
Distributed
 Computing

Automatic Vocabulary Generation
by Latent Semantic Analysis and a Recommender System

Bachelor-Thesis

Simon Wehrli

siwehrli@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Tobias Langner, Philipp Brandes

Prof. Dr. Roger Wattenhofer

February 8, 2014

Acknowledgements

I would like to thank my supervisors Tobias Langner and Philipp Brandes, who
gave me support during the whole project and helped me overcome obstacles. I
would like to thank Michael Langner for his dedicated and motivating inputs. I
am grateful to Professor Roger Wattenhofer for offering me such an interesting
topic to investigate.

i

Abstract

In this thesis we developed a system that generates vocabulary lists for a desired
semantic field. The user can select the field by just naming a few sample terms.
The system uses Wikipedia as the text corpus and runs Probabilistic Latent
Semantic Analysis on the corpus to represent the meanings of terms as vectors
in a semantic space. A user’s query is processed by searching for the nearest
neighbors around the centre of his sample terms. Then, a clustering algorithm
is run on the terms of the resulting list to assess their quality. Even though the
presented semantic relatedness model is static, the user can provide feedback on
generated vocabulary lists. The feedback is used by an integrated Recommender
System to steadily improve existent lists and lists generated in the future.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Background and Related Work 2

2 Semantic Relation Extraction 3

2.1 Measures for Semantic Relatedness 3

2.2 The Text Corpus . 5

2.2.1 Preprocessing . 5

2.3 Probabilistic Latent Semantic Analysis 6

2.3.1 The Aspect Model . 7

2.3.2 Experiment . 9

2.4 Semantic Nearest Neighbor Search 9

2.4.1 Clustering . 11

3 Collaborative Vocabulary Improvement 16

3.1 Content-based vs. Collaborative Recommender Systems 17

3.2 Rating derivation . 18

4 System Prototype 21

4.1 Data Model . 21

4.2 User Interaction . 22

4.3 Possible Extensions . 22

5 Conclusion and Outlook 25

Bibliography 27

iii

Contents iv

A Sample List A-1

B The Django Model B-1

Chapter 1

Introduction

Many people face the task of learning languages. In today’s world it is of great
advantage to be able to speak different languages. Learning vocabulary units
builds the basis for both beginners and advanced learners. But the vocabulary
they learn is totally different. While a beginner wants to learn the most im-
portant words such that he can start off communication, an advanced learner is
interested in words of a particular field that he wants to delve into, for example
because he needs it for his professional life.

There is a lot of research going on to explore different techniques of learning
and teaching vocabulary. Researchers agree that learning a word is a cumulative
process encompassing several encounters of the word [1]. Words should be used
and repeated over different channels to embed them in the memory. A good
learning progress is achieved if vocabulary is studied shortly before it is actively
used. This requires that the vocabulary units are well coordinated with the
practice.

Creating vocabulary units or exercises to train a particular vocabulary is a
time-consuming work. Recently, computers became a helpful tool for teachers
and learners. Online dictionaries and thesauri lead to faster results than tradi-
tional dictionaries. But they are focused on single terms. This project presents
a tool to automatically generate whole vocabulary lists, that cover precisely the
field the learner is interested in. There is no longer the need for manual selec-
tion of words. To decide which words a user might be interested in, our system
automatically relates them. This is done by analyzing text sources created by
humans and extracting relatedness information. This information is then used
to find terms of a field a user describes by simple means, i.e. by some sample
terms of the desired field. If the user reviews the list and disagrees with some
terms, he can provide feedback to the system. His feedback is used to improve
the system for further searches.

The generated vocabulary list cannot only be used by learners. It can help
to understand or write text about a subject from a unfamiliar field. Teachers
and language text book creators can use the generated vocabulary lists to build
exercises. Another system may even use it to generate exercises automatically.

1

1. Introduction 2

1.1 Background and Related Work

There are multiple ways how a term might be related to another term, e.g. as
synonym, antonym or hypernym. These relations were collected and manually
fixed in linguistic resources such as thesauri, ontologies and synonym dictionaries,
and are successfully used in various applications, such as query expansion [2] and
document categorization [3]. The problem is that for any relation type, a suitable
resource with the right domain and language is required, but the construction of
such resources is a time-consuming work.

Recently Wikipedia has become popular as a text corpus for automatic ex-
traction of semantic relatedness information. There are various approaches to
extract relations. The open-source system Serelex 1 [4] uses the abstracts of
Wikipedia articles to build definition vectors of the covered concepts. A k-nearest
neighbor algorithm and two semantic similarity measures (cosine similarity and
Gloss Overlap) are then used to extract relations from the definition vectors. An-
other system, BabelNet, extends the same idea to a large multilingual semantic
network [5]. It uses both encyclopedic text corpora and lexicographic knowledge
from WordNet, a machine-readable lexical database in English [6]. The extension
to other languages is supported by machine translation of the lexical database.
But this is not applicable to all languages without additional lexical knowledge
because machine translation is a complex problem itself.

Probabilistic Latent Semantic Analysis [7] is a technique for the analysis of
co-occurrence data, which has applications in other areas apart from natural
language processing. In this project it is applied to represent the meaning of
terms as a weighted vector of latent concepts. Assessing the relatedness of terms
amounts to comparing the corresponding vectors using conventional similarity
measures. Explicit Semantic Analysis [8] is a variant that uses explicit concepts
instead of latent concepts. The explicit concepts are derived from Wikipedia
categories.

As mentioned, in any relation extraction process, one or several similarity
measures are involved. One work compares five different similarity measures
in different contexts [9], among them is also the cosine similarity used in this
project. Another work explores hybrid semantic similarity measures [10].

Applications which use the extracted semantic relations include many fields,
from improving Automatic Speech Recognition with WordNet-based semantic
relatedness [11] to generating vocabulary questions [12]. This last project is one
of the few that also aims on language learners as this project does.

1serelex.cental.be/

http://serelex.cental.be/

Chapter 2

Semantic Relation Extraction

The overall goal of semantic relation extraction is to annotate terms with in-
formation according to some model of semantic relatedness. The model must
include a definition of what exactly we refer to as semantically related. In lin-
guistics, it means that terms or symbols have similar meanings. Our purpose
is the generation of vocabulary lists for arbitrary semantic fields, where we re-
gard semantic fields as groups of terms that are often used together in natural
languages. More precisely, we focus on written language. The simple reason is
that it is much more difficult to get access to and to process spoken language.
In many languages there is only a small difference between spoken and written
language with regard to the used terms. This holds in particular for the English
language, for which the system’s prototype is built.1

In this chapter, we describe how we get from a text corpus to a interactive
search for related terms. We start by defining a measure for semantic relatedness.
We describe the chosen text corpus and how it is preprocessed. Then, we explain
the theoretical basis of the relation extraction and how it is concretely applied.
The extracted relatedness information is stored and used to search for related
terms by a searching algorithm. Finally, we show how clustering is used to
estimate the quality of the search result. We introduce the required algorithms
and tools when they are first used.

2.1 Measures for Semantic Relatedness

The model of semantic relatedness must define the representation of the semantic
relations. We adopt the widely used [8, 11, 10] representation with a number on
a one-dimensional, ordinal scale since we are not distinguishing between different
subtypes of relations and are measuring only the strength of the relatedness. We
choose smaller values to signify stronger related terms.

1As a counterexample consider languages that do not even know any visual representation,
like the original hawaiian language.

3

2. Semantic Relation Extraction 4

Definition 2.1. A dissimilarity measure is a function dis : V × V → (0,+∞],
that given any pair out of a set of entities V, returns an ordinal number that is
smaller for more similar and larger for more dissimilar entities.

There is no dissimilarity measure which is directly applicable to terms. Hence
we will need a meta description of terms:

Definition 2.2. A semantic vector is a vector v ∈ Rs associated with an item.
The only requirement is that vectors of similar items are close with respect to a
well defined measure.

Assume for now that for each term we have such a semantic vector (in Sec-
tion 2.3 we will see how to find them). This allows us to use one of the dissimi-
larity measures defined over vectors in Rs. Among them is also the familiar class
of distance metrics.

Definition 2.3. A distance metric for a set of vectors V is a dissimilarity measure
that satisfies the following three conditions for all u, v, w ∈ V:

dis(u, v) = 0⇔ u = v (identity)

dis(u, v) = dis(v, u), (symmetry)

dis(u,w) ≤ dis(u, v) + dis(v, w) (triangle inequality)

The Euclidean distance is a widely used metric, but it is not the best choice
for our semantic vectors, because in our model similar terms get mapped roughly
to the same direction (not to the same point) in the semantic space. Hence we
need a similarity measure based on the angle between vectors. This can lead to
different results compared to the euclidean distance as sketched in Figure 2.1.

α β

u

v

w

‖v − u‖

‖w − v‖

Figure 2.1: The Euclidean distance and the angle between vectors u, v, w com-
pared. Even though the euclidean distances are related with ‖w − v‖ > ‖v − u‖,
the angles are in contrast related with β < α.

A frequently used measure [13] that only consider angles is the cosine sim-
ilarity. It is the best choice for similarity calculation between semantic vectors
[9].

2. Semantic Relation Extraction 5

Definition 2.4. The cosine similarity and dissimilarity for vectors u, v ∈ Rs
are given by

cosSim(u, v) =
u · v
‖u‖ ‖v‖

= cos(α), cosDis(u, v) = 1− cosSim(u, v). (2.1)

where α is the angle between u and v and ‖·‖ is the L2-norm.

Note that if u and v have no negative values, α cannot be greater than 90◦

and hence cosSim and cosDis ranges only from zero to one. As cosSim does not
satisfy the identity condition (consider identical or orthogonal vectors) and the
triangle inequality, it is not a metric. cosDis is not a metric either, since it is
only a linear function of cosSim.

2.2 The Text Corpus

In principle, any text corpus can be used as the basis for text mining. For our
purpose, the generation of term lists for given semantic fields, we have indeed
some specific requirements. First, we should be able to relate as many terms
as possible but at least the terms a native speaker has in its active vocabulary.
Second, the text corpus should feature a deep structuring of terms according to
the semantic field they are belonging to.

Wikipedia is a free online encyclopedia, which anyone can edit. Each arti-
cle normally covers one concept. This separation of concepts produces a deep
structure which is very valuable to extract semantic relations.2 Because a lot
of specialists write about their familiar subjects, an impressive high quality of
articles is achieved. High quality is important because it implies that an article
mentions all terms (and only terms) that are relevant for the covered concept.
Wikipedia exists for all main languages to different extents, where the English
one is the largest (nearly four million articles). Since no language specific process-
ing is done, the system can easily be adapted for other languages. All articles are
freely downloadable as XML dumps.3 This properties already motivated other
projects to use Wikipedia [14, 8].

2.2.1 Preprocessing

We would like to extract only the valuable information from the Wikipedia XML
dumps. First we remove all Wikipedia markup language. This removes pictures,
external URLs, special formatted sidebars and non-alphanumeric text such as
phonetics. We also remove spacing such as newlines and punctuation characters.

2Compare it with a novel: in a novel it would be difficult to assume any particular relation
between words in one chapter and words in another chapter.

3see dumps.wikimedia.org

http://dumps.wikimedia.org/

2. Semantic Relation Extraction 6

What remains are the titles, subtitles and the plain text as a clean list of terms.
We still keep up the separation between articles, hence the result from this steps
is a set of text documents4 D = {d1, . . . , dm}. Each text document dj is itself
represented as a list of terms.

The documents in D are now again filtered. As proposed by other projects [8],
we first filter out all words of three and less characters because most of this short
words are filler words. Then, all words not appearing in an English vocabulary5

are filtered out. This is very helpful because words from other languages and
names are not present in the filter vocabulary. Finally terms that appear very
rarely (less than 10 times) in the text corpus are filtered out, because we are not
able to relate them properly [9]. Now the documents D are ready for the latent
semantic analysis.

2.3 Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis (PLSA) [7] is a technique for the analysis
of co-occurrence data, which has applications in other areas apart from natural
language processing. In this project it is applied to our text corpus to represent
the meaning of terms as a weighted vector of latent concepts. Assessing the
relatedness of terms amounts to comparing the corresponding vectors using con-
ventional similarity measures. We focus on text data as the corpus even though
it is applicable to other types of corpora. Thomas Hoffman describes all details
in his paper about PLSA [7].

Let T = {t1, . . . , tn} be a vocabulary of terms in some language and docu-
ments D = {d1, . . . , dm} over the vocabulary T , that means only terms from T
may appear in the documents.6 Ignoring the order in which terms occur in a
document, we can build a so call term-document matrix.

Definition 2.5. The term-document matrix is defined as

C ∈ Nn×m, C = (count(ti, dj)) , (2.2)

where count(t, d) ∈ N returns how often t appears in d. Because documents
contain few terms relative to the size of the vocabulary T , C is sparse.

4From now on we will call them documents instead of articles follow the notation of referenced
papers.

5The vocabulary of about 40 000 words was produced by the intersection between
two freely available vocabularies: twl06 from norvig.com/ngrams/ and SCOWL from
wordlist.sourceforge.net/

6Obviously it is easy to collect all occurring terms T if D is given.

http://norvig.com/ngrams/
http://wordlist.sourceforge.net/

2. Semantic Relation Extraction 7

We could interpret rows of C as a representation of terms in a vector space
and determine similarity between them. However, the idea of LSA is to reduce
these m-dimensional rows first by mapping them to a vector space of lower
dimensionality s, called latent semantic space. The hope is that we retrieve
representational vectors that are no longer sparse and even allow for comparison
of terms that do not appear together in a document. The mapping is restricted
to linear functions and is derived from a latent variable model.

2.3.1 The Aspect Model

We only give the intuition here and refer to Thomas Hofmann’s paper [7] for
further details. The Aspect Model is a latent variable model and states the
following assumptions:

• There is a set of aspects A = {a1, . . . , as}, also called latent classes. There
is a latent class variable a ∈ A which is an unobserved variable, i.e. cannot
be measured. Since a is a categorical variable, it can only take one of the
abstract classes in A.

• Each observation of a term t in a document d is associated with a latent
variable a ∈ A. Intuitively, a is the only reason why t appears in d. There
is no direct relation between terms and documents.7 Aspects are contained
in a document by a certain degree and aspects produce terms with a certain
probability. Figure 2.2 visualizes the intuition.

We can interpret the conditional probability vectors (Pr(t|aj))j=1,...,s and
(Pr(d|aj))j=1,...,s as an alternative description of terms and documents, respec-
tively. This model can be parameterized with

Pr(d, t) =
∑
a∈A

Pr(a) Pr(t|a) Pr(d|a). (2.3)

The model parameters are Pr(a), Pr(t|a) and Pr(d|a) for each a ∈ A, t ∈ T
and d ∈ D.8 The model fitting is done by a maximum likelihood estimation.
Usually the Expectation Maximization (EM) algorithm is used. Note that this
estimation algorithm is non-deterministic. Further details can be found in Sec-
tion 3.2 of Hofmann’s paper [7]. What matters for our project is the input/output
behavior:

7t and d are so called locally independent.
8The number of latent classes |A| could also be fitted if not predefined.

2. Semantic Relation Extraction 8

Aspects

a1

a2

...

as

Terms

t1

t2

t3

...

tn

Documents

d1

d2

...

dm

Figure 2.2: The Aspect Model states that aspects are contained in a document
by a certain degree and aspects produce terms with a certain probability. Terms
and documents have no direct relation.

Inputs are the term-document matrix C or a sparse representation thereof, the
dimension s of the latent space, and the maximum number of steps that
should be done to fit the model.

Outputs are the fitted model parameters. We will only need Pr(t|a) for each
a ∈ A, t ∈ T .9

We can write the output probabilities Pr(t|a) as vectors (Pr(t|aj))j=1,...,s for
some arbitrary but fixed order of the aspects aj . If we recall the Definition 2.2
we see that this vectors can be interpreted as semantic vectors describing terms
t ∈ T . We store them for further use in a database. A lookup in the database is
represented by the function

ω : T −→ [0, 1]s,

ω : t 7−→

Pr(t|a1)
...

Pr(t|as)

 ,
which returns an s-dimensional semantic vector in the latent space for any t ∈ T .
The used implementation of PLSA returns all semantic vectors normalized with
respect to the L1-norm.

9We also get the other fitted model parameters, such as the vectors characterizing documents
(Pr(d|aj))j=1,...,s and the global aspect weights Pr(a) for a ∈ A.

2. Semantic Relation Extraction 9

2.3.2 Experiment

During the project development the semantic analysis was run with different
parameters.10 The parameters which subjectively produced the best results were
then used to build the prototype described later. The intention of this section is
to provide the necessary details to reproduce our results.

In the best run the following parameters where chosen: The number of read
Wikipedia articles was limited to 20 000 (out of 4.5 millions) to avoid memory
overflows. This restriction is notable since some semantic field are worse related
even though Wikipedia would cover them. The dimension of the semantic vectors
was set to 500, because longer vectors has shown to bring no better quality of
the relations. The EM-algorithm was iterated 1000 times, after that the error
did not decrease anymore. This settings led to a term-document matrix size of
(41 305, 20 000). The entire process took 75.5 hours on our machine.11

2.4 Semantic Nearest Neighbor Search

Given the terms ti ∈ T , the previous section explained how we extract their
associated semantic vectors ω(ti) in an s-dimensional semantic space. In this
section we will discuss how an actual semantic search is done in this space.

To define the strength of semantic relatedness between any two terms t1, t2,
we need to define a notion of similarity between them. As we motivated in
Section 2.1, we do this over the associated semantic vectors ω(t1) and ω(t2). In
Section 2.1, we argued why the cosine similarity is well suited for this purpose.

The input of a search query made by a user (or another system component)
consists of k query terms qj , j = 1, . . . , k and the desired count of related terms
` to be returned. Implicitly, ` defines the search radius. It is assumed that
the query terms are present in the database, hence we have semantic vectors
ui = ω(qj) available. We would like to find the nearest neighbors of these vectors.
There are two possible approaches to handle multiple query terms:

1. Use each query term vector uj as a separate centre point to start a nearest
neighbor search off,

2. combine the query terms to a single centre by an averaging function and
do a single nearest neighbor search starting at this centre point.

10For this project a python implementation of PLSA from www.mblondel.org/journal/ was
used.

11Machine: Quad-Core AMD Opteron(tm) Processor 8350, 2.0GHz, 16GB RAM

http://www.mblondel.org/journal/2010/06/13/lsa-and-plsa-in-python/

2. Semantic Relation Extraction 10

This project chooses the second approach because it gives the user a powerful
way to transcribe his desired semantic field with several terms which came to his
mind. On the systems side, it increases chances that the centre of the query terms
actually lies in the desired semantic field. As averaging function the most simple
one is chosen, the component-wise arithmetic mean (CAM) in the s-dimensional
space:

CAM : {uj ∈ Rs} −→ Rs,

CAM : {u1, . . . , uk} 7−→
1

k

k∑
j=1

uk.

Note that the arithmetic mean is based on the Euclidean distance metric. The
problem is that the cosine dissimilarity is not a proper metric as discussed in
Section 2.1. Hence it cannot be used to build an average. Since the query term
vectors are normalized with respect to the L1-norm (as all semantic vectors),
the end of the vectors lie on the hyperplane that meet all axis at plus one.
Geometrically the arithmetic mean can be interpreted as the mass centre of the
endpoints on this plane and thus is justified to be used here.

Implementation Let n denote again the number of terms in the database.
Starting at the resulting single centre c, the nearest neighbor search is done
with a brute-force approach: for every term vector vi, the distance dis(c, vi)
is calculated and the nearest ` vectors respectively their associated terms are
returned. We denote these result terms with gi for i = 1, . . . , `. This idea could
be implemented by first sorting all terms by distances dis(c, vi) from smallest to
largest and taking the first ` corresponding terms. This is of time complexity
O(n log n). To avoid a large memory footprint or the need of some external
sort algorithm, the search is instead implemented with a max-heap where the
ordering is with respect to dis(c, vi). Iterating over all terms, the distance is
calculated and put on the heap. The heap’s size is bounded to `, such that the
furthest term gets removed in each step. In the end, the remaining ` terms on
the heap are the nearest neighbors of the centre. Because it is a a max-heap,
the removal is of constant time complexity. But the insertion in the heap has
to seek an item to the bottom in worst case, and the heap depth is bounded to
O(log n). Doing n insertions, this again leads to O(n log n) time complexity. So
we did not improve with regard to time, but we now only need a single pass over
the vectors vi, and we need constant memory O(`).

Most algorithms that try to improve this search behind the O(n log n)-bound
are not suitable for data with more than 20 dimensions as argued by Gionis,
Indyk and Motwani [15]. Their paper present Locality sensitive hashing as one
alternative to the brute-force algorithm that also works for more dimensions. It
brings a speed improvement at the cost of accuracy and should be considered to
make the search fast enough for a productive system.

2. Semantic Relation Extraction 11

Example 2.6. We start an example here and will develop it while extending
the semantic relation extraction process. Table 2.1 shows the result list for the
query terms “evolution” and “life”.

Term Distance

z evolution 0,178

darwinian 0,263

biology 0,314

biologists 0,338

darwinism 0,344

evolutionary 0,346

scientists 0,373

z life 0,377

selection 0,418

kuhn 0,424

reproduce 0,429

scientific 0,429

Table 2.1: The result list for the query “evolution life”.

2.4.1 Clustering

In this section we explain how the search result from a query can be further
analyzed. Consider the case when the related terms of “bug” are searched. “bug”
denotes the animal but also an error in a computer program.12 The two implied
semantic fields are very loosely coupled. In linguistics such terms with different
meanings but the same spelling and pronunciation are called homonyms.13 They
lead a problem. The semantic vectors of the query terms or at least some of
them are very distant to each other. This can produce the following undesired
results:

• The query vectors’ average lies in a different semantic field than every
query term.

• Some input terms are not respected at all, because their are overruled by
multiple (more semantically related) query terms.

12The reason why a program error is called a “bug” is that in an early electromechanical
computer a moth in the device was causing errors.

13If the terms have the same etymological origin one calls them polysemes, e.g. “read a book”
vs. “book a hotel”.

2. Semantic Relation Extraction 12

The system has to detect these cases and give appropriate feedback to the
user. This is achieved by joining the set of all result terms and the query terms,
and running a clustering algorithm on the joint sets. If the clustering algorithm
classifies some or all query terms as outsiders, the system gives a warning message
to the user with the so called problem terms P . This method is summarized in
Algorithm 1. There are different clustering algorithms. The next paragraph
explains why DBSCAN was chosen.

Algorithm 1 Analysis of quality of generated term list

Input: query terms qj and thereof generated terms gi
Output: set of weakly related query terms, called problem terms P
V = {ω(qj)|j = 1, . . . , k} ∪ {ω(gi)|i = 1, . . . , `}
run cluster algorithm on V
P ← ∅ . Problem terms
for all vi ∈ V do

if vi is not part of any cluster then
add term belonging to vi to set P

end if
end for

DBSCAN

The DBSCAN clustering algorithm [16] qualifies for our problem because of the
following reasons:

• No starting points required: Beforehand we do not know how many
clusters there are. The estimation of the number of clusters should be
included in the clustering algorithm.

• Any cluster shape is tolerated: DBSCAN is able to identify clusters
which are not of spherical nor elliptical form. This works because the search
is based on density of points (not their distance). We need that property
because the semantic fields can have any shape in the latent semantic space
and field boundaries are in general not hard but identifiable by a decrease
of density.

• Detection of Noise: DBSCAN can detect points not belonging to any
cluster and classifies them as noise. We need this ability to determine if
some query terms are semantically unrelated, which is the case when query
term vectors are classified as noise.

These properties are visualized in Figure 2.3.

In the following we explain the idea of DBSCAN in more detail. DBSCAN
takes two input parameters MinPts and ε. They are crucial for the following
definitions.

2. Semantic Relation Extraction 13

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Estimated number of clusters: 2

Figure 2.3: Application of the DBSCAN clustering algorithm to a set of demo
points. Border points are drawn as small points and outsiders as crosses.

Definition 2.7. The ε-neighborhood of a point u, denoted by Nε(u), is defined
by

Nε(u) : {v ∈ V|dist(u, v) ≤ ε} ,

where V is the set of all points and here dist is a proper distance metric14 defined
for their domain. Obviously the ε-neighborhood relation is symmetric, reflexive
and not transitive.

The cluster algorithm first assigns each point into one of these classes (in this
order):

• Core points are all points u that have more than MinPts within their
ε-neighborhood, i.e. |Nε(u)| ≥ MinPts.

• Border points have less than MinPts points within their ε-neighborhood
but are in the ε-neighborhood of a core point. Border points need a special
treatment to find cluster boundaries (i.e. density drops), because the ε-
neighborhood of border points in general contains significantly less points
than the ε-neighborhood of a core point.

• Noise points are all points that are neither a core point nor a border
point.

14Neighborhoods can also be defined more general for any dissimilarity measure.

2. Semantic Relation Extraction 14

Noise points already have their final label as outsiders and henceforth can
be ignored. An edge is added between any two core points that have a distance
smaller than ε, i.e. they are in each others ε-neighborhood (remember that the
relation is symmetric). Each connected set of core points now results in a cluster.
Finally each border point is arbitrarily assigned to one of the clusters containing
its associated core points. This last step is the only non-deterministic one.

The run time complexity of this algorithm depends on the availability of
efficient spacial access methods for region queries. If e.g. an R?-Tree with a
worst case depth of O(log n) is available, the run time complexity for a single
region query is expected to be O(log n).15 The implementation proposed [16]
uses at most one region query per point in the database, hence the total run
time complexity is O(n log n). But it degrades to O(n2) if the spatial search for
near points is done by brute-force.

Since DBSCAN relies on a metric, the cosine similarity disqualifies for the
cluster analysis. In the system’s prototype the semantic vectors are therefore
interpreted in the Euclidean space. This approach has shown to work well,
especially to detect unrelated query terms.

Example 2.8. We continue the Example 2.6 by adding the harmless looking
query term “tree”. The result list is shown in Table 2.2. For an non-computer
scientist this result may be a surprise because the terms have totally changed.
The reason lies in the added query term. “tree” is actually a polyseme, its
structure in nature has motivated mathematicians to use it to describe an math-
ematical object. Since it is most often used in the context of computer science,
and Wikipedia as our text corpus has a very high coverage of these fields, “tree”
is strongly associated with this field. The query term “life” did not even find its
way into the result list because it is too distant (0.72). Interesting is also that
“parsimony” is the nearest term of the centre. If you know that parsimony is
actually a method to estimate the structure of evolutionary trees of life [17], this
result is reasonable.

15We additionally must assume that the ε-neighborhoods are small (i.e. have a small constant
upper bound) compared to the total number of points.

2. Semantic Relation Extraction 15

Term Distance Cluster

parsimony 0,073 0

z tree 0,106 0

node 0,109 0

trees 0,116 0

nodes 0,117 0

huffman 0,126 0

bootstraps 0,127 0

grandparent 0,134 0

rebalancing 0,171 -1

bootstrap 0,279 -1

farris 0,354 -1

z evolution 0,629 -1

Table 2.2: The result list for the query “evolution life tree”. Because “tree”
is a polyseme and often used in the context of computer science, it is strongly
associated with this field. It overrules the other query terms and produces a list
with computer science terms.

Chapter 3

Collaborative Vocabulary
Improvement

In Chapter 2 we saw how to extract semantic relations from Wikipedia and find
the static representations of terms in a latent semantic space. We saw how to
search for similar terms based on these representations and generate vocabulary
lists out of one or several query terms. But there are several reasons why the
result lists might not be satisfying:

1. The text corpus is not perfect. They may not or only weakly cover some
semantic fields. Hence the extracted relations might not be satisfying.

2. There are terms that are simply not desired even if they belong to the
desired field, because they are too abstract, too specific etc.

3. There are many plausible semantic fields that are not simultaneously rep-
resentable in the semantic space alongside “stronger” semantic fields, e.g.
music instruments (example in Appendix A).

All three cases are solvable with external help. A user should be able to
adjust generated lists to his wishes. To solve the issue in the third case the user
is forced to create the list completely by himself. What the system can contribute
is that user input in the form of reviewed or self-created lists is conserved in time
and made utilizable for other users. Of course this is already done by sharing
whole lists with others, but it would be better to use the feedback to improve
newly generated, similar lists too. In our system this goal is achieved by giving
the user two options: A user can review a list and vote terms up or down or
he can let the system derive the ratings for a particular list. Such a mechanism
belongs to the field of Recommender Systems.

16

3. Collaborative Vocabulary Improvement 17

3.1 Content-based vs. Collaborative
Recommender Systems

We denote a rating of an item z made by a user p with rp(z). When a rating is
not explicitly made by the user but the system can estimate it based on other
ratings, we speak about an estimated rating, denoted with r̃p(z).

In a content-based recommender system, the rating r̃p(z) is estimated based
on previously explicitly given ratings of user p [18]. The system tries to find
commonalities between the items by comparing their static properties. This
properties only depend on the item and are equal for all users. For example a
music recommendation system tries to identify interpreters, the style or origin
of songs previously liked by p and derives by some heuristic if p likes a song he
has not rated yet.

Collaborative Recommender Systems, also known as Collaborative Filtering
requires several users. The rating r̃p(z) is derived from ratings r̃pj (z) of other
users pj who are similar to p and rated item z too.1 In contrast to content-based
recommender systems, there are no static properties of the items used to derive
ratings.

Our recommender system can be seen as a variant of a content-based one since
we do not (or not yet) make a distinction between users. Indeed, our system is
equivalent to a system where every action is done by a single anonymous user.
We want the recommendations on the level of terms, hence items correspond to
terms in our system. To derive a rating of a term in the context of a (newly
generated) list L, we look at how the terms were rated in similar lists Lk. Hence
we need a similarity measure between lists. This similarity measure serves as
a weight of the influence another rating has. Our system contains also aspects
from a collaborative recommender system, because the ratings of all users are
(equally) used to improve the derivation of ratings.

Similarity Measure

There exist different measures of similarity. We will interpret lists as unordered
sets of terms and use the following measure:

Definition 3.1. The normalized similarity between two sets (of terms) X and
Y , known as resemblance or Jaccard similarity, is

sim(X,Y) =
|X ∩ Y |
|X ∪ Y |

∈ [0, 1]. (3.1)

1Note that we now also need a measure of similarity between users. This measure can be
based on separate user characteristics, but is usually calculated based on all the user’s ratings.

3. Collaborative Vocabulary Improvement 18

3.2 Rating derivation

Let L denote some list. Let L(cj) denote the cluster cj of L, as it were found
by the clustering algorithm described in Section 2.4.1. Note that L and cj have
both an identity apart from the terms they contain, i.e. multiple lists La, Lb or
clusters ci, cj containing exactly the same terms can exist.

Before we can explain how ratings are derived, we have to care about a
problem. Recall that lists may consist of clusters of terms which are from very
different semantic fields, e.g. if the list is user-generated. An example is sketched
in Figure 3.1. In this situation ratings from L1 about terms in the intersection
L1 ∩ L2 are valuable to derive ratings in L2. But ratings from L2 have basically
no weight because the similarity sim(L1, L2) is very low since L1 has a second
very big cluster not part of the intersection.

L1

L2

Figure 3.1: Two sample lists L1 and L2 in the latent semantic space showing the
problem of clustered lists: Even though L1 and L2 have many common points
in one cluster, their Jaccard similarity is very low.

The solution is to derive ratings based on similarities of clusters, instead of
similarities of lists. Note that since Definition 3.1 is stated for sets, it also works
for clusters. Hence sim(ci, cj) is valid to use. In this model, from each cluster
ci that a user reviewed, a rating can be retrieved. In the system’s prototype a
simple binary rating mechanism is used: the user can vote terms in a list up or
down. We denote this user rating with

rci(t) =

{
0 if the user voted down term t in the list ci belongs to,

1 if the user voted up term t in the list ci belongs to.
(3.2)

3. Collaborative Vocabulary Improvement 19

For all terms t (belonging to cluster cj) of a list that has not been reviewed
yet, we can derive ratings with the aggregation function [18]

r̃cj (t) = Kcj

∑
ci 6=cj

rci(t) · sim(ci, cj), (3.3)

where Kcj serves as a normalization factor and is given by

Kcj =
1∑

ci 6=cj |sim(ci, cj)|
. (3.4)

As we see from the formula, sim(ci, cj) serves as the weights for the aggregated
ratings and is equal to zero if ci and cj do not share any terms. In the system’s
prototype the estimated rating is interpreted like that: For a threshold value
R = 0.5, if r̃cj (t) >= R for the cluster cj to which t belongs to, then t is active,
meaning it is displayed in the list. Otherwise t is proposed to be removed from
the list. See Section 4.2 for more details how ratings could be interpreted.

An open question remains: when some terms are voted down respectively are
removed from the list, should they still be considered for similarity calculations?
They should not, which becomes clear in the example sketched in Figure 3.2.
Because a user removed nearly all terms from L2 that are in the intersection
with L1, L1 should influence the derived ratings in L2 very little. This leads to
an update of the Definition 3.1:

Definition 3.2. The normalized similarity between two clusters ci and cj is

sim′(ci, cj) = sim({t ∈ ci|rci(t) > R} ,
{
t ∈ cj

∣∣rcj (t) > R
}

), (3.5)

where R is again a threshold value to set a term as active.

L1

L2

Figure 3.2: Two sample lists L1 and L2 in the latent semantic space where L2

deleted most of the terms (drawn crossed out) from the intersection with L1.

Example 3.3. In this example we first generate the two lists shown in Table 3.1
and then generate a third list where we let the system derive the ratings (Ta-
ble 3.2).

3. Collaborative Vocabulary Improvement 20

Term Rating

z traffic 1,00

taxis 1,00

commuter 1,00

connecting 1,00

congestion 1,00

� rail 0,00

� railway 0,00

trams 1,00

� trains 0,00

expressway 1,00

transport 1,00

routes 1,00

(a) “traffic”

Term Rating

z train 1,00

trains 1,00

rail 1,00

commuter 1,00

� roads 0,00

railway 1,00

freight 1,00

fares 1,00

tunnel 1,00

monorail 1,00

railways 1,00

eurotunnel 1,00

(b) “train”

Table 3.1: The result lists for the queries “traffic” and “train”. Terms marked
with � were voted down by the user and thus have a rating of zero.

Term Rating

z taxi 1,00

taxis 1,00

commuter 1,00

minibus 1,00

trams 1,00

road 1,00

fares 1,00

expressway 1,00

railway 0,54

trains 0,54

rail 0,54

roads 0,00

Table 3.2: The result list for the query “taxi”. The system derived the ratings
based on the user ratings given in Table 3.1a and Table 3.1b. The terms “rail-
way”, “trains” and “rail” have a middle rating, because they were only voted
down in the “traffic”-list but appear also in the “train”-list.

Chapter 4

System Prototype

For demonstration purposes, a browser-based prototype of the trainer was cre-
ated. It is available under demo.vocminder.com. The back-end is built with
Python1 and Django2. As front-end the responsive Bootstrap3 template system
was choosen.

4.1 Data Model

We will have a look at the most important model components. The full data
model of the trainer can be found in Appendix B. With Django, models are de-
scribed with Python classes and are then mapped to a relational model (MySQL4)
automatically. This results in the following (simplified) relations. Primary keys
are bold, foreign keys are underlined.

• List (list id, name, . . .)

• Term (term id, language id, text, data)

• Occurrence (occurrence id, list id, term id, is query, cluster, distance,
rating)

The text attribute of the Term relation holds the term itself and data is
a Binary Field into which the semantic vector is serialized. When a query is
executed, a new List table is created and each returned term is stored as an
entry in a Many-to-Many-Relation between List and Term in the Occurrence
table. Its associated attributes are self-explaining and hold all the information
gained through the semantic relation extraction described in Chapter 2 and the
rating mechanism described in Chapter 3.

1See www.python.org
2See www.djangoproject.com
3See getbootstrap.com
4See dev.mysql.com

21

http://demo.vocminder.com
http://www.python.org/
https://www.djangoproject.com/
http://getbootstrap.com/
http://dev.mysql.com/

4. System Prototype 22

4.2 User Interaction

In the following we list some use cases that are implemented in the prototype.
Each use case is roughly associated with one view accessible from the menu bar.

• The Generate View allows the user to enter arbitrary query terms and
the desired length ` of the vocabulary list. If the query terms are found
in the Term relation, the system is doing the semantic nearest neighbor
search and the clustering. The resulting list presents each term with the
distance to the query term centre and the cluster index, where minus one
means that the term is classified as an outsider. If some or all query terms
are not included in any cluster, a warning is displayed that the query terms
are difficult to relate. Figure 4.1 shows a screenshot of this view.

• In the List Overview the user can browse through generated lists, create
new lists or delete existing ones.

• In the Detail View of a list, the user can vote terms up or down within
the list which make them display enabled or disabled respectively. Alterna-
tively, the user can let the system derive the ratings. The idea is to combine
this two mechanisms. The user lets the system derive the initial ratings
and adjusts them where needed. This can also be seen in Figure 4.1.

4.3 Possible Extensions

The following components not implemented in the prototype could be included
in a productive system:

• Multi-user support: In the prototype we only considered one anonymous
user. In a productive system we should differentiate between users in at
least two areas:

– Vocabulary lists should be controlled by their creators, hence access
and modifications should be monitored. A more automatic solution
for the recommender system component would be to assess the users’
expert knowledge and use this as a weight for the impact of their
ratings.

– The recommender system could be extended to also use collaborative
filtering methods, to reflect different desires of users. Primary school
students may want vocabulary lists of simple terms while students
prefer lists of an extended range of terms.

4. System Prototype 23

• For generate queries, the user should be able to dynamically extend the
generated list by more terms. This could be done by simply searching
further around the query terms centre, or use approved result terms as the
new set of query terms, since their centre will more probably lie in the
desired semantic field in the latent space.

• An integrated training system: After the terms are automatically trans-
lated, the user could train them with different training schemes. A lot
more extensions are imaginable to improve the trainer component, such as
learning progress statistics and progress-sensitive training schemes.

4. System Prototype 24

Figure 4.1: A screenshot of the Generate View where the user can enter query
terms.

Chapter 5

Conclusion and Outlook

We presented the prototype of a system that combines several techniques from
information retrieval and analysis and combines it with a recommender system.
While PLSA is a well-known tool for automatic semantic relation extraction, we
showed how it is applicable to a large knowledge base. Given this base in any
desired language, our system allows to relate terms of a large-size vocabulary in
a semantic space model. From this model it is possible to generate vocabulary
lists for the user’s needs, by just naming some sample terms from the desired
field. Even though the semantic model is static, it can steadily improve itself by
using everyone’s feedback.

While all the components work like they were intended, the overall system
is not advanced enough to be used in practice yet. However, the system can be
seen as an experiment that combines well-known techniques from different areas
and gives an idea what can be built upon.

The semantic relation extraction does not use the whole Wikipedia, thus it
is difficult to predict for which semantic fields the extracted semantic vectors are
meaningful. To be able to extend the existent system to use all Wikipedia articles
available, a parallel version for PLSA or an incremental variant would have to be
used. The quality of the semantic relations could then be properly evaluated (e.g.
by comparing them with manual judgment). Generally an automatic estimator
of the quality of semantic relations should be added. When the quality is low,
the user should be informed.

As we have seen in the Related Work Section 1.1, there are other options
for the latent semantic analysis part. Especially Wikipedia-based Explicit La-
tent Semantic Analysis [8] should be explored because it additionally uses the
Wikipedia categories as structure information, which could lead to better results.

Another way to improve the relation extraction is to use stemming in the
preprocessing step. The stemming algorithm does reduce the terms to its stems
and PLSA is then run on these reduced terms [9]. Note however, that we would
have to program the stemming algorithm carefully and separate for every single
language to be supported.

25

5. Conclusion and Outlook 26

For a productive system we would have to increase the responsiveness of a
generate query. Semantic relations could be explicitly stored for near terms to
speed up the search to constant time complexity at the cost of a larger database.

The recommender system part can be extended in many ways. A training
component with user profiles storing their training progresses would lead to many
additional possibilities to improve the relatedness information. For example a
user’s training progress could be used as implicit feedback on the quality of
individual terms or their relatedness.

Bibliography

[1] Nation, I., Newton, J.: Teaching vocabulary. Heinle, Cengage Learning
(1997)

[2] Hsu, M.H., Tsai, M.F., Chen, H.H.: Query expansion with conceptnet and
wordnet: An intrinsic comparison. In: Information Retrieval Technology.
Springer (2006) 1–13

[3] Tikk, D., Yang, J.D., Bang, S.L.: Hierarchical text categorization using
fuzzy relational thesaurus. Kybernetika 39(5) (2003) 583–600

[4] Panchenko, A., Adeykin, S., Romanov, A., Romanov, P.: Extraction of
semantic relations between concepts with knn algorithms on wikipedia. In:
Proceedings of Concept Discovery in Unstructured Data Workshop (CDUD)
of International Conference On Formal Concept Analysis. (2012) 78–88

[5] Navigli, R., Ponzetto, S.P.: Babelnet: The automatic construction, eval-
uation and application of a wide-coverage multilingual semantic network.
Artif. Intell 193 (2012) 217–250

[6] Miller, G.A.: Wordnet: a lexical database for english. Communications of
the ACM 38(11) (1995) 39–41

[7] Hofmann, T.: Probabilistic latent semantic analysis (January 23 2013) Com-
ment: Appears in Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence (UAI1999).

[8] Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In Veloso, M.M., ed.: IJCAI.
(2007) 1606–1611

[9] Takale, S.A., Nandgaonkar, S.S.: Measuring semantic similarity between
words using web documents. International Journal of Advanced Computer
Science and Applications(IJACSA) 1(4) (2010)

[10] Panchenko, A., Morozova, O.: A study of hybrid similarity measures for
semantic relation extraction. In: Proceedings of the Workshop on Innova-
tive Hybrid Approaches to the Processing of Textual Data, Association for
Computational Linguistics (2012) 10–18

27

Bibliography 28

[11] Pucher, M.: Wordnet-based semantic relatedness measures in automatic
speech recognition for meetings. In: Proceedings of the 45th Annual Meeting
of the ACL on Interactive Poster and Demonstration Sessions, Association
for Computational Linguistics (2007) 129–132

[12] Heilman, M., Eskenazi, M.: Application of automatic thesaurus extraction
for computer generation of vocabulary questions (December 04 2008)

[13] Hajian, B., White, T.: Measuring semantic similarity using a multi-tree
model. In: Workshop chairs. (2011)

[14] Strube, M., Ponzetto, S.P.: Wikirelate! computing semantic relatedness
using wikipedia. In: Proceedings of the Twenty-first National Conference
on Artificial Intelligence, AAAI Press (2006)

[15] Gionis, Indyk, Motwani: Similarity search in high dimensions via hashing.
In: VLDB: International Conference on Very Large Data Bases, Morgan
Kaufmann Publishers (1999)

[16] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In Simoudis, E.,
Han, J., Fayyad, U., eds.: Second International Conference on Knowledge
Discovery and Data Mining, Portland, Oregon, AAAI Press (1996) 226–231

[17] Gonnet, G., Scholl, R.: Scientific Computation. Cambridge University
Press, Cambridge, England, UK (2009)

[18] Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE
Trans. Knowl. Data Eng 17(6) (2005) 734–749

Appendix A

Sample List

Term Distance Cluster

orchestras 0,031 0

virtuoso 0,032 0

trumpets 0,073 0

violins 0,074 0

orchestral 0,075 0

serenade 0,078 0

sopranos 0,079 0

timpani 0,083 0

soloist 0,084 0

violas 0,085 0

z cello 0,086 0

z violin 0,100 0

Table A.1: The result list for the query “violin cello”. We see that the semantic
analysis does not produce a tight relation between music instruments because
they are used in other contexts in the corpus.

A-1

Appendix B

The Django Model

trainer

Language

id AutoF ie ld

alpha2_code CharField

english_name CharField

french_name CharField

iso_639_2 CharField

Tag

id AutoF ie ld

text CharField

Lesson

id AutoF ie ld

fore ign_language Fore ignKey

native_language Fore ignKey

parent_lesson Fore ignKey

chapter IntegerField

created DateTimeField

description TextField

expires DateTimeField

name CharField

parent_lesson (lesson)

foreign_language (lists_w ith_foreign) native_language (Lists_w ith_native)tags (lists)

Lis t

lesson_ptr OneToOneF ie ld

multi-table
inheritance

Occurrence

id AutoF ie ld

lis t F ore ignK ey

term Fore ignKey

cluster IntegerField

dis tance FloatField

is_query BooleanField

rating FloatField

list (occurrences)

Term

id AutoF ie ld

language Fore ignK ey

data BinaryField

text CharField

term (occurrences)

Progress

id AutoF ie ld

term Fore ignKey

user F ore ignKey

score FloatField

when DateTimeField

User

user (progress)term (terms_progress)

Relation

id AutoF ie ld

from_term Fore ignKey

to_term Fore ignKey

type Fore ignK ey

value FloatField

Re lationType

id AutoF ie ld

name CharField

type (relations) from_term (outgoing_relations)to_term (incoming_relations)

language (terms)

Figure B.1: The model of the trainer.

B-1

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Background and Related Work

	2 Semantic Relation Extraction
	2.1 Measures for Semantic Relatedness
	2.2 The Text Corpus
	2.2.1 Preprocessing

	2.3 Probabilistic Latent Semantic Analysis
	2.3.1 The Aspect Model
	2.3.2 Experiment

	2.4 Semantic Nearest Neighbor Search
	2.4.1 Clustering

	3 Collaborative Vocabulary Improvement
	3.1 Content-based vs. Collaborative Recommender Systems
	3.2 Rating derivation

	4 System Prototype
	4.1 Data Model
	4.2 User Interaction
	4.3 Possible Extensions

	5 Conclusion and Outlook
	Bibliography
	A Sample List
	B The Django Model

