes. This is not much of storage space
and we would not even be able to use the full 2 bytes for data because we would
also have to include some sorting mechanism, for example including sequence
numbers within the data. The sequence number can then be used when reading
the data to put it in the correct order. Another issue with this approach is
that when a node wants to get peers for a certain key (by issuing a get peers
query), the queried node returns a set of 50 random nodes contained in this
set. Therefore it is not guaranteed that the set elements with the stored data
are returned. Instead we investigate a more intricate way to store data in the
BitTorrent DHT. The idea is to write and read data to and from the routing
table of nodes in the DHT. A node N1 adds node N2 to its routing table when
N1 receives a message from N2 and the corresponding bucket of the routing table
of N1 is not full yet. As we observed in Chapter 1, each node in the DHT can
choose its own node ID.

If we wish that node N1 is added to node N2’s routing table, then we have to
know N2’s ID. Node N1 can locate the bucket it wants to be added, by adjusting
N2’s ID, but it can only be added when this bucket is not full yet, i.e., has not
already stored 8 nodes. Adjusting the ID means that we can choose the number
of equal prefix bits by flipping the bit at the proper position. How the position
where the bit is flipped relates to the bucket that is aimed to be written is shown
in equation 2.1. Figure 2.4 shows how N1 has to adjusted N2’s ID to be added
in the intended x-th bucket. The remainder of the the 160 bits, i.e., the bits on
the right side of the flipped bit are not important in order to be added to bucket
i of the routing table. We use these bits to store data. In order to utilize the
full bucket, we send 8 find node queries from 8 different ports, using the port as
sequence number. This is important because when we read the data from the
bucket we need to put the data in the correct order. Writing to a bucket of the
routing table works simililar to reading a bucket from the routing table. Reading
a bucket was already described in the previous section. The difference between
reading and writing is that if we read a bucket we have to flip one bit of the
search ID and when we want to write into a bucket we have to flip one bit of the
sender node ID.

We cannot write into the routing table of every node. Some have more
buckets that we can write into, some have only a few buckets we can use to store
data and some do not add nodes at all. Some implementations do not actually
initiate 160 buckets limiting the maximum prefix length to 30 bits.
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Figure 2.4: Example of writing to a bucket with a node ID of 8-bit.

Our implementation of the described method, called the DHaTaStream, con-
sists of four layers. Figure 2.5 displays the structure of the DHaTaStream.

• The first layer consists of RemoteStorage (RS) objets. These objects are
an abstraction for a storage space in the DHT. It consists of a RemoteNode
and the storage space that is available a this RemoteNode.

• The RS objects are controlled by the RemoteStorageCombiner (RSC) from
the second layer. The RSC searches the closest RemoteNode to a given
search ID and tries to write data into that RemoteNodes routing table. It
builds on RS objects with variable size and opportunistically adds new RS
objects as needed. In order to have one starting point and not lose track
of the full storage path, the search ID is hashed for each new node. Thus a
deterministic chain of keys can be built to know the path of storage. This is
helpful for the reader if a node is not reachable anymore, it is still possible
to continue with reading. The RSC looks up as many nodes as necessary
to store all data it has to write. Because the look-up for RemoteNodes
takes up some time, we decided to concurrently write data and search for
the next RemoteNode storage. The RSC operates rather slowly.

• Writing only works sequentially because it is not possible to guess how
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much can be stored in each RS object. Therefore we created a further
abstraction, the DataStriper (DS). It represents the third layer of our soft-
ware architecture. The DS, as the name implies, stripes the data into equal
length stripes and writes it parallel to several RSCs. The purpose of the
DS is to speed up writing.

• The fourth layer applies error correction coding to the data in order to
correct missing data due to nodes that have left the DHT and cannot be
read anymore.

We have implemented layer 1 to 3. Layer 4 is not in the scope of this thesis.
An error correction code that is used for similar applications is the Reed-Solomon
code [10] [11].

Figure 2.5: Architecture of the DHaTaStream.



Chapter 3

Evaluation

In order to measure various aspects of the DHT and estimate their impact on
the presented software we designed the following experiments. Some experiments
also help to determine parameters that are used in the software such as the re-
sponse timeout and the query retry count. Those parameters are used in the node
look-up. The response timeout is the time a LocalNode waits for a RemoteNode
to respond to a query. The query retry count is the number of times a query
is retransmitted, i.e., how many times we wait for an additional timeout. The
reason why we use multiple retries is the unreliablility of the UDP Protocol that
is used for the message exchange.

Node density. The purpose of the first experiment is to estimate the number
of participating nodes in the DHT. This is accomplished by performing look-ups
for multiple randomly chosen IDs. For each random ID we log the number of
prefix bits which it shares with the node ID returned by the iterative look-up.
Equation 3.1 is used to calculate the number of participating nodes n in the
DHT.

E[L] =
N−1∑
i=0

1−

(
1 +

(
1

2

)N

−
(

1

2

)i
)n

(3.1)

The random variable L is the measured quantity from the experiment, i.e.,
the maximum shared prefix length between a search ID and the closest node
found by the iterative look-up. The expected value E[L] is determined by taking
the mean value of all measured values. N is the number bits in the ID (N = 160).
The calculation of a look-up list for different values of E[L] gives us the value for
n. The resulting number of participating nodes in the DHT is around 6 millions.
The Karlsruhe Institute of Technology (KIT) operates a DHT live monitoring1.
The measured number by the KIT fluctuates between 6 and 10 million nodes.

1http://dsn.tm.kit.edu/english/2936.php
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For further calculations we use the mean value of the KIT live monitoring (8
millions) because of its long term application.

Writable nodes and storage size per node. In this experiment we measure
the number of nodes that are writeable, i.e., nodes that can be used store data.
Furthermore we measure how much data can be stored in writeable nodes, in
particular the average storage capacity of a node. Whether a node is writable
depends on the node implementation since the routing table policy is left to the
implementors. The mesurement starts with trying to store data in a random
node. If data storing is successful, we try to store as much data as possible in
this node. This procedure is repeated to get representative values. During this
experiment we log the number of all queried nodes, the nodes that are writeable
and how much data we are able to store. Combining the total DHT size and the
number of writable nodes with the average storage capacity gives us the globally
available storage of the BitTorrent DHT. Figure 3.1 shows the distribution of
the nodes according to the number of bytes that could be stored in the routing
table. Two peaks are noticeable. Nodes that store less than 500 bytes and nodes
that store around 9000 bytes. The average storage size per node results in 4150
bytes. About 15.19% of all nodes in the DHT are writeable. With 8 million
nodes in the BitTorrent DHT the total storage size is more than 5 gigabyte. Not
all nodes that are writeable are also readable. A written node may simply leave
the DHT or cannot be found anymore. Because of this reason we suggest adding
an Error Correcting layer to gain redundancy. The next experiment investigates
the probability to find the same node again after a certain amount of time.

Node search consistency. We want to measure how long the same node is
found when searching for the same ID. The experiment starts with a look-up
of a random ID. Every 2 minutes the look-up for the same ID is repeated for
about the span of one hour. Before each look-up, the routing table is refreshed
in order to avoid bias. The resulting node ID of each look-up with the search
ID is logged for later comparison. This experiment gives us the probability of
finding the same node again after up to one hour when performing a look-up for
the same search ID. Figure 3.2 shows that after 2 minutes we find the same node
again with a probability of 84%. After 25 minutes we still have a probability
of 70%. An hour after the first look up the probabilty to find the same node is
still over 60%. The node search consistency indicates how much redundancy is
needed to compensate for data losses due to nodes that have become unavailable.

Timeout and retry sensitivity. In this experiment we measure the influence
of two parameters on the distance between a random search ID and the closest
node to this ID. The closest node to the search ID is determined using the
iterative look-up. The parameters varied during the look-up are the response
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Figure 3.1: Writeables nodes either store around 5000 or 9000 bytes.

timeout and query retry count. The purpose of this experiment is to determine
good values for response timeout and the query retry count, i.e., the values
should be chosen so that the look-up is fast as well as robust. The look up is
said to be robust when it finds the node that really is closest to the search ID.
We define the following procedure: a node look-up is performed for a random
ID to find the closest node for each combination of response timeout and query
retry. The response timout is varied from 1 to 5 seconds in 1 second steps. The
query retry count starts with 0 retries and ends with 3 retries. This leads to
20 measured configurations. For each measurement we perform several look-ups
and log the number of equal prefix bits the found node shares with the search
ID. The result of this experiment is depicted in Figure 3.3. The plot shows that
the longer the chosen response timeout the closer is the found node to the search
ID. However, a long response timeout alone does not guarantee that the closest
node is found. The results for zero retries in Figure 3.3 indicates that the query
has to be resent at least once. There is a big gap between no query retry and
other query retry counts. The plot also shows that whatever parameter is chosen
the found ID never has more than 24 equal prefix bits. This means that it does
not help to further increase the response timeout or the query count. We are not
able yet to chose the optimal parameters for the node look-up since we have not
yet considered the time a look-up takes for the different parameters. But we can
estimate that the longer the response timeout and the larger query retry count,
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Figure 3.2: After 25 minutes, the probability to find the same node for a look-up
of the same search ID is 70%.

the longer takes the look-up.

Node search time. The node search time is the mean amount of time we need
to terminate the search a given ID. For all the look-ups we recorded during the
timeout and retry sensitivity experiment, we also log the search time. Figure 3.4
shows the results of the of the experiments. It can be seen that the node search
time increases with longer response timeout and larger query count. With the
graphs in Figure 3.3 and 3.4 we are able to determine response timeout and
query retry count to find the closest node to a search ID in the shortest amount
of time. For example, if we choose a response timeout of 3 seconds with one
query retry, the the look-up returns a node that has an equal prefix lenght of 23
with the search ID and a look-up time of about 17 seconds. The best choice for
our parameters are 1 second response timeout with 2 query retries which results
in a node search time of around 10 seconds.

Writing/reading speed. With this experiment we measured the writing and
reading speed we have on average when writing to a writeable node. This experi-
ment gives us the data size we were able to store and the amount of time it needs
to store that data. After the writing has finished the data is read from the same
node, and the time required to read the data is recorded. We are able to calculate
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Figure 3.3: The query retry count has to be at least 1.

the writing speed with the amount of data that was stored and the time it took
to store that data. The same is true for the reading speed. The resulting writing
speed is 24.57 bit/s without the time for the look-up. The value is averaged over
all nodes that were writeable. Nodes that can only store a small amount of data
have a much lower average writing speed than nodes that store more data. We
start to store data in buckets with a large index, i.e. many common prefix bits.
Buckets with a large index have less space for storing data than buckets with a
smaller index. But we have to send the same number of queries for all buckets,
which means that it takes the same amount of time. Therefore storing data in a
bucket with a small index is a lot faster. A way to speed up the writing process
is to concurrently write to multiple nodes. The resulting reading speed is 95.39
bit/s. Reading is much faster than writing because we can read a full bucket
with just a single query whereas for writing 8 messages are required to write a
full bucket. One might wonder why reading is not around 8 times faster than
writing. This is due to the reading procedure: If a node does not respond to all
sent reading queries, the query is resent until the node returns at least one query
for each bucket. With this procedure we are able to read 95% of the stored data.

Crawling the DHT. We mainly focused on the storing and reading data but
we also did some testing with the crawler. After crawling almost a million nodes
we analyzed the collected data. We scanned nodes with the same IP but a
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Figure 3.4: The node search time increases with the response timeout.

different port. We found three IPs with around 150 different ports and different
node IDs each. It turns out that the found IPs belong to a company called
Evidenzia2. Evidenzia claims to be one of the leading partners of the software,
movie and music industry when it comes to tracing copyright infringements and
illegal file sharing activities in peer-to-peer networks.

2www.evidenzia.de



Chapter 4

Conclusion and Future Work

In this thesis we have developed three different software tools for the BitTorrent
DHT and implemented it in Java. The first one is a framework that can be used to
control one or more nodes in the DHT. The framework will also be implemented
into BitThief. The second tool is a crawler that is able to collect different kind
of information about nodes in the DHT. With the collected information we are
be able to reconstruct the DHT. With the third tool we have shown that it is
possible to store any kind of data on a computer without the user’s knowledge.

In the second part we have analyzed the perfomance of the built software
tools and the DHT in general. We have investiagted how fast data can be stored
and read from a node in the DHT. We further have calculated the storage size of
the whole BitTorrent DHT. We have also determined the values for the response
timeout and the query retry parameters to get a consitant and fast node look
up.

• The framework can be included into BitThief to make it able to use Bit-
Torrent for swarm discovery.

• A speed up of the data store and read algorithm can be achieved by more
concurrent processes.

• The crawler can be used to reconstruct the DHT overlay network. All
collected data may further be investigated to find some nodes that do not
act according to the protocol. For example, a node may try to take control
over certain files.

• The proposed Error Correcting Code may be implemented to add redun-
dancy to make the system more robust if nodes with stored that leave the
DHT and cannot be reed anymore.
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