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Abstract

We study the Ants Nearby Treasure Search (ANTS) problem that has been in-
troduced by Feinerman, Korman, Lotker, and Sereni (PODC 2012). The ANTS
problem consists of n ants, initially placed at the origin of the infinite grid, which
have to collaboratively locate food that is placed by an adversary. We follow the
restrictions on the ants’ computational power introduced in the paper of Emek,
Langner, Uitto, and Wattenhofer (2013). In particular, the ants are controlled
by a randomized finite state machine and have the ability to locally exchange
constant-size messages.

In this thesis, we extend the previous work by studying which fundamentals
a nature inspired problem must comprise; we argue that the two most crucial
features of such a problem are the need for collaboration, and the element of un-
certainty. Based on those insights, we introduce the Adversarial ANTS (AANTS)
problem that extends the existing model by a need for fault-tolerance.

We provide a lower bound on the number of ants that are required to suc-
cessfully locate the treasure, assuring that ants indeed have to collaborate. To
the best of our knowledge, this is the first work in regard to the ANTS problem
that actually proves the necessity for collaboration. We also establish a lower
bound on the runtime of the AANTS problem, and we present an algorithm that
is o(log(n))-competitive w.h.p., where n is the number of ants. Additionally, we
investigate the implications of making ants computationally more powerful, by
allowing them to store information on an unbounded stack. Our results show
that a single ant with a stack is computationally equivalent to one without a
stack.
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Chapter 1

Introduction

1.1 Biology Meets Theoretical Computer Science

In recent years, interdisciplinary research has gained increased attention. Tradi-
tionally, the collaboration between different fields of science has been unilateral;
for example medical scientists using findings of biology, pharmacy profiting from
advances in chemistry, and of course, nearly every field of study benefiting from
mathematics. Even though this unilateral collaboration accelerates research for
one of the parties, it would be even better if scientists collaborated in such a
way, that both parties can benefit mutually. Of course, this is not an easy task,
as it requires a certain problem to be relevant and unsolved for both areas of
research; nevertheless, certain areas of research turn out to be well suited for
such a fruitful collaboration. One of the maybe more surprising conjunctions is
the one of biology and theoretical computer science, which motivated this thesis.

The question of how animals solve complex tasks is fundamental for behav-
ioral biology. Of particular interest are tasks which include an inherent un-
predictable element that has a significant impact on how the problem can be
solved, or tasks that are solved with collaboration. It is well-known that there
exist many different species of ants that collaboratively manage a colony, which
includes various jobs to be taken care of; those jobs range from breeding of off-
spring over cleaning the hive to foraging. In this thesis we investigate the ant
foraging process, as it is a good example of a task that features both the
element of collaboration and the element of unpredictability.

From a theoretical computer science point of view, the ant foraging process
resembles a typical distributed problem. It relates to various multi-robot prob-
lems, such as gathering a team of robots, or graph exploration. The ant foraging
problem itself raises a number of questions: How much computational power does
each individual ant need to have, so that foraging can be done efficiently? Can
communication between the ants benefit their searching behavior, and what form
of communication do the ants require? Are messages of constant size sufficient,
or do they need to exchange, e.g., positional information?

1



1. Introduction 2

Thinking about the ant foraging process, it quickly becomes evident that the
problem is a fine example of a topic that suits our demand for mutual interdisci-
plinary research. Hence, we decided to extend the existing work on ant foraging,
by modifying the model introduced by Emek et al. [1] in such a way, that it
resembles nature more closely. We decided to add an element of uncertainty to
the ant foraging process; namely we added an adaptive adversary that is allowed
to fail ants during the process. We claim that such an extension to the model
allows us to get an important step closer to nature, as the element of uncertainty
lies at the heart of problems that are solved in nature; in particular, a major
problem of algorithms that are designed in the explicit absence of uncertainty is,
that they are prone to miss the essence of the actual problem.

1.2 Related Work

The main inspiration of this thesis was the work from Emek et al. [1] who studied
the Ants Nearby Treasure Search (ANTS) problem, which was introduced by
Feinerman et al. in [2, 3]. Feinerman et al. studied the ant foraging process from
a theoretical computer science point of view, by asking the question of how the
foraging problem can be solved efficiently. In their model, ants are represented
by randomized turing machines, that initially start at a hive, and collaboratively
discover the area around the hive to find the treasure – i.e., the food – located
by an adversary. The goal is to find the treasure as fast as possible. Emek et
al. adopted this model, but they argue that modeling ants to have unbounded
memory might not be an accurate model of ants; instead, they show that the
ANTS problem can be solved with finite memory, if ants are allowed to make
use of a very simple form of communication. Lenzen and Radeva [4] encourage
this claim, presenting an algorithm which requires only finite memory and the
possibility to mark locations with pheromones.

Other work that has influenced this thesis can be grouped roughly into five
categories: Graph exploration, swarm robotics, fault tolerance, interdisciplinary
research and studies on ants. In the following we point out the related work of
those five categories.

Graph exploration has been studied thoroughly; i.e., graph exploration by a
single agent is studied in [5, 6, 7]. Of particular relevance for this thesis is the re-
striction to grids. An extensive survey of the recent work on grid exploration by
a single agent can be found in Wernli [8]. Since we are modeling a natural envi-
ronment, it might be reasonable to consider obstacles that hinder the movement
of ants; how a single agent can discover an environment containing obstacles was
studied, e.g., in the work of Betke et al. [9]. In respect to memory limitations,
the use of only logarithmic memory has been studied in [10] and the use of no
memory at all in [11]. How a pebble (which could correspond to pheromones)
can be used to explore a graph is studied in [12].
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Multi-agent graph exploration has also been studied in various settings; Ben-
der and Slonim show in [13] how two agents can collaboratively explore a graph.
The impact of communication on agent collaboration in general is studied in [14].
Graph exploration with an arbitrary number of agents is studied for trees, e.g., in
[15, 16, 17, 18] and for general graphs in [19, 20, 21]. Multi-agent grid exploration
with obstacles has been studied in a recent work of Ortolf and Schindelhauer [22].

Solving tasks with a large number of robots has been studied, for example,
in the context of swam robotics [23]. Covering a finite graph in optimal time is
closely related to the ANTS problem; a survey on different approaches to the
problem can be found in [24]. The coverage problem is studied for a swarm of
robots in [25], and for ant like robots in [26].

Fault tolerance in multi-agent systems has been studied in different contexts.
Examples include: Fault-tolerance in actual robot systems [27], fault-tolerant
robot gathering [28], fault-tolerant sorting with ant-like robots [29] and fault-
tolerance in population protocols [30].

The idea of bringing biology and theoretical computer science closer is not
new; ideas in such a direction can already be found in a survey from Wagner and
Bruckstein [31]. A more recent survey is the one from Feinerman and Korman
[32]. The idea of applying algorithmic concepts to problems from biology is also
studied in the work of Chazelle, e.g., in the context of bird flocks [33].

A more mathematical point of view on ants can be found in [34]. In a similar
fashion, Hirsh and Gordon analyze the collaboration in various types of insects
in [35]. Very early approaches to simulating ant behavior based on observing
ants can be found in [36, 37].

There exist many papers from biology on ants. Special attention deserves the
work from Wehner et al., e.g., [38, 39, 40, 41]. The navigation capabilities of ants
were studied in [37, 41, 42, 43, 44, 45, 46, 47, 48, 49]. Those studies present a lot
of evidence, that suggests that ants make use of different navigational abilities,
which can be grouped into two main categories: Path-integration and landmark
information.

1.3 Thesis Outline

In Chapter 2 we start with introducing the main concepts used throughout this
thesis. We also give a formal description of the used model, and introduce the
Adversarial Ants Nearby Treasure Search (AANTS) problem. Then, in Chapter
3, we establish a lower bound on the number of ants required to solve the ANTS
problem, giving insight on the computational power of ants in our model; in
particular, we show that it requires at least three ants to discover the treasure,
which shows that the chosen model features an inherent element of collaboration.
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In Chapter 4 we proceed to investigate the AANTS problem, establishing a
lower bound on the expected runtime, and presenting algorithms that solve the
AANTS problem efficiently. Our main result is an algorithm with an o(log(n))-
competitive expected runtime w.h.p., where n is the number of ants.

In Chapter 5, we alter the model, studying the impact of making the ants
more powerful, i.e., by allowing them to store information on a stack. We show
that, even with this enhanced computational power, ants still need to collaborate
in order to discover the treasure.

In Chapter 6, we compare the results with existing work on ants from biol-
ogy. We conclude this thesis in Chapter 7, summarizing our contributions and
pointing out possible directions of future work.



Chapter 2

Model

In this thesis, we investigate the ANTS problem introduced in the paper by Fein-
erman et al. [2] in different variants. Throughout this thesis, we make changes
to the studied model, which are discussed in the respective chapters. In this
chapter, we introduce the “basic” model, i.e., the problem statement and the
basic computational model. Note that all the models used throughout this the-
sis are closely related to the model introduced by Emek et al. [1]. Additionally,
we introduce the Adversarial Ants Nearby Treasure Search (AANTS) problem,
which we will extensively study in the later chapters.

2.1 Preliminaries

Before we discuss the model that is used in this thesis, we introduce certain
concepts from graph theory. The definitions of this section are illustrated in
Figure 2.1.

Definition 2.1 (Manhattan distance) For two points (x, y), (x′, y′) ∈ Z2,
the Manhattan distance is defined as d((x, y), (x′, y′)) := |x− x′|+ |y − y′|. 3

Definition 2.2 (infinite grid) The infinite grid G∞ = (V,E) is a graph with
V = Z2, containing an edge from u to v if and only if d(u, v) = 1, according to
the Manhattan distance. 3

Remark 2.3 (field) Throughout this thesis we refer to the vertices of the infi-
nite grid as fields, which is a natural term when studying grids.

Definition 2.4 (adjacent, neighboring) Two fields u, v ∈ Z2 are called ad-
jacent or neighboring, if and only if d(u, v) = 1. 3

Definition 2.5 (cardinal directions) For a field (x, y) ∈ Z2, the four adja-
cent fields are referred to by their cardinal direction as follows: North (x, y+ 1),
East (x+ 1, y), South (x, y − 1) and West (x− 1, y). 3

5
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N

E

S

W u

Figure 2.1: A part of the infinite grid G∞. The four fields that are adjacent to
field u are indicated with the letter for their respective cardinal direction.

2.2 General Model

The ANTS problem is specified as follows: A team of n identical mobile agents
(referred to as ants) search for a treasure that was placed on the infinite grid
G∞ by an adversary. The goal of the search is to discover the field, on which
the treasure is located, as fast as possible. We call a field discovered, when the
field has been visited by at least one ant.

The search process is executed in synchronous rounds, and we say that each
round lasts for one time unit. In the beginning (at time 0), all n ants are
located at the hive, which is located at field (0, 0) ∈ Z2. All fields of the grid
are identical, i.e., ants cannot distinguish them from each other. This means in
particular, that an ant cannot derive any information from its current position;
only an external observer would see on which field an ant currently stands. To
facilitate navigation, all ants share the same sense of orientation; this means that
the cardinal directions are consistent among all ants.

The Manhattan distance is used as the distance metric. The movement of
ants is restricted to traversing at most a distance of 1 in each round, meaning
that in each round, every ant can either move to an adjacent field, or stay put.
Those five movement possibilities are abbreviated with N,E, S,W,P , where P
denotes remaining stationary.

In this thesis, we assume that the ants are either (randomized) finite state
machines, or (randomized) pushdown automata; which of the two computational
models is in use is stated in the respective chapters. Note that in both cases,
ants have, at any time, a current state. In the very same way as in the work of
Emek et al. [1], we allow the ants to make use of a simple form of communication,
which can be referred to as making observations. The observations that an ant
can perform are limited to the following: In each round, every ant observes the
presence of other ants on the same field. Note that it only gets very limited
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information; namely for every state q, it observes if there is either no other ant
currently present in state q, or if there are one or more ants present in state q.
Hence it observes boolean information for every state q. This communication
scheme is a special case of the one-two-many communication scheme introduced
in [50].

Based on the observations and the computational model, the ants then pro-
ceed to compute their movement decision and their state transition. In the case
where ants are pushdown automata, the ants may also alter the stack. We defer
the definition of how the stack may be altered to Chapter 5, as for now, the ants
are finite state machines.

In summary, every ant performs the following three steps in each round.

1. Observe. The ant observes other ants that are currently standing on the
same field.

2. Compute. The ant performs a computation based on its state and the
observed ants.

3. Move and update state. Based on the computation, the ant decides
how to move. Additionally, the ant can update its state.

Regarding the computational power of the ants, it is crucial to note that
their limitation to finite state machines or pushdown automata does not allow
the ants to either have identifiers, nor to store their current coordinate1. Let us
now formally define the protocol of an ant that has the computational power of
a finite state machine2. The protocol of an ant is defined by the 3-tuple

M = (Q, q0, δ)

where Q is the finite set of states, q0 is the initial state, and δ is the transition
function. Initially, all ants are in state q0; furthermore, all ants are positioned
at (0, 0), i.e., they are located at the hive. The transition function is defined as
δ : Q × 2Q → Q × 2Q×{N,E,S,W,P}. For every time t and ant a, the transition
decision is made as follows: Let q ∈ Q be the current state of a at time t, and let
c ∈ Z2 be the field at which a is positioned. The state q′ of a at time t+ 1 and
the movement step τ ∈ {N,E, S,W,P} are chosen uniformly at random from
pairs (q′, τ) ∈ δ(q,Qa), where Qa ⊆ Q contains state p ∈ Q if and only if there
is at least one ant a′ 6= a in state p located at c at time t.

1Pushdown automata can store their coordinate, but they cannot access or alter it in a way
a turing machine could. This limits the benefit of storing the coordinate on a stack heavily.

2The formal definition of an ant that has the computational power of a pushdown automaton
can be found in Chapter 5.
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2.3 The Adversarial ANTS Problem (AANTS)

Based on the model for the ANTS problem defined in the previous section,
we extend the problem by adding an adversary, who is allowed to fail ants
during the search process. We call this problem the Adversarial Ants Nearby
Treasure Search (AANTS) problem. Since the only change to the model is the
strengthening of the adversary, we will now specify her abilities.

At the end of each round, i.e., when the state transition and the movement
decision of all ants are computed, but just before they are executed, the adversary
may fail a certain amount of the ants. The ants that are failed by the adversary
are “removed” from the grid, and they cannot influence the alive ants anymore.
This means in particular, that failed ants do not leave a corpse behind, i.e., alive
ants can only detect the failure of an ant by “knowing” that there should be an
ant on a certain field, but their observation tells them that there is no ant. Since
the adversary can decide in each round which ants she wants to fail, knowing the
protocol executed by the ants, the ants have to deal with a so called adaptive
adversary.

The number of ants that the adversary can fail in total is limited to f , where
f < n, i.e., at least one ant must survive. Besides this restriction, there is no
other restriction; in particular, algorithms should be able to tolerate up to c · n
many failures, for a constant c < 1. The number of ants that the adversary can
fail in a single round is not further constrained; an adversary could, for example,
fail f ants in a single round.

Note that – besides initially positioning the treasure – failing ants is the only
capability of the adversary; she cannot, for example, control the random bits that
get created by the individual ants. This limitation of the adversary is necessary,
as neither finite state machines nor pushdown automata could perform symmetry
breaking without randomness or identifiers. Without symmetry breaking, all
ants would perform the very same behavior; and thus, the resulting execution
of any algorithm would be as if there was only one ant. In Chapter 3 (resp.
Chapter 5) we show, that a single ant cannot solve the ANTS problem, hence
AANTS would not be solvable if the adversary could control the random bits.

The goal of AANTS is the same as the goal of ANTS, namely to discover the
treasure located by the adversary as fast as possible. The difference is only in how
the performance is measured: In the original ANTS problem, the performance
is measured as the runtime expressed in terms of the number of ants n, and the
distance between the hive and the treasure, D. In AANTS, the runtime is also
expressed in terms of f , the number of ants that the adversary can fail. Notice
that all three parameters (D, n and f) are unknown to the ants.
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2.4 Other Failure Models

In this section we present different failure models one can think of, and we explain
why we think that they do not lead to interesting algorithms. Recall that we
already discussed in Section 2.3 why an adversary cannot be allowed to control
the random bits, which would be one of the different failure models that come
to mind.

2.4.1 Oblivious Adversary

One way in which the adversarial setting could be modified would be to reduce
the power of the adversary. Instead of ants being failed by an adaptive adver-
sary, that is allowed to make decisions with knowledge about the algorithm, one
could think of an oblivious adversary ; i.e., the f failures would occur randomly
throughout the search process. Such an adversarial model can easily be mo-
tivated by events that occur randomly in nature; for example a large animal
walking by and crushing a couple of ants, ants dying from age, or ants dying
from hostile weather conditions.

A question that arises naturally when deciding between an oblivious and an
adaptive adversary model is: Why decide for the weaker model, if you can design
algorithms for the stronger model? Even though it seems straightforward to pick
the stronger model – as long as the problem remains solvable – one must keep in
mind, that picking the weaker model is potentially justifiable; a stronger model
usually leads to more complex solutions, and if the constraints of the model are
not adequately backed by the actual problem, it might be reasonable to weaken
to model, in order to obtain nicer solutions.

However, if the goal is to develop an algorithm that guarantees to solve
the problem (a so called Las Vegas algorithm), deciding for an oblivious adver-
sary model usually does not provide any significant benefits. Additionally, an
oblivious adversary model might even complicate the analysis, without giving al-
gorithms more degrees of freedom. Considering these potential drawbacks, and
the fact that algorithms designed for the stronger model also work in the weaker
model, we decided to choose the adaptive adversary model.

2.4.2 Byzantine Failures

There is another prominent concept when thinking of failure models: Byzantine
failures. A possible application of the byzantine failure model would be to allow
the adversary to control a certain amount of ants. For example, she could let
them perform incorrect movement steps or incorrect state transitions. On the
first glance, such a failure model seems to be very reasonable, as in nature a
certain degree of lack of precision will occur, and byzantine failures could nicely
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model such an imprecision. The following example illustrates such a byzantine
failure: An ant wants to walk a single field north, but accidentally walks two
fields north, due to shortcomings in its movement precision.

Even though such failures might occur in nature, it can easily be argued that
modifying the ANTS problem by adding byzantine failures will either force any
algorithm to always use a redundancy of Ω(n) – meaning that every field must
be discovered by Ω(n) many ants –, or the algorithm cannot guarantee to discover
the treasure. The argument can be sketched as follows: If an algorithm does not
use redundancy at all, the adversary could make the algorithm fail to discover
the treasure by simply shifting the ant that would discover the treasure around
it (see Figure 2.2). It is therefore clear, that any algorithm that guarantees to
discover the treasure, must use a form of redundancy. Since ants may not be
able to realize that a certain byzantine failure occurred, redundancy must always
be employed, and not only after a failure triggered its necessity. To make the
problem interesting, one would parametrize the number of byzantine failures, or
the number of ants that perform byzantine failures; else the number of byzantine
failures would be constant in regard to the number of ants, which is obviously not
of interest. But since the algorithm on one hand would be required to deal with
this (potentially large) amount of byzantine failures, while on the other hand
the ants are not capable of counting the number of ants on a certain field, the
algorithm would be forced to use a search strategy with a redundancy factor of
Ω(n), to make sure that every field is discovered. Since employing such a heavy
redundancy does not make good use of the large amount of ants, the resulting
algorithms would not be interesting.

Figure 2.2: The star represents the treasure. The ant that should discover the
treasure thinks that it walks the straight (dashed) line, but the adversary forces
the ant to walk the solid line; the algorithm then assumes that the field with
the treasure is discovered, and will not revisit it, hence failing to discover the
treasure.
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2.4.3 Location Bound Failures

Another variation of how failures could occur would be to have one or multiple
adversaries who are themselves located on the grid. A possible motivation for
such adversaries, who are bound to a certain location on the grid, could be
anteaters, which eat all ants that step on the field on which the anteater is
located. One could extend this model in various ways, e.g., by varying the
number of adversaries, by allowing them to move, or by altering their size3.

Let us discuss the simplest variation, the anteater with a fixed location.
Such an anteater is equivalent to a black hole, a concept that is studied e.g., in
[51, 52, 53]. In those papers, the following problem is addressed: There exists a
graph and a group of mobile agents. The graph contains a black hole, i.e., one
node of the graph is special in the sense that any mobile agent that steps on that
node is extinguished. The goal is to traverse the graph with the mobile agents
in such a way that the position of the black hole is learned.

The difference between the black hole search problem and the ANTS problem
extended with anteaters is, that in ANTS it would not be sufficient to discover
the black holes, but the ants would need to walk around them and still discover
the treasure. In the following we will argue why the anteater failure model is not
promising to yield interesting algorithms.

Having only a small (i.e., constant) number of static anteaters, the ants would
easily be capable of walking around them, hence the anteaters would not have
an interesting impact on the search process. Increasing the number of anteaters
would at first not have any effect, as the anteater could always be avoided for
the cost of sacrificing a handful of ants, until at a certain point the problem
would become unsolvable, as simply too many ants die due to “discovering” the
locations of the anteaters. A similar reasoning applies for allowing anteaters
to move: They quickly become so powerful, that the ants cannot discover the
treasure anymore. A different problem that arises is, that one must somehow
limit the anteaters in the way that they can “defend” the treasure; for example
they cannot be allowed to completely surround the treasure.

With those considerations in mind, we do not claim that there is no possibility
that introducing a concept like anteaters might lead to interesting algorithms,
but we think that justifying the exact parameters for the model (e.g., the number
of anteaters) would be difficult. Therefore we did not study such a failure model.

3It seems reasonable to model the anteater with a different size than an ant, or allowing it
to move faster than ants.



Chapter 3

Minimal Number of Ants to
Discover the Grid

In this chapter we want to investigate the minimal number of ants that are
required to deterministically find the treasure. The computational model for
the ants is described in Chapter 2, but we do neither allow any failures in this
chapter, nor the use of probabilistic bits. The latter restriction is due to the goal
discovering the entire grid in a deterministic fashion, meaning that we want to
have a guaranteed runtime to discover each field. It is clear that once the ants
are discovering a distance far away from the hive, probabilistic bits will become
useless as the number of fields to discover increases beyond any bounds – and
the ants are not even aware of this situation due to their lack of memory. Thus
the question that we pursue in this chapter can be stated as follows: What is the
minimal number of ants to deterministically discover the entire grid? To answer
this question, we want to establish the following theorem.

Theorem 3.1 It takes at least three ants to deterministically discover the entire
grid. Additionally this bound is tight, i.e., there exists an algorithm discovering
the entire grid with three ants.

In this chapter we assume that each of the ants has its own finite state
machine. This alleviates the problem in that fashion, that we can have different
roles; in the original model we could simulate this behavior with random bits,
but as we decided to omit randomness in this chapter, we think it is clearer to
allow the ants to have different finite state machines directly at the beginning.
Note that this does not give the ants any advantage compared to ants in the
original model.

12
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3.1 One Ant

Lemma 3.2 One ant cannot discover the entire grid deterministically.

Proof Let us first make two important observations regarding the ant. First,
as we are looking at a single finite state machine, communication cannot affect
the behavior of the ant during the execution of the algorithm. And second, the
number of states of the finite state machine is constant.

We use the following notation: q denotes the number of states of the finite
state machine, and P(t) denotes the position of the ant at time t. We count the
time starting from t = 0.

Let k (1 ≤ k ≤ q) be the first state that the ant enters a second time during
the execution of the algorithm. We denote by tk1 the first time where the ant is
in state k, and analogously by tk2 the second time and so on. Note that tk1 < q
and tk2 < q + 1.

As the ant decides in each time step for both the direction to move and a
state transition based on solely its current state and any communication – and
there is no communication – the ant will start repeating the exact movement
steps and state transitions between any two tki and tki+1

, for i ≥ 1. Thus we can
conclude that since the ant enters state k twice, it will enter state k an infinite
number of times.

Note that for all i ≥ 1 it holds that tki+1
− tki < q, i.e., the time between

the ant enters the state k again is bounded by a constant. This follows as there
are at most q − 1 different states which the ant could enter, and since we know
that the ant enters state k an infinite number of times, no different state can be
entered twice between two consecutive tki .

1

Let us distinguish two cases:

1. P(tk1) = P(tk2)

As the ant moves a cycle and ends up in the same configuration again
(same position, same state), it will infinitely repeat performing the very
same cycle. As we know that the time difference between two adjacent tki
and tki+1

is bounded by a constant, the size of the cycle is also bounded
by this constant. Thus the ant only walks over a constant number of fields
and does not discover the entire grid.

1If there existed a state j that is entered twice between two consecutive tki , the ant would
perform the cycle between the two times in state j and never enter state k again, contradicting
the fact that the ant enters state k an infinite number of times.
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2. P(tk1) 6= P(tk2)

Let ∆k = P(tki+1
)−P(tki) be the movement that the ant performs between

two consecutive times where it is in state k. Note that ∆k is independent
of i, as the ant must be repeating its movement behavior. It holds that
P(tki+c) = P(tki) + c ·∆k, for c ≥ 0 and i ≥ 1. Since the ant enters state k
infinitely often, the ant will eventually move infinitely far in direction ∆k.
As the time difference between two adjacent tki and tki+1

is bounded by a
constant, the ant can only discover fields that lie inside a band of constant
width around the line of points P(tki). Since the direction of this band
(∆k) does not change, the ant will eventually discover at most all fields
inside this band, missing infinitely many fields outside of this band, and
thus the ant does not discover the entire grid. Figure 3.1 illustrates this
case.

As in both cases the ant fails to discover the entire grid, the lemma follows. �

unreachable

unreachable

const.

const.
P(tk1)

P(tk2)

P(tk4)

∆k

∆k

∆k

P(tk3)

Figure 3.1: Movement pattern of a single ant; the gray line are the actual moves,
the black arrows indicate direction ∆k. All fields outside of the band around the
points P(tki) cannot be discovered by the ant.
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3.2 Two Ants

Lemma 3.3 Two ants cannot discover the entire grid deterministically.

Proof In order to prove this lemma we want to distinguish two different cases:

1. The two ants meet a finite number of times. As the two ants meet only
a finite number of times, there exists a time ts (ts being a constant) after
which they will never meet again. As they can discover at most 2 · ts fields
up to time ts, they have only discovered a constant amount of fields at that
time. Afterwards both ants operate solely, meaning that both of them will
either discover a constant amount of fields, or a band, as shown by Lemma
3.2. It is straightforward to see that two bands of finite width cannot cover
the entire grid, hence we can conclude that the two ants will fail to discover
the entire grid.

2. The two ants meet an infinite number of times. As the proof for this
case is slightly more involved, we defer it and prove Lemma 3.4 first.

Lemma 3.4 Given two ants that meet an infinite number of times, the time
between two meetings is bounded by a constant.

Proof Observe that instead of looking at the two ants moving independently,
we can fix the second ant at the hive, and apply its movement steps inverted to
the first ant. For example if in a given timestep the first ant moves north, and
the second ant moves south, we can let the second at at its position and say that
the first ant moves two steps north. Note that the relative distance between the
two ants are equivalent in both scenarios.

In the transformed way of observing the two ants, the lemma can be rephrased
as: When an ant revisits a certain field an infinite number of times, the time
between two meetings is bounded by a constant. Observe that the moving ant
now is able to perform movement steps of distance two in one round, but this
does not have a non-constant effect on the behavior of the ants.

Assume that in time t = 0 the ant stands on the specific field (i.e., the first
ant is currently on the same field as the second ant). As we are looking at two
finite state machines, it is no longer sufficient to look at a single state s, but we
rather must look at the combined state (s, s′) that describes in which state both
of the ants are at a certain time. As both ants do only have a constant number
of states, we know that the total number of combines states is constant as well
(and it can be upper bounded by q1 · q2, where q1,q2 are the number of states
of the respective ants). Let (k, k′) be the first combined state that is entered a
second time, and let t(k,k′)i denote the time when the ants are for the i-th time
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in the combined state (k, k′). As in the previous section, we denote by P(t) the
position of the ant at time t, and ∆(k,k′) = P(t(k,k′)i+1

)− P(t(k,k′)i).

Let us distinguish four different cases:

1. The ant arrives on the field before or at t(k,k′)2

As we know that there are at most q1 · q2 many combined states, it follows
that t(k,k′)2 < q1 · q2 + 1, and thus t(k,k′)2 is constant. Hence the ant arrives
on the field again after a constant amount of time.

2. ∆(k,k′) = 0

A consequence of case 1 is, that we know that the ant has not moved
onto the specific field until time t(k,k′)2 . As we know that the position for
all combined states (k, k′) is equal, the ant will perform the same cycle that
it did between t(k,k′)1 and t(k,k′)2 over and over again, never going back to
the specific field. As the ant never visits the specific field again, the con-
dition that the ant visits the specific field an infinite number of times is
violated.

3. ∆(k,k′) > 0, the ant arrives before or at t(k,k′)1 + q1q2

(
t(k,k′)1 + 2q1q2

)
It is obviously sufficient to show that the stated time is constant in or-
der to prove that the ant arrives after constant time on the specific field.
Since t(k,k′)1 < q1q2 (as there are at most q1q2−1 other states to enter) and
q1,q2 are constants, we showed that all terms in the stated time constraint
are constant, thus the ant arrives after a constant time.

4. ∆(k,k′) > 0, the ant arrives later than t(k,k′)1 + q1q2

(
t(k,k′)1 + 2q1q2

)
Recall that the cycle duration (the duration between two consecutive t(k,k′)i)
is at most q1q2.

Observe that at time t(k,k′)1 the ant is at most t(k,k′)1 fields away from
the specific field. When the ant continues to perform t(k,k′)1 many cycles
(consuming a total time of at most q1q2 · t(k,k′)1) in which of them it always
moves ∆(k,k′), we know that the ant is in a position where the direction
∆(k,k′) is pointing away from the specific field.

Having completed these cycles, the ant performs again 2q1q2 many cycles;
therefore the ant is, after an additional time of at most 2q2

1q
2
2, at least

distance 2q1q2∆(k,k′) away from the specific field. As within a single cycle
the ant can only achieve to move a distance of at most 2q1q2 away from both
P(t(k,k′)i) and P(t(k,k′)i+1

) – or it would not complete the cycle properly –
the ant is now too far away to reach the specific field in the next cycle. As
the distance between the following P(t(k,k′)i) is only increasing (as ∆(k,k′) is
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pointing away from the specific field), the ant can never reach the specific
field again in all the following cycles. Thus the ant does not reach the
specific field again at all.

The discussed four cases cover all possible arrival times, and we showed that
in cases 1 and 3 the ant arrives after a constant time, but in cases 2 and 4 the
ant does not arrive again at all. Hence it follows that if the ant arrives at the
specific field again, it must do so after a constant amount of time. Since the
transformed problem and the original statement are equivalent problems, the
lemma follows. �

We are now ready to complete the proof of Lemma 3.3. Let (m,m′) be the
first combined state in which the two ants meet for the second time. Note that
they can meet in between those two meetings being in different combined states;
but as the time between two meetings is constant (Lemma 3.4) and the number
of meetings in different combined states is at most q1q2 (else (m,m′) would not
be the first combined state in which they meet for the second time), we can
conclude that the time difference between two consecutive meetings in (m,m′)
is bounded by a constant.

Let ∆(m,m′) denote the positional difference between two consecutive meet-
ings in the combined state (m,m′). As the ants will repeat their exact behav-
ior after meeting in this state, both ants will continuously walk into direction
∆(m,m′). As the time difference between those meetings is bounded by a con-
stant, both ants will only deviate a constant distance from the meeting points.
Hence they will never discover any point that lies outside of a band of constant
width around the meeting points in state (m,m′), and thus they fail to discover
the entire grid.

Essentially their movement behavior will resemble the movement of a single
ant, even though they will continuously meet during their joint-execution of the
discovering of the band.

As this concludes the case where the two ants meet an infinite number of
times, Lemma 3.3 follows.
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3.3 Three Ants

Lemma 3.5 Three ants can discover the entire grid deterministically.

Proof We prove the lemma by providing an algorithm that accomplishes to
discover he entire grid. The three ants have different roles: Let us call one the
Explorer, one the HorizontalGuide and one VerticalGuide. In the beginning both
the Explorer and the HorizontalGuide step one field east, and the VerticalGuide
moves one field north.

Starting from this configuration the three ants start to execute their individ-
ual algorithms:

Explorer The Explorer walks diagonally from one guide to the other one. Al-
ways when it hits a guide, it alters its movement direction by 90◦ counter
clockwise. At the end of a complete circle (i.e., when turning for the fourth
time), it also moves one step outwards. Observe that the Explorer move-
ments resemble a spiral.

HorizontalGuide The HorizontalGuide moves only on the West-East axis. At
the beginning it starts with the Explorer by walking into western direction.
Note that it only moves with speed 1/2, i.e., after each step into a direction
it waits for one additional step. Once it meets the Explorer, it turns around
and walks back into eastern direction (as well with speed 1/2). When
they meet on the eastern side, the HorizontalGuide steps one step outwards
together with the Explorer and then repeats itself, i.e., it starts to walk into
western direction with speed 1/2.

VerticalGuide At the beginning, the VerticalGuide waits until the Explorer arrives
for the first time. When it arrives, the VerticalGuide starts to walk south
with speed 1/2. When it meets the Explorer again, it turns around and
walks north with speed 1/2. When it meets the Explorer again on the
northern side, it repeats its behavior, i.e., it starts to walk south again.
Note that the VerticalGuide does not explicitly walk one field outwards, but
only implicitly as the Explorer arrives later (as the Explorer is performing a
larger circle).

The execution of the algorithm can be envisioned as follows: The Explorer
continuously walks circles around the hive, increasing the radius of the circle
by one each time it finishes a circle. The two guides move like two pendulums,
one from North to South and the other one from West to East. Observe that
moving one half of the circle takes exactly twice the amount of time as walking
the straight line between those points. Thus when the guides walk with speed
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1/2, they will arrive exactly at the same time as the Explorer. See Figure 3.2 for
an illustration of the algorithm.

As the Explorer performs all circles around the hive, it is follows that it will
eventually discover every field of the grid; and since the distance that the Explorer
moves is always twice the distance that the guides move, it is guaranteed that
they never fail to meet and the algorithm works correctly. Hence the lemma
follows. �

V E

H

Figure 3.2: Three ants discovering the entire grid. The next step of the Explorer
(E) is north, and it is currently discovering the darkgreen circle.

3.4 Conclusion

Theorem 3.1 follows from lemmas 3.3 and 3.5.



Chapter 4

Algorithms for the Adversarial
ANTS Problem

In this chapter we analyze the Adversarial ANTS problem (AANTS) as it is
specified in Chapter 2. Throughout this chapter, we use the model exactly as it
is described in Section 2.3; i.e., we study the AANTS problem with probabilistic
finite state machines.

We first establish a lower bound on the expected runtime. Then, we proceed
to present multiple algorithms that accomplish to discover the treasure. For all
presented algorithms, we analyze both correctness and runtime; additionally, we
compare the runtime with the lower bound, investigating both the tightness of
the lower bound and the quality of the algorithms. At the end of the chapter, we
put the presented algorithms into relation with nature. In particular, we discuss
whether one can expect to observe the presented algorithms in nature, and we
interpret the implications of our findings on the understanding of ant behavior.

4.1 Lower Bound on the Runtime

In this section, we present a lower bound on the expected runtime. We first
present a lower bound that is based on previous work, and we then proceed to
improve this lower bound.

4.1.1 Derived Lower Bound from the Fault-Free Model

A tight lower bound on the runtime complexity for the of the original ANTS
problem has already been established by Feinerman et al. in [2]. Let us look
at how this lower bound of Ω

(
D + D2

/
n
)

was established. Since the time
it requires to walk directly to the treasure is D, it is self-evident that the lower
bound must be in Ω (D). For the latter term the following reasoning can be used;
assume there exists an algorithm that finds that treasure in expected runtime

20
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E[T ] < D2

4n . Observe that at most n new fields can be discovered in each timestep,
thus at time 2·E[T ] the algorithm has discovered at most 2·E[T ]·n < D2

/
2 fields.

As the probability of having discovered the treasure is equal to the fraction of
fields in distance D that have already been discovered, and since there are more

thanD2 many fields in distanceD, it follows that P
[
T < 2·E[T ]

]
<

D2/2

D2 = 1/2.

This leads to a contradiction with Theorem B.2, thus we can conclude that the
expected runtime cannot be smaller than D2

4n . Combining these two bounds we
get a lower bound for the expected runtime of Ω

(
D + D2

/
n
)
.

In the original model (using turing machines with no communication after
the first round), it has been shown that the lower bound is tight by providing an
algorithm with the same runtime complexity. Recall that the same lower bound
is also tight for the model considering communicating finite state machines (that
has been introduced by Emek et al. in [1]).

Based on this lower bound, it is straightforward to derive a lower bound for
the AANTS problem with finite state machines, as it is described in 2.3: We
know that the adversary can fail at most f ants, hence a possible strategy for
an adversary would be to fail all the f ants in the beginning, i.e., at t = 0. The
proof for the lower bound can thus be repeated by replacing n by n− f , yielding

a lower bound of Ω
(
D + D2

n−f

)
for the AANTS problem.

4.1.2 A Better Lower Bound

The main goal of this section is to establish a lower bound that is better (i.e.,
tighter) than the one that could directly be derived from the original model.
Before the derive a better lower bound, we first want to establish the following
lemma.

Lemma 4.1 A lower bound of D2·(f+1)
n is at least as tight as a lower bound of

D2

n−f .

Proof In order to prove the lemma, we need to show that for all possible D ≥ 1,
n ≥ 1 and 0 ≤ f < n, the following statement is fulfilled

D2 · (f + 1)

n
≥ D2

n− f .

It can be seen directly that the two sides are equal for the case f = 0, hence
leaving only the case f > 0 to be shown.
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n ≥ f + 1 | ·f
n · f ≥ f2 + f | +n− f2 + f

n · f + n− f2 − f ≥ n
(n− f) (f + 1) ≥ n | ·n−1 · (n− f)−1

f + 1

n
≥ 1

n− f | ·D2

D2 · (f + 1)

n
≥ D2

n− f �

Theorem 4.2 (lower bound) For any algorithm A that discovers the treasure
in expected runtime E[T ], it holds that

E[T ] ≥ D2 · (f + 1)

4n
.

Proof Let us look at a very simple adversary, namely one that keeps waiting
and only fails ants once they would discover the treasure in the following step.
It is clear that as soon as the number of ants walking onto the field with the
treasure is f + 1, the treasure is discovered. From this observation follow two
bounds on the number of ants that need to walk onto each field: the first one is a
lower bound, i.e., if fewer than f +1 ants walk onto a certain field, the adversary
can put the treasure onto this field and the algorithm will never manage to find
the treasure. Thus every algorithm that succeeds to find the treasure eventually,
will need to discover each field with at least f + 1 ants. The second bound is an
upper bound: It does not provide any benefit to send more than f + 1 ants onto
a given field; since the algorithm is guaranteed to discover the treasure already
after the f + 1 ant discovered the field, every additional step onto the same field
might be a wasted step.

To reach a contradiction, assume that the expected runtime is E[T ] < D2·(f+1)
4n .

From Theorem B.2 we know that

P
[
T <

D2 · (f + 1)

2n

]
≥ 1/2 . (4.1)

As Theorem B.1 states, the number of fields up to distance D ≥ 1 is at least
D2 + 1. In order to discover the treasure in the presence of the simple adversary
previously described, each of those D2 field must be covered by at least f+1 ants.
If we look at the steps that a single ant can perform in each round, we can call a
step onto a field that has not yet been covered f+1 times a useful step. Let U(t)
denote the number of useful steps in round t. Observe that ∀t ≥ 0 : U(t) ≤ n
and ∀t :

∑t
i=1 U(i) ≤ t · n.
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Let F (t) denote the number of fields that have been discovered at time t. As
it takes f + 1 useful steps to discover a field, we know that

F (t) ≤
∑t

i=1 U(i)

f + 1
≤ t · n
f + 1

.

Since we know that there are at least D2 +1 fields on which the treasure could be
located, it is now possible to derive an upper bound for the success probability
after t rounds

P [T < t] ≤ F (t)

D2 + 1
<
F (t)

D2
≤ t · n
D2 · (f + 1)

.

By setting t = 2 · E[T ], the upper bound yields

P
[
T <

D2 · (f + 1)

2n

]
<

1

2
. (4.2)

Since the Equations 4.1 and 4.2 contradict each other, the theorem follows. �

Corollary 4.3 Any algorithm locating the treasure has an expected runtime of

Ω(D + D2·(f+1)
n ).

Corollary 4.4 If f = c ·n, for a constant c > 0, the treasure can only be located
in Ω(D2) time.

Corollary 4.4 is quite surprising. Recall that already a constant number of
ants can achieve an expected runtime of O(D2). And if f = c · n, the number
of ants that remain can still be in c′ · n, i.e., the ant colony has still a lot more
than constant many ants. Nevertheless the runtime is asymptotically equal to
the runtime of a constant number of non failing ants.

4.2 General Concepts

In this section we first present a formal definition of robustness. With the help
of these definitions, we rephrase our goal to develop algorithms that tolerate up
to a constant fraction of ants being failed by the adversary. Then, we proceed to
describe several concepts that are useful when designing algorithms. Note that
all three concepts base on Theorem B.3; but since they apply the theorem to
achieve different goals, three different concepts are derived.
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4.2.1 Formalizing Robustness

In order to reason about robustness, we want to introduce the notation of g(n)-
robustness. Note that the following definitions do not only apply to algorithms
for the AANTS problem, but to multi-agent algorithms in general.

Definition 4.5 (g(n)-robustness) Let A denote an algorithm. We say that
A is g(n)-robust, if and only if A is successful for any execution in which the
adversary fails f ≤ g(n) agents. 3

Observe that an algorithm in general can be at most (n−1)-robust. Regard-
ing the AANTS problem, we know that algorithms can be at most (n−3)-robust,
since it requires at least three ants to discover the treasure (see Theorem 3.1).
Even though this definition allows to precisely capture the robustness of an algo-
rithm, it is useful to extend this definition to also capture asymptotic robustness.

Definition 4.6 (asymptotic g(n)-robustness) We call an algorithm A asymp-
totically g(n)-robust, if and only if there exists a constant cA > 0 such that A is
successful for any execution in which the adversary fails f ≤ cA · g(n) agents. 3

Recall that our goal is to develop algorithms that discover the treasure, even
when up to a constant fraction of the ants are failed (see Section 2.3). Formalizing
this goal with the help of the introduced definitions, it follows that we want to
develop algorithms that are asymptotically n-robust. Note that asymptotic n-
robustness is the strongest (asymptotic) form of robustness.

Throughout this thesis, we will present multiple algorithms that are asymp-
totically n-robust. However, we will omit to exactly determine the constant
factor cA for each of them. Observe that from the construction of the algo-
rithms, it is clear how the respective constant factors could be derived; but since
we do not think that it is of any particular interest to exactly determine the
factors, we decided to leave out a detailed derivation.

4.2.2 Multiple Algorithms in Parallel

When developing different algorithms, it might be the case that one algorithm
achieves an optimal runtime for a certain choice of parameters f, n,D, while an-
other algorithm achieves an optimal runtime for a different choice of parameters.
A useful mechanism to create an algorithm that is optimal for the union of the
parameter choices is to run all algorithms in parallel.

Theorem 4.7 A constant number of algorithms can be executed in parallel with-
out affecting the asymptotic bounds on f , w.h.p. The achieved runtime asymp-
totically corresponds to the runtime of the fastest algorithm.
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Proof Theorem B.3 states that we can split c · n many ants into two different
clusters, where each of the clusters contains at least c

3 ·n many ants w.h.p. Note
that this process can be repeated for a constant number of times. Therefore,
we can combine a constant number of algorithms by initially letting every ant
choose in which of the algorithms it wants to participate; afterwards the different
algorithms can be executed in parallel. Note that the treasure is discovered as
soon as one of the algorithms discovers it. Note that the different algorithms
run with at least c′ ·n ants w.h.p., where the constant c′ can be derived from the
number of algorithms that are executed in parallel. Thus, the achieved runtime
corresponds asymptotically to the runtime of the fastest algorithm, concluding
the theorem. �

For a more detailed derivation of the constant c′, refer to the following section
on Super Ants, where we apply Theorem B.3 in a similar way. Note that the
constant c′ influences the constant factor cA for every algorithm that makes use
of the idea to execute multiple algorithms in parallel, but it does not affect the
asymptotic robustness of the algorithm.

4.2.3 Super Ants

In this section we introduce the concept of super ants, which play a key part
in the proposed algorithms. A super ant can either be regarded as a special
kind of ant, that is guaranteed to work properly, i.e., cannot be failed by the
adversary, or as a big cluster of ants that fulfill a certain task together. From
an algorithmic perspective, a super ant can easily be simulated by clustering
many (i.e., more than f) ants together, and let them execute the same (non-
probabilistic) protocol. Since more than f ants work on the same task, the task
is guaranteed to be successfully completed, i.e., the super ant as a whole cannot
be failed.

Regarding ants in nature, it might be more reasonable to actually think of
a tougher kind of ant, as it seems rather unnatural having a big cluster of ants,
all moving and behaving exactly the same. Nevertheless, we will show that in
our model the two views are actually interchangeable, and thus we can use the
concept of super ants in the proposed algorithms, without making any changes
to the computational model.

The first important aspect to note is that for any algorithm there can only
be a constant number of super ants. Let us now look at how super ants are
created in an algorithm. Assume that there are c (where c is a constant) many
super ants1. At the beginning of the execution of an algorithm, before anything

1Note that we build one additional cluster of ants – the cluster in which all the ants are,
that do not represent a super ant. Observe that this additional cluster has been omitted for
the sake of clarity in this section; it can easily be looked at as an own super ant, that does not
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else is performed, each ant tosses dlog(c)e many coins, and based on its outcome
it will become part of the cluster representing the respective super ant. Based
on Theorem B.3, we can split kn many ants into a constant number of clusters,
each containing at least c′ ·kn many ants w.h.p.; thus it follows that c super ants
can be constructed this way.

Nevertheless, this procedure immediately yields a bound on the number of
failures that we can tolerate, since we require that at least one ant survives in
each of the super ant clusters. There are c many super ant clusters, and in each
one are at least n ·

(
1
3

)c
ants w.h.p. Hence the maximum number of failures we

can tolerate, so that for no super ant cluster is wiped out completely, is at most
f ≤ n ·

(
1
3

)c − 1. Note that f ≥ cA · n still holds for a constant 0 < cA < 1,
but the number of super ants introduces an upper bound on cA. Note that
even though this upper bound affects that constant factor of the asymptotic
robustness, algorithms that use super ants are still asymptotically n-robust.

Since the super ant clusters must behave “as one”, i.e., each of the ants in
the cluster must behave identically as all the other ants2, it follows that super
ants cannot directly make use of probabilistic functionality, without having an
impact on the runtime; a single ant can use probabilistic functionality, and use it
for its decisions within a single time unit. In contrast, a super ant would need to
solve, e.g., consensus, after using probabilistic functionality, in order to prevent
the cluster from splitting up. Since solving consensus in our model (featuring
only a very limited form of communication) can take a long time, we decided to
disallow super ants from using probabilistic functionality.

Using the described procedure we can make use of super ants in any algorithm
without changing the model. Let us quickly summarize the properties of super
ants and the implications of using an algorithm with super ants.

• The use of super ants restricts the number of failures, i.e. cA (see Definition
4.6), but the algorithm is still asymptotically n-robust.

• There can only be a constant number of super ants.

• Super ants cannot be failed.

• Super ants cannot use probabilistic functionality.

need to follow the restrictions of the super ant (i.e., ants in this last cluster do not need to stay
together etc.).

2If certain ants of the cluster behave differently than other ants, the cluster would essentially
split into two different clusters, leading to a decrease of the cluster size. As the size of the cluster
is the critical property that prevents the cluster from failing, such a split violates the assumption
that they cannot be failed and is thus not feasible.
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4.2.4 Quarterplane Instead of Grid

Theorem 4.8 Any algorithm that discovers the treasure located in one specific
quarter plane in expected time O(g(D,n, f)) can be adapted to find treasures in
the entire grid in expected time O(g(D, cn ·n, cf ·f)) w.h.p., for constants cn and
cf .

Proof Assume that we have an algorithm A that discovers the entire quarter
plane Q, i.e., it finds treasures that are located in this quarter plane. We can
now transform A into an algorithm A′ that discovers the treasure for any quarter
plane in the following way. First every ant randomly decides for a quarter plane
Q′. Then, it changes its internal sense of orientation in such a way, so that Q′

becomes what Q has been before. Now the ant starts to execute A, but it only
communicates with other ants that have decided to search Q′ as well.

Since there are only four quarter planes, we know that each of these partitions
that execute one instance of A contain at least cn · n many ants w.h.p, see
Theorem B.3. As A may impose restrictions on the number of failures that it
can tolerate, we need to adapt the number of failures that the A′ can tolerate
proportionally; additionally, the runtime of Amay depend on f , thus the runtime
of A′ will depend on cf · f . This is due to now having only a fraction of n
performing A′, but the adversary could fail all f ants within one specific A′,
forcing a particular quarter plane to deal with a larger ratio of failures to total
number of ants compared to the original algorithm.

Note that all these adaptations only require changes that are in the order of
constants, thus the theorem follows. �

Drawing Method

When we draw an illustration of an algorithm that works solely on a quarter
plane, it might be handy to draw the two rays parallel next to each other instead
of them being aligned in a right angle. Figure 4.1 illustrates this drawing trans-
formation. Note that the distance between the rays increases the farther away
from the hive – i.e., the farther downwards in the illustration – even though this
is not directly visible from the transformed illustration.

4.2.5 Combining the Concepts

Note that all three presented concepts impose upper bounds on the constant cA,
which determines the fraction of ants that the adversary can fail. The upper
bound of failures that an algorithm can tolerate, that uses two or three of those
concepts can determined by multiplying the individual upper bounds. Since the
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Figure 4.1: Drawing method for algorithms that work on a quarter plane. On the
left: Actual positioning of ants on the quarter plane. On the right: Transformed
illustration.

resulting upper bound is still a constant fraction in respect to n, algorithms that
use the presented concepts are still asymptotically n-robust.

4.3 Three-Ant Search

We have shown in Section 3.3 that three ants can discover the entire grid. It is
clear that we can use this algorithm – with super ants instead of single ants – to
get an algorithm that will reliably discover the treasure. Since correctness has
already been shown in Lemma 3.5 and the robustness is a consequence of that
we only have three super ants, and no other ant participating in the algorithm,
it only remains to analyze the runtime.

Theorem 4.9 Three-ant search is an asymptotically n-robust algorithm that dis-
covers the treasure in O(D2) time.

Proof To derive an upper bound for the runtime, we only count fields as dis-
covered, once the Explorer super ant steps onto them3. Since the movement of
the Explorer consists only of circles of a given distance around the hive, the trea-
sure is discovered at the latest when the Explorer completes the circle of distance
D. Observe that in order to perform a circle of radius r, an ant does not only
have to step onto all the fields in distance r, but also on all the fields in distance
r − 1 (due to the diagonal movement on the grid). Thus between any two fields
in distance r that are newly discovered, there is always at most one additional
field that must be stepped onto.

3Note that in the actual execution of the algorithm, one of the guides may step onto the
treasure first (if the treasure is located on one of the two axes). It is clear that such an event
would only yield a lower runtime, thus looking only at the Explorer will yield an upper bound.
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As shown in Theorem B.1, the total number of fields up to distance D is
F (D) = 2D2 + 2D + 1 ∈ Θ(D2). Since we know that it takes at most two
steps to discover a new field, the total runtime to discover the entire area up to
distance D is in Θ(D2) and the theorem follows. �

4.4 FastSpread with Failures

Emek et al. introduce in [1] a procedure called FastSpread. FastSpread is a means
to distribute a set of ants onto fields in a line, such that eventually there is
exactly one ant on each field. Recall that the first s/6 fields are ready (i.e.,
contain exactly one ant) after s + c · log(n) time w.h.p, where c is a constant.
The purpose of FastSpread is to allow a later procedure to make use of the
sequential distribution of the ants; for example, the algorithm of Emek et al. [1]
makes use of a second procedure to build teams. Let us now look at how failures
affect FastSpread by establishing the following theorem.

Theorem 4.10 Failures will never slow down FastSpread; i.e., it holds that for
every surviving ant, the time until it is ready cannot be increased by another ant
that fails.

Proof Let us look at what happens when one ant fails. In Figure 4.2 we
illustrated a flow chart that illustrates the different effects a failure can have,
based on the state in which the failing ant was in. Observe that even though
there are multiple states in which an ant can fail, they only lead to three different
effects on the runtime of the surviving ant. Let us look at the three possible
effects in more detail.

The first possible effect is that a gap is created by an ant that fails, which
remains there (i.e., is not fixed by another ant arriving on this field) until Fast-
Spread terminates. This might happen if an ant that is ready fails, or if an ant
fails exactly at the moment when other ants move forward and the ant that fails
was the only one that stayed on the field. Observe that since no other ant that
is not ready will ever move on the field where the ant failed, the failure does not
affect the runtime of a not ready ant4.

The second possible effect is that an ant that is alone on its field fails, i.e.,
one that is ready or about to become ready. Note that difference to the first
effect is only that at a later point in time ants will arrive on the field of the failed
ant. Let us distinguish three groups of ants that could be affected by the failure,
omitting all ready ants, as they can anyway not be affected anymore. The first
group is the one consisting of ants that are not ready and will eventually move
over the field of the failed ant, but at the time when they move over the field, a

4Note that we do not try to deal with the resulting gap, but we leave this task to the
procedure that follows FastSpread.
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different ant is ready on this field again. Note that those ants do not even realize
that a failure has occurred, and behave oblivious to the failure. Nevertheless
there is one ant fewer, thus ants of this group will eventually compete with one
ant fewer, leading to a decrease in their runtime5.

The second group of ants are those that move onto the field and there is no
ready ant on the field again yet. If the ant did not fail, all those ants would
have needed to step over this field, before they could participate in any decision
process again. Since they can now start this process again already on the failed
field, they do not need to do this one step, thus their runtime is reduced. Also
observe that they potentially must compete with fewer ants (as they do not need
to walk to the first field where there are already other ants competing), which
potentially will lead to an additional decrease in their runtime.

The third group of ants is the one that has already passed the field where
the ant failed. The only effect on these ants is, that there are arriving ants that
walked past the field of the failing ant. As previously observed, not only will
one fewer ant arrive, but also will the other ants arrive at a later stage of the
algorithm (as they are busy with the decision process on the field of the failed
ant). Both these consequences will potentially decrease the runtime of ants from
the third group, but never increase it.

As the second possible effect also does not lead to an increase of the runtime
for any ant, it only remains to look at the third possible effect: the ant dies
during the decision process, but no field is empty after the failure. It is directly
clear that the decision process on the field where the failed ant would have been
is decreased, while the other fields are not affected directly. As the indirect
consequences have already been discussed, the runtime is only decreased for the
ants of this group as well.

Since the runtime might only be decreased for all the possible effects that a
failing ant can trigger, the theorem follows. �

Corollary 4.11 For every positive integer s ≤ n and for every constant c, after
6s+c log(n) time, there is exactly 0 or 1 ant on each field up to distance s w.h.p.

4.4.1 Linking FastSpread with Other Procedures

Let us now look at how we can keep track of the progress made by FastSpread. In
the original procedure, the innermost ant was used in order for the ready ants to
start participating in later stages of the overall algorithm. Since the innermost

5Note that the smaller the number of not ready ant on a field is, the quicker they will become
ready.
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Figure 4.2: The different cases in which an ant may fail during FastSpread and
the respective consequences.

ant can now fail, it is evident that we need to come up with a different means
to tell the ready ants what they need to do afterwards. We can achieve this by
adding two super ants to FastSpread. One super ant follows the “head” of the
ants that spread out, i.e., it always moves outwards if at least one ant decides to
move outwards. The second super ant initially stays on the first field. Afterwards
it repeats the following procedure: As soon as the ant, that stands on the same
field as the super ant, is ready (or there is no ant anymore, due to failures), the
super ant tells it what to do and moves one step outwards. If there is no ant on
the field, it will continue to move until it meets at least one ant. Upon meeting
the next ant, it will wait again until this ant becomes ready. The second super
ant is a replacement for the innermost ant in the original algorithm, and the first
super ant can prevent the second super ant from walking outwards indefinitely.
Note that once FastSpread is completed, the two super ants may participate in
a different part of the overall algorithm.

We call this extended procedure Reliable FastSpread.

Observation 4.12 Using two super ants, Reliable FastSpread can initialize the
first s fields in 6s+ c · log(n) time w.h.p. (c is a constant), independently of the
failures forced by an adversary6.

6Note that the number of failures that an adversary can force is bounded by the constraints
for having super ants.
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Observation 4.13 Reliable FastSpread terminates (i.e., all the ants are either
initialized or have been failed by the adversary) in at most7 6n+ c · log(n) time
w.h.p., independent of f .

4.5 Segment Sweep

In this section we introduce the procedure Segment Sweep. Since this procedure
is an essential part for the later algorithms, we discuss it here in depth. The
purpose of Segment Sweep is to discover an area of a certain size, e.g., to discover
all fields (in one quarter plane) with distances [x, x+ l] from the hive. Note that
the procedure only discovers a single quarter plane, but as stated by Theorem
4.8, the procedure can be extended to discover the entire grid. In this section
we only discuss the highlevel idea of Segment Sweep, for additional details refer
to Section C.1.

4.5.1 Procedure Description

Segment Sweep assumes to start in a certain configuration, namely: On the left
ray8 there are two groups of super ants, and in between them are n worker ants
lined up. Note that each worker ant stands alone on its field. On the right ray
there is another group of super ants, having the same distance to the hive as
the group of super ants on the left ray that is closer to the hive. The top half
(without the dashed part) of Figure 4.3 illustrates this configuration; squares
represent worker ants, circles represent super ants.

Starting from this configuration, the super ants start a coordinated “segment-
attempt”, in which all the worker ants (and some of the super ants) walk over
the quarter plane. Every worker ant performs a quarter-circle and stops on the
right ray, with the same distance to the hive that it had at the beginning of the
segment-attempt (where it stood on the left ray). Note that all starting and
stopping of worker ants is performed by meeting super ants, thus no worker ant
will ever walk past the right ray.

After all worker ants arrived on the right ray, there exists a super ant that
knows whether or not every worker ant arrived successfully. If all worker ants
arrived, we call it a successful segment-attempt, if at least one worker ant failed to
arrive (i.e., died) we call it a failed segment-attempt. In both cases the worker ants
and some super ants turn around and walk back to the left ray in the same fashion
as before. Once they arrive, they will perform one of two procedures, based

7Since the ants that are part of a super ant cluster do not participate in the initialization,
there are less ants to be initialized, which speeds up the process.

8Since we are only looking at quarter planes, we call the parts of the two axes that bound
the quarter plane left (right) ray.
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on whether it was a successful segment-attempt or not. If it was a successful
segment-attempt, the super ants and the worker ants all move outwards, in such
a way that they will get into the same configuration as at the beginning, but
with every ant being farther outwards. They walk outwards exactly by such a
distance, that the following segment starts one field farther outwards than the
current one ended. The Segment Sweep procedure can now be called again, to
discover fields in this new segment.

However, if it was a failed segment-attempt, we know that at least one worker
ant failed. To deal with this problem, the worker ants are condensed towards
the inner super ant, with the goal to create a segment of worker ants that starts
at the same position as before, having again one worker ant on every field of the
segment.

Let us quickly explain the condensing procedure. The condensing procedure
runs for a certain amount of time, in which all worker ants repeat the following
simple procedure, that consists of four steps: At time t, all ants with an odd
distance to the hive walk to the adjacent field closer to the innermost super ant.
Checking at time t+ 1, if there is already another worker ant on that field; if so,
they move back to the field where they came from, but if there is no ant, they
remain. At time t + 2 and t + 3 the same steps are performed by worker ants
that stand on an even distance to the hive. Repeating to perform such steps
long enough will ensure that the ants form a continuous segment again (if the
adversary does not fail any ants during or at the end of the condensing).

Obviously this segment will be shorter; therefore, the outer super ant on
the left ray moves inwards too. Now we have the same configuration as in the
beginning, with the same start of the segment of the worker ants, but with fewer
worker ants. Now the Segment Sweep procedure can be called again, in order to
retry a (smaller) segment and discover the fields in this area.

A very detailed explanation of the procedure can be found in Section C.1.

4.5.2 Runtime of a Successful Segment-attempt

Figure 4.3 illustrates the distances over which the worker ants and the super
ants must move in order to perform a Segment Sweep. d is the smallest distance
between the two rays, and x is equal to the number of the worker ants plus the
two super ant groups. Note that the distance between the two rays increases by
two for each field farther outwards that an ant stands.

The runtime of a successful segment-attempt is only depending on the pa-
rameters d and x. Let us look at the runtime of the different steps of a success-
ful segment-attempt individually, in order to derive the runtime for the entire
segment-attempt. We distinguish four different steps, as described in C.1. The
runtime of the different steps is calculated in Table 4.1, yielding a total runtime
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Figure 4.3: The distances that are involved in movements of a single Segment
Sweep.

of 2d+ 9x ∈ Θ(d+ x) for a successful segment-attempt.

Segment-attempt x+ (d+ 2x) = d+ 3x

Super ant repositioning x

Walking back x+ (d+ 2x) = d+ 3x

Moving outwards x+ x = 2x

Total runtime 2d+ 9x

Table 4.1: Runtime of a successful segment-attempt where x is the size of the
segment and d is the shortest distance between the two rays.

4.5.3 Runtime of a Failed Segment-attempt

In order to analyze the runtime of a failed segment-attempt, we again refer to the
distances x and d, as illustrated in Figure 4.3. The runtime of the different steps
involved in the failed segment-attempt (see Section C.1) is calculated in Table
4.2, yielding a total runtime of 2d+13x ∈ Θ(d+x) for a failed segment-attempt.
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Segment-attempt x+ (d+ 2x) = d+ 3x

Super ant repositioning x

Walking back x+ (d+ 2x) = d+ 3x

Odd-even repair x+ 4x+ x = 6x

Total runtime 2d+ 13x

Table 4.2: Runtime of a failed segment-attempt where x is the size of the segment
and d is the shortest distance between the two rays.

4.5.4 Discovery Rate of Segment Sweep

Definition 4.14 (discovery rate) The discovery rate RP of a procedure P is
defined as the average number of new fields that are discovered by P in each
timestep between the start and the end of the procedure, i.e.

RP =
#new fields discovered by P

runtime of P .

Observation 4.15 Let n be the total number of ants; for any procedure P it
holds

RP ≤ n.

Observation 4.16 Any procedure P with discovery rate RP ≥ c · n, for a con-
stant c > 0, discovers its area in asymptotically optimal runtime. 3

Let us first look at the number of fields that are discovered during a failed
segment-attempt. As a failed segment will later be repeated by a following
Segment Sweep, we consider all the fields to be not discovered at the end of the
failed segment-attempt. Obviously some of the fields have been discovered, but
by enforcing that all fields must be discovered by a successful segment-attempt,
we can facilitate the analysis; and since a later Segment Sweep will be performed
on the very same fields, the algorithm guarantees that eventually all fields will
be discovered.

Lemma 4.17 During a successful segment-attempt the discovery rate RSSA is
in Ω(x), where x is the length of the segment, i.e., the number of worker ants
plus two.

Proof Note that the variables x and d are used as defined before and as il-
lustrated in Figure 4.3. Due to the diagonal movement pattern of ants when
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Figure 4.4: When ants move diagonally from one ray to another, at most two
ants walk over the same field. The ants are numbered based on their starting
distance to the hive and walk from the northern ray to the eastern ray. A certain
number on a certain field means, that the ant with that number crossed it.

walking from one ray to another, every field is crossed by at most two ants.
Refer to Figure 4.4 for an illustration of the movement pattern of four ants.

Observe that the innermost ant of a segment may cross fields that have
already been discovered by a previous segment. Also note that if a worker ant
stands in such a distance to the hive, that the distance between two rays is d,
there are d+ 1 fields discovered by moving from one ray to the other one.

If we omit the innermost ant, i.e., the ant that discovers distance d+ 1, and
divide the total number of fields discovered by two (since every field is discovered
at most twice), we can lower bound the fields that are discovered by a successful
segment-attempt as follows
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#new fields ≥ 1

2

(
x∑
i=1

(d+ 2i+ 1)

)

=
1

2

(
x+ xd+ 2 ·

x∑
i=1

i

)
|

x∑
i=1

i =
x2 + x

2

=
1

2

(
x+ xd+ x2 + x

)
=

1

2
(x · (x+ d+ 2)) .

We can now combine the number of discovered fields with the runtime of a
successful segment-attempt to calculate the discovery rate.

RSSA ≥
1
2 (x · (x+ d+ 2))

9x+ 2d

≥ 1

2
· x · (x+ d)

9x+ 2d

≥ 1

2
· x · (x+ d)

9x+ 9d

=
x

18

Since RSSA ≥ x
18 ∈ Ω(x), the lemma follows. �

Observation 4.18 Let S denote a successful segment-attempt with c · n many
worker ants (for any constant c > 0). It holds: RS ≥ c′ · n. Thus, it discovers
the segment in asymptotically optimal runtime (see Observation 4.16). 3

4.5.5 Conclusion

The presented procedure Segment Sweep allows us to discover a certain segment
of a quarter plane within asymptotically optimal runtime, if the adversary does
not fail any ants. Failures that occur are detected and dealt with. Observe
that at the end of procedure, the ants are in a configuration that allows a next
execution of Segment Sweep, making it easy to repeatedly execute this procedure.
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4.6 Basic Segment Sweep

In this section we introduce the algorithm Basic Segment Sweep, which uses the
procedure Segment Sweep to iteratively search the entire quarter plane for the
treasure. Recall Theorem 4.8, that allows us to only look at a quarter plane
instead of the entire grid. The goal of this section is to establish the following
theorem.

Theorem 4.19 Basic Segment Sweep is asymptotically n-robust algorithm (tol-
erating f = cf · n many failures, for a constant cf > 0) which discovers the

treasure in O
(
n+ D2+n2

n−f + f · (D + n)
)

time w.h.p.

4.6.1 Algorithm Description

With the procedures Reliable FastSpread and Segment Sweep already being es-
tablished, Basic Segment Sweep can be described quite easily. In the beginning,
several super ants are elected. The remaining worker ants perform Reliable Fast-
Spread, in order to distribute themselves on a continuous segment on one ray.
As soon as all the worker ants are distributed (which is determined by a super
ant), the ants start to perform Segment Sweep. After each execution of Seg-
ment Sweep, they simply perform Segment Sweep again, until they discover the
treasure.

4.6.2 Runtime Analysis

In order to analyze the runtime, we first need to determine some key variables.
Note that at the beginning the number of worker ants is reduced to c ·n w.h.p. as
we split the ants into a constant number of groups. During the execution of the
algorithm the number of worker ants can shrink at most by f , thus at any time
during the execution the number of worker ants is in Ω(n − f); and so is the
length of the segment, as the length of the segment is equal to the number of
worker ants.

Lemma 4.20 The distance that must be discovered by successful segment-attempts
is at most in O(D + n).

Proof We show that the distance that must be discovered by segments is at
least D and at most max(n, 2D). The lower bound of D is straightforward to
see, and the upper bound can be seen as follows: The number of worker ants is
at most n. If the number of worker ants is larger than D, there will only one
successful segment-attempt be performed. Since this segment contains at most n
worker ants, the segment has length at most n, thus at most the distance up to n
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is discovered. If the number of worker ants is smaller than D, multiple successful
segment-attempts are necessary, of which the largest segment that does not reach
D has size at most D−1; since the following segment can have at most the same
size, the distance that will be discovered is 2D − 2 < 2D. Hence the lemma
follows. �

As the number of successful segment-attempts that is necessary can be upper
bounded by the distance that must be discovered divided by the minimum size
of each segment, we can state the following observation.

Observation 4.21 The total number of successful segment-attempts that must

be performed is at most in O
(
D+n
n−f

)
.

Recall that the runtime of a successful segment-attempt with segment length
of x and smallest distance between two rays d is in Θ(x + d). As we need to
discover at most all fields up to distance O(D + n) (Lemma 4.20), the maximal
segment length is in O(D + n) as well. Note that the maximum distance that
the innermost super ant will walk is also at most in O(D + n), as the diagonal
distance is equal to two times the distance from the hive. Therefore we know
that x ∈ O(D + n) and d ∈ O(D + n). This yields the following observation.

Observation 4.22 The runtime of every successful segment-attempt is at most
in O (D + n).

Combining the upper bound on the number of successful segment-attempts
(Observation 4.21) with the upper bound on the runtime for each of those seg-
ments (Observation 4.22), yields the following corollary.

Corollary 4.23 The total runtime for all successful segment-attempts is at most

in O
(
D+n
n−f · (D + n)

)
= O

(
D2+2Dn+n2

n−f

)
= O

(
D2+n2

n−f

)
. 3

So far we we omitted the additional cost that arises from failures during the
execution. Observe that failures have no impact on the runtime of either the
splitting in the beginning, nor on the runtime of Reliable FastSpread. During the
executions of the Segment Sweep procedures, a single failure may already force
the algorithm to repeat this segment. Since we know that the runtime of the
largest execution of Segment Sweep is at most O(D+n) (Observation 4.22), and
there are at most f failures, we can state the following corollary.

Corollary 4.24 The total additional runtime due to failing ants is at most in
O(f · (D + n)). 3

Combining these results we can derive that the overall runtime of Basic Seg-

ment Sweep is at most O
(
n+ D2+n2

n−f + f · (D + n)
)

w.h.p.9. Refer to Table 4.3

for a summary of these results.

9Note that the runtime only holds w.h.p., as Reliable FastSpread is used to initialize the ants.
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Splitting into subgroups O(1)

Initialization (Reliable FastSpread) O(n) w.h.p.

All successful segment-attempts O
(
D2+n2

n−f

)
All failed segment-attempts O(f · (D + n))

Total runtime O
(
n+ D2+n2

n−f + f · (D + n)
)

w.h.p.

Table 4.3: Summary of the runtime analysis of Basic Segment Sweep.

4.6.3 Failure tolerance

The only thing that remains to be shown is that Basic Segment Sweep can tolerate
f = cf · n many failures. Observe that both the splitting in the beginning, as
well as the use of super ants, only require that n−f = cf ·n, i.e., that cf ·n many
ants survive. Since neither the splitting nor Reliable FastSpread cares about ants
being failed, failure tolerance is fulfilled for those procedures.

Looking at the procedure Segment Sweep, we observe that it can tolerate up
to all worker ants are being failed, as long as the super ants are not extinguished.
Since we already assumed that super ants do not fail, Segment Sweep does not
impose any new restrictions on f .

Hence the only restriction on f is the one arising from the splitting into
different subgroups, i.e., Basic Segment Sweep can tolerate f = cf · n. Note that
this implies that Basic Segment Sweep is asymptotically n-robust.

Combining the runtime analysis with the failure bound, Theorem 4.19 follows.

4.6.4 Lower Bound vs. Basic Segment Sweep

In order to analyze the performance of Basic Segment Sweep, we want to compare
it with the previously established lower bound. As a first step, we want to
facilitate the analysis by upper bounding the runtime of Basic Segment Sweep.

Lemma 4.25 Given a runtime T , with T ∈ O
(
n+ D2+n2

n−f + f · (D + n)
)

. It

holds that T is also in O
(
n+ D2·(f+1)

n + f · (D + n)
)

. 3

Proof Note that if we can show that

D2 + n2

n− f ≤ D2 · (f + 1)

n
+ nf + n (4.3)

holds, the lemma will follow as a direct consequence. Hence, we proceed to show
inequality 4.3. Recall Lemma 4.1 from which directly follows that
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D2 + n2

n− f =
D2

n− f +
n2

n− f ≤
D2 · (f + 1)

n
+

n2

n− f .

Therefore it only remains to show that n2

n−f ≤ nf +n. Observe that if f = 0 the
two sides are equal. Hence we show the inequality for f 6= 0, where we assume
that at least 1 ant survives.

f + 1 ≤ n | ·nf
nf2 + nf ≤ n2f | −nf2 − f2

0 ≤ n2f − nf2 − nf | +n2

n2 ≤ n2 + n2f − nf2 − nf
n2 ≤ (nf + n)(n− f) | ·(n− f)−1

n2

n− f ≤ nf + n �

Having simplified the runtime of Basic Segment Sweep, we now compare it with
the lower bound. To allow for an easier comparison, we distinguish different
parameter ratios between n and D. Table 4.4 shows the asymptotic bounds.

Bound on n Basic Segment Sweep Lower Bound

n ∈ o(D) O
(
D2·(f+1)

n

)
Ω
(
D2·(f+1)

n

)
n ∈ Θ(D) O (D · (f + 1)) Ω (D · (f + 1))

n ∈ ω(D) O (n · (f + 1)) Ω
(
D + D2f

n

)
Table 4.4: Runtime of Basic Segment Sweep compared with the lower bound.

Observe that for n ∈ O(D) the upper bound on Basic Segment Sweep meets
the lower bound, hence we can conclude that at least for such values of n and
D the lower bound is tight. It also follows that Basic Segment Sweep is asymp-
totically optimal for such values. Only in the case where the number of ants
is large in comparison with the distance to the treasure, the runtime deviates
from the lower bound; thinking about the algorithm, it quickly becomes clear
that this problem arises from initializing all ants, and then trying to perform a
huge segment (with a size linear in n), even though the treasure is very close. In
the following sections we will introduce different algorithms that try to overcome
this issue.
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4.6.5 Conclusion

Basic Segment Sweep is an algorithm that discovers the treasure within asymp-
totically optimal runtime if the treasure is far away from the hive in comparison
with the number of ants. For other scenarios the algorithm still successfully
discovers the treasure, but not within optimal runtime.

4.7 Exponential Initialization

As one of the shortcomings of Basic Segment Sweep is the costly initialization,
we introduce an algorithm called Exponential Initialization that can be used to
initialize the ants, while already discovering smaller segments at the same time.
As the name suggests, the main concept of the algorithm is to exponentially
increase the segment size that is used to perform Segment Sweep, beginning with
a constant segment size.

4.7.1 Algorithm Description

In the beginning, we elect a couple of super ants, and the remaining worker ants
start to do Reliable FastSpread. The ray that is used for Reliable FastSpread is the
same as the one on which the ants later start the iterations of Segment Sweep, but
they perform Reliable FastSpread on the opposite side of the hive as compared
to the side on which they perform Segment Sweep10. During Reliable FastSpread,
a super ant is used to keep track of the outermost worker ant up to which all
worker ants are already initialized11. Note that this super ant marks the progress
of Reliable FastSpread. Additionally to the procedure Reliable FastSpread as it
is described, the ants perform odd-even condensing12 towards the hive at the
same time. This means that the ants perform one step of Reliable FastSpread,
and then perform 4 steps of odd-even condensing towards the hive. This assures
us, that the ants participating in Reliable FastSpread are never too far away from
the hive. Note that this extended version of Reliable FastSpread takes five times
the time of the original version. For simplicity, we change every other part of
Exponential Initialization in such a way, that the ants perform one step of the
algorithm, and then wait for four rounds. In the further description and analysis
of the algorithm we omit this detail, as it only complicates the description and
does not have any non-constant impact; instead we will perform an analysis as
if the five rounds used in Reliable FastSpread plus condensing could be done in
a single round. Note that in order to prevent an ant from walking farther than

10Refer to Figure 4.5 for an illustration; the used ray is the vertical one, the ants below the
hive perform Reliable FastSpread and the ants above Segment Sweep.

11Where initialized means that the ant stands alone on its field and is in the “ready” state.
12A description of how odd-even condensing works can be found in Phase 4: Segment Fix

Odd-even of Section C.1.2.
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to an adjacent field in one such super round, a condensing ant will not condense
from an odd and an even field in the same super round (even when it would be
possible to condense two fields).

On the opposite side of the hive is the quarter plane that the ants should
discover. At the beginning, several super ants position themselves, waiting for
the first worker ant that participates in Reliable FastSpread to become ready.
Once this worker ant is ready, they bring the worker ant into position to perform
an iteration of Segment Sweep. Note that the segment size is only 3, as only one
worker ant participates in the Segment Sweep. From there on, the super ants
start to perform a repeating behavior: After each successful segment-attempt,
the super ants double the segment size and bring in the necessary worker ants
from the other side of the ray. Note that the segments always start at the hive,
i.e., the first segment covers the distance in the interval [1, 3], the second segment
covers [1, 4], the third one [1, 7] and so on. As only the number of worker ants that
are used is doubled, the segment sizes become 1+2 = 3, 2+2 = 3, 4+2 = 7 and
so on. When a segment-attempt fails, the segment size is not increased, instead
the ants are condensed outwards, and the missing worker ants are replenished
with new worker ants that are waiting on the other side of the hive. Figure 4.5
illustrates a snapshot of the algorithm.

There are two key remarks that we want to state here. First, the segment
size is always doubled after a successful segment-attempt, allowing the algorithm
to quickly perform a segment-attempt with segment size larger than D, i.e., a
segment-attempt that discovers the treasure. Second, as the segment size is only
increased after successfully discovering a segment, we know that the largest
segment that is performed before discovering the treasure is at most 2D large,
i.e., the ants do not perform an unnecessary huge segment, as it might happen
during Basic Segment Sweep. Observe that if n < D, it is not possible to discover
the treasure, but we can solve this issue by transitioning into Basic Segment Sweep
as soon as all worker ants are participating in the iterations of Segment Sweep.

Let us summarize the main parts of the algorithm:

• Initialize worker ants using Reliable FastSpread, outside of the quarter plane
that is being searched, and condense them immediately towards the hive.

• Iteratively perform Segment Sweep, doubling the segment size after each
successful segment-attempt.

• Once all worker ants are participating in iterations of Segment Sweep, tran-
sition into Basic Segment Sweep.
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ready worker ants

Figure 4.5: The Exponential Initialization algorithm. Circles represent super ants,
squares represent worker ants. Ants above the hive perform Segment Sweep,
while the ants below the hive perform Reliable FastSpread and condense towards
the hive. Note that only the quarter plane above and to the right of the hive
must be discovered by this group of ants.
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4.7.2 Doubling a Distance

In this section we explain how a given distance between two super ants can be
doubled in a exact and deterministic way. Note that we need one additional
super ant for this process. Figure 4.6 illustrates the process. In the beginning,
one super ant marks the left end and two super ants stand on the right end.
The distance between left and right is now to be doubled. This can be achieved
by letting one of the right super ants walk right with speed 1/3 and the other
one walking left with normal speed. Once the ant walking left meets the waiting
super ant marking the left end, it turns around walks right. When the two super
ants walking right meet again, both stop and the process is finished.

As one of the ants walks 2 · dold + dnew with regular speed, and the other ant
walks only dnew with speed 1/3, it follows that 2 · dold + dnew = 3 · dnew, i.e.,
dnew = dold. As the dtotal = dnew + dold, the distance has been exactly doubled.

dold

(a) Initial configuration

1 1/3

dold

(b) They start to move . . .

1 1/3

dold

(c) . . . the left ant catches up . . .

dnewdold

dtotal

(d) Final configuration

Figure 4.6: Three super ants doubling a distance.

4.7.3 Bringing in Worker Ants

In this section we describe how the algorithm can bring in the appropriate
amount of worker ants. With the term “bringing in” we refer to the process
of transferring worker ants, that are participating in Reliable FastSpread and
that are ready, to the other side of the hive so that they are integrated in the
subsequent iterations of Segment Sweep. Note that during this section we assume
that enough worker ants are ready and waiting next to the hive, so that super
ants can just come and take the ants with them. We will later prove that this
assumption holds by the design of the algorithm. Note that ready ants could
fail whilst they are waiting, or during the process of switching between Reliable
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FastSpread and Segment Sweep; the algorithm however does not try to fix this
issue directly, but this problem will simply be discovered after the next iteration
of Segment Sweep, and is therefore equivalent to a worker ant failing during the
segment-attempt.

There exist three different cases of bringing in worker ants: The first one is
after a successful segment-attempt, when additional worker ants are needed to
double the segment size. The second one is when a segment-attempt has failed,
and we need to bring in worker ants to replenish the failed ants. The last case
occurs, when we would need to bring in worker ants, but there are not enough
worker ants anymore, i.e., the algorithm must transition into Basic Segment
Sweep. To facilitate the presentation, we look at these three cases individually.

After a Successful Segment-attempt

As described in Section 4.7.2, the super ants first double the segment size of
Segment Sweep, and tell all the worker ants that are already participating to
move outwards. Hence the starting configuration for the bringing-in procedure
is a segment, in which the half of the fields that are closer to the hive do not yet
contain a worker ant, and the half that is farther outwards already contains a
worker ant.

In order to bring in new worker ants, three super ants position themselves in
the same way as if they would double a distance: Two super ants are on the hive
and one super ant stands on the field that marks the middle of the segment. They
double the segment in direction of the ants that are doing Reliable FastSpread,
so that when the doubling procedure is finished, the distance between the super
ants and the hive is equal to half the new segment size. When the super ants
now walk towards the hive, and tell every worker ant they meet to start moving
towards the quarter plane that is to be discovered, they will bring in the exact
amount of worker ants that are needed.

After a Failed Segment-attempt

Instead of doubling the segment size, the super ants tell the worker ants to
condense outwards, leaving a continuous gap directly at the hive. The super
ants then position themselves at the hive and at the end of this gap (i.e., at the
beginning of the segment of alive worker ants). From this configuration, they
perform the exact same steps as after a successful segment-attempt, i.e., they
double their distance in such a way, that they can bring in just the right amount
of worker ants.
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Not Enough Worker Ants

The super ants can easily detect that there are not enough worker ants remaining.
Namely they can do so, by walking outwards on the ray where Reliable FastSpread
is performed, and when they meet the super ant that marks the outermost ant of
Reliable FastSpread, they know that there are not enough worker ants anymore.
After this occurs, they bring in the remaining worker ants, but additionally tell
all the worker ants that are performing Segment Sweep (i.e., all worker ants,
since there are no more left performing Reliable FastSpread), that they should
condense towards the hive. When this condensing is complete, the ants are in
starting configuration for Basic Segment Sweep, as they are lined up as a single
large segment, starting from the hive. From this point, they will perform Basic
Segment Sweep as it is described in Section 4.6.

4.7.4 Correctness

We now want to show that the algorithm as it is described successfully locates
the treasure in the respective quarter plane. Note that the correctness of Reliable
FastSpread and Segment Sweep has already been shown in Sections 4.4 and 4.5.
As it is straightforward to see that the procedure to double a distance works
(when performed by super ants), we omit a more detailed analysis of the proce-
dure. Note that also the correctness of the procedure of bringing in ants (under
the assumption that enough ants are initialized and next to the hive) is imme-
diately clear, as it essentially only uses the functionality of doubling a distance.
Therefore there are only two parts of the algorithm for which it remains to be
shown that they work correctly, both concerning the transition between Reliable
FastSpread and Segment Sweep: First we need to show that enough ants are
ready, so that they can be brought in. And second, we need to show that the
ready ants are waiting directly at the hive, and are not farther outwards.

Enough Ants are Ready

Lemma 4.26 Reliable FastSpread initializes worker ants faster than they are
needed by Segment Sweep; i.e., each time super ants try to bring in worker ants,
the required amount is ready (or failed) w.h.p.

Proof From Corollary 4.11 we know that the first s worker ants that perform
Reliable FastSpread are ready after 6s + c log(n) time (or they are failed). As
the procedure of bringing in worker ants does not distinguish between ready and
failed ants, we can omit caring about failed ants in the remainder of the proof;
recall that failures are only relevant during Segment Sweep.

By the design of Exponential Initialization, the super ants performing Segment
Sweep initially wait until the first worker ant is ready, e.g., they wait until the
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c log(n) time of Reliable FastSpread, that is required for the first worker ant to
be ready, is passed. It is therefore sufficient to prove that once the iterations of
Segment Sweep start, they will require fewer than t/6 ants at any time t.

In Section 4.5 we did a detailed runtime analysis of Segment Sweep, from
which we know that the runtime of a segment-attempt is at least 9x, where x is
the size of the segment13. Observe that enough worker ants are ready for the first
segment-attempt that is performed, as the super ants indeed wait for the first
worker ant to become ready. Let us now show that enough worker ants are ready
for the following segment-attempts inductively. If a segment-attempt of segment
size x fails, we know that at most all (i.e., x− 2) worker ants have failed. As the
same amount of worker ants that have failed must be brought in, it follows that
it is sufficient if x − 2 worker ants have become ready during the execution of
the segment-attempt. Since the segment-attempt required at least 9x time, we
know that 9x/6 ≥ x new worker ants have become ready w.h.p. Since already
more than the required amount of worker ants has become ready just during the
execution of the segment-attempt (and other ready ants may already have been
there before), it follows that enough worker ants will be ready after each failed
segment-attempt.

When a segment-attempt of size x is successful, the number of worker ants
participating in Segment Sweep is doubled, i.e., an additional x− 2 worker ants
are required. As the time for a successful segment-attempt is also at least 9x, it
follows directly from the proof for the failed segment-attempt that enough ants
are ready w.h.p.

Since we have shown that both after a failed segment-attempt and after
a successful segment-attempt there are enough ants ready w.h.p., the lemma
follows. �

Ants are Close to the Hive

Lemma 4.27 Whenever super ants arrive to bring in new worker ants, the re-
quired worker ants form a continuous segment next to the hive (possibly contain-
ing failed ants).

Proof As in the previous proof, we want to omit dealing with failed ants, as
this does not lead to a problem with the overall algorithm. For that reason, we
only require the worker ants to form a continuous segment when there have no
ants been failed; in other words, in an execution where the adversary does not
fail any ants participating in Reliable FastSpread, we assure that the required
amount of ants will be in position.

13Since x includes the super ants marking start and end of the segment, a segment of size x
requires x− 2 worker ants.
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Combining this restriction with Lemma 4.26 which states that the required
amount of ants will be in the ready state, it sufficient look only at the condensing
procedure and show that each time the super ants arrive to bring in further
worker ants, the respective worker ants have condensed in such a way, that they
form a continuous segment next to the hive.

Note that when looking at the fields on which Reliable FastSpread is executed,
one might see different things on the different fields: For example, a single worker
ant that is in the ready state, a group of worker ants that are deciding which
ants is going to stay, or a super ant, which is marking the end of the segment.
Let us call those different combination of ants groups; i.e., during the execution
of Reliable FastSpread, we refer to the ants that stand together on one field as a
group, independent of their number and their states. This facilitates reasoning
about the condensing procedure, as we can separate the two concerns: The
fact that the groups are close enough to the hive, i.e., that the condensing works,
and the fact that the right “type” of group stands next to the hive, i.e., a ready
worker ant. Observe that the second concern has already been taken of care
of by Lemma 4.26, thus it only remains to be shown that the groups condense
quickly enough.

Let us specify what remains to be shown a bit more formally: At every time
t when the super ants want to bring in x worker ants, the first x fields next to
the hive must be occupied by groups.

We first want to look at how the condensing affects the distance between
adjacent groups performing Reliable FastSpread.

Observation 4.28 The distance between two adjacent groups participating in
Reliable FastSpread is at most 2.

This observation follows directly from the way how the groups perform con-
densing: Initially all groups are adjacent, and the condensing only starts to have
an effect, once a segment of groups is removed (i.e., a continuous segment next
to the hive that is brought in to perform Segment Sweep). From this time on,
the following behavior can be observed for all groups: If the adjacent group in
direction of the hive is the direct neighbor (having distance 1), it might move
at most one step14, creating a distance of 2. In the following time steps either
both groups will move synchronously (as they are both on a field with an even
respectively odd distance to the hive), keeping the distance of 2, or only the
group that is farther outwards will move, reducing the distance to 1 again. Note
that the group that is farther outwards will move until it reduces the distance to
1 again, as only at this point it will be blocked from further condensing, whereas
the group that is closer to the hive will be blocked earlier and hence will stop
condensing earlier.

14It can only move, if there is not yet another group next to it in direction of the hive.
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Observation 4.29 Once a group starts condensing, it will only stop once it is
part of the continuous segment that starts at the hive.

We saw that the only event that triggers condensing is when super ants
remove a continuous segment of groups next to the hive. It is clear that the
remaining group that is closest to the hive starts condensing first, and only stops
once it arrives at the hive. All other groups will start to condense later, namely
one time step after the group before them started to condense. Recall that a
group only stops to condense, once the group that is next to it in direction of the
hive stops to condense (see explanations for Observation 4.28). Hence it follows
by induction that every group will only stop to condense once it is part of the
continuous segment of groups that starts at the hive.

Lemma 4.30 Let the first x groups next to the hive be removed at time τ , and
let t(j) denote the time when the j-th remaining group15 arrives at its position
in the continuous segment starting at the hive. It holds t(j) ≤ τ + 2j + x.

Proof Observe that with the j-th remaining group we denote the group for
which only j − 1 other groups are closer to the hive. Let us first look at how
long it will take at most until the j-th group starts condensing: Recall that a
group starts condensing one timestep after the adjacent group that is closer to
the hive starts condensing. In the worst case, all j− 1 groups form a continuous
segment; in that case, the j-th group will start condensing after j timesteps, i.e.,
at time τ + j.

Once the j-th group is condensing, it follows from Observation 4.29 that the
time until the group is at its position in the continuous segment is equal to the
distance that it needs to traverse. Observe that the distance to the hive at the
time when the j-th group starts to condense is at most x+ 2j; the term x is due
to the x removed groups, and the term 2j comes from the fact that there are
j − 1 groups closer to the hive and the distance between each adjacent group is
at most 2 (Observation 4.28). The distance of the j-th group to the hive is, once
it is part of the continuous segment, of course j. Hence the distance between
starting and end point is at most x+ 2j − j = x+ j.

Since the time it takes for the j-th group to reach its position in the con-
tinuous segment is the sum of the time it needs to wait plus the traverse time,
Lemma 4.30 follows. �

Corollary 4.31 When the first x groups next to the hive are removed at time
τ , the next x groups have condensed completely towards the hive no later than at
time τ + 3x.

15I.e., the group that is at distance x+ j from the hive at time τ .
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Let us now prove Lemma 4.27 inductively. It is clear that the groups are
initially next to the hive, as Reliable FastSpread starts at the hive and no ant has
yet been removed. For all the following points in time when super ants try to
bring in new worker ants, we know that Segment Sweep was just performed. Let
x be the number of worker ants that participated in the iteration of Segment
Sweep that has just been performed, i.e., the segment size minus the two super
ants marking start and end. Since x worker ants participated, it follows that
in the previous step of bringing in worker ants, at most x worker ants have
been removed from the side performing Reliable FastSpread. Since the time it
takes for the condensing process to form a continuous segment again is grows
in the number of the removed ants, we assume that x worker ants have been
removed to show the lemma for the worst case scenario. Let us now look at the
maximum number of worker ants that might be brought in for the next iteration
of Segment Sweep; as the previous segment contained x worker ants, it follows
that, independent of whether the segment-attempt was successful or not, the
number of additional worker ants that must be brought in for the next iteration
is at most x.

Hence we know that in the previous iteration at most x worker ants have
been removed, and now the super ants require at most x new worker ants. From
Corollary 4.31 follows that these x new worker ants are in position after at most
3x time. As the runtime analysis in Section 4.5 shows, the runtime of an iteration
of Segment Sweep with segment size x is at least 9x, hence the required worker
ants will already be in position when the super ants arrive and Lemma 4.27
follows. �

Conclusion

We have shown that the worker ants are ready in time (Lemma 4.26) and that
they are close enough to the hive (Lemma 4.27). Hence it follows that the
interface between Reliable FastSpread and Segment Sweep works correctly, and
the correctness of Exponential Initialization follows.

4.7.5 Runtime Analysis

In order to analyze the runtime of Exponential Initialization, we first need to recall
the runtime of Segment Sweep; in Section 4.5 we have shown that the runtime
of Segment Sweep is in O(x+ d), where x is the segment size and d is the inner
distance, i.e., the smallest distance that a worker ant has to discover. Note that
this runtime holds for both successful and failed segment-attempts. As during
Exponential Initialization all iterations of Segment Sweep start directly at the hive,
we know that d = 1, hence the runtime of Segment Sweep will be in O(x).

During Exponential Initialization, the super ants bring in worker ants after
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each iteration of Segment Sweep; note that the procedure of bringing in new
worker ants only requires the super ants to traverse distances that are in Θ(x),
hence the combined runtime of executing Segment Sweep and bringing in new
worker ants is still in O(x).

Recall that the iterations of Segment Sweep only start, once the first worker
ant has been initialized by Reliable FastSpread, i.e., after O(log(n)) time w.h.p.;
hence this term must be considered for the total runtime of the algorithm.

In order to analyze the runtime, we want to split the total runtime into two
parts and analyze them individually: First we analyze the total time consumed
for the successful segment-attempts, and second we analyze the additional time
that is needed to deal with ants that have been failed by the adversary. Note that
in the following we assume that the treasure is reached during the exponential
increasing of the segment size, and before the algorithm transitions into Basic
Segment Sweep. We will later look at what runtime is achieved when the treasure
can only be discovered with transitioning into Basic Segment Sweep.

To facilitate the proof, we will omit the fact that the super ants that mark
the boundary of the segment-attempts discover fields themselves, i.e., we will
only look at the worker ants when speaking of the segment size. Note that
this assumption will only lead to a worse runtime compared to the runtime
achieved by the actual execution of the algorithm, hence the runtime yielded by
the following analysis will be an upper bound for the actual runtime.

Successful Segment-attempts

Lemma 4.32 Let s be the smallest number of successful segment-attempts that
are necessary to reach the treasure. It holds that s ≤ dlog(D)e+ 1.

Proof Since all the segments are started directly at the hive, the i-th successful
segment-attempt covers all the distances up to 2i−1. Let us now derive the
distance that is discovered by performing s = dlog(D)e+ 1 segments.

2s−1 = 2(dlog(D)e+1)−1

= 2dlog(D)e

≥ 2log(D)

= D

As a distance of at least D is discovered, it follows that the treasure will be
discovered, and the lemma follows. �

Lemma 4.33 The total runtime for all successful segment-attempts is in O(D+
log(n)) w.h.p.
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Proof Recall that the term O(log(n)) w.h.p. stems from the super ants initially
waiting for the first worker ant to become ready. Let us now look at the remaining
runtime. Let T be the total runtime of all successful segment-attempts, and recall
that a segment-attempt of size 2i (including bringing in the necessary worker
ants) has a runtime of O(2i). We have

T =
s−1∑
i=0

O(2i)

= O
(
s−1∑
i=0

2i

)
| s ≤ dlog(D)e+ 1

= O

(dlog(D)e+1)−1∑
i=0

2i

 | dlog(D)e ≤ log(D) + 1

= O

log(D)+1∑
i=0

2i


= O

log(D)+1∑
i=0

2i


= O

(
2log(D)+2 − 1

)
= O

(
2log(D)

)
= O (D) .

Since the total runtime is the sum of the initial waiting cost and T , the lemma
follows. �

Failed Segment-attempts

Lemma 4.34 The total runtime for all failed segment-attempts is at most O(Df).

Proof From the design of the algorithm we know that the only procedure that
is influenced by failing ants is Segment Sweep. Recall that a single failure can
already force an additional iteration of Segment Sweep. Since the largest segment
that is performed has a size of at most 2D, the largest runtime of a single
iteration of Segment Sweep is at most O(D). As the adversary can force at most
f additional iterations of this segment, the total runtime is in O(Df), hence the
lemma follows. �
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Runtime for Discovery During the Exponential Increasing

Combining Lemma 4.33 and Lemma 4.34, the following corollary follows.

Corollary 4.35 If the treasure is discovered during the exponential increasing,
the runtime is in O (D +Df + log(n)).

Is the Treasure Discovered during the Exponential Increasing?

Corollary 4.35 yields a runtime for Exponential Initialization, but in order to make
the corollary useful, we need to investigate the question on what conditions are
necessary so that the treasure is discovered during the exponential increasing,
i.e., before transitioning into Basic Segment Sweep. Thus the goal of this section
is to establish the following lemma.

Lemma 4.36 The treasure is discovered during the exponential increasing if
D < k · n, k being a constant, and f ∈ o(n).

Proof Recall that the number of worker ants is not n, but only c ·n w.h.p., for
a constant c > 0, as, e.g., the algorithm makes use of super ants.

Observation 4.37 If the adversary cannot prevent the ants from successfully
discovering a segment of size σ, it cannot prevent the ants from discovering all
the previous segments.

When we think of what it means for an adversary not to be able to prevent
a segment of size σ, it is clear that this is equal to the statement f ≤ cn − σ.
This follows from the fact that cn− σ is the number of worker ants that can be
used to replenish any failed ants when attempting a segment of size σ. When
the adversary cannot fail all the worker ants from this pool plus one additional
ant participating in Segment Sweep, the ants will eventually perform a successful
segment-attempt. As all segments that are previous to the segment of size σ
contain fewer ants, i.e., σ′ < σ, the inequalities f ≤ cn − σ′ hold and thus the
adversary cannot prevent those segments to be successfully discovered.

Observation 4.38 The largest successful segment-attempt during exponential
increasing discovers a segment with at least size cn/4 w.h.p.

This observation can be seen with the following reasoning: We can assume
that the segment that is attempted has a size of less than cn/2, else the ants
would have previously performed a segment of size cn/4 and afterwards doubled
the segment size, and the observation would hold. Since the segment that is
attempted contains fewer than cn/2 worker ants, there are at least cn/2 worker
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ants that can be used to replenish any failed worker ants. Since f ∈ o(n), it
follows that the adversary cannot fail enough ants to prevent the algorithm from
successfully discovering the segment.

Combining observations 4.37 and 4.38, it follows that during the exponential
increasing, Exponential Initialization discovers a segment of at least size cn/4 ∈
Θ(n) w.h.p., if f ∈ o(n). Therefore Lemma 4.36 follows. �

Runtime when Linked with Basic Segment Sweep

Let us now look at the runtime that is achieved when the treasure is not discov-
ered during the exponential increasing, i.e., when the ants need to transition into
Basic Segment Sweep. Let us first investigate how the configuration of ants on
the grid looks like at the end of the exponential increasing: All worker ants have
been brought in from Reliable FastSpread, and are lined up to perform Segment
Sweep. This is just the configuration that is required for Basic Segment Sweep
to start the iterations of Segment Sweep. Thus to analyze the overall runtime
until the treasure is discovered, we need to compare the time it takes to initialize
the ants in Basic Segment Sweep (i.e., by simply performing Reliable FastSpread)
against the time it takes to initialize the ants with Exponential Initialization.

Lemma 4.39 The asymptotic runtime of Basic Segment Sweep is not affected
when using the initialization strategy of Exponential Initialization instead of using
Reliable FastSpread to initialize the worker ants.

Proof Corollary 4.35 states that the runtime of Exponential Initialization to
reach distance σ16 is in O(σ+σ·f+log(n)). Given a total of n ants, it is clear that
the maximum distance that can be reached during the exponential increasing is n,
hence the time it takes to initialize all worker ants with Exponential Initialization
is at most O(n+n · f + log(n)) = O(n+n · f). Adding this initialization cost to
the runtime of Basic Segment Sweep (as stated by Theorem 4.19) does not affect
the achieved runtime, thus the lemma follows. �

4.7.6 Conclusion

Summarizing the findings of the previous sections, we have established an algo-
rithm that works at least as well as Basic Segment Sweep, with the additional
benefit of being capable of discovering the treasure already during the initial-
ization. Table 4.5 summarizes the achieved runtime for the different parameter
combinations. Note that since the runtime analysis of Exponential Initialization
requires to have a more fine-grained parameter distinction, we vary both D and
f in the table.

16We replaced D with σ to clarify that the treasure is not yet discovered.
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f

0 ≥ 1, o(n) c · n, 0 < c < 1

n

o(D) O(D
2

n ) O(D
2·f
n ) O(D2)

Θ(D) O(D) O(Df) O(D2)

ω(D) O(D + log(n)) O(Df + log(n)) O(n2)

Table 4.5: Asymptotic Runtime of Exponential Initialization with transitioning
into Basic Segment Sweep.

Comparing these results with the runtime results of Basic Segment Sweep
(see Table 4.3), we see that Exponential Initialization brings us closer to an op-
timal solution, but there remain several parameter combinations for which the
algorithm does not match the lower bound.

4.8 Uniform Splitting

The previously presented algorithms all suffer from a weakness: While a rather
small amount of ants is participating in iterations of Segment Sweep, many ants
are waiting. The main issue is not the waiting itself, but the fact we use only
a relatively small portion of the ants to discover segment, i.e., only a single ant
stands on each field of a segment, allowing the adversary to pay very little in
order to fail an entire segment. It follows from this observation, that an algorithm
could reduce its runtime, if it forced the adversary to pay more in order to fail
a segment; and the way to achieve that is to use multiple ants discovering the
same segment, i.e., to use redundancy.

In this section we present an algorithm that achieves redundancy by using
probabilistic means, combined with Segment Sweep to discover the segments.

4.8.1 Algorithm Description

Before explaining how the algorithm works, we want to point out an important
difference to the previous algorithms, namely that Uniform Splitting does not
require any initialization, e.g., as performed by Reliable FastSpread. One benefit
of this is, that it allows us to get rid of the O(log(n)) w.h.p. initialization term.

Let us now describe Uniform Splitting. In the first timestep, multiple super
ants are elected. One super ant marks the next segment size that must be
discovered, where the segment size is doubled after each successful segment-
attempt. This super ant initially waits on one of the rays of the quarter plane
that must be discovered, with a distance of 3 to the hive. The doubling of the
segment is performed as described in Section 4.7.2.
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Starting from the second timestep, the following sequence of operations is
performed repeatedly: First all the worker ants are distributed according to a
uniform distribution on all the fields of the current segment; i.e., if the current
segment size is σ, each worker ant positions itself with probability 1/σ on each of
the fields of the segment. Afterwards, a Segment Sweep is attempted, where the
uniform distribution might lead to multiple worker ants discovering the same
distance to the hive. If the segment-attempt was successful, i.e., if at least
one worker ant arrives on each distance, the segment size is doubled; note that
doubling the segment in Uniform Splitting means to only move the super ant that
marks the segment size twice as far from the hive. Independent of whether the
segment-attempt was successful or not, all worker ants are brought back to the
hive, and the next iteration begins, i.e., the worker ants get again uniformly
distributed for the next segment.

Summarizing Uniform Splitting, the key points are as follows:

• One super ant marks the next segment-size to perform.

• The segment size is doubled after each successful segment-attempt.

• The worker ants are distributed uniformly on all the fields of the current
segment, providing redundancy.

Since Segment Sweep has already been analyzed, the only part that remains to
be analyzed is the distribution of the worker ants.

4.8.2 Distributing the Ants

In this section we explain how we can distribute worker ants uniformly on 2i

fields, for i ∈ N0; we call this procedure Distribute. Since Distribute works induc-
tively, we will first establish the two base cases for i = 0 and i = 1. The case
i = 0 is solved by simply guiding all worker ants onto the single field. For i = 1,
the super ants first guide all worker ants onto the first field, then each of the
worker ants tosses a coin and moves onto the field number two with probability
1/2.

We now show the induction step: We start with the worker ants distributed
uniformly over 2i fields, and super ants are marking both the start and the end
of the segment (i.e., are positioned at field 0 and 2i − 1). The goal is now to
distribute the worker ants uniformly over 2i+1 fields. As a first step, we move
one super ant onto the field 2i+1−1, i.e., we double the segment size. Afterwards
a super ant starts to walk from field 0 to field 2i, and tells all worker ants that
stand on odd fields to start moving outwards. The super ant that notifies all
those worker ants makes a pause of 1 timestep on each odd field, to prevent that
multiple worker ant groups end up moving on the same field. The worker ant
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groups that are moving outwards walk until they meet another super ant, which
is initially waiting on field 2i, and then stop on this field. This super ant walks
two fields outwards for each group of worker ants that arrives. Therefore the
worker ant groups are stopped on the fields 2i, 2i + 2, 2i + 4, . . . , 2i+1 − 2.

When all worker ants are distributed on the even fields, a super ant walks
over all fields, telling each worker ant to toss a coin and move to the neighboring
odd field (with a distance of one higher to the hive) with probability one half.
Figure 4.7 illustrates the induction step of Distribute.

2i − 10 2i+1 − 1

(a) Initial configuration

2i − 10 2i+1 − 1

(b) Worker ants on odd fields move to the second half . . .

2i − 10 2i+1 − 1

(c) Overview which worker ant moved to which field

2i − 10 2i+1 − 1

(d) Coin toss decides the final position

Figure 4.7: The induction step of Distribute.

Correctness

Lemma 4.40 Distribute distributes the worker ants uniformly on 2i fields, for
i ∈ N0.
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Proof Since the cases i = 0 and i = 1 are straightforward to see, we will directly
analyze the induction step. Instead of looking at all worker ants together, we
will look at a single ant. Note that showing that a single worker ant stands
on each field with probability 1/2i+1 implies the lemma, as all worker ants are
independent. We know that at the beginning each worker ant stands on a field
F ∈ [0, 2i]. Observe that F corresponds to an i-bit number. The first step of
the induction step is to move an ant to the even field on the outwards half, if
the ant currently is on an odd field. If we look at the bit representation of the
position of the ant, we see that: If F is even, the position does not change, i.e.,
F ′ = F . If F is odd, the new position is even and the ant is moved by a distance
of 2i − 1, i.e., F ′ = 2i − 1 + F . Carefully looking at how the bits change during
the transition from F to F ′, we see that the least significant bit is removed and
prepended to F , additionally the least significant bit is set to 0. Hence we know
that an ant that stands on field F ′ still encodes a position where i bits have been
chosen uniformly at random.

Distribute continues to let every ant toss a coin, and moving to the odd field
with probability one half; this part of Distribute lets every ant choose the least
significant bit. Therefore, the ant chooses in total i+ 1 bits by coin tosses, and
stands on the position that those i + 1 bits represent. Thus, the worker ant
stands with equal probability on any of the 2i+1 fields, and the lemma follows.�

Runtime

Lemma 4.41 Distribute distributes the worker ants on 2i fields in O(2i) time,
for i ∈ N0.

Proof The runtime for i = 0 and i = 1 is constant, thus we want to solely look
at the runtime of the induction step. When thinking about Distribute, we see
that the runtime for the induction step in which the ants stand initially on 2i

many fields, and they get distributed onto 2i+1 many fields, depends only on the
super ants moving around and telling worker ants what to do. Since the super
ants walk only a constant number of times between the fields 0 and 2i+1 − 1
(once for doubling, once for notifying to move and once for telling each ant to
toss a coin), the runtime for the induction step is at most c · 2i+1.

Let us now calculate the total runtime to distribute the ants on 2i fields Ti,
where cinit denotes the runtime up to i = 1.
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Ti ≤ cinit +
i∑

k=2

c · 2k

= cinit + c ·
i∑

k=2

2k

= cinit + c · (2i+1 − 1)

= O(2i) �

Conclusion

Combining lemmas 4.40 and 4.41 yields the following corollary.

Corollary 4.42 Distribute distributes any amount of worker ants according to
a uniform distribution on 2i fields, within O(2i) time, for i ∈ N0.

4.8.3 Analysis

The correctness of the overall algorithm Uniform Initialization basically follows
directly from Corollary 4.42, as the algorithm only consists of calling Distribute,
and afterwards performing Segment Sweep. Since we already proved that both
parts work correctly, we now proceed to show that the algorithm indeed discovers
the treasure and we analyze the runtime. For easier reading we split the analysis
into two parts: First we show that the algorithm discovers the treasure w.h.p.,
and second we analyze the runtime that is required to do so. The goal of the
section is to establish the following theorem.

Theorem 4.43 Let cd be a constant. For D ≤ cd
n

log(n) and f ∈ o(n), Uniform

Initialization discovers the treasure in at most O(D + D2(f+1)
n ) time w.h.p.

Discovering the Treasure

Lemma 4.44 Let cd be a constant. For D ≤ cd
n

log(n) and f ∈ o(n), Uniform
Initialization discovers the treasure w.h.p.

Proof Observe that segment-attempts with different sizes are performed during
Uniform Initialization, as the segment size is iteratively doubled. Nevertheless, we
will always calculate probabilities as if the current segment-attempt has the seg-
ment size of the largest segment that is performed. Note that the probabilities
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for smaller segments would only be better (in terms of redundancy), as there are
fewer fields to distribute the ants onto. Thus, if we prove the lemma with this
modification, it follows that the lemma also holds for the actual algorithm.

Observation 4.45 Let σ be the size of the largest segment that is performed in
order to discover the treasure. It holds that σ ≤ 2D.

Since the segment size is only doubled after a successful segment-attempt,
the largest segment that does not contain D has size D − 1. Thus the next
segment would have size 2D − 2, implying the observation.

Observation 4.46 Let ca be a constant. At any time during the execution of
Uniform Initialization, there exist at least can worker ants w.h.p. 3

Before the adversary fails any worker ants, there exist c′ ·n worker ants w.h.p.,
for a constant c′ > 0, due to the use of, e.g., super ants. Since f ∈ o(n), i.e.,
f < cn for a selectable constant c, it follows that c′n− f ≥ c′n− cn = can; thus
there remain at least can worker ants at any time w.h.p., where ca is a selectable
constant.

Lemma 4.47 After executing Distribute, there are at least can
4D worker ants on

any specific field w.h.p.

Proof Let X be the random variable denoting the number of ants on a specific
field. It holds

E[X] ≥ can

σ
≥ can

2D
≥ can log(n)

2cdn
=

ca
2cd

log(n).

Applying a Chernoff bound (Theorem A.2) with δ = 1/2, it follows

P [X < (1− 1/2)E[X]] ≤ e− 1
2
· 1
4
E[X] ≤ e−

ca
16cd

log(n)
=

1

n ca/16cd
.

Since can
2D ≤ E[X], it follows that P [X < can

4D ] ≤ P [X < 1/2E[X]]. Therefore
P [X < can

4D ] ≤ 1

n ca/16cd
, respectively P [X ≥ can

4D ] ≥ 1 − 1/nc, which concludes

Lemma 4.47. �

Let us call an execution of Distribute good, if after its execution, at least can
4D

worker ants stand on each field (before the adversary has failed any of the ants);
vice versa we call an execution of Distribute bad, if there is at least one field
containing fewer than can

4D worker ants.
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Lemma 4.48 After executing Distribute, there are at least can
4D worker ants on

each of the σ fields w.h.p.; i.e., the execution is good w.h.p.

Proof Let Ei denote the event that field i contains fewer than can
4D worker ants,

for i ∈ [0, σ]. From Lemma 4.47 we know that P [Ei] ≤ 1/nc for a selectable
constant c. Applying a union bound (Theorem A.3), we can derive that

P [
⋃
i

Ei] ≤
∑
i

P [Ei]

≤ σ · P [Ei]

≤ 2cd
n

log(n)
· P [Ei]

≤ 2cd
n

log(n)
· 1

nc

≤ 2cd · n ·
1

nc

≤ 1

nc′
.

Since P [Distribute is good] = 1− P [
⋃
iEi], Lemma 4.48 follows. �

Lemma 4.49 Performing r = 1 + log(σ) + 4Df
can

executions of Distribute, all r
executions are good w.h.p.

Proof Let us first derive an upper bound r,

r = 1 + log(σ) +
4Df

can

≤ 1 + log(σ) +
4cdnf

log(n) · can

= 1 + log(σ) +
4cdf

ca log(n)

≤ 1 + log(σ) +
4cd
ca
· f | f ≤ ca

4cd
n, since f ∈ o(n)

≤ 1 + log(σ) + n

≤ 1 + log(2D) + n

= 2 + log(D) + n

≤ 2 + log(n) + n

≤ 4n.
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Let the R be the random variable denoting the number of executions of Distribute
that are bad, and let Di denote the event that the i-th execution is bad. Observe
that different the executions of Distribute are independent (by design of the
overall algorithm), and thus ∀i : P [Di] = P [Distribute is bad]. In the following
we derive the probability that at least one of the r executions of Distribute is
bad, by applying a union bound (Theorem A.3).

P [R ≥ 1] = P [
r⋃
i=1

Di]

≤
r∑
i=1

P [Di]

=
r∑
i=1

P [Distribute is bad]

= r · P [Distribute is bad]

≤ 4n · P [Distribute is bad] | Lemma 4.48

≤ 4n · 1

nc

≤ 1

nc′

Since the probability that all executions of Distribute are good is 1− P [R ≥ 1],
Lemma 4.49 follows. �

Observation 4.50 The treasure is discovered after 1+log(σ) successful segment-
attempts.

Recall that the segment size is always doubled after a successful segment-
attempt. Thus when performing 1 + log(σ) successful segment-attempts, the
largest segment that is successfully performed has size σ. Since D ≤ σ, the
treasure is discovered.

Observation 4.51 If the adversary does not fail more than 4Df
can

of the first

1 + log(σ) + 4Df
can

segment-attempts, the treasure is discovered within the first

1 + log(σ) + 4Df
can

segment-attempts w.h.p.

From Observation 4.50 we know that after 1 + log(σ) successful segment-
attempts the treasure is discovered. Since all of the first 1 + log(σ) + 4Df

can
dis-

tributions are good w.h.p. (Lemma 4.49), it follows that the adversary must fail
more than 4Df

can
segment-attempts to prevent the discovery.
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Lemma 4.52 Let ρ be the maximum number of segment-attempts (out of the
first 1 + log(σ) + 4Df

can
) that an adversary can fail. It holds ρ ≤ 4Df

can
w.h.p.

Proof Since we are looking at the first 1 + log(σ) + 4Df
can

segment-attempts, we
know that all executions of Distribute are good w.h.p. (Lemma 4.49), i.e., on each
field stand at least can

4D worker ants w.h.p. Recall that in order to fail a round,
the adversary must fail at least all the ants on one field. Hence we can derive

ρ∑
i=1

can

4D
≤ f

ρ · can
4D
≤ f

ρ ≤ 4Df

can
.

�

Combining Observation 4.51 and Lemma 4.52 yields the following corollary.

Corollary 4.53 Uniform Initialization discovers the treasure within the first 1 +
log(σ) + 4Df

can
segment-attempts w.h.p.

Note that this corollary implies Lemma 4.44, thus concluding its proof. �

Runtime

The goal of this section is to upper bound the runtime of Uniform Initialization
based on the analysis performed in the previous section, so that we can conclude
Theorem 4.43. To facilitate the runtime analysis, we will look at the successful
segment-attempts and the failed segment-attempts individually.

Lemma 4.54 The total runtime Uniform Initialization requires for all successful
segment-attempts is at most O(D) w.h.p.

Proof Recall that the runtime of a segment-attempt which starts at the hive
with size x is in O(x), as established in Section 4.5. Corollary 4.42 states that
the runtime of Distribute to distribute the ants on x fields is in O(x); therefore
the total runtime of first executing Distribute and afterwards performing Segment
Sweep is in O(x).

Observation 4.50 gives an upper bound on the number of successful segment-
attempts that must be performed w.h.p.; and since σ ≤ 2D (Observation 4.45), it
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follows that the algorithm performs at most 1+log(σ) ≤ 1+log(2D) = 2+log(D)
successful segment-attempts.

By construction of the algorithm, the segment size is doubled after each
successful segment-attempt (starting with a segment size of 1). Thus we can
derive the following bound for the runtime

log(σ)∑
i=0

O(2i) = O(2log(σ)+1 − 1) | σ ≤ 2D

= O(2log(D)+2 − 1)

= O(D).

�

Lemma 4.55 The total additional runtime an adversary can force Uniform Ini-

tialization to require by failing segment-attempts is at most O(D
2·f
n ) w.h.p.

Proof Lemma 4.52 states that the maximum number of segment-attempts that
an adversary can fail is at most 4Df

can
∈ O(D·fn ) w.h.p. It is straightforward to see

that the most expensive segment-attempt to fail, in terms of additional runtime,
is the largest segment that is performed, i.e., the segment of size σ ∈ O(D).
Since the runtime required for executing Distribute and performing a segment-
attempt of size σ is in O(σ), it follows that the total runtime for all failed

segment-attempts is at most O(D·fn ) · O(D) = O(D
2·f
n ) w.h.p., concluding the

proof. �

Corollary 4.56 The total runtime of Uniform Initialization is at most O(D +
D2·f
n ) w.h.p.

Combining Lemma 4.44 and Corollary 4.56 establishes Theorem 4.43.

4.8.4 Conclusion

The presented algorithm Uniform Initialization discovers the treasure within asymp-
totically optimal runtime w.h.p., but it does not work for every choice of the pa-
rameters f and D. Note that the algorithm either discovers the treasure within
optimal runtime w.h.p., or it does not discover the treasure at all; this separates
the algorithm from previous ones, which work for all parameter choices, but only
yield suboptimal performance for certain parameter combinations.
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4.9 Combining the Algorithms

In the previous sections we have introduced four different algorithms:

• Three-ant Search

• Basic Segment Sweep

• Exponential Initialization

• Uniform Initialization

Since Exponential Initialization is a superior extension of Basic Segment Sweep,
we do not need to consider Basic Segment Sweep when combining the algorithms.
As stated by Theorem 4.7, we can develop a new algorithm that executes the
three algorithms Three-ant Search, Exponential Initialization and Uniform Initial-
ization in parallel, obtaining the asymptotically optimal runtime of the three.
Since these three algorithms are optimal for different combinations of f and D,
we recapitulate which algorithm is optimal for which parameter combinations in
Table 4.6. The Table combines the different runtime analysis’ of the previous
sections; in particular Theorem 4.9, Table 4.5 and Theorem 4.43.

f

0 ≥ 1, o(n) c · n, 0 < c < 1

D

Ω(n) EI EI EI, 3-ant

ω( n
log(n)), o(n) EI ? 3-ant

O( n
log(n)) UI UI 3-ant

Table 4.6: Which algorithms are asymptotically optimal for which parameter
combination. EI: Exponential Initialization, UI: Uniform Initialization, 3-ant: Three-
ant Search.

Observe that for every parameter combination, except for the one marked
with the ?, there is at least one algorithm that achieves an asymptotically optimal
runtime.

4.9.1 The Last Combination

In this section we analyze the runtime achieved by Exponential Initialization for
the parameter combination that is marked by a ? in Table 4.6.

Theorem 4.57 For ω
(

n
log(n)

)
≤ D ≤ o(n), and 1 ≤ f ≤ o(n), Exponential

Initialization achieves a runtime that is only a factor of o(log(n)) larger than the
lower bound.
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Proof Recall that the runtime of Exponential Initialization is in O(Df+log(n)),

for the given bounds on D and f (Table 4.5). Note that since D ∈ ω
(

n
log(n)

)
,

it follows that log(n) ∈ O(Df); i.e., the asymptotic runtime can be simplified to
O(Df).

The lower bound for the given parameter combination is Ω
(
D + D2·f

n

)
. For

simplicity we reduce the lower bound to Ω
(
D2·f
n

)
. Observe that this lower bound

is at most as large as the actual lower bound; thus if we show the theorem for
this simplified lower bound, the proof also holds for the actual lower bound.

Let us now derive the factor by which the runtime of Exponential Initialization
is larger than the lower bound

O(Df)

Ω
(
D2·f
n

) = O

 Df(
D2·f
n

)


= O
( n
D

)
.

To get the largest factor by which the runtime of Exponential Initialization is
larger than the lower bound, we need to maximize this term. Since the only way

of maximizing the derived factor is to minimize D, and D ≥ ω
(

n
log(n)

)
, it follows

that the largest possible factor is O
(

n

ω
(

n
log(n)

)
)

= o(log(n)). �

4.9.2 Conclusion

Combining the three algorithms Three-ant Search, Exponential Initialization and
Uniform Initialization yields an algorithm that discovers the treasure in asymptot-
ically optimal runtime w.h.p. for most of the values of f , D and n; additionally
the runtime is, w.h.p., at most by a factor of o(log(n)) larger than the lower
bound for any choice of parameters.



4. Algorithms for the Adversarial ANTS Problem 68

4.10 Relation to Biology

In this chapter we have explained how the problem of foraging can be solved in a
hostile environment by ants that have only limited computation capability. The
presented algorithm yields a nearly optimal result in respect to the asymptotic
runtime, but remains at least one question to be asked: Does the presented
algorithm resemble actual ant searching behavior?

In Chapter 6, we will survey the existing biological work on the topic, but
for now we want to study the concepts introduced throughout this chapter in
regard to their closeness to reality.

When we recall all the details required to get the algorithm to work, it quickly
becomes clear that the algorithm does not represent any behavior as it can be
observed by nature. In the following we point out some aspects that, even though
being crucial to the developed algorithms, will most likely not be observed in
nature.

4.10.1 Super Ants

Super ants, in the sense of large clusters of regular ants performing tasks in the
exact same way – especially showing the exact same movement pattern – are
unlikely to be observed. One aspect making it an implausible concept is, that it
would require an exactly equal decision making process for all ants in the same
super ant cluster, which contradicts the typical structure of nature that always
contains a certain amount of variance. A different aspect is, that a large cluster
of ants standing at the same location outside of the hive would be extremely
vulnerable to an adversary that stands itself on a certain position and is capable
of killing all ants on a certain field, e.g., an ant eater.

Nevertheless, the described problems might be alleviated by having different
kind of ants, some being a single ant of a special kind, that is represented by a
super ant in our model. But note that when thinking of the concept of a super
ant, it is not sufficient to only look at the super ants, one must also look at the
worker ants. Observe that in all of the presented algorithms and procedures the
worker ants rely heavily on super ants, i.e., if the super ants failed, most of the
worker ants (or even all of them) would remain at some position outside of the
hive and never do anything useful anymore (e.g., they would not even return to
the hive). This heavy dependency on super ants behaving reliably makes the ant
colony extremely fragile, thus we can conclude that the concept of super ants is
unlikely to appear in nature.
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4.10.2 Waiting Time

In most of the described procedures, many of the ants spend a large part of
their time waiting. For example worker ants wait until they are brought in to
perform Segment Sweep during Exponential Initialization, or they wait during the
doubling of the segment, or during Segment Sweep itself when they discover only
a small distance and they have to wait for the larger distance to be discovered.
All this time spent with ants waiting does not affect the asymptotic runtime, but
it is self-evident that ants in nature will not wait for such a long time, simply
for algorithmic reasons. A good example for unreasonable waiting behavior are
certain super ants (those marking the start of the segment) that are used in
Segment Sweep; their purpose is actually only to simulate a pebble, so that
the segment-attempt can be repeated accurately. Using ants to simply mark a
(nearly) static position seems not only to be a waste of resources, but as well to
be quite fragile.

4.10.3 Synchronous Time

In all the presented algorithms we use synchronous time. Note that Segment
Sweep, which is the main procedure of all presented algorithms, depends heavily
on having synchronous time: The super ant, that collects the arriving ant on
one ray and tells every arriving ant to stop, moves exactly with speed 1/3, as
it knows that every 3 timesteps the next worker ant will arrive. One one hand
this is a simple means to know when the ants arrive, but on the other hand this
introduces a heavy dependency on ants arriving exactly at the right time. Since
this dependency makes the procedure fragile – every worker ant that misses
the super ant is lost forever – it is implausible that such a procedure will be
encountered in nature.

4.10.4 Conclusion

We have discussed some of the issues that indicate that the presented algorithms
are unlikely to be encountered in nature. As the described “shortcomings” of
the algorithms are necessary to discover the treasure, one can conclude that the
chosen model is too restrictive, i.e., actual ants have more computational power
than we assumed. This conclusion is confirmed by different biological studies,
which are summarized in Chapter 6. The other implications one can derive from
our work are deferred to Chapter 7.



Chapter 5

Discovering the Grid With
Pushdown Automata

In this chapter we investigate how the ANTS problem can be solved when we
use pushdown automata instead of finite state machines. The problem statement
and the rest of the model stays the same. Note that we only allow deterministic
behavior, i.e., no random bits, as we want to analyze the capabilities of pushdown
automata in the same way as in Chapter 3. The main goal of this chapter is to
establish the following theorem.

Theorem 5.1 It takes at least two pushdown automaton ants to deterministi-
cally discover the entire grid. Additionally this bound is tight, i.e., there exists
an algorithm discovering the entire grid with two pushdown automata.

5.1 Changes to the Model

Since the only change to the model is that the replacement of finite state machines
with pushdown automata, we now proceed to define the pushdown automata. A
pushdown automaton is defined by the 5-tuple

M = (Q,Γ, δ, q0, ε)

where Q is the finite set of states, Γ is the finite set of stack symbols, δ is the
transition function, q0 is the initial state and ε is the initial stack symbol. Note
that the transition function is defined as δ : Q × Γ → 2Q×Γ∗×{N,E,S,W,P }, but
only finite elements of Γ∗ are allowed, i.e., the pushdown automaton can only
push a constant number of stack symbols onto the stack within each transition.

Additionally, we limit ourselves to pushdown automata that in each timestep
either only remove a symbol from the stack, or write some symbols on the stack;
i.e., we do not allow a pushdown automaton to “replace” symbols on the stack in
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a single timestep. Observe that any pushdown automaton that does not satisfy
this condition can easily be transformed into one which does; the transforma-
tion simply consists of splitting any state in which the pushdown automaton
both removes and pushes symbols from the stack into two consecutive states. It
therefore follows that this limitation does not limit the power of the pushdown
automaton.

5.2 One Pushdown Automaton

The goal of this section is to establish the following theorem.

Theorem 5.2 A single pushdown automaton ant cannot discover the entire grid
deterministically.

Let us first introduce some notation: S(t) denotes the number of elements
on the stack at time t, and by C(t) we denote the configuration of the pushdown
automaton at time t. The configuration is defined as the 2-tuple consisting of
the current state of the pushdown automaton and the topmost stack symbol,
i.e., C(t) = (q, γ) for q ∈ Q and γ ∈ Γ.

Observation 5.3 The total number of different configurations is |Q| · |Γ|, i.e.,
constant.

Lemma 5.4 Let t1, t2 be two different times such that C(t1) = C(t2), and let
t2 be the first time at which the pushdown automaton enters configuration C(t1)
after t1. If S(ti) ≥ S(t1), for all t1 < ti ≤ t2, then the pushdown automaton will
repeat the transitions made between t1 and t2 forever.

Proof Let γ be the topmost stack symbol at t1; note that since C(t1) = C(t2),
γ is also the topmost stack symbol at t2. We know that between t1 and t2 the
stack never is never smaller than at time t1, thus the part of the stack that is
below γ is never accessed between t1 and t2. Therefore, all transitions that the
pushdown automaton performed were either based on γ, or on stack symbols that
have been pushed onto the stack since t1. Refer to Figure 5.1 for an illustration
of this scenario.

Recall that the configuration at t2 is equal to the one at t1. Therefore, the
same sequence of transitions as between t1 and t2 will be performed again, since
all transitions are solely based on the part of the stack that gets built up during
the sequence of transitions between t1 and t2. Thus the lemma follows. �

Observation 5.5 Let t1, t2 be two times with C(t1) = C(t2) = c, and let t2
be the first time that c is entered after t1. There exists a constant k, such that
t2 − t1 < k.
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Stack size

Timet1 t2

S(t1)

S(t2)

Figure 5.1: The evolution of the stack over time for a given pushdown automaton.
Note that the content written onto the stack before t1 is not accessed between
t1 and t2.

Observe that there are two kinds of configurations: Some are entered only a
finite number of times, and others are entered an infinite number of times. It
is clear that there must be at least one configuration that is entered an infinite
number of times, as the pushdown automaton must be able to run for an arbitrary
long time.

Lemma 5.6 Let t∞ be the smallest time, for which holds: For every time τ >
t∞, C(τ) is entered an infinite number of times. It holds that t∞ is finite.

Proof Since there are only a finite amount of different configurations (Obser-
vation 5.3), there are also only a finite amount of configurations that are entered
finitely often. For each of those configurations we can determine the last time
when the configuration is entered. Since we can repeatedly apply Observation
5.5, it follows that for every configuration, the last time it is entered can be
bounded by a constant. Therefore the maximum of those times will also be con-
stant; we refer to this maximum as t∞. By construction of t∞, no configuration
that is entered only a finite number of times is entered after time t∞; thus the
lemma follows. �

Since the pushdown automaton can only push a constant number of symbols
onto the stack in each timestep, the following corollary follows.

Corollary 5.7 S(t∞) is finite.

Lemma 5.8 A single pushdown automaton will start to repeat its behavior after
a finite amount of time, and the cycle length of the repeating is finite as well.
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Proof To prove the lemma, we ignore the first t∞ timesteps, and directly start
reasoning about the repeating behavior at time t∞ + 1. To show the lemma, we
will now show that after a finite time after t∞, there will occur two times such
that Lemma 5.4 is fulfilled.

At time t∞+ 1, we observe configuration C(t∞+ 1) and we do the following:
We know that every configuration will be entered again (Lemma 5.6); thus let t′

denote the first time at which the pushdown automaton is in C(t∞ + 1) again.
Recall that this occurs after a finite amount of time (Observation 5.5).

At t′ we check if Lemma 5.4 is fulfilled. If it is fulfilled, we know that
the pushdown automaton will repeat this behavior forever, and the proof is
concluded. If it is not fulfilled, we know that there must be at least one time
before t′ at which the stack was lower than S(t∞ + 1). Let tmin ≤ t′ be the time
at which the stack size was minimal. Figure 5.2 illustrates this case. We then
apply the same reasoning iteratively, starting from tmin and C(tmin). In each
iteration either Lemma 5.4 must be fulfilled, or the stack size is decreased by at
least 1.

Let us now assume that Lemma 5.4 is not fulfilled for a long sequence of
iterations. Observe that each iteration only takes a finite amount of time (if the
lemma is not fulfilled, tmin occurs before the same configuration is entered a sec-
ond time, and it only takes a finite amount of time to enter the configuration a
second time (Observation 5.5)). Since the stack shrinks at least by 1 in each iter-
ation, the stack will be empty after a finite number of iterations (recall Corollary
5.7). Let tempty be the first time after t∞ + 1 where the stack is empty. Because
every configuration is entered infinitely often, the configuration C(tempty) will
also be entered again; and since the stack is empty at tempty, Lemma 5.4 will
hold for tempty and the next time C(tempty) is entered.

Therefore we can conclude that Lemma 5.4 will either already be fulfilled
at some time during the described iterations, or at latest when the stack is
completely empty. Since t∞ is finite, and there are only a finite number of
iterations which themselves do also only take a finite amount of time, and the
time until the lemma is fulfilled starting from tempty is also finite, it follows that
the repeating behavior starts after a finite amount of time. This concludes the
lemma. �

Corollary 5.9 A deterministic pushdown automaton with no input, i.e., one
that works solely with its states and stack, is not more powerful than a determin-
istic finite state machine.

Since we already showed that a single deterministic finite state machine can-
not discover the entire grid (Lemma 3.2), Theorem 5.2 follows.
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Stack size

Timet∞ + 1 t′

S(tmin)

S(t∞ + 1)

tmin

Figure 5.2: Lemma 5.4 is not fulfilled for t∞ + 1 and t′, because there exists a
tmin with a smaller stack size in between. The next iteration will check if Lemma
5.4 is fulfilled starting from tmin.

5.3 Two Pushdown Automata

We have shown that the quarter plane (and hence the grid) cannot be discovered
deterministically with a single pushdown automaton. In this section we present
an algorithm that discovers the entire grid deterministically using only two push-
down automata. Recall that when using finite state machines we needed at least
three finite state machines; hence we can conclude that pushdown automata us-
ing communication are more powerful than finite state machines in regard to the
ANTS problem.

Lemma 5.10 Two pushdown automaton ants can discover the entire grid de-
terministically.

Proof We prove the lemma by providing an algorithm that discovers the grid.
The algorithm is very similar to the 3-ant Search described in Section 3.3. Instead
of having one Explorer and two Guides, we perform the same spiral search around
the hive using one Explorer and only one Guide. The Explorer performs the exact
same steps as in the algorithm 3-ant Search, i.e., it does not even use its stack.
The Guide now replaces the two Guides, by using the stack in the following
way: Initially it walks outwards in eastern direction together with the Explorer.
Whenever the Guide walks outwards, it pushes one symbol onto the stack in each
timestep. When it meets the Explorer, it turns around and walks back to the
hive, removing symbols from the stack one by one. When the stack is empty, the
Guide knows that it arrived at the hive; thus it turns by 90◦ degrees and starts
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to walk outwards again. Note that the Guide walks with normal speed and not
with speed 1/2.

Since both the Explorer and the Guide always walk the same number of fields
towards the hive and outwards, just in different order, they always meet on the
axis. Upon each meeting, both of them realize that they need to change their
direction, and so they successfully manage to perform a spiral search. Hence the
lemma follows. �

5.4 Conclusion

We have established that even though a single pushdown automaton cannot
discover the entire grid deterministically, already two pushdown automata can
solve this task. Since it takes at least three finite state machines to achieve
the same task, it therefore follows that pushdown automata with the ability to
communicate are more powerful than finite state machines in our computational
model. One might think that since this model is more powerful, considering it
might lead to different algorithms that are closer to what is observed in nature.
We argue that this is not the case, since we have shown that in the very same way
as for finite state machines, pushdown automata also rely strictly on having some
sensory input in order to perform anything that is non-repeating (see Corollary
5.9). As one needs to guarantee that such input exists, one would be forced
to use the concept of super ants again. And since super ants are limited to a
constant number, the only algorithms that could be designed with pushdown
automata would be algorithms in which the majority of the ants work together
in a single huge team, in the same way as for finite state machines. We already
discussed that such algorithms are unlikely to be observed in nature (see Section
4.10); thus we claim that algorithms that use pushdown automata instead of
finite state machines do not get closer to nature, and we omit the design of such
algorithms.



Chapter 6

The Biological Perspective

Since we discussed the computer science point of view of the ants foraging prob-
lem thoroughly in the previous chapters, we also want to shed light on the subject
based on research performed by biologists. We therefore did a survey of the re-
search performed over the last decades, with the goal of finding confirming or
conflicting results in regard to the work on the ANTS problem. In this chapter
we summarize the findings of the work that is most relevant to either the ANTS
problem specification, the presented algorithms that solve the ANTS problem,
or to ant navigation capabilities in general. We will see that the current state of
research clearly suggests that ants are more powerful than finite state machines,
as their navigation capabilities include remarkable features; for example, there
are ants which are capable of performing the so called path integration, and many
ants can store landmark information based on various cues.

6.1 Path Integration

The term path integration refers to the capability of an animal to keep track
of its position, such that it can return to its nest in a straight line, even when
the outbound path contains many turns. This could for example be achieved by
memorizing the angle and distance relative to the nest. Figure 6.1 illustrates the
movement pattern of an ant capable of performing path integration; note that
the illustration is not based on actual data, it simply visualizes the concept of
path integration.

The question of whether animals are capable of performing path integration
was already raised by Darwin in 1873 [54]; note that he refers to the process as
“dead reckoning”, since the term path integration did not exist yet. Since then, a
lot of research has been performed regarding the capabilities of animals in regard
to navigation. Of particular interest for our problem is of course the research that
has been performed with ants. Work that deserves attention includes especially
the various studies performed by Wehner et al.; for example in [38, 39, 40, 41]
one can find various information about the basic concepts of how ants use path
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integration. Note that Grah et al. showed in [41] that certain species of ants are
capable of reliably performing path integration in three dimensions, for example
in a very hilly terrain.

Nest

Ant

Figure 6.1: An ant left its nest for foraging (solid line). Due to the ability to
perform path integration, the ant does not follow the outbound path backwards
to reach the nest, but it walks in an (approximately) straight line home (dashed
line).

6.2 Landmark Information

Besides path integration, many animals (including ants) make use of landmark
information. An animal that makes use of landmark information stores various
cues, with the help of which it can determine its position. A simple example
of such a cue can be a large object that is visible from multiple locations. Just
like path integration, landmark information is a self-contained means to enable
navigation (in the absence of errors).

In the case of ants, there exist different types of cues that are memorized
by ants. In [42, 43, 44, 45], it has been shown that ants use visual landmarks.
Furthermore, [46, 47] show that ants also use odor information. In a more recent
study, [48], it has been shown that ants can even make use of magnetic and
vibration landmarks.

Summarizing the findings of these papers, it can be observed that ants are
not only capable of memorizing multiple landmark cues, they can also make
use of very different types of cues. Such cues are used to speed up both the
foraging process, as well as the process of finding the way back to the nest.
In experiments where the landmark information was altered, the ants quickly
realized that a certain piece of their landmark information was outdated and
started to adapt to the new situation. Such observed behavior suggests that the
processing of landmark information in ants is quite evolved.
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6.3 Combining Path Integration and Landmark In-
formation

An interesting question that arises when looking at path integration and land-
mark orientation separately, is how they are combined. There are many studies
that investigate this question. For example in the work of Collett and Graham
[49], experiments with hamsters are conducted to test for the interactions be-
tween the two navigation mechanisms. Coming back to the ant setting, Wehner
et al. [42, 45] investigate the effects of removing landmarks in desert ant for-
aging, in order to observe how well the switching between the two navigational
means (landmark orientation and path integration) works. In [43], Cheng et
al. experiment with rotating landmarks instead of removing them.

Summarizing these results, one can say that ants are capable of switching
between the two navigation mechanisms such that they reliably find their way
back to the nest. Landmark altering can have a negative effect on the speed with
which the nest is found, nevertheless ants do not seem to get lost; this seems to be
due to their ability to successfully switch between the two navigation mechanisms
and a random exploration movement in such a way, that they eventually find
their way home. Wehner and Srinivasan [37] describe and analyze the searching
behavior of a single ant, trying to find its nest.

6.4 Conclusion

The referred work clearly suggests that ants use an intelligent combination of at
least three different navigation means: Path integration, landmark information
and randomness. Studies indicate that not only the individual mechanisms are
quite evolved, but also the interaction between them. This results in a both
robust and efficient movement behavior.



Chapter 7

Conclusion

We have studied a problem that lies at the heart of the emerging interdisciplinary
research that consolidates biology and theoretical computer science. Based on
the claim that only a model featuring an inherent element of uncertainty is
suitable to accurately represent an everyday problem in nature, we extended the
ANTS problem with an adversary that is allowed to fail some of the ants.

In this chapter we summarize our contributions, with a particular focus on the
algorithmic perspective. Additionally, we interpret our results in regard to their
implications for biology and we sketch an outlook for the arising collaboration
between biology and theoretical computer science. Lastly, we present some ideas
that could be studied in the future.

7.1 Summary of Contributions

In Chapter 3 we proved a tight lower bound for the number of ants that are
required to solve the ANTS problem; namely, we showed that it requires at least
three ants. To the best of our knowledge, this is the first work that investigates a
lower bound on the number of ants. The importance of this lower bound lies not
so much in the exact number, but in the fact that it requires more than one ant;
in particular, the lower bound shows that the variant of the ANTS problem that
has been introduced in Emek et al. [1] – which is the foundation of the problems
studied in this thesis – is an inherent distributed problem. This distinguishes
the model from both the model introduced by Feinerman et al. in [2] and the
one introduced by Lenzen and Radeva [4]: The problems studied in those papers
can be solved by a single ant; the only advantage they take of having multiple
ants is to devise a trivial form of parallelism, accomplishing a linear speedup.

After having established the distributed nature of our model, we proceeded
to add the element of uncertainty and studied the AANTS problem. In Section
4.1.2 we introduced a lower bound, and in Chapter 4 we presented multiple
algorithms with different assets and drawbacks. Our main result is an algorithm
with a runtime that is o(log(n))-competitive w.h.p.
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In Chapter 5 we analyzed the effect of slightly enhancing the computational
power of an ant, by allowing them to use an infinite stack. We proved that a single
pushdown automaton ant is not more powerful than a finite state machine ant;
this result does not only hold for our model, but can be applied to all problems
where a robot must solve a task in an infinitely large environment without any
sensory input.

7.2 Concluding Remarks

As our model is the only one presented so far that includes both the need for
collaboration and an element of uncertainty, it can be deduced that our model
captures the most significant problems that ants face during foraging. We showed
that even in a very restrictive setting, i.e., without super-constant memory, with
only a very simple form of communication and in the absence of any cues in the
environment, ants can efficiently locate food. This confirms the conclusion of
Emek et al. [1], that ants neither need vast amounts of memory, nor an approx-
imation of n, to efficiently discover the treasure.

Yet, from the complexity of the presented algorithms, and from a comparison
of the presented algorithms with observations on ant foraging behavior, we con-
clude that ants probably do not employ our searching strategies. Nevertheless,
it must be noted that much of the complexity of our algorithms arise from only
two aspects of our model: First, we omit any bounds on the distance between
hive and treasure D, and second, we use a very strong adversarial model. Even
though these assumptions make sense form a theoretical computer science point
of view, it is self-evident that ants in nature do not face such tough problems;
for example, it can safely be assumed that ants do not need to walk hundreds of
kilometers away from the hive, or that an ant colony that suffers a loss of a large
fraction of their ants may rather become extinct, than continuing to efficiently
forage.

Constraining only one of those parameters leads to a lot simpler algorithms;
for example, by restricting D, the algorithm Uniform Initialization alone would
already suffice to discover the treasure within asymptotically optimal runtime.
Therefore, we conclude that the chosen model in this thesis serves as nice upper
bound on how bad things can get for ants. The model investigated by Feiner-
man et al., however, can be seen as a lower bound on how bad things can get;
e.g., it will certainly not any get better than having unbounded memory. Com-
bining these bounds, we conclude that the computational power lies somewhere
in between those bounds, featuring simplicity as in the algorithm presented by
Feinerman et al., as well as robustness and actual collaboration, as presented in
this thesis.
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7.3 Outlook on Interdisciplinary Research

The coalescence of biology and theoretical computer science is still in its very
early stages. Even though the collaboration promises to be fruitful, there exists
not much work so far. However, the fact that there is a tendency of computer
scientists to rather poke around than to actually work together closely with
biologists will eventually only lead to discredit instead of interesting results.
The following anecdotal evidence clarifies this apprehension.

When we discussed the findings of the work from Feinerman et al., Emek
et al., and the ones of this thesis, with some researchers from biology, they
indeed agreed on the potential of the collaboration, yet they were not particularly
excited about the individual findings. From the perspective of biological research,
the question of intelligence is not so much a question of memory size, but more
a question of adaptability, i.e., the ability to learn. It is absolutely crucial to
elaborate on the term “learning”. In classical theoretical computer science, a
lot of things are learned during the execution of any algorithm. For example,
throughout the execution of our algorithms for the AANTS problem, individual
ants learn their role, they learn that a certain other ant died, they learn that a
certain segment is discovered, and so on, until they eventually learn the position
of the treasure.

However, there is a vast difference between this type of learning and to what
biologists refer to as learning. When they speak of learning, they refer to a pro-
cess of adapting to unforeseeable events; for example, foraging ants may be used
to find only one type of food. Then, all of a sudden, they discover different types
of food, creating a new problem: The problem of deciding between different food
types. It is important to note, that when trying to transfer such a setting from
biology to theoretical computer science, one would directly begin with modeling
both problems and the transition from the foraging to the decision problem. Yet,
such a transfer exactly misses to capture the essence of the question! The essence
of the question can colloquially formulated as: How well can ants think out of
the box?

Transferring the essential part of the question into theoretical computer sci-
ence is not only a difficult task to accomplish, but it is already difficult to even
correctly phrase it; still, we present a first attempt: To capture the essence of
the question of learning, the problem specification and/or the used model must
change in an unpredictable way throughout the process of solving the initially
specified problem. An immediate thought of modeling such a problem suggests
the use of a meta-model, containing the specific model that is subject to change.
However, at present, it remains unclear if the introduction of such a meta-model
is actually pointing into the right direction or not.

Concluding this section, we discussed that even though the collaboration be-
tween biology and theoretical computer science is promising, current approaches
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fail to address the essential questions. In order to address these questions, it
seems necessary to develop radically new approaches. Introducing a meta-model
could be a first suggestion in which direction such a development could go, but
it basically remains an open problem.

7.4 Future Work

Since the topic of this thesis lies at the intersection of various problem domains,
there are many different directions for future work. In the following, we present
some ideas illustrating a few of the directions.

One possibility is to pursue the current path of research, i.e., to alter the
model used in the ANTS problem, trying to gain new insights. For example,
one could alter the movement behavior such that ants could walk over multiple
fields in one time unit. A different idea is to limit the number of ants per field,
a constraint that is clearly justified by nature. Also, the AANTS problem could
be extended, e.g., one could lift the assumption of synchronous time.

Another idea is to continue to investigate the obstacle ANTS problem intro-
duced in Chapter D. A first step would be to precisely specify the computational
power of the ants, e.g., their communication capabilities. Thinking about ants
in nature, it probably makes sense to constrain the communication quite rigidly;
for example, by allowing only messages of constant size. Then, one could try to
extend the described algorithm for one turing machine ant to multiple ants.

However, the possibly most interesting path to follow is the one outlined in
Section 7.3, as it seems to be the most promising approach to actually progress in
the interdisciplinary research between biology and theoretical computer science.
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Department of Computer Science (2012)

[9] Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown
environment. Machine Learning 18(2-3) (1995) 231–254

[10] Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with log-
arithmic memory. In: Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, Society for Industrial and Applied Math-
ematics (2007) 585–594

[11] Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration
by a finite automaton. Theoretical Computer Science 345(2) (2005) 331–344

[12] Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of
a pebble: Exploring and mapping directed graphs. In: Proceedings of the
thirtieth annual ACM symposium on Theory of computing, ACM (1998)
269–278

83



Bibliography 84

[13] Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots
can learn unlabeled directed graphs. In: Foundations of Computer Science,
1994 Proceedings., 35th Annual Symposium on, IEEE (1994) 75–85

[14] Arkin, R.C., Balch, T., Nitz, E.: Communication of behavorial state in
multi-agent retrieval tasks. In: Robotics and Automation, 1993. Proceed-
ings., 1993 IEEE International Conference on, IEEE (1993) 588–594
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Appendix A

Well-Known Formulas and
Theorems

Theorem A.1 (Markov’s inequality) For any random variable X and a > 0,
it holds

P [|X| ≥ a] ≤ E[X]

a
.

Theorem A.2 (Chernoff bound) Let Y1, . . . , Yn be n independent Bernoulli
random variables and let Y :=

∑n
i=1 Yi. For any 0 ≤ δ ≤ 1 it holds

P
[
Y < (1− δ) · E[Y ]

]
≤ e− δ

2

2
·E[Y ]

and for δ > 0

P
[
Y ≥ (1 + δ) · E[Y ]

]
≤ e−

min{δ,δ2}
3

·E[Y ].

Theorem A.3 (union bound) Boole’s inequality or union bound: For a count-
able set of events E1, E2, E3, . . . , we have

P [
⋃
i

Ei] ≤
∑
i

P [Ei].

3

A-1



Appendix B

Derived Formulas and
Theorems

Theorem B.1 (number of fields up to a certain distance) Let u be a field
on the 2-dimensional grid. By F (d) we denote the number of fields on the grid
up to distance d from u, i.e., F (d) := |{v | d(u, v) ≤ d}|. It holds

F (d) = 2d2 + 2d+ 1.

Proof Let F ∗(d) denote the number of fields that are in exact distance d to the
u.

d = 0 The only field is u, i.e., F ∗(0) = 1.

d ≥ 1 If we look at the fields in distance d to u, we see that those fields form a
square with side length d+ 1, which is rotated by 45◦. See Figure B.1 for
an example. Thus we can simply sum the number of fields on each side
of the square, subtracting the number of corners (since they are counted
twice), which yields F ∗(d) = 4 · (d+ 1)− 4 = 4d.

Since F (d) =
∑d

i=0 F
∗(i), we can now derive an explicit formula for F (d),

B-1
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Figure B.1: All fields with distance 3 to the center (blue) are highlighted green.

F (d) =
d∑
i=0

F ∗(i) | F ∗(0) = 1

= 1 +
d∑
i=1

F ∗(i) | F ∗(d) = 4d, d ≥ 1

= 1 +

d∑
i=1

4i

= 1 + 4

d∑
i=1

i

= 1 + 4 ·
(
d2 + d

2

)
= 2d2 + 2d+ 1. �

Theorem B.2 (bound on the runtime based on the expected runtime)
Let T be the random variable denoting the runtime of any algorithm A. It holds
that

P
[
T < 2 · E[T ]

]
≥ 1/2 .

Proof Using Markov’s inequality (A.1) with a = 2 · E[T ] we get

P
[
T ≥ 2 · E[T ]

]
≤ E[T ]

2 · E[T ]
= 1/2 .
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Using the fact that P [T < t] = 1− P [T ≥ t] the claim directly follows that

P
[
T < 2 · E[T ]

]
= 1− P

[
T ≥ 2 · E[T ]

]
︸ ︷︷ ︸

≤1/2

≥ 1/2 . �

Theorem B.3 (dividing c · n ants into two teams) Let k = c·n, for a con-
stant c > 0. k ants can split into two separate teams in a single round, containing
k1 and k2 many ants. Both k1, k2 ≥ k/3 w.h.p.

Proof Each of the k ants tosses a random coin, joining either one of the teams,
by switching into the respective state. As this obviously takes only one round,
it only remains to show that enough ants join each team w.h.p. Observe that
E[k1] = E[k2] = k/2. Using a chernoff bound (See Theorem A.2) with δ = 1/3
we can derive

P

[
k1 <

k

3

]
= P

[
k1 <

(
1− 1

3

)
· k

2

]
≤ e−

( 1/3 )2

2
· k
2

= e−
k
36 .

Since the coin tosses are independent Bernoulli random variables, we know that

P

[
k1 <

k
3

]
= P

[
k1 >

2k
3

]
. Combined with the fact that k2 <

k
3 holds if and

only if k1 >
2k
3 , we get

P

[
k1 ≥

k

3
∧ k2 ≥

k

3

]
= P

[
k1 ∈

[k
3
,
2k

3

]]
≥ 1− 2 · e− k

36

≥ 1− k−c.
�



Appendix C

Detailed Explanations

C.1 Segment Sweep

This section contains a detailed description of the procedure Segment Sweep.
Since Segment Sweep only searches a quarter plane and not the entire grid at
once, we use the illustration method for the quarter plane as introduced in Section
4.2.4. First we give a detailed description of the algorithm; since whether or not
failures occur during the execution of the algorithm leads to a different execution,
we look at both cases individually. Afterwards, in Section C.1.3, we discuss the
failure tolerance of Segment Sweep.

C.1.1 Algorithm (Success Case)

A successful segment-attempt consists of four phases: successful segment-attempt,
position fix after success, sweep-back and move to next segment.

Phase 1: Successful Segment-attempt

Starting from the initial configuration with seven super ants, the super ant num-
ber ² starts to walk to super ants ®,¯ notifying all the worker ants on the
way to start walking their quarter circle; at the same time, super ant ­ does its
quarter circle, so that ± knows that it must walk on the right ray to catch all
the arriving worker ants. Once ² reaches ®,¯, super ants ¯,² do their quarter
circle as well. Both ± and ®,¯ stop once they meet each other.

Observe that worker ants start with a time delay of 1, and since each quarter
circle is 2 fields longer than the previous one, worker ants will arrive with a time
delta of 3. This knowledge can be used by ± to catch the arriving worker ants,
namely by walking one step and then waiting two rounds; the worker ant must
either arrive exactly at this timestep, or super ant ± knows that the worker ant
has failed.

C-1
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As every stop or turn is guided by one or more super ants (e.g., ² knows when
to do the quarter circle when it meets ®,¯), all movements can be performed
without worrying about failures. Note that ± stores one bit, either all workers
have arrived, or at least one worker did not arrive. At the end of the segment-
attempt this bit is shared with ¯,², meaning that ¯,±,² know whether or not
the segment-attempt was successful.

The following six images illustrate the described procedure. Super ants are
represented by circles with the number of the super ant, worker ants are squares.
We added arrows and stop-signs to facilitate interpreting of the images.

1 2 3

4 5 6

Phase 2: Position Fix After Success

At the end of phase 1, ¯,±,² know that the segment was discovered successfully,
and super ant ² walks to ­,° in order to prepare for the sweep-back. Upon
arrival, ² informs ­,° that the segment-attempt was successful. The following
three images illustrate this movement.
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1 2 3

Phase 3: Sweep-back After Success

As now all the super ants on the right ray know that the segment-attempt was
successful, some super ants walk back to the left ray, together with all the worker
ants. The sweep-back works in the exact same way as the segment-attempt of
phase 1, with the only change that some super ants have different roles now.

When arriving on the left ray, the remaining super ants ¬,® get informed
about the success. Observe that from this point on all super ants know that the
segment was discovered successfully.

In addition to the sweep-back, ° moves to ±, in order to prepare for the next
segment. The following 5 images illustrate this procedure.
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1 2 3

4 5

Phase 4: Move to Next Segment

Since the super ants on the right ray are already in position for the next segment,
the only thing that remains to be done is to move the super ants and the worker
ants on the left ray outwards. This is achieved in the following way: ² starts
to walk inwards until it meets ¬. On the way it tells every worker ant to start
moving outwards until they meet ®,¯. When they meet ®,¯ they stop, and
®,¯ walk one field outwards themselves. When ² meets ¬, they both start to
walk outwards themselves until they meet ­ again.

Note that no two worker ants will be on the same field at the same time, as
they start to walk with a time difference of 1 (due to ² walking outwards and
notifying one worker ant at a time), and since they walk outwards while being
notified in reverse order.

At the time when ¬,² meet ­, the first half of worker ants is already in
position, and the second half is more outwards than ­, but still moving to
®,¯. Note that even though this is not exactly equal to the configuration at
the beginning of phase 1 (where all worker ants are waiting in their position),
the next segment can be started. This is due to the fact that all moving worker
ants will arrive at ®,¯ before super ant ², and thus at the time when ² arrives
the situation on the field will always be identical to the waiting configuration we
assumed at the beginning of phase 1.

The following 6 images illustrate this procedure.
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1 2 3

4 5 6

For clarification on how the different worker ants move outwards, we added
an illustration; Figure C.1 illustrates the positions where the worker ants will
stop walking when they meet ®,¯. Note that half of the worker ants must walk
at most a distance of x, and the maximum distance a worker ant must walk is
2x, where x is the number of worker ants.

Figure C.1: Overview of the position changes for the different worker ants during
the phase move to next segment.
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C.1.2 Algorithm (Failure Case)

When failures occur during the segment-attempt, the algorithm performs a total
of four phases as well: failed segment-attempt, position fix after failure, sweep-
back after failure and segment fix odd-even.

Phase 1: Failed Segment-attempt

The segment-attempt is performed identically as in the successful case, as at
this time the algorithm obviously cannot distinguish between the successful and
the failure case. Hence we omit a more detailed explanation, but note that the
difference to the successful segment-attempt is, that at least one worker ant
must fail before it arrives on the right ray; and hence at the end of phase 1,
super ants ¯,±,² know that the segment-attempt failed.

Phase 2: Position Fix After Failure

The purpose of this phase is again preparing the super ants for the sweep back,
as well as moving super ants on the right ray to prepare for the same segment
to be repeated. The only difference to the position fix after success is, that not
only ² walks towards ­,°, but so does ± as well. The following three images
illustrate this procedure.

1 2 3

Phase 3: Sweep-back After Failure

Phase 3 is also nearly identical to phase 3 of the success case, there is only one
difference: ° does not move, but rather stays at the current position. This
change is necessary as we do want to repeat the segment later on, and hence do
not want to move the super ants outwards.

Observe that there is at least one worker ants missing, leading to gaps in the
segment of worker ants. The following five images illustrate this procedure.
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1 2 3

4 5

Phase 4: Segment Fix Odd-even

The last phase is entirely different than phase 4 of the success case, as it tries
to a achieve a different goal: Instead of moving the worker ants outwards, we
want to condense them, i.e., we want to create a shorter segment of worker ants,
that contains no gaps anymore. To achieve this goal, ­,² walk inwards to ¬,
and on their way they tell all worker ants (and super ant ¯) to start repeating
condensing steps. Once ­,² reach ¬, every worker ant is performing condensing
steps. Super ant ² turns around and walks slowly (i.e., performs only one step
every four timesteps) outwards back to ®. Note that this takes 4x time, where
x is the number of worker ants that existed at the beginning of the Segment
Sweep, i.e., the number of worker ants is now smaller than x. Once ² meets ®,
they both start to walk inwards with normal speed, until they meet super ant
¯. Super ant ® stops at this field, and ² keeps walking until it meets ¬,­.
On its way, ² tells every worker ant (and also super ant ¯) to stop performing
condensing steps, so that when ² reaches ¬,­, the worker ants are all waiting
for the next segment.

Let us now look at how the condensing works. Each condensing step takes
four timesteps. The first two steps are used by ants that are standing on a field
with an odd distance to the hive, steps three and four are used by ants on a
field with an even distance to the hive. In the first (third) timestep, the ant
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moves to the inward neighboring field. If there is no other ant on this field, the
stays on this field and does nothing on the second (fourth) timestep. If there is
already an ant on the field, it steps back onto its old field in step two (four). It
therefore follows that in each condensing step an ant walks (at least1) one step
closer to the hive, if it has no inner neighbor. Note that no ant walks past the
innermost super ant, which serves as a boundary.

It is clear that all the ants are in one continuous segment, which is adjacent
to the innermost super ant, if we repeat this process long enough (and there
are no new failures anymore). Observe that once there is a continuous segment,
executing more condensing steps will not affect the positions of the ants.

We now show the correctness of the procedure. Assume that there are no
failures during the condensing. It quickly becomes evident that the condensing
procedure is actually nothing else than sorting an array containing only zeros
and ones. The ones are represented by the ants, and the zeros are missing ants.
This task can obviously also be solved by an algorithm that sorts an array with
arbitrary values. Habermann showed in [55] that any array can be sorted in
parallel within at most n steps, where n is the size of the array. Since it takes 4
timesteps to perform an exchange of ants in our model, we can therefore conclude
that after at most 4x timesteps all ants will be lined up in a continuous segment
adjacent to the innermost super ant.

Let us now omit the assumption that there are no failures. The first thing
to notice is that a worker ant that fails does not alter the behavior of other
ants. Thus, we can look at what happens when an ant fails individually; an
ant that fails simply creates a new gap in the segment. If the ant fails early
during the procedure, the gap will be fixed as if it existed from the beginning
of the condensing procedure. Whereas a failure during the later stages of the
procedure might not get fixed, i.e., a gap will remain to exist after the condensing.
Observe that this has same effect as if the ant would not have failed during the
condensing, but rather at the start of the next Segment Sweep. And since such
failures are handled by the following iteration, we do not need to assume that
there are no failures during the condensing, since we simply defer taking care of
the failed ants to the next iteration of Segment Sweep.

The following eight images illustrate the described procedure.

1Observe that an ant starting on an odd field can condense twice in one condensing step, if
the next two fields are both empty.
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1 2 3

4 5 6

7 8

C.1.3 Fault Tolerance

In this section we show that failures that occur during the execution of Segment
Sweep can only affect the current or the following iteration. Starting in the
initial configuration, it is straightforward to see that failures that occur before
the respective worker ant reaches the right ray are dealt with by switching to
the failure case of the algorithm. Hence it only remains to show that a failure
that occurs during phases 2-4 can be dealt with.

Failures in Phase 2

Since – in both the successful and the failed case – phase 2 is only an interme-
diate step to reposition super ants, failures that occur during such a phase are
equivalent to failures that occur at the end of the phase. Therefore, they are
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equal to failures that occur at the beginning of phase 3, and do not need to be
treated already in phase 2.

Failures in Phase 3

Phase 3 is responsible for bringing the worker ants back to the left ray. Since this
procedure simply sends all the worker ants back to the left ray, without being
dependent on anything else than super ants, all alive ants will arrive properly.
Note that at the end of phase 3 there might be quite a number of gaps in the
segment of worker ants: All the gaps that existed already at the start of phase
3, and all the ants that failed during phase 3. Since phase 3 is oblivious to those
gaps (in both success and failure case), failure handling can be deferred to phase
4.

Failures in Phase 4: Success Case

In phase 4 of the success case, all worker ants move outwards. Observe that due
to the reordering nature of this procedure, all gaps that exist due to failures that
occurred up to this point will automatically be fixed. Only if ants fail after they
have stopped walking outwards, a new gap will get created that remains until the
end of phase 4. Since such a gap is equivalent to an ant failing at the beginning
of phase 1 of the following iteration of Segment Sweep, it will be handled in the
following iteration.

Failures in Phase 4: Failure Case

Recall that, in phase 4 of the failure case, we use a condensing procedure to
fix all gaps that exist in the segment of worker ants. If a worker ant fails early
enough in this procedure, the gap will be fixed by the condensing procedure as
well. Only if an ant fails during the later stage of the procedure, or at the end
of the phase, a gap will remain. Note that this is again equivalent to a failure
occurring at the beginning of phase 1 of the following iteration, and thus can be
deferred to the following iteration.

Concluding Remarks

We have shown that all failures that occur are either dealt with right away
(during the execution of the current iteration of Segment Sweep itself), or they
are passed on to the next iteration. Since the next iteration is designed to handle
failures that occur within phase 1, Segment Sweep can be repeated infinitely many
times without ants performing incorrect behavior.



Appendix D

ANTS and Obstacles

Ants dying is certainly one way to add an element of uncertainty to the ANTS
problem. Another idea, that is also motivated by nature, is to add obstacles to
the environment; an idea that we investigate in this chapter.

D.1 Obstacles

In this section, we investigate what it means to have obstacles on the grid. We
discuss constraints that the obstacles must satisfy in order to make the problem
solvable, and we put such obstacles into relation with nature. We proceed to
give a formal definition of obstacles, and we specify the Obstacle ANTS problem.
Additionally, we investigate the computational power that an ant needs, in order
to be capable of coping “reasonably” with obstacles.

D.1.1 Modeling Obstacles

Modeling obstacles in a grid can be done be removing those fields from the grid,
that are covered by an obstacle. Figure D.1 illustrates this modeling process:
On the left, a part of the grid as a human observer would think of it. On the
right, the effect of the obstacle on the graph; i.e., the presence of the obstacle
has lead to a deletion of fields.

The resulting graph is obviously not a grid anymore. Yet, one must bear in
mind that the resulting graph is also not completely arbitrary. Several assump-
tions about the resulting graph still hold; in particular, every field has between
one and four adjacent fields (assuming that the graph is still connected). The
knowledge that the underlying graph is a grid can also be used to discover the
graph without traveling over all the edges. It follows already from these insights,
that, even though the resulting graph is not a grid anymore, the problem does not
correspond to the standard setting of graph exploration with arbitrary graphs.

D-1
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The advantage of constructing a graph in such a way is its natural resem-
blance to actual environments. Other work on graph exploration often uses
arbitrary graphs – or graphs with arbitrary high degree – as a basis (see, e.g.,
[15, 16]). It is clear, that having so much flexibility when it comes to specifying
the degree of the graph, or even the type of the graph, can be very handy to
construct algorithms or bounds; nevertheless, one must doubt the relevancy of
such work. Bearing those considerations in mind, we decided to model an envi-
ronment with obstacles in the described way. This modeling process corresponds
to the one used in Wernli [8] and to the one from Ortolf and Schindelhauer [22].

(a) The obstacle, as it is perceived
by a human observer.

(b) The same part of the grid, as it
is perceived by an ant.

Figure D.1: Modeling an obstacle in a grid.

D.1.2 Rectangular Obstacles

There exists at least one property that the obstacles must satisfy: The obsta-
cles should not disconnect the graph. When thinking about other constraints, it
quickly comes to mind that, if the obstacles are not constrained in any further
way, an adversary could easily construct a complex concave obstacle configura-
tion that would make it extremely complicated for ants to discover the treasure.
Since we do not expect ants to fully explore such a complex concave environment
anyway, but rather to search food on the relatively open plane – with potentially
a handful of obstacles are in their way – we concluded that we need to further
restrict the obstacles.

A first approach to constrain obstacles, is to limit their size. This can easily
be motivated by nature, where obstacles can be divided into two groups: One
group of contains obstacles that are rather small, for example stones, pieces of
wood, small puddles of water. It is reasonable to assume that ants will surround
those obstacles and search for food behind the obstacles. Then, there exists a
group of very large obstacles, e.g., rivers and lakes. It is straightforward to argue



ANTS and Obstacles D-3

that ants will not try to surround those obstacles and that they will rather ignore
the possibility that there is food on the other side on the river. Therefore, it is
safe to assume that the type of obstacles that interesting for our problem are
relatively small.

However, constraining the size of the obstacles has also a major drawback:
The obstacles simply disappear in an asymptotic analysis. Upper bounding the
obstacle size with a constant allows even finite state machine ants to trivially
surround the obstacles, and from a high-level perspective, the problem would
essentially not differ from the ANTS problem at all. Hence, we decided not to
constrain the size of the obstacles.

Since we want prevent an adversary from constructing complex concave
mazes, we must think about what it means for an obstacle to be concave. It
quickly becomes clear, that the only shape of obstacle (on a grid) that is not
concave, is a rectangle. As two adjacent rectangular obstacles are modeled as
one larger obstacle, it follows that we cannot allow obstacles to be directly ad-
jacent (without breaking the assumption that obstacles are non concave). Thus,
we constrain the adversary to only place obstacles that are rectangular and non
adjacent. Note that a finite grid containing such obstacles has already been
studied by Bar-Eli et al. in [56]. In [22] Ortolf and Schindelhauer studied the
graph exploration problem with multiple robots in a finite grid with such obsta-
cles.

These considerations are captured by the following definitions.

Definition D.1 (rectangular obstacle) A rectangular obstacle R on the grid
is defined by two fields (x, y), (x′, y′) ∈ Z2, where x ≤ x′ and y ≤ y′. A field
(α, β) ∈ Z2 is covered by R, if and only if x ≤ α ≤ x′ and y ≤ β ≤ y′ holds. 3

Definition D.2 (surroundable obstacle) A rectangular obstacle R defined
by the fields (x, y), (x′, y′) ∈ Z2 is called surroundable, if and only if none of
the fields inside the rectangle defined by (x − 1, y − 1), (x′ + 1, y′ + 1) ∈ Z2 is
covered by a rectangular obstacle R′ 6= R (see Figure D.2). 3

Definition D.3 (disjoint rectangular obstacles) A set of rectangular obsta-
cles S is called disjoint, if and only if all of the obstacles R ∈ S are surround-
able. 3

D.1.3 Problem Statement: Obstacle ANTS

A team of n mobile agents, initially located at the origin of the infinite grid
G∞, collaboratively search for a treasure placed by an adversary at distance D
from the hive. The adversary is allowed to provide a (potentially infinite) set of
disjoint rectangular obstacles to hinder the search process, with the restriction
that the adversary is not allowed to place the treasure on an obstacle.
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Figure D.2: The black obstacle is surroundable, since all of its surrounding fields
(green) are not covered by any obstacle.

There are two variants that can be studied: The oblivious adversary, who
must provide the set of obstacles at the beginning of the search process, and
the adaptive adversary, who is allowed to define the obstacles throughout the
search process. Note that the adaptive adversary may not change obstacles that
have already been discovered during the search process; i.e., she may defer to
specify the location and the size of obstacles for areas that have not yet been
discovered by ants. Yet, for every field that has been visited by an ant, and for
any field that is blocked by an obstacle and ant has visited an adjacent field of
it, the adversary must decide for the obstacle definition, and may not change the
obstacle placement anymore. Note that this does not mean that the adversary
must fully specify the size of an obstacle as soon as the first ant bumps into it
– it is sufficient to declare that there is an obstacle that blocks this field. The
adversary is allowed to specify the size of the obstacle iteratively based on the
decisions of the ants.

D.1.4 Ants: Computational Power?

It quickly becomes clear that finite state machine ants will not only perform
poorly in the Obstacle ANTS problem, but that algorithms that manage to
surround obstacles with finite state machines will deviate vastly from actual ant
behavior. In order to resemble actual ant behavior at least to some degree, we
claim that a single ant should be capable of walking past an obstacle by itself.
By “walking past an obstacle”, we refer to the following task: Once an ant hits
an obstacle, it walks around the obstacle, to the field that lies exactly on the
other side of the obstacle. Figure D.3 illustrates this process.

Lemma D.4 A single pushdown automaton ant can walk past an obstacle.

Proof When a pushdown automaton ant hits an obstacle, it starts walking
along the side of the obstacle in one direction. For each field traveled, it pushes
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Figure D.3: An ant walks (green path) past an obstacle (black); i.e., it walks
exactly to the field to which it would walk, if there was no obstacle.

one symbol onto the stack. Once it arrives at the end of the obstacle, it turns
by 90◦ and continues to walk along the side of the obstacle. When it meets the
second corner of the obstacle, it turns again by 90◦. It walks back, removing one
symbol from the stack after each movement step. When the stack is empty, the
pushdown automaton knows that it arrived on the right field. �

Based on Lemma D.4, we decided that we want to investigate the Obsta-
cle ANTS problem with ants that have at least the computational power of a
pushdown automaton.

D.2 A Hard Obstacle Set

In this section, we present an obstacle set, that makes it difficult for ants to
discover the treasure efficiently. For this set, we assume that the adversary is
allowed to construct obstacles of infinite size. Note that, as throughout this
thesis, we again make use of the fact that we can design algorithms for a quarter
plane only1, which simplifies the presentation of the obstacle configuration.

In Figure D.4 we present a small part of the obstacle set, illustrating the
idea. The obstacle set contains infinitely long obstacles of width 1, forcing the
ants to explore the passages between the obstacles sequentially. In a typical
graph exploration problem, this would actually not be a problem, since, e.g.,
depth-first search would efficiently explore this graph. But in the ANTS setting,
trying to explore one passage in depth is way too costly, as the treasure could
be in the next passage, very close to the hive. As a consequence, any algorithm
that discovers the distances from the hive in ascending order must walk back to
the diagonal and into the passages all the time.

Observation D.5 The i-th passage starts at distance 2 + 4i from the hive.

1Observe that algorithms must deal with obstacles that lie on the axes carefully.
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Hive

Figure D.4: Part of the hard obstacle set. The obstacles (black) are infinitely
long.

Corollary D.6 If all fields in distance d to the hive should be discovered, an ant
must enter the first b(d− 2)/4c passages.

Corollary D.7 There are at least 2 · b(d− 2)/4c ∈ Θ(d) many fields in distance
d, one in every passage.

Lemma D.8 Let δp(d) denote the total distance that an ant travels inside pas-
sages to discover all fields in distance d to the hive (i.e., without the movement
on the diagonal to switch between the different passages). It holds δp(d) ∈ Ω(d2).

Proof It follows from Observation D.5 that an ant must travel a distance of
d− (2 + 4i) in the i-th passage to reach distance the field in distance d from the
hive. Combining this observation with Corollary D.6 and the fact there are two
i-th passages yields
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Lemma D.9 Any algorithm that searches the plane by iteratively discovering
the distances from the hive in an ascending order2, is at best Ω(D) competitive.

Proof Note that all algorithms presented in this thesis, and the algorithm pre-
sented by Emek et al. [1], work in such a way. This is no coincidence, as any
efficient algorithm must discover fields that are closer to the hive before it dis-
covers the fields farther away.

We assume that the adversary places the obstacles as described. We know
that the ant that discovers all fields in distance d must discover Θ(d) many fields
(see Corollary D.7). From Lemma D.8 we know that it requires Ω(d2) time to
discover those fields. It therefore follows that every ant discovers a new field at
most every Ω(d) time units.

Observe that there are at least Ω(D2) many fields in distance Θ(D) from the
hive, namely those fields that have a distance d ∈

[
D
2 , D

]
to the hive. Hence,

there are Ω(D2) many fields, of which every ant discovers at most one every
Ω(D) time units. As there are n ants, we know that the discovery rate is at most

2I.e., any algorithm that first discovers all fields in distance 1, then all fields in distance 2,
and so on.
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O(n/D). Combining the discovery rate with the number of fields that must be
discovered yields

T∑
t=0

O(n/D) = Ω(D2)

T ·O(n/D) = Ω(D2)

T = Ω(D3/n).

Recalling the lower bound of Ω(D + D2/n) established in Feinerman et al. [2],
we see that an algorithm requiring Ω(D3/n) time is at best Ω(D) competitive.�

Based on this lemma, we conclude that the algorithms developed so far cannot
easily be converted to work well in the Obstacle ANTS problem. Since both
the finite state machine model and the pushdown automaton model3 are quite
limiting, it seems hard (or even impossible) to develop an algorithm that does not
discover the distances one after another without sacrificing performance. Thus,
we think that it makes sense to consider turing machines in order to solve the
Obstacle ANTS problem efficiently.

D.3 A Single Turing Machine Ant

Reasoning about how a single turing machine could efficiently discover the trea-
sure, it makes sense to recall the work on graph exploration. It is well-known
that depth first search discovers any finite graph in asymptotically optimal run-
time. When we try to transfer this idea into our setting, we immediately see
that it does not quite work: A turing machine ant would get stuck, e.g., in the
first passage, trying to reach its end, and it would never return. Nevertheless,
one can derive an algorithm that discovers the treasure in any graph, within
asymptotically optimal runtime, based on a very similar idea.

In the following we use a routine called “depth limited search”, which visits
fields in a depth first search fashion, but only visits fields up to a certain distance.
Once all fields within this bound are discovered, the ant walks back to the hive.
Since every edge that is within the bound is visited at most twice, the runtime of
one execution of depth limited search corresponds to the number of edges within
the distance bound. Observe that every field has at most 4 edges. Since there
are Θ(d2) many fields up to distance d (see Theorem B.1), it follows that the
runtime of an execution of depth limited search with distance limit d is in Θ(d2).

3Obviously, two pushdown automaton ants could move together and simulate a turing ma-
chine, using the two stacks. We do not consider algorithms that make use of this trick, as it
circumvents the purpose of modeling ants as pushdown automata in the first place.
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Algorithm 1 Optimal Single Agent Search

1: i := 1
2: while true do
3: Perform Depth-Limited-Search up to distance i
4: i := 2 · i
5: end while

Lemma D.10 Algorithm 1 discovers the treasure in asymptotically optimal run-
time.

Proof Using the fact that the runtime of depth limited search up to distance i
requires Θ(i2) time yields a total runtime T , for which holds that

T =

dlog2(D)e∑
i=1

Θ((2i)2)

= Θ

dlog2(D)e∑
i=1

(2i)2


= Θ

log2(D)+1∑
i=1

(2i)2


= Θ

log2(D)+1∑
i=1

4i


= Θ

(
4log2(D)+2 − 1

4− 1

)
= Θ

(
4log2(D)

)
= Θ

(
4

log4(D)
log4(2)

)
= Θ

(
D

1
log4(2)

)
= Θ(D2).

Since Algorithm 1 discovers Θ(D2) fields within Θ(D2) time, the lemma follows.�
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D.4 Multiple Turing Machine Ants

Note that an algorithm that follows the idea of Algorithm 1 does not suffer from
the problem that arises from discovering distances one after another. Trying to
extend this concept to multiple ants seems therefore promising.

Due to time restrictions, we could not develop such an algorithm yet; thus it
is deferred to future work.
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