
Distributed
    Computing 

Obstacle Warning for Texting

Bachelor Thesis

Christian Hagedorn

hagedoch@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Jara Uitto, Klaus-Tycho Förster

Prof. Dr. Roger Wattenhofer

September 22, 2014



Abstract

Walking and texting on the phone can be dangerous. People often hurt them-
selves because they do not pay attention to obstacles in their way. Fortunately
most phones nowadays have an integrated back camera. This can be taken to
advantage. The stream of pictures from the back camera can be analysed to
recognize obstacles. This can be done by dividing the pictures into regions with
similar colors. In successive pictures obstacles are matched and their movement
directions can be determined. If a dangerous obstacle is approaching a quick
vibration warning on the phone can protect the phone holder from serious acci-
dents.

i



Contents

ii



Chapter 1

Introduction

Recent studies have shown that the number of injuries related to cell phones has
been increasing [?]. People are distracted by the phone while walking. They
pay too little attention to the path in front of them. As a consequence they
walk straight into obstacles like poles or walls and hurt themselves badly. To
counteract we came up with the idea to use the phone to warn walking people
of dangerous obstacles in their ways. We accomplished this task without using
any additional hardware.

1.1 Implementing an App to Avoid Accidents

In this project we implemented an app1 which takes pictures from the back cam-
era. We get a stream of images from the path in front of us. The basic idea
behind the app is to recognize obstacles due to their color difference. By dividing
the picture into regions with similar colors we could separate obstacles from the
background. One of the most difficult parts was the division of the directly fol-
lowing picture again into regions with same colors and detect the same obstacles
from the previous picture in it. By doing this we could make predictions where
an obstacle was moving to. If the obstacle will directly hit the phone holder
we trigger a warning by letting the phone vibrate. Maintaining a large enough
frame rate made the matching step easier and more reliable.
Our approach was safety-first. We did not try to reduce false warnings on cost
of missed warnings of dangerous obstacles. A false warning will cause the user
to look up from the phone for around half a second. On the other hand a missed
warning of a dangerous obstacle could result in a broken nose.
Thoroughly testing 23 dangerous situations allowed us to set the different pa-
rameters inside the app to efficient values. The resulting final app settings were
able to correctly warn the user at the right time in all 23 situations, having only
one false warning per situation on average. These results were very satisfying

1We mention here that the current version of the app can only be run in foreground mode.
Once the app is minimized it doesn’t work any more. An improvement for supporting a service
embedding is left for future work (see Section 5.2).

1



1. Introduction 2

and followed our aimed safety-first approach.

1.2 Previous Projects

A similar project was done before, where the user gets warned from obstacles
whose color differentiated from the background. We did not extend this project.
Instead we started from scratch and came up with own ideas and implementa-
tions.



Chapter 2

App Usage

2.1 How to hold the Phone

The most important aspect is how the user holds the phone. If you are texting
while pointing with the phone to the sky, the app can only warn you about
approaching clouds. A nice idea for weather forecast, but not exactly what we
want. To figure out a good phone-holding position we made use of the integrated
orientation sensor in the phone. This sensor returns a value of 0 degrees if the
phone is parallel to the ground (Figure 2.1 (a)) and -90 degrees if the phone
is vertical to the ground, pointing to the walking direction (Figure 2.1 (c)). A
good value lies between these two extremes. In the previous project a value of
-45 degree was taken. Nevertheless this value felt unnatural to us. Therefore we
walked around pretending to be texting and measured the average value returned
from the sensor. The resulting values were around -30 to -35 degrees (Figure 2.1
(b)). The corresponding field of vision on the phone screen with this setting is
around 2.5 to 3 meters for a 1.85 meters tall human. Moreover we assume that
the user walks upright with the phone in his hands in front of his body (Figure
2.2). Very important to mention here is that all functionalities of this app only
work if the user holds the phone in portrait position (Figure 2.3).
The phone contains a sensor (namely the gyro sensor) for detecting fast move-
ments of the phone (for example if you suddenly turn your phone quickly). The
idea was to detect unexpected changes in the walking direction to disable trig-
gered warnings during this period. However integrating this sensor was more of
a curse than a blessing, since the gyro sensor is very sensitive. While walking the
phone is shaking naturally and the gyro sensor peeked too often even though the
walking direction wasn’t changed. Therefore we stepped away from using this
sensor and just assumed the user of the app isn’t changing his walking directions
randomly every second. This assumption seems realistic, since most people tend
to be walking straight forward and if a direction change is done people are most
likely to look up from the phone to verify if nothing dangerous is approaching
their ways. Moreover we assume the user of the app is walking in a normal speed
without being in a hurry.

3



2. App Usage 4

(a) 0 degrees - phone parallel to the ground

(b) -30 to -35 degrees - ideal phone position (c) -90 degrees - phone vertical to
the gound

Figure 2.1: Visualization of the orientation sensor measurements. Figure (b)
shows the optimal way to hold the phone.

2.2 Starting Point and Reaction to Warnings

We assume the user starts the application in a safe place. That means there
are no dangerous obstacles in front of him1. Moreover there should not be
complicated colored patterns on the ground to avoid false warnings (see Section

1More precisely there should not be a dangerous obstacle in screen-region 2, 3, or 4 (see
Figure 3.1 and Section 3.2.2)



2. App Usage 5

Figure 2.2: A proper phone holding position [?]

Figure 2.3: Portrait position of the phone [?]

3.3 for more details). A safe place to start is for example on a street which
has more or less a uniform gray color. Once the user gets a correct warning,
facing a dangerous obstacle, we assume that he chooses a new safe place before
proceeding.



Chapter 3

App Design and
Implementation

This chapter will cover how the app was designed and what the ideas were behind
the implementation. First we look at the fundamental question when and how
to warn the user. Afterwards we give an overview of the key functionalities and
how they interact together. More important aspects are explained in greater
detail.

3.1 Warnings

3.1.1 When Should the User be Warned?

Obviously the user should get warned when an obstacle is approaching directly
towards him. There should be enough time to react when a warning is triggered.
For that reason we tried to provide warnings around 1 to 1.5 meter in front
of a dangerous obstacle.

3.1.2 How Should the User be Warned?

A straight forward way to warn is the vibration of the phone which allows the
user to react instantly. The duration of the vibration should be distinguishable
from other common kinds of vibration (from Instant Messengers, SMS or other
Notifications). To ensure this property the user can select the duration of the
vibration by himself.

6



3. App Design and Implementation 7

Figure 3.1: Screen divided into 4 screen-regions

3.2 Details of the App Procedure

3.2.1 Divide the Phone Screen into Regions

In the following sections we will refer to numbered screen-regions. The screen-
regions are shown in Figure 3.1. The purpose of this division is to process the
right pixels or the right color regions (see Section 3.2.4), depending on their posi-
tion on the screen. As mentioned in the previous chapter the whole screen covers
a field of view of around 2.5 to 3 meters. Our goal is to warn the user around 1 to
1.5 meters in front of a dangerous obstacle. Therefore we created screen-region
2. When a dangerous obstacle touches this region and is directly moving towards
us1 we trigger a warning (Figure 3.2 (b)). Everything above in screen-region 1
is not yet dangerously close. Therefore we don’t trigger a warning for obstacles
that are only contained in screen-region 1 (Figure 3.2 (a)).

1What exactly ”moving towards us” means is explained in Section 3.2.4



3. App Design and Implementation 8

Screen-region 3 fills the space next to screen-region 2. We excluded the space
in screen-region 3 from screen-region 2, because there might be obstacles which
aren’t moving directly towards us. For more details see Section 3.2.4.
Screen-region 4 covers all the space below screen-region 2 and 3. All obstacles
that are fully contained in screen-region 4 are too close and thus not important
any more. We either gave already a warning (Figure 3.3 (a)) or the obstacle
wasn’t moving towards us (Figure 3.3 (b)).

(a) Dangerous obstacle - No warning yet, be-
cause it’s still fully contained in screen-region
1 and thus too far away.

(b) Dangerous obstacle moving towards us
and has pixels in screen-region 2 - A warning
is triggered!

Figure 3.2: Explanation for screen-region 1 and 2

3.2.2 Divide the Picture into Color Regions

After the preprocessing phase the main phase of the app is initiated. The goal
is first to divide the picture into regions with pixels of the same color,



3. App Design and Implementation 9

(a) Already warned dangerous obstacle - Not
important any more

(b) Obstacle is not moving towards us (not
dangerous) - Fully contained in screen-region
4 and not important any more

Figure 3.3: Explanation for screen-region 4

called color regions. The question is how to define ”same color”. Analogously
you can ask how much a pixel can differ from its neighbour pixel to be counted
to the same color region. An ideal threshold was found through testing (see
Chapter 4 - Testing). The following algorithm is applied for every input picture.
Some special care must be taken into account for the very first picture processed
at the start or after a warning was triggered (see Section 3.2.3).



3. App Design and Implementation 10

Algorithm for Defining Color Regions

1 Mark all pixels as not visited.
2 Start with a first pixel. (The first pixel is ideally one of the four edge

pixels). Call this pixel reference-pixel.
3 Create a new color region which initially contains only the reference-pixel.
4 Proceed by Breadth-first search and compare each color of a new pixel

p with the color of the reference-pixel:
5 while not all pixels visited do
6 while queue not empty do
7 if color of reference-pixel and p doesn’t differ more than threshold

then
8 Add p to color region.
9 forall the neighbour pixel p’ of p do

10 if p’ not visited before then
11 Add p’ to queue.
12 Mark p’ as visited.

13 end

14 end

15 end

16 end
17 //The color region is completed.
18 if color region has 10 or less pixels then
19 Discard that color region.
20 else
21 actualRegions-list.add(color region)
22 end
23 if all pixels visited then
24 //We are done!
25 Return.

26 end
27 Search a new pixel p which wasn’t visited before.
28 Create a new color region with p as reference-pixel.

29 end

Algorithm 1: Pseude code for defining color regions



3. App Design and Implementation 11

Keep track of the right color regions

Throughout the whole process we keep track of relevant color regions. This is
done by maintaining two lists. The actualRegions-list contains all color regions
from the last picture created by the algorithm. The interestingRegions-list
contains interesting color regions2 from the second last picture which represent
possibly dangerous obstacles. The two lists are used in the matching process (see
Section 3.2.4)

3.2.3 Define Interesting Regions in the very first Picture

We need to define continuously interesting color regions, which are potentially
dangerous obstacles. After the first picture the interestingRegions-list is still
empty. Thus we first need to initialize it. As seen in Section 2.2. we assumed that
the closest dangerous obstacle can only lie in screen-region 1 in the first picture.
Therefore it seems natural to define all color regions, which contain pixels only
in screen-region 1, as interesting. We put them in the interestingRegions-list.
All other color regions are uninteresting and can be discarded. We clear the
actualRegions-list and start creating color regions for the next image, since there
is nothing to match yet. Note that these steps are only done after the very first
picture.

3.2.4 Match Color Regions from two successive Pictures

Given the interestingRegions-list and the actualRegions-list from the steps done
before we do the matching as described in the algorithm on the following page.
A few lines need some further explanation.
On line 4 we use center-points of a color region. The center-point is defined on
the position of the pixels in the picture. For the x value take the median of all
x value positions and for the y value take the median of all y value positions of
the pixels in the color region.
On line 3 and 4 we calculate the color value difference and the distance between
both center-points using the euclidean distance.
On line 5 we use two thresholds. We refer to Chapter 4 about testing for more
details on the specific choice of the threshold values.
On line 24 we use screen-regions 1, 2 and 3. We did not pick only screen-region 1
because testing showed that some crucial warnings were missing. By additionally
including screen-region 2 and 3 we could face this problem.

2What interesting means will be discussed further down



3. App Design and Implementation 12

1 foreach iRegion in interestingRegions-list do
2 foreach aRegion in actualRegions-list do
3 colorDiff := Color value difference between both reference-pixels.
4 distanceDiff := Distance between both the center-points
5 if colorDiff < colorThresh and distanceDiff < distanceThresh

then
6 //see Figure 3.5 and 3.6
7 Mark iRegion as possible matching candidate.

8 end

9 end
10 //try to find a match of iRegion with a candidate
11 if at least one matching candidate then
12 Sort the candidates according to colorDiff.
13 The candidate with the smallest colorDiff comes first.
14 foreach candidateRegion do
15 Draw a line L through the center-point of iRegion and the

center-point of candidateRegion.
16 if L intersects with segment S then
17 //see Figure 3.7
18 if a pixel from candidateRegion is contained in

screen-region 2 then
19 //see Figure 3.8
20 Trigger a warning!

21 end
22 //avoid match that region again
23 Remove candidateRegion from actualRegions-list.
24 if candidateRegion has only pixels in screen-region 1, 2 or 3

then
25 Mark candidateRegion as new interesting.
26 end
27 break;

28 end

29 end

30 end

31 end
32 Clear the interestingRegions-list and add all regions marked as interesting.
33 Clear the actualRegions-list.

Algorithm 2: Pseude code for matching color regions



3. App Design and Implementation 13

3.2.5 Input Data

The pictures are captured from the back camera and have a resolution of 480x640
pixels. They are provided in a matrix format where each element represents a
pixel holding its color value in RGB format. In the final version of the app this
is the only source of input data. In the debug version there is an additional
possibility to load saved images from a folder. This was used for testing (more
details in Chapter 4 - Testing).

3.2.6 Preprocessing the Image

The preprocessing of the input image aims to simplify and speed up the image
processing and matching steps afterwards. Once we get a picture from the camera
it is first preprocessed. We start by downscaling the image by a factor of
12. There are some reasons for this decision. First we cannot afford to work with
such large pictures. The phone takes too long to process this amount of pixels
in real time. We need a certain amount of pictures per seconds. Having too few
makes the color region matching harder, because the obstacles move too far from
one picture to the next. On the other hand downscaling too much reduces the
precision of the picture. Tests have shown that a downscaling factor of 12 gives
the best balance between precision and pictures per second3. Additional tests
have shown that fewer false warnings were thrown by downscaling the image.
After downscaling the image we performed a Gaussian blur of the image. This
smoothed the image and removed sharp edges, allowing us to define color regions
more efficiently.

3.3 Limitations

Since the app only uses the back camera of the phone for obstacle warning a
few limitations seem to be natural. The camera only provides a picture with
colors. Therefore the object detection can only be done by comparing colors.
A few scenarios are hard to solve with the chosen approach for this app. Some
examples are listed on the following page.

3With this setting we measured five pictures per second in the running app



3. App Design and Implementation 14

• Dangerous obstacles with an undistinguishable color from the background
aren’t recognized as obstacles4 and don’t trigger a warning (Figure 3.4 (a))

• Bright reflections from light or sunlight can be recognized as obstacles
(Figure 3.4 (b))

• Dark areas caused from shadows can be recognized as obstacles
(Figure 3.4 (c))

• Patterns on the ground in a different color can be recognized as obstacles
(Figure 3.4 (d))

3.4 Thresholds

A remaining fundamental question is how to choose the different thresholds in
the app. There are thresholds in the creation of color regions, in the matching
step and in the preprocessing. Moreover the choice of the screen-regions and the
appropriate lines in Figure 3.1 is important. All these different possible setups
of the app must have been tested thoroughly. The next chapter describes the
methods used to figure out good values.

4The reason for this behaviour becomes more clear with an extreme example. Imagine you
are in a completely unicolored white room (white ground, white walls ect.). The camera points
to the ground. The app will detect one white obstacle filling the whole screen. You start
walking towards the wall. Once the wall appears on the screen the app won’t detect it as new
obstacle since it has the very same color.



3. App Design and Implementation 15

(a) No warnings from obstacle
with an undistinguishable Color

(b) Bright light reflections as a
dangerous obstacles

(c) Shadows as dangerous obsta-
cles

(d) Patterns on the ground as
dangerous obstacles

Figure 3.4: Scenarios of possible failures of the app



3. App Design and Implementation 16

(a) Color difference is smaller than the thresh-
old - a possible candidate

(b) Color difference is bigger than the thresh-
old - no possible candidate

Figure 3.5: An example of determining a possible matching candidate - Color
threshold



3. App Design and Implementation 17

(a) Distance difference is smaller than the
threshold - a possible candidate

(b) Distance difference is bigger than the
threshold - no possible candidate

Figure 3.6: An example of determining a possible matching candidate - Distance
threshold



3. App Design and Implementation 18

(a) No intersection of L and S (b) L and S intersects

Figure 3.7: Matching regions - Check for intersection



3. App Design and Implementation 19

Figure 3.8: iRegion was matched with candidateRegion which is directly moving
towards us. Since it has pixels in screen-region 2 a warning is triggered!



Chapter 4

Testing and Results

In this chapter we present all testing results about the different setups for the
app. First we state the approach to test our app. We describe the tests and which
parameters settings were probed. We conclude the chapter with the results and
their interpretations.

4.1 Offline Testing

The big advantage of offline over online testing is the possibility to repeat a
test and getting the same results. This allows us to efficiently test all wished
parameter settings without changing the test environment.

4.1.1 Approach

We used the phone to record standard videos with the back camera (with a
resolution of 480x640 pixels), where a dangerous obstacle is coming towards us.
Afterwards we captured an image every 0.2 second and saved it. We tried to
come as close as possible to the running app version (online) where we processed
around five pictures per second. These pictures were fix and did not change any
more. We modified the app to change the input from the camera to the input
from these captured fix test frames. The big advantage of this approach was the
possibility to reuse the test pictures and testing the different parameter settings
while keeping the rest unchanged.

4.1.2 Test Environment

By removing all android specific code it was possible to simulate the functionality
of the app on the computer. This allowed us to test the parameter settings much
more efficiently (less time needed, more available space etc.) than on the phone
itself.

20



4. Testing and Results 21

4.1.3 Tests

In total there were 23 test videos recorded. There is a dangerous obstacle moving
towards the user at the end of each test. We will refer to this kind of test as
”active test”. We examined every active test video carefully and wrote down
in a file which frame numbers should cause a warning and compared them with
the caused warnings of a specific parameter setup. A test was successful if the
user got a warning in one of the right frame numbers. Additionally we recorded
6 test videos in which nothing dangerously happens. In other words these tests
should not throw a warning at all. We will refer to this kind of test as ”passive
test”. These passive tests were only applied for the final settings. Much more
important for us was to pass the active tests. We rather had correct warnings
and some more false warnings than only few warnings and a broken nose from a
missed warning.
We made value ranges for the important parameters and tested all possible com-
binations in all active tests (a test suite). These test suites were repeated for
different settings (see Section 4.3). They also helped us to find some crucial bugs
in the implementation.

4.2 Tested Parameters

In the following sections we explain why a specific parameter was tested.

4.2.1 Gaussian Blur - Gaussian Kernel

The Gaussian kernel size was tested with different values. Larger values caused
a stronger smoothing effect and different color regions. For details about the
Gaussian Blur we refer to [?]. In the following sections we will refer to this
threshold as ”blurring threshold”.

4.2.2 Threshold for Creating Color Regions

As seen in the previous chapter this threshold is crucial for defining color regions.
A larger threshold creates fewer color regions which contain more different color
values. Precision is given up in favor of fewer false warnings. In the following we
will refer to this threshold as ”creation threshold”.

4.2.3 Threshold for Matching Color Regions - Color based Thresh-
old

Another crucial threshold must be defined for matching color regions. Each
such region contains a reference-pixel with a specific color value. It needs to



4. Testing and Results 22

be determined how much deviation is allowed in the matching step. One might
think we could use the same threshold as for creating color regions. But on a
closer look these are two separate things. Moreover the tests confirmed that
setting the two values equal did not achieve the best results. In the following
sections we will refer to this threshold as ”matching color threshold”.

4.2.4 Threshold for Matching Color Regions - Distance based
Threshold

To avoid false matchings between color regions that have a very similar color, but
are located far away from each other (see Figure 4.1), we introduced a distance
threshold. This threshold could more or less be estimated by comparing how far
an obstacle can move from one picture to the next. Nevertheless for fine tuning
a few values were tested. In the following sections we will refer to this threshold
as ”matching distance threshold”.

Figure 4.1: Avoid matching the color region 1 with the wrong color region by
introducing a Distance Threshold



4. Testing and Results 23

4.2.5 Lines that Define Screen-Regions

A rough placement of the lines that define screen-regions could have been es-
timated. We need warnings in a certain distance, forcing us to place the lines
somewhere in the middle of the screen. Additionally we need to place segments
1 and 2 (see Figure 4.2), because we don’t want to get warnings from obstacles
that move past us and not towards us. A few settings were tested.

Figure 4.2: Introducing segement 1 and 2 to get rid of warnings of obstacles that
are not directly moving towards us



4. Testing and Results 24

Figure 4.3: Names of the lines used in the app

4.3 Test Suite Setups and Goal

In each test suite setup we tested a wide range of blurring threshold, creation
threshold and matching color threshold values. The other parameters were set to
a specific value. Our goal was to find setups where we passed all active tests and
pick the one with the least amount of warnings (right warnings + false warnings).
For the best setting we ran the passive tests as well. For a better overview we
present all test suite setups, results and their interpretation together in the next
section.



4. Testing and Results 25

4.4 Results and Discussion

In the representation of the following test results we will give the different lines
on the phone screen names to avoid confusion (see Figure 4.3). We additionally
introduced Line D1. We tried to discard every color region which contains a pixel
below this line. The reason for this was if there is a dangerous obstacle contained
in screen-region 1 and/or 3 only, it’s nearly impossible that it moves all the way
down below line D1 in the next picture, since we have five pictures per second
processed and we assumed you walk in a normal speed. This optimization was
tested thoroughly with good results without missing crucial warnings. In the first
few test settings our optimization achieved better results. We focused on using
this approach. In the end we found satisfying settings with the optimization by
using line D1. We still wanted to tested again our original approach. Against
all expectations we achieved better results. An interesting turnaround after a
lot of tests. The results and discussion of specific results are shown below. The
ordering is chronological. To the most important setups we provide pictures
showing the distribution of the results.



4. Testing and Results 26

(a) Dangerous obstacle in screen-region 1 and
3 - No warning was triggered yet

(b) Obstacle moved from Picture 1 to Picture
2 and is discarded without triggering a warn-
ing - Nearly impossible since it can’t move this
far having five pictures per second

Figure 4.4: A nearly impossible situation

Abbreviations and Conventions:
H = Screen height
0H = Top border of the screen
1H = Bottom border of the screen
0.5H = Middle of the screen
W = Screen width
0W = Left border of the screen
1W = Right border of the screen
0.5W = Middle of the screen



4. Testing and Results 27

4.4.1 Small Test Suites

Blurring threshold: 1, 3, 5, 7, 9
Creation threshold: 9, 10, 11, ..., 34
Matching color threshold: 1, 2, 3, ..., 14
Number of tests in one test suite: 1820 (= 5*26*14)

1. Setup

• D1 = 0.9H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.5H

• L2 = 0.7H

• Matching distance threshold = 7

Results

• Best setting:

– 21/23 active tests passed, 74 warnings in total

– 20/23 active tests passed, 60 warnings in total

Discussion

No setting could pass all active tests. We also waited too long for triggering a
warning. In the next setup we tried to give warnings earlier by moving L1 and
L2. upwards.

2. Setup

• D1 = 0.9H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.4H

• L2 = 0.6H

• Matching distance threshold = 7



4. Testing and Results 28

Results

• Best setting:

– 22/23 active tests passed, 57 warnings in total

– 21/23 active tests passed, 102 warnings in total

Discussion

One specific setting clearly dominated all other settings. Still we did not achieve
our goal to pass all active tests, but it was obviously a step in the right direction.

3. Setup

• D1 = 0.9H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.4H

• L2 = 0.6H

• Matching distance threshold = 7

• New center-point definition: Sum up all X values [Y values] and divide
them by the number of pixel in the color region

Results

• Best setting:

– 21/23 active tests passed, 103 warnings in total

– 20/23 active tests passed, 52 warnings in total

Discussion

The idea of a new definition of the center-point did not help us. We did not
include this new definition in the following setups.



4. Testing and Results 29

4. Setup

• D1 = 0.9H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.45H

• L2 = 0.6H

• Matching distance threshold = 7

Results

• Best setting:

– 20/23 active tests passed, 60 warnings in total

– 19/23 active tests passed, 75 warnings in total

Discussion

Reducing the size of screen-region 2 again wasn’t a good decision. We therefore
let L1 and L2 untouched and focused on the other parameters.

5. Setup

• D1 = 0.9H

• R1 = 1.5/6W

• R2 = 4.5/6W

• L1 = 0.4H

• L2 = 0.6H

• Matching distance threshold = 7

Results

• Best setting:

– 21/23 active tests passed, 80 warnings in total

– 20/23 active tests passed, 50 warnings in total



4. Testing and Results 30

Discussion

We tried to make screen-region 2 more tight by changing R1 and R2. It did not
improve our last results. Therefore we kept R1 and R2 in the original position
in all following setups.

6. Setup

• D1 = 0.9H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.4H

• L2 = 0.6H

• Matching distance thresh = 10

Results

• Best setting:

– 21/23 active tests passed, 42 warnings in total

– 20/23 active tests passed, 33 warnings in total

Discussion

In this setup we tried to be more tolerant by setting the matching distance
threshold to 10. It was possible to decrease the amount of warnings, but against
our hope it could not improve our last setups regarding the number of passed
active tests.

4.4.2 Large Test Suites

By keeping the creation threshold and matching color threshold values unchanged
we could not find one single setting which passed every active test. Therefore
we decided to make the interval of these thresholds larger

Blurring threshold: 1, 3, 5, 7, 9
Creation threshold: 1, 2, 3, ..., 50
Matching color threshold: 1, 2, 3, ..., 30
Number of tests in one test suite: 7500 (= 5*50*30)



4. Testing and Results 31

1. Setup

• D1 = 0.9H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.4H

• L2 = 0.6H

• Matching distance threshold = 10

Results

• Best setting:

– 23/23 active tests passed, 71 warnings in total

– 22/23 active tests passed, 45 warnings in total

Discussion

We finally reached our goal. Some parameter settings were able to pass all active
tests. The aim was now to reduce the number of warnings in total while still
passing all active tests. To mention is the really low number of false warnings
of the best setting which passed 22 of 23 active tests. This showed that we still
have potential to improve the current settings.

2. Setup

• D1 = 0.9H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.4H

• L2 = 0.6H

• Matching distance threshold = 8



4. Testing and Results 32

Results

• Best setting:

– 23/23 active tests passed, 65 warnings in total

– 22/23 active tests passed, 71 warnings in total

Discussion

We could eliminate some false warnings with a smaller matching range, but the
small number of warnings for the best setting which passed 22 tests was vanished.

3. Setup

• D1 = 0.9H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.4H

• L2 = 0.6H

• Matching distance threshold = 8

• New blurring values: 11, 13, 15, 17, 19

Results

• Best setting:

– 23/23 active tests passed, 101 warnings in total

– 22/23 active tests passed, 95 warnings in total

Discussion

Blurring the images more did not bring the hoped improvement. The number of
false warnings increased a lot. This results showed us to keep the blurring kernel
size small. In the following setups we maintained the original blurring threshold
values.



4. Testing and Results 33

4. Setup

• D1 = 0.8H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.4H

• L2 = 0.6H

• Matching distance thresh = 8

Results

• Best setting:

– 23/23 active tests passed, 65 warnings in total

– 22/23 active tests passed, 69 warnings in total

Discussion

The best test wasn’t affected by moving D1 upwards. But some parameter
settings triggered less false warnings. Thus we kept D1 on 0.8H. Moreover this
optimizes the image processing.

5. Setup

• D1 = 0.8H

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.3H

• L2 = 0.5H

• Matching distance threshold = 8



4. Testing and Results 34

Results

• Visualized in Figure 4.6 and 4.7

• Best setting:

– 23/23 active tests passed, 51 warnings in total

∗ Blurring threshold = 9

∗ Creation threshold = 42

∗ Matching color threshold = 23

– 22/23 active tests passed, 40 warnings in total

∗ Blurring threshold = 1

∗ Creation threshold = 42

∗ Matching color threshold = 13

Discussion

We decided to move screen-region 2 upwards again. This setup had very con-
vincing results. We closely came down to one false warning on average. An
additional advantage is that warnings will triggered a little bit earlier, giving the
user more time to react.

6. Setup

• No D1!

• R1 = 1/6W

• R2 = 5/6W

• L1 = 0.3H

• L2 = 0.5H

• Matching distance threshold = 8



4. Testing and Results 35

Results

• Visualized in Figure 4.8 and 4.9

• Best setting:

– 23/23 active tests passed, 47 warnings in total

∗ Blurring threshold = 1

∗ Creation threshold = 42

∗ Matching color threshold = 26

∗ 1/6 passive tests passed with a total of 6 warnings with this spe-
cific setting

– 22/23 active tests passed, 41 warnings in total

∗ Blurring threshold = 1

∗ Creation threshold = 42

∗ Matching color threshold = 13

Discussion

We almost achieved 1 false warning per active test and no dangerous obstacle
was missed. The passive tests also triggered only 1 false warning on average.
These results were very satisfying. Therefore we decided to choose this setting
in the final app.



4. Testing and Results 36

4.5 Summary of Testing

During many hours of testing we slowly moved towards a good setting. The
chosen one passed every active test and triggered only few false warnings. Sur-
prisingly this was a setup from which we stepped away in the beginning of the
whole testing phase. As seen in the results a higher creation threshold was
needed. This traded just enough precision to still pass every test but remove a
lot of false warnings. Surprisingly the blurring value 1 appeared to be the best.
This means that only little preprocessing is required. In the previous project
a blurring value of 7 was used instead. In Figure 4.5 we again summarize all
results and highlight the optimal setup.



4. Testing and Results 37

Figure 4.5: Table showing all test results. The best setup is highlighted in green



4. Testing and Results 38

Figure 4.6: Distribution of the number of tests which passed. All tests which
passed 15 or less tests have the same color



4. Testing and Results 39

Figure 4.7: Distribution of the number of warnings of all settings which passed
all tests. We see that the best test has a creation threshold of 42 and a Matching
color threshold of 23



4. Testing and Results 40

Figure 4.8: Distribution of the number of tests which passed. All tests which
passed 15 or less tests have the same color



4. Testing and Results 41

Figure 4.9: Distribution of the number of warnings of all settings which passed
all tests. We see that the best test has a creation threshold of 42 and a Matching
color threshold of 26



Chapter 5

Conclusion

The app combines simple ideas to efficiently warn the user of dangerous obstacles
which are moving directly towards him while he is walking and paying no atten-
tion to the way in front of him. Dividing a captured picture from the camera into
color regions allowed us to define probably dangerous obstacles. In a matching
step we tried to link obstacles from one picture to the next. Considering their
movement we could predict whether a dangerous obstacle was going to hit the
user. Many different parameters needed to be set in such a way that the user
gets only few false warnings but in case of a dangerous obstacle he is warned
early enough. Thoroughly testing was necessary and delivered satisfying results.

5.1 Some Differences to the previous Project

As mentioned in the introduction a similar project was done before. Some ideas
are related to the ones used in the previous project. Nevertheless there are
a few differences to state. In this project we did strict offline testing to find
good settings whereas in the previous project only online testing was performed.
Here we downscaled the images less to work with much more pixels than in the
previous project. The aim was to gain more precision. As stated in Section 2.1
we also directed the phone more to the ground, which felt more naturally.

42



5. Conclusion 43

5.2 Future Work

Despite the good results there are still a lot of settings to be tested and things to
optimize in the future. The current approach still has some limitations as seen in
Section 3.3. Handling shadows and bright reflections will reduce false warnings.
An extension to separate the background from the dangerous obstacles will help
facing this problem.

The current version of the app needs to be running in foreground. It doesn’t
work any more once it is minimized. Supporting a service embedding of the app
makes it much more usable in practice. The user receives warnings while the
app is running in the background.

A whole new approach provides phones with integrated sensors to do 3D-measurements
[?]. This simplifies the whole process and makes it more reliable. In combination
with the current app it opens up a lot of new possibilites.



Bibliography

[1] : Phone Accidents. http://www.buffalo.edu/news/releases/2014/02/

022.html Accessed on 17 Sept 2014.

[2] : Holding the phone. http://relationshipsadvice.

selfemployed123.netdna-cdn.com/wp-content/uploads/2014/02/

How-to-text-a-girl-you-like.jpg Accessed on 17 Sept 2014.

[3] : Portrait position. http://dienthoaidoc.com/wp-content/uploads/

2014/05/samsung-galaxy-s3-anh-3.jpg Accessed on 17 Sept 2014.

[4] : Gaussian Blur. http://docs.opencv.org/doc/tutorials/imgproc/

gausian_median_blur_bilateral_filter/gausian_median_blur_

bilateral_filter.html Accessed on 17 Sept 2014.

[5] : Google Phone. https://www.google.com/atap/projecttango/#project
Accessed on 17 Sept 2014.

44

http://www.buffalo.edu/news/releases/2014/02/022.html
http://www.buffalo.edu/news/releases/2014/02/022.html
http://relationshipsadvice.selfemployed123.netdna-cdn.com/wp-content/uploads/2014/02/How-to-text-a-girl-you-like.jpg
http://relationshipsadvice.selfemployed123.netdna-cdn.com/wp-content/uploads/2014/02/How-to-text-a-girl-you-like.jpg
http://relationshipsadvice.selfemployed123.netdna-cdn.com/wp-content/uploads/2014/02/How-to-text-a-girl-you-like.jpg
http://dienthoaidoc.com/wp-content/uploads/2014/05/samsung-galaxy-s3-anh-3.jpg
http://dienthoaidoc.com/wp-content/uploads/2014/05/samsung-galaxy-s3-anh-3.jpg
http://docs.opencv.org/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
http://docs.opencv.org/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
http://docs.opencv.org/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
https://www.google.com/atap/projecttango/#project

	Abstract
	1 Introduction
	1.1 Implementing an App to Avoid Accidents
	1.2 Previous Projects

	2 App Usage
	2.1 How to hold the Phone
	2.2 Starting Point and Reaction to Warnings

	3 App Design and Implementation
	3.1 Warnings
	3.1.1 When Should the User be Warned?
	3.1.2 How Should the User be Warned?

	3.2 Details of the App Procedure
	3.2.1 Divide the Phone Screen into Regions
	3.2.2 Divide the Picture into Color Regions
	3.2.3 Define Interesting Regions in the very first Picture
	3.2.4 Match Color Regions from two successive Pictures
	3.2.5 Input Data
	3.2.6 Preprocessing the Image

	3.3 Limitations
	3.4 Thresholds

	4 Testing and Results
	4.1 Offline Testing
	4.1.1 Approach
	4.1.2 Test Environment
	4.1.3 Tests

	4.2 Tested Parameters
	4.2.1 Gaussian Blur - Gaussian Kernel
	4.2.2 Threshold for Creating Color Regions
	4.2.3 Threshold for Matching Color Regions - Color based Threshold
	4.2.4 Threshold for Matching Color Regions - Distance based Threshold
	4.2.5 Lines that Define Screen-Regions

	4.3 Test Suite Setups and Goal
	4.4 Results and Discussion
	4.4.1 Small Test Suites
	4.4.2 Large Test Suites

	4.5 Summary of Testing

	5 Conclusion
	5.1 Some Differences to the previous Project
	5.2 Future Work

	Bibliography

