
Distributed
 Computing

Extensions to a
Peer-to-Peer Instant Messenger

Bachelor Thesis

Christian Cadruvi

ccadruvi@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zurich

Supervisors:

Philipp Brandes, Tobias Langner

Prof. Dr. Roger Wattenhofer

September 2, 2014

Acknowledgements

I would like to thank my supervisors, Philipp Brandes and Tobias Langner for
their assistance and guidance during this bachelor thesis. They were always very
helpful and had useful inputs for this thesis.

i

Abstract

In this thesis we explain our modifications to a peer-to-peer based instant mes-
senger which has previously been developed in several other projects. At the
start of this project, the messenger consisted of two different clients that were
developed apart from each other, namely an Android client and a client which
was developed for the Pidgin user interface for PCs.

The Android client is written in Java with Android specific extensions, where
as for the Pidgin client, a plug-in written in C communicates with the user
interface of pidgin as well as the core implementation in Java.

A large restructuring of both projects was necessary to make the implemen-
tation of new features easier.

The features developed include group chat messaging, this is the extension
of a chat, in which only two users communicate, to a larger number of users
in the same chat. The synchronization of chat messages is a core feature of
this thesis, i.e., to synchronize all chat messages between different devices using
a newly developed approach. This requires identifying those chat messages,
which are not yet on all devices associated with the same user, while trying
to send as few messages as possible. This is useful to be able to carry on a
conversation on a different device. As a last feature, we developed file transfer.
These features extend the already existing instant messaging clients on both
Android and Desktop.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 2

2.1 Previous Work . 2

3 Concepts 3

3.1 Overview of our System . 3

3.2 Group chat . 3

3.3 Synchronization between devices 4

3.4 File Transfer . 7

4 Implementation 8

4.1 Group Chat . 8

4.1.1 Android Client . 8

4.1.2 Pidgin Client . 8

4.2 Synchronization between Devices 10

4.3 File Transfer . 12

4.4 Architectural Changes . 12

5 Conclusion 14

5.1 Future Work . 14

Bibliography 15

A Appendix Chapter A-1

iii

Chapter 1

Introduction

Instant messaging is a type of online chat, that allows users to send short mes-
sages over the Internet. With the arising use of smartphones as well as social
networks, that often include some kind of instant messaging system, chatting
has become more and more relevant.

There are many different instant messaging applications available, but all
of them lack in certain aspects. Chat applications can be categorized into two
architecture types: Client-server architectures and decentralized architectures.

A client-server architecture usually stores messages as well as files on servers,
which may be undesirable for users, as they do not have control over the data.
However, client-server architectures are easier to implement, as the communica-
tion always goes through the server, but this also makes it a potential bottleneck.

Decentralised architectures are more difficult to implement, as the storing of
information can not be done at one central point. It also has to be considered,
that messages can not always be sent over the same path.

Most chat applications therefore use a client-server architecture, which may
or may not be encrypted. Encryption of data becomes more and more important,
not only for sensitive business data but also for the common user.

Another aspect of instant messaging applications is the platform they run
on. Most programs stick to one kind of platform, they run on only one oper-
ating system. When a user changes his 1 location, it is difficult to continue a
conversation on the way or even at the new place. It is thus desirable to support
multiple platforms, where users can use a single account for desktop and mobile
platforms. This makes switching between mobile and desktop devices possible
and it is easy to carry on a conversation.

The approach we used tries to pick the best from the user’s perspective,
i.e., a decentralised architecture that uses end-to-end encryption and there exist
clients for both desktop and mobile platforms. The instant messaging system we
developed uses a peer-to-peer architecture with encryption to prevent access to
any messages or files sent. Our approach makes sure that data is stored only on
the devices participating in conversations.

1In this thesis the male form is used, this applies to both genders similarly.

1

Chapter 2

Related Work

There are some similar instant messengers available which provide cryptograph-
ically secure text messaging and file transfer such as TorChat or RetroShare.
These two are available only on desktop.

TorChat is available for Linux and Microsoft Windows and uses Tor hidden
services as its underlying network. TorChat does not seem to be updated any-
more, the last commit to the project happened two years ago [4]. It is very
important to have an up to date messenger for security reasons.

RetroShare tries to solve the same problem, by providing an open source
platform for private, secure and decentralised communication [1] on desktop plat-
forms Microsoft Windows, Linux and Mac OS X. It provides instant messaging,
serverless e-mail, filesharing and chat rooms. It features end-to-end encryption
using OpenSSL and authentication based on GNU Privacy Guard.

Threema [3] and TextSecure [2] are both mobile instant messengers developed
for Android, both offer a secure end-to-end encryption. Both of them rely on a
client-server architecture but claim that the server operator can not access any
data. TextSecure supports this statement by making its code open source.

2.1 Previous Work

In previous projects, an Android client [6] as well as a desktop client [7] us-
ing Pidgin were developed. They were developed independently of each other,
but with the intention that they can communicate with each other, thus using
the same messages. This means that these two projects were completely differ-
ent, using a different data model and different message handling. Both clients
supported the following basic concepts:

• Adding clients to and removing clients from the contact list.

• Changing a contact and giving him an alias.

• Creating and removing a simple chat with a client in the contact list.

• Sending chat messages to single clients over a chat.

2

Chapter 3

Concepts

This chapter explains the concepts used in this bachelor thesis.

3.1 Overview of our System

There are two clients available, a PC Client and an Android Client. They are
able to communicate with each other and a user can have an account on both
clients simultaneously. A peer-to-peer network lies underneath the clients, which
handles the communication. For this, TomP2P is used, which is an advanced
DHT. A more detailed explanation on peer-to-peer networks can be found in the
Bachelor thesis of Theodoros Bourchas [5].

It is intended that all messages eventually arrive. This means if the recipient
of a message is currently offline, the message is stored in the peer-to-peer network
until it can be delivered. When a client establishes a connection, it requests
all messages that have not been delivered while being offline. This is helpful
especially with messages that change a chat, as for example an add member
message in a group chat (see next chapter).

In the following, the term resource is used to describe one device, e.g., one
account can be associated with four resources, namely two Android devices and
two PC Clients.

3.2 Group chat

A group chat is a chat with at least two users. A message sent to this chat is
sent to all participants of the chat. A group chat should support the following
functions:

1. Creating a new group. When creating a new group, a message needs to
be sent to all other clients in this group, which contains the group chat
identifier, the group name and all members.

3

3. Concepts 4

2. Inviting clients to a group. When someone invites a client to a group, all
clients that were previously in this group need to be informed that a new
client has joined. The inviter has to send a group open message to the
invitee, which contains again the group chat identifier, the group name
and all members.

3. Leaving a group. The client leaving the group has to send a message to
all group members, such that they do not continue to send the messages
in this chat to the client who left.

4. Creating multiple groups with the same clients. A group is identified by
a group chat identifier, thus making it possible to create multiple groups
with the same members. Every group is also associated with a group name,
to distinguish the chats for the users.

5. Sending messages to all clients. A group message can be treated similarly
to a normal chat message, it is simply delivered to all participants.

6. Sending files to all clients.

The groups should be visible to all resources of a client, thus making it necessary
to store this information globally.

3.3 Synchronization between devices

As it is possible for a user to use multiple clients with the same account, it is
useful to synchronize chats and chat messages belonging to the same account,
to be able to continue or refer to conversations on a different device. This
synchronization includes all attributes of the chats, especially the chat messages.

As this project relies on a peer-to-peer network, data is not stored centrally
as with most other chat programs, but rather only on the user’s devices. It
is necessary to note that each client stores the chats and the belonging chat
messages in databases on each device separately. This implies that if a user is
not online on any device, the data is not accessible and synchronization can only
be handled, when two devices are online simultaneously, as only then information
can be accessed and communication between clients is possible.

The attributes of a chat which are synchronized include the chat messages
in each chat as well as the unique chat identifier, which is used to associate a
chat with a chat message. A protocol handling synchronization of chat messages
should be able to identify which chat messages have to be exchanged. The
participants of chats are stored in the DHT, thus it is not necessary to synchronize
them here.

3. Concepts 5

When synchronizing messages, the number of messages may be very large.
Thus it is not a good idea to always send all messages to all devices. Assume
a device 1 stores an average of n messages in m chats and device 2 has none of
these messages yet. The total number of messages is m · n. Then every message
needs to be sent from device 1 to device 2 under all circumstances. If device 2
has a part of the messages, e.g., all but 10 of them, it is useful to identify which
10 messages are missing before sending any of them. Here it would obviously be
wasteful in terms of data volume to send all m · n messages, when the optimal
solution only sends a (small) constant number of messages. If both devices
which are synchronizing have the same messages, no chat message needs to be
synchronized. This requires a protocol which sends as few messages as possible.
The implemented protocol is discussed in the implementation chapter.

One idea to synchronize messages between two devices is to use timestamps
for the synchronization, i.e., after each successful synchronization, the current
time is saved as the point in time, at which the last synchronization has hap-
pened. When a device is being logged in to, only the messages received or sent
after this timestamp may be needed to synchronize, but some or all of them may
also have been received by both devices, as they were both online when the chat
message were sent or received. This reduces the number of messages which may
have to be synchronized, but does not help with deciding which exact messages
need to be exchanged between the devices.

The approach we use relies on the chat message identifiers, which are used
to determine which messages need to be synchronized. It also tries to make use
of a timestamped approach, which has the benefit that old messages are more
likely to be in an already synchronized state.

As previously mentioned, the timestamp (the time when the message was
issued to be sent) is an attribute of a chat message and is thus the same on all
systems. When a user logs into a device, the messages of all chats are fetched from
the database, grouped by chat and ordered by timestamp. A synchronization
timestamp is defined as the current time. The ordering of the chat message’s
timestamps is used to categorize the messages into time intervals of one hour
length. For each interval, the message identifiers of all messages are concatenated
and then hashed to obtain a single value per time interval, which can be used
to check whether the message identifiers and thus the messages themselves in
these time intervals are the same. For the following paragraph, assume that
h(x) is a hash function, which hashes x to some value. The symbol ◦ is used for
contatenation, e.g., ”abc” ◦ ”def” = ”abcdef”.

A tree we will call Synchronization Tree in the following, such as in Figure 3.1,
is built, each node contains a value which represents a checksum, namely the hash
value, of the message identifiers in this interval. The leaves of the tree are the
hour intervals. All chat message identifiers in one hour interval are concatenated
and then the resulting value is hashed. More formally, assume that in one hour

3. Concepts 6

Figure 3.1: Synchronization Tree

Figure 3.2: Example Scenario

interval the messages m1,m2, ...,mn have been sent. The chat message identifiers
are id1, id2, ..., idn respectively. The resulting value is: h(id1 ◦ id2 ◦ ... ◦ idn).

Hour intervals are grouped together to form a new node, which represents an
interval of 24 hours (afterwards called day interval) and has the corresponding
hour intervals as children. The hash value of the day interval is calculated
by summing up all hash values of its children and hashing this value again.
Assume h(0), h(1), ..., h(23) are the hash values of the hour intervals, then the
corresponding day interval is computed as: h(h(0) + h(1) + h(2) + ... + h(23)).

365 of such day intervals are again grouped together as before to form a year
interval.

An example scenario is described in Figure 3.2. Assume that the left tree is
the synchronization tree built with the messages from the database of device 1
and the second tree is built from the data of device 2. In this scenario, we syn-
chronize over a day, which is 7 hours long. The rightmost child node represents
the time interval from now until one hour past, the second from the right from
one hour past to two hours past etc. The root node is the day interval. We can

3. Concepts 7

observe that the messages over the whole day are not yet synchronized, as the
values of the roots are different. This means the comparison algorithm can go
down one level and check where the differences are. On the hour level it can
be observed that the intervals from one hour to two hours past and from three
hours to 4 hours past are different. If the two values are different and one is zero,
the device with the zero value at this place does not have any chat message in
this interval yet. If both are different from zero and do not have the same value,
no statement can be made on which messages are synchronized and which not.
Thus all messages in the corresponding intervals are sent to the other device.

Note that in the actual implementation, the trees are much larger than in
this example scenario.

3.4 File Transfer

File transfer is a feature which is often seen in chat programs, especially for
images. It offers a simple transfer between devices without the need to upload
the file to some server and download it again on the other device.

Often the bandwidth on mobile devices is limited, as well as the data volume.
Thus it is not desirable to be able to send files of any size. Another issue is
security; the sending of certain files is often prohibited, e.g., executable files. If
executable files such as Android apk files (apk is the package file format used
in Android operating systems to install application software) were allowed to be
transferred, the recipient would likely try to open said apk file and may possibly
install a malicious program.

Chapter 4

Implementation

4.1 Group Chat

4.1.1 Android Client

The group chat in the Android Client is implemented straightforward. In the
listview displaying open chats, there is a menu entry to create a new group.
Only clients in the contact list can be selected to create the group with. When
they have been selected, a group name must be entered before actually creating
the group. A screenshot of this open group activity can be seen in Figure 4.1.
The client that created the group stores the group chat identifier together with
the contacts in the contact list. For each contact, all group chat identifiers and
the group names are stored with it, such that the group is synchronized with
potential other resources. An example of such a store message can be found in
the Appendix A.1.

A group open message containing the group chat identifier, the group name
and all participants is sent to all selected members of the group. The recipients
of the group open messages add a chat with these attributes. If a group member
was not yet a contact, this member is added to the contact list. A system message
is inserted into the chat which contains information about the members of this
chat. All members of the chat now have the option to write chat messages, to
add another group member from their respective contact list or to leave the chat.

Examples of the messages sent can be found in the Appendix A.2, A.3 and
A.4.

4.1.2 Pidgin Client

The architecture for the PC Client is a bit more involved. A Pidgin plug-in
developed in C communicates with the Java client, which in turn communicates
with the peer-to-peer network. The Java client manages the contact list, group
list, the sending of messages etc., where as the plug-in is responsible for forward-

8

4. Implementation 9

Figure 4.1: Screenshot of the OpenGroupActivity

ing the information it receives from the Java part to the user interface. The Java
part can send the following messages to Pidgin:

• Open group message: An array containing the sender of the message, the
members of the group, the group name and the chat identifier.

• Add member message: An array containing the name of the new member,
the chat identifier and the group name.

• Group message: An array containing the sender of the message, the chat
identifier, the message itself and the timestamp.

Upon the reception of these messages above, the plug-in handles them appropri-
ately, by creating a new group for the first message, adding a member to a group
for the second message and writing a message into the correct chat window for
the third message. In Pidgin, there is a menu entry to create a new group. As
opposed to the Android Client, first the group has to be created and then mem-
bers have to be added afterwards. The plug-in sends the information needed to
the Java part, which then handles the forwarding to the according clients.

It is worth noting that Pidgin has chat identifiers as well as the Java client,
they are synchronized such that the Java client can tell Pidgin to insert a chat
message to the chat with this identifier. This synchronization of chat identifiers

4. Implementation 10

(a) Group conversation in Pidgin (b) Group conversation in Android

Figure 4.2: A group chat in both developed clients.

happens at two places, namely when the user creates a new group in Pidgin,
the chat identifier is created by pidgin and forwarded to the Java client, when
receiving a group open message from someone else, the chat identifier there is
forwarded to Pidgin to be used there as well. An example conversation between
two Pidgin clients (User1@disco and User2@disco) and one Android client (and)
can be seen in Figure 4.2a and 4.2b respectively.

4.2 Synchronization between Devices

A chat message consists of a timestamp, i.e., when the message was sent, a
chat identifier, which associates the chat message with a chat, a chat message
identifier, which uniquely identifies the chat message and of course the contents of
the message itself. The chat message identifier uses Java’s UUID.randomUUID(),
which creates a globally unique identifier [8].

Recall the Synchronization Tree explained in Section 3.3. The following para-
graph explains Figure 4.3 and describes what happens with the Synchronization
Tree. The tree is serialized and sent to the other resource together with the syn-
chronization timestamp (see Appendix A.5). The other resource can then build
its own tree with the same synchronization timestamp and traverse through the
trees to find the hour intervals which do not match. If the root of both trees

4. Implementation 11

Figure 4.3: Sequence diagram of the synchronization protocol

are equal, then the chat messages are synchronized completely. If they are not
equal, the hash value of at least one day interval must be unequal as well, thus
narrowing down the time interval of unsynchronized messages. This can be done
again to obtain hour intervals. These hour intervals can then be sent back to the
resource which initiated the synchronization (see Appendix A.7), together with
the messages in its own database which are in the corresponding intervals that
are not yet synchronized (see Appendix A.8). Upon the reception of the inter-
vals, the chat messages in these intervals are sent to the other resource. Note
that all messages in a corresponding hour interval are sent, regardless of whether
they are synchronized or not. All messages received that are not present yet are
stored into the database.

All messages used in the synchronization protocol are sent to all resources,
which makes it necessary for all resources that participate in the synchronization
to ignore the messages sent by themselves.

A more finegrained model would allow to find smaller time intervals that are
not synchronized, but this increases the height of the tree and thus the size of
the message which contains the tree. It also increases the time to build, serialize,
deserialize and compare trees to find mismatching intervals.

4. Implementation 12

4.3 File Transfer

File transfer has only been implemented in the Android Client. A menu button
in the ChatControllerActivity leads to a file explore activity, which allows the
user to select a file he wants to send to the chat he is currently in. When the
file was selected, two checks are executed, first whether the file type is allowed
to be sent by this chat program (limited on the file types JPG, PNG, TXT
and PDF) and second whether the file size is not too large (limited to 4MB).
If the selected file passes both checks, there is a distinction between image files
(JPG) and other files. In case it is a JPG file, it is compressed using Android’s
Bitmap facilities. The byte representation of the resulting file is then converted
into a hexadecimal string representation to avoid that some content of the file
interferes with the xml wrapper (such as an end of line character in the file). This
hexadecimal representation is then sent as the message body to the other chat
participants together with the file name. An example of such a message can be
found in the Appendix A.9. Note that the conversion of the file to a hexadecimal
representation may take some time and is thus executed in a background thread.

The client receiving a file has to decode it first, i.e., converting the hex-
adecimal representation back to a byte representation. Again this is done in a
background thread to not block the user interface. When this is done, the file is
saved to the device and a notification is shown to the user that a file has been
transferred.

4.4 Architectural Changes

As, previous to this project, the Android and PC Client have been developed
apart from each other, there are little similarities, the only equal part being the
messages sent over the peer-to-peer network. This means especially that even
the model classes, e.g., a class that defines a chat message, were not the same. A
big refactoring was necessary to ease the implementation of the above explained
features. This included changing most model classes in one project and adapting
the code for these new classes.

The Android client was divided into two main projects, a chat protocol and
an Android specific part. These two projects were at first not clearly structured,
some parts that are not Android specific such as the message handling was
integrated in the Android specific part instead of the chat protocol. A significant
amount of time had to be invested into separating these two projects better.

At first, there was no database involved in the PC Client. However a database
is of great importance when synchronizing chat messages, as the goal there is
to synchronize the messages in the respective databases. Together with the
refactoring of the model classes, a database was implemented for the PC Client,

4. Implementation 13

which behaves similarly to the database in the Android project.

To check the functional behaviour of the added features, unit tests were
developed for Android as well as the Java part of the PC Client.

Chapter 5

Conclusion

This thesis developed some core features for the already existing instant mes-
saging applications. These features include a group chat, the synchronization
of chat messages between multiple devices of the same user and file transfer on
Android devices. One important aspect developed is the synchronization of chat
messages, namely the combination of a timestamped approach combined with a
tree like structure that helps to identify which messages need to be synchronized.

It would have been advantageous if the two projects for the Android and PC
Client had been developed closer together. The reworking of these two projects,
such that feature development would take less time to develop, did take a lot of
time. Important aspects as parsing and handling of messages is still not unified.

There were some difficulties with the implementation of the C plug-in for
Pidgin, as the Pidgin code is documented rather poorly. It is not clear what
some important functions of the library do without delving deep into the source
code.

5.1 Future Work

To simplify further development, the two clients have to be tied together more.
This includes especially the message handling and parsing. When introducing
new message types, the parsers for both projects have to be adapted separately
as well as the handling of the parsed message. This further merging would also
allow to write fewer tests to check the functionality of the code. Additionally,
adding a wider range of clients, e.g., for other operating systems, would benefit
from a separated message handling.

An important point that remains to be doing is further testing of both the
network part and the clients themselves.

In parallel to this project, the cryptography of the clients is being devel-
oped, which ensures the end-to-end encryption of all messages sent as well as the
authentication of clients.

14

Bibliography

[1] Retroshare. http://retroshare.sourceforge.net/. Accessed: 2014-08-28.

[2] Textsecure. https://github.com/WhisperSystems/TextSecure/. Ac-
cessed: 2014-08-29.

[3] Threema. https://threema.ch/de/. Accessed: 2014-08-29.

[4] Torchat2. https://github.com/prof7bit/TorChat. Accessed: 2014-08-28.

[5] Theodoros Bourchas. Distributed HashTables for P2P-Messenger. Bachelor’s
thesis, ETH Zurich, 2014.

[6] Pascal Fischli. Encrypted Peer-to-Peer Based Instant Messenger for Android.
Bachelor’s thesis, ETH Zurich, 2014.

[7] Hildur Ólafsdóttir. Peer-To-Peer Based Instant Messenger. Bachelor’s thesis,
ETH Zurich, January 2014.

[8] Hirondelle Systems. Generating unique ids. http://www.javapractices.

com/topic/TopicAction.do?Id=56, August 2014. Accessed: 2014-08-28.

15

http://retroshare.sourceforge.net/
https://github.com/WhisperSystems/TextSecure/
https://threema.ch/de/
https://github.com/prof7bit/TorChat
http://www.javapractices.com/topic/TopicAction.do?Id=56
http://www.javapractices.com/topic/TopicAction.do?Id=56

Appendix A

Appendix Chapter

In this section, the messages sent through the network which are relevant for
this thesis are listed.

Store contact list: This stores a contact list with all group chats the con-
tacts are in. The contact list below can be interpreted as User1 having two
contacts, Contact1 and Contact2 are in a group with User1 called Groupname1
and Contact1 is also in a group with User1 called Groupname2.

Listing A.1: Store contact list

"<?xml version =’1.0’?>

<contactList from=’User1 ’ to=’User1 ’ id= ’490308006 ’ type=’push ’

timestamp = ’1386045542 ’ >

<item jid=’Contact1 ’ name=’Contact1 ’ friends=’no’ action=’set ’>

<groupId >2004772946 </ groupId >

<groupName >Groupname1 </groupName >

<groupId >2004777943 </ groupId >

<groupName >Groupname2 </groupName >

</item >

<item jid=’Contact2 ’ name=’Contact2 ’ friends=’no’ action=’set ’>

<groupId >2004772946 </ groupId >

<groupName >Groupname1 </groupName >

</item >

</contactList >";

Group open message: This message creates a group with the members User1,
User2, Contact1 and Contact2 called Test group.

Listing A.2: Group open message

<?xml version =’1.0’?>

<message from=’User1 ’ to=’User2 ’ id= ’490308006 ’ m-id= ’2004772946 ’

timestamp = ’1396854816191 ’ type=’openGroup ’ groupName=’Test

group ’>

<member >Contact1 </member >

<member >Contact2 </member >

</message >

A-1

Appendix Chapter A-2

Group leave message: This message sent by User2 tells User1 that he has
left the group associated with id and will not acknowledge messages with this id
anymore.

Listing A.3: Group leave message

<?xml version =’1.0’?>

<message from=’User2 ’ to=’User1 ’ id= ’490308006 ’ m-id=’f94294c9 -e7bb

-421e-82c2 -1 f3e1a51aa17 ’ timestamp = ’1396856923238 ’ type=’

leaveGroup ’>

</message >

Add member to group message: User1 has added a contact called
ccc@disco to the chat associated with id and notifies User2 of this change to
the group.

Listing A.4: Add member

<?xml version =’1.0’?>

<message from=’User1 ’ to=’User2 ’ id= ’490308006 ’ m-id=’0f907729 -5cfc

-4444 -9d8e -008 db572bf1e ’ timestamp = ’1396856092778 ’ type=’

addMember ’ name=’ccc@disco ’>

</message >

Send tree message: Note that an actual message is longer than this short-
ened version, as the body contains 1 integer for the year interval, 365 for the day
intervals and 8760 for the hour intervals. This makes the message quite large,
the body itself is over 9KB.

Listing A.5: Send tree message

<?xml version =’1.0’?>

<message from=’User1 ’ to=’User1 ’ chatId = ’490308006 ’ m-id=’8e44cce3 -

f180 -43c2-b9c3 -a1014e6877df ’ timestamp = ’1407586772065 ’ type=’

synchronization ’ name=’user2 ’ groupName=’Chat with user2 ’>

<body >

2761106 1267303981 0 0 -1695429263 -389741105 9854161 0 0 0 0

0 0 -2128380539 1718415768 834654156 0 -396266863 0 0 0

0 0 856440964 0 -1837210594 -1264542875 0 0 0 0 0 0 0 0 0

706044922 -432377592 0 0 0 0 -1538210205 0 0 0 0 0 0 ...

</body >

</message >

Start synchronizing message: This message is used to tell other resources,
that they should initiate the synchronization of chat messages.

Listing A.6: Start synchronizing message

<?xml version =’1.0’?>

<message from=’User1 ’ to=’User1 ’ chatId=’all ’ m-id=’a87c11f9 -57a0 -4

bca -9b17 -3023463180dd’ timestamp = ’1407588124988 ’ type=’

startSynchronizing ’ >

</message >

Appendix Chapter A-3

Send intervals message: This message sends all intervals, which are not
synchronized to other resources.

Listing A.7: Send intervals message

<?xml version =’1.0’?>< message from=’client1 ’ to=’client1 ’ chatId

= ’490308006 ’ m-id= ’79726def -0b2b -427e-a7fa -853566 c5d5e1 ’

timestamp = ’1407589507596 ’ type=’sendIntervals ’ >

<intervals >1407585907545|1407589507545 </ intervals >

<intervals >1407582307545|1407585907545 </ intervals >

<intervals >1407575107545|1407578707545 </ intervals >

</message >

Send old message: This message contains a message, which other resources
may not have in their respective databases.

Listing A.8: Send old message

<?xml version =’1.0’?>

<message from=’User1 ’ to=’User1 ’ chatId = ’905016504 ’ m-id= ’9132975d-

b4b9 -4607 -9f1b -8 d02c84c686b ’ timestamp = ’1407588620344 ’ type=’

oldMessage ’ >

<body >sender=’User1 ’ receiver=’User2 ’ timestamp = ’1407588620315 ’

messageId =’256a2d63 -30ed -4d63 -8d0f -97 f8f191062e ’ message=’

Message content ’ chatId = ’905016504 ’

</body >

</message >

File transfer: User1 sends a file called testFile.txt with the content ”content
of this file” to User2.

Listing A.9: File transfer

<?xml version =’1.0’?>

<message from=’User1 ’ to=’User2 ’ chatId = ’490308006 ’ m-id=’c10168cb -

b285 -4623-b397 -312980 ad4cec ’ timestamp = ’1409132808102 ’ type=’

file ’ fileName=’testFile.txt ’ >

<body >636 F6E74656E74206F6620746869732066696C65

</body >

</message >

	Acknowledgements
	Abstract
	1 Introduction
	2 Related Work
	2.1 Previous Work

	3 Concepts
	3.1 Overview of our System
	3.2 Group chat
	3.3 Synchronization between devices
	3.4 File Transfer

	4 Implementation
	4.1 Group Chat
	4.1.1 Android Client
	4.1.2 Pidgin Client

	4.2 Synchronization between Devices
	4.3 File Transfer
	4.4 Architectural Changes

	5 Conclusion
	5.1 Future Work

	Bibliography
	A Appendix Chapter

