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Abstract

The main goal of this project is to reduce the amount of unwanted content to
a minimum and therefore simultaneously extinguish the efforts for procrastinat-
ing. In order to establish such a user-based content selection an active learning
algorithm is required.

Our learning algorithm operates on a fixed amount of image data, collected
from an online source. In addition to the image data collection we also extract
features from the online source. To increase the variety of features even further,
we calculate inherent image properties using computer vision algorithms.

We apply the simple, yet powerful, Bayes classification to the derived feature
space. This method turns out to be fast enough and sufficiently reliable for our
case.

By applying the tuned learning algorithm to a fixed dataset of over 16’000
images and live integration of user-based information, we show that the proposed
algorithm is capable of yielding significantly higher user appreciation than a
random content selector.



Nomenclature

Notation
P(T = A) probability of value A of type T to occur
P(T = A|lU = B) probability of value A (type T') to occur,

given the occurrence of value B (type U)
P(T'=AlU = B,V =(C) probability of value A (type T') to occur,
given the occurrence of value B (type U) and C (type V)

Acronyms and Abbreviations

ZEP Zero-Effort Procrastination GUI Application

Meme Digital image displaying a specific idea, style or action
(in the context of this project)

Memebase Web Page hosting memes, http://memebase.cheezburger.com/

MySQL Open Source Database, http://www.mysql.com/

OpenCV Open Source Computer Vision, http://opencv.org/

Git Git Code Management, http://git-scm.com/

GIF Graphics Interchange Format,
http://wuw.w3.org/Graphics/GIF/spec-gif89a.txt

JP(E)G Joint Photographic (Experts) Group Graphics Format,
http://www. jpeg.org/

GUI Graphical User Interface

IDE Integrated /Interactive Development Environment

HTML Hypertext Markup Language, http://www.w3.org/html/

URL Uniform Resource Locator, http://tools.ietf.org/html/rfc1738

phpMyAdmin MySQL Browser, http://www.phpmyadmin.net/
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CHAPTER 1

Introduction

1.1 Motivation

Procrastination is an inseparable, important part of our daily life and yet hardly
valued appropriately. Once embraced by the tempting grasp of procrastination
we lose track of time and crucial open issues get decelerated or abandoned.
This seems to be a rather negative outcome but one should not forget about the
relaxing and regenerative effects resulting from procrastinating. Besides profiting
from those beneficial elements one might even solve open issues or make them
obsolete simply by putting the mind in a new scenario.

Unfortunately successful procrastination is not in all cases effortlessly possi-
ble. As an example, directly relating to our cause, one could visit a web page in
expectation to gain some relief by looking at funny pictures but is still forced to
observe unwanted images while browsing.

We want to create a GUI (Graphical User Interface) application displaying
predominantly appreciated images. This way the effort required for procrasti-
nation can be minimized. We will elaborate on this ”application” in the coming
sections.

1.2 Related Work

The probably most prominent example relating to this project is Googles’ ad-
vertising component Google AdSense [1]. Similar to ZEP the objective is to
autonomously display content based on user information. In this case the con-
tent is an advert from a web page in a web browser. Naturally Google collects
enormous amounts of user data and is therefore absolutely capable of predicting
a users taste very precisely. Their application performs very well and many of
us have already been or will be astonished by the amazing accuracy of some
advertisements while browsing. An alike behavior can also be observed on the
pages of online stores suggesting additional items which may be of interest to the
user (e.g. ”Customers Who Bought This Item Also Bought” on Amazon [2]).
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1.3 Target Application

In this section we define the desired final functionality of our application and list
the corresponding requirements for the implementation. We distinguish between
application and algorithm. The term application is used to describe the complete,
final software piece whereas algorithm is used to indicate individual procedures
running inside the application. We will also refer to the application as ZEP.

1.3.1 Basic Idea

The final application should provide a reactive GUI, displaying mostly liked im-
ages upon user requests. In order to determine how much an image will be
liked we integrate an active learning algorithm in our application. The learning
algorithm is called active because it evaluates live user input and continuously
adapts its classification parameters to the new input. We use the term classi-
fication to describe the computation and assignment of a specific value (class,
e.g like-probability) to an image, indicating how much it will be liked. This
specific value is also referred to as classification value. We make use of the term
learning to outline consecutive, adapting classification phases and the dynamical
procedures required by them.

The algorithm knows the total number of images available. To successfully
classify an image, the algorithm requires a distinct set of properties corresponding
to the image, so called features (e.g. text amount, tags). The features should
exist for every image and may take on different values. We use the term feature
type to describe only a certain kind of features (e.g. image size).

The set of images utilized by ZEP is autonomously obtained from an online
source. Depending on the layout of the online source we can directly extract fea-
tures from the web elements surrounding an image. We compute additional fea-
tures by applying computer vision algorithms to the images. The online feature
extraction and the custom feature computation processes are further summarized
under the term feature generation.

The dataset is the collection of all images and their corresponding features.
After importing the dataset, the learning algorithm is able to classify every image
based on its features. As soon as we computed the classification values for all
images, we rank them and display the highest ranked one to the user.

In order to improve our prediction accuracy and actually learn over time,
we continuously should integrate the user input on displayed images. The user
input is nothing but a Like or Dislike label. The process of assigning a Like or
a Dislike label to an image is called labelling.
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1.3.2 Implementation Requirements

In order to provide the desired functionality for our target application we have
to implement the following core components:

Data Acquisition: Autonomous gathering and online storage of the im-
age information of the internet, including feature generation.

Data Analysis: Evaluation and selection of the dataset and feature types
followed by the computation and online storage of additional static prop-
erties required by the learning algorithm.

Data Import: ZEP should import as much data as possible at start-up
to minimize delays during the interactive phase.

Active Learning: Based on the precomputed feature information for each
image and the real-time, continuous user input on images (labelling), the
task of ZEP is to classify a set of subsequent images and order them by
their classification values.

User Interaction (GUI): Ounly the title and the corresponding image are
shown to the user. The user has 3 possibilities to interact with the GUI:

— Like: Labels the current image as liked and notifies the learner.
— Dislike: Labels the current image as disliked and notifies the learner.

— Previous: Displays the previous image, thus enabling relabelling of
any image already visited.

After the user labelled an image ZEP should display the next, most likely
to be liked image based on its classification value.

Note that the term data is used to describe a bigger range of information (images,
features, learning parameters) than dataset while including the dataset as well.

1.3.3 Programming Language

The programming language set for this project is Java. We briefly introduce the
major external libraries, being language features, used in our project:

OpenCV (v2.4.8): The prominent open source computer vision library
OpenCV [3] is used to calculate features from images.

mysql-connector-java (v5.1.29): This library allows easy and fast inter-
facing with a MySQL database [4].

e jsoup (v1.7.3): Jsoup is used for HTML parsing and Javascript querying.

We choose Eclipse [5] as IDE and Git for revision control.
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1.4 Challenges

The main challenges to expect are briefly formulated below.

Feature generation is of major importance since it directly affects the
learning process. The challenge lies in picking and creating the most suitable
feature types for our classification target.

The final performance is resulting solely from the real-time classification
of ZEP. Besides choosing the best learning algorithm the application should run
smoothly and not block at any time during the user interaction phase. Multi-
threading and optimized database operations are considered.

1.5 Limitations

There exist several areas with limitations worth considering:

e Image content: All images are retrieved autonomously from a web page
without further filtering. The content is therefore directly defined by the
community of that web page.

e Feature information: Most of the feature types are plainly extracted
from the web context of the images. This bounds the learning capabilities
to the quality and quantity of community inputs (title text, tags) to an
posting.

e User information: The received user information during the active learn-
ing phase is not guaranteed to be relatively rational and independent. The
performance evaluation is therefore not 100% reproducible.

e Prediction accuracy: Since the complete user input consists only of a
single label per image the prediction accuracy is also restricted. In contrast
to the possibilities we might have resulting from scanning the users’ entire
internet browsing history.
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Approach

2.1 Learning

In this section we elaborate on the learning algorithm. We introduce the funda-
mental concept behind the algorithm, list the features we use for the classification
and thoroughly explain the final learning procedure.

The learning process is the core component of ZEP since its provided classifi-
cation results are crucial for the ranking of images and the subsequent selection
of images to display.

2.1.1 Concept

The appropriate learning method is selected based on the desired classification
output. In our case the classification should provide enough variety to order
the images by the outcome. Therefore we intuitively prefer a learning algorithm
which does not just classify the images as likeable or dislikeable, but assigns the
probability of being one of the two classes to the images.

A publicly available algorithm, perfectly fulfilling these requirements, is the
Naive Bayes classifier [6]. This algorithm is built upon Bayes’ theorem [7].

Theorem 2.1. Bayes’ theorem

P(U = BT = AYP(T = A)
P(U = B)

P(T = AU = B) = (2.1)

We demonstrate the method of the Naive Bayes classifier using our classifi-
cation requirements on a simple setup with 2 feature types.

Note that with this method we are only able to evaluate features by being
present or not (that’s what the probability values stand for in our case). This
limitation is more extensively discussed in the coming passage about feature
types (Section 2.1.2) and will be more clear after the following example.



2. APPROACH 6

We first introduce the following event types with respective values:

Label Y: Y € {1: Like, 0 : Dislike}
Feature (of type 1) Fi: Fy € {1 : Present, 0 : Not Present}
Feature (of type 2) Fb: F5 € {1 : Present, 0 : Not Present}

The probability we are interested in is:
P(Y =1|F1, F, = {1,0})

This value describes the chance of obtaining a Like, depending on the presences
of the features I} and F5. The problem with this property is that we cannot
directly compute it. Thanks to Bayes theorem (Theorem 2.1) we are able to
rewrite the expression as:

P(Fy, Fy = {1,0}[Y = )P(Y = 1)

P(Y = 1|F1, F; = {1,0}) = P(Fy, Fy = {1,0})

(2.2)

with the terms:

P(F1, F» ={1,0}|Y = 1) : Conditional expression to resolve (see below) (2.3)
P(Y =1): Prob. of a Like (identical for all images) (2.4)
P(Fy, Fo» = {1,0}) : Prob. of occurrences for F; and F, (indep.) (2.5)

In order to resolve Equation 2.3 we apply the rules for conditional independence.
This is possible since the features F; and F5 are both conditionally independent
on the Label Y. We obtain:

P(F1,F,={1,0}]Y =1)=P(F1 ={1,0}]Y = 1)P(F, = {1,0}|Y = 1)
These separate, conditional probabilities of a Like for particular feature types

(present or not) can be computed.

The probability of a Like (Equation 2.4) is irrelevant to us since we are finally
only interested in the ranking of the images. The multiplication of all images
with the same value does not change the ranking sequence.

By applying the above findings and use of the law of independence on Ex-
pression 2.5 we can simplify Equation 2.2 to:

P(F = {1,0}]Y = DP(F, = {1,0}]Y = )P(Y = 1)
P ={1,0)P(F> = {1,0})

P(Y = 1|F, F, = {1,0}) =

This equation defines the classification value of an image. The formula can easily
be extended to work with an arbitrary number of feature types, as long as they
are conditionally independent on the Label Y.

(2.6)
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2.1.2 Images and Features

The next important step is the discretization of the features we want to use for
this classification. The resulting feature types define the different probabilities
required by our formula. As a consequence, the choice of suitable features is
crucial for the performance of the learning algorithm.

In our case, the most intuitive way to obtain features is by directly extracting
them from the web context of an image. The source of our images is also the
source of our features.

In order to select the most appropriate data source for our project, we should
get an overview over the different layouts of web pages hosting images. Our most
relevant findings, followed by the choice of the final image and feature source are
discussed in the next passage:

Source Selection

A referencing system, only sometimes seen on web sites hosting images, is the
individual marking of uploaded content with text attributes, so called tags. The
tags are set by the person publishing the image on the web page and can vary in
length and number. Besides tags there exist also more common properties such
as image title, upload date, Like/Dislike counters and comments history.

Because of their individuality and the direct relation to an image, tags are
predestined to be some of the most significant features. We therefore focus on
the tag topology of a page while looking for a suitable source.

Mostly because of the superior tag quality but also the appealing image
content we select the web page:

http://memebase.cheezburger.com/

as our image and feature data source. The site provides access to the history of
almost 5’000 pages, containing over 20’000 images.

Having the feature source and therefore the layout of the web page (HTML)
we can define the feature types to extract. The feature types have to be of the
same present/not present nature as required by our classification Formula 2.6.
This is no issue for the tags, but for other features such as Like/Dislike counters
we have to come up with a sufficiently representative and meaningful present/not
present feature type. Next, we elaborate on the feature types, including the
representation formulas.
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Feature Types

The feature types derived from our data source, including the values they can
attain, are introduced below:

e Feature type Tag: The tags form the most important feature type. This
type is particularly different from the other feature types because it can
occur more than one time per image (e.g. an image with 4 tags contains 4
features of type tag and only 1 feature of type title). Logically, an image
has to provide always at least one tag to be useful for our algorithm. The
tag feature type can obtain the following values:

T { 1 if the tag is present (character string matches)
1 0 else

This means the tag bananas is present for an image containing the tag
bananas, but not for an image with the tag banana. If we only care about
the information whether an image contains at least one banana or none,
one of the tags is redundant. Redundant tags reduce the number of images
per tag, also referred to as tag density, by increasing the amount of tags.

The condition is very simple and at the same time crucial for our learning
performance. It might be possible that a high tag density, which is desirable
for the learning algorithm, is difficult to achieve depending on the tagging
quality of the online community.

e Feature type Liked: This feature type is a combination of the Like/Dislike
counters (nLikes> nDislikes):

1 if NLikes >5
L= NDislikes T 1

0 else

The idea behind this feature type is to stress images that are highly appre-
ciated by the community. The cutoff value (5 in this case) can be adjusted
to raise or lower the required Likes/Dislikes ratio for a Liked image.

e Feature type Hot: The Hot feature type is a more experimental combina-
tion of the Like/Dislike counters and the number of comments (ncomments):

. NLikes + NDislikes
1 if

H = NComments + 1
0 else

<10

As for the Liked feature type the principle is to emphasize certain images
depending on the community responses.
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e Feature type Animated: This feature type simply separates animated
images (GIF) from regular ones (JPG, JPEG):

1 if the image type is GIF
A=
0 else

Due to the display problems of GIF images, the learning algorithm is cur-
rently not considering animated images. This feature type is therefore
obsolete until the GIF functionality of ZEP is re-enabled.

To further supply our learning algorithm with feature information we intro-
duce sophisticated image properties computed by the use of computer vision
algorithms (OpenCV [3]). The feature types are defined as follows:

e Feature type Text: The amount of text in an image is a relevant attribute
since some people might prefer images without much text on them while
others enjoy reading very detailed comic strips. The problem with this
attribute is that the web page naturally does not care about this informa-
tion and hence we have to compute it by ourselves. The computation is
explained in the image analysis paragraph (Section 2.3.2). As the amount
of text in an image is known we can define our feature type:

1 if text amount > 0.25
X —
0 else

This feature type basically tells the learning algorithm whether an image
contains a relatively high amount of text or not.

e Feature type Photograph: Another attractive property is the actual kind
of an image. If we are capable of distinguishing between (computer) draw-
ings and real photographs we can spare a user from getting flooded with
drawings, while he is only interested in photographs. As for the Text fea-
ture type we have to compute this property by ourselves. The photograph
feature type takes on the following values:

1 if the image is a photo
P pu—
0 else

The determination of a photo is thoroughly described in the image analysis
paragraph (Section 2.3.2)

Next, all the feature types mentioned above are summarized in a table and the
resulting final classification formula, based on those feature types, is introduced.



PY

2. APPROACH

Feature Type Letter Derivat

ion Parameter Value

States

Tag T Presence none
Liked L Cutoff 5

Hot H Cutoff 10
Animated A Boolean none
Text X Cutoff 0.25
Photograph P Empirical various

{0,1}
{0,1}
{0,1}
{0,1}
{0,1}
{0,1}

Table 2.1: Features table, containing all feature types.

Image Classification Formula

Knowing all feature types (T, L, H, A, X and P) from Table 2.1, we can redefine

Equation 2.6 into our final classification

N

formula:

i [P(GIY)] PLY)PHIY)PAY)PX|Y)P(PIY)PY = 1)

11> (1), L, H, A, X, P) = 11

i

Where N is the total number of tags for the current image and T; is tag ¢ of
the current image. The respective values of the random variables have been
excluded to improve readability. For Equation 2.7 the following formulations are

equivalent:

for Fe{T,L,H, A X, P}:

Even though the formula and its components are deceptively easy to understand,
the actual computation and application of it by the learning algorithm seems to
be quite abstract. In the following section we address this issue by introducing
the complete learning procedure, including the realization of the classification

formula.

i

[T [P(T:)] P(L)P(H)P(A)P(X)P(P)

P(FlY)=P(F ={1,0}]Y =1)

P(F) = P(F ={1,0})

(2.7)
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2.1.3 Algorithm

For the description of the learning algorithm we take the following elements for
granted:

e Image Provision: The learning algorithm is provided with the complete
image database and can arbitrarily select images from it.

e Feature Provision: The learning algorithm contains the complete feature
information, including the number of occurrences of each feature type in
the database.

e User Input: The resulting label (Like/Dislike) and the corresponding image
after a user action are directly routed to the learning algorithm.

Layout

We define the structure of the learning algorithm as follows. Afterwards, we will
elaborate on the components of this layout.

Random Cycle

Classification Cycle

Classified Image Selection

Image Classification

Figure 2.1: Visualization of the learning algorithm. FKEither one of the loops is
executed every time the user demands a new image. The algorithm keeps running
until the user closes the application.
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Initialization

The first thing to do for our algorithm is to pre-compute all constant values
to avoid unnecessary overhead during the user interaction phase. By taking a
closer look at our Classification Formula 2.7 we find that the probabilities in the
denominator are absolute and therefore remain constant. The probabilities can
be directly computed from the number of occurrences of feature types in our
database:

For any feature type F:

n(r=1) n(r=1)
( ) nr=1) +nr=0)  Nr

P(F=0)=1-P(F=1)

Where n(p_y) is the number of occurrences of this feature type having value 1
(being present) and np is the total number of occurrences of this feature type in
our database.

During the Initialization phase we compute the potential denominator of
our Classification Formula 2.7 for all feature constellations. The only part still
missing is the numerator, formed by the independent, conditional probabilities.
We apply a very simple method to compute the conditional probabilities:

For any feature type F:

PF=1Y =1) = 7”<LNF=1>
F

PF =0y =1) = 7"<L]$“=0>
F

Where Np is the total number of occurrences of the current feature type in our
database and n(f, p—1)/n (1, p—o) are the number of likes of images containing/not
containing the feature type F' so far.

This naive approach offers several advantages but also some disadvantages.
Major advantages are its simplicity and sufficient functionality regarding our
task. A downside lies in its naivete, assuming that a liked feature type auto-
matically implies the users preference for this feature type, which might not be
true.

It is obvious that this method requires a history of liked images to work.
Hence the learning algorithm has always to start with a random image calibration
phase before starting to suggest images.

The only thing we can do during the initialization phase regarding the con-
ditional probabilities, is setting the liked counters for all feature type values to
zero. The counters get incremented after the evaluation of the user input during
the User Input Analysis.
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Random Image Selection

At this point we know the probabilities of all features for being present in an
image. But we do not have any (first image) or require random user information
(subsequent images) to compute the conditional probabilities.

A random image is picked uniformly from the remaining images in the database.
Since random images are potentially unwanted by the user their number has to
be kept as small as possible and Random Image Selection should be avoided
whenever feasible.

Image Display

The image display starts when the learner sends a fresh image (classified or
random) to the GUI and ends if the user labelled the image and requests a new
one. Between those time points the learning algorithm remains idle.

User Input Analysis

After the user labelled an image as Liked or Disliked it is transferred to the idle
learning algorithm. If the image was liked the learning algorithm increases the
corresponding liked feature type counters. If the image was disliked the learning
algorithm only notices the dislike and ignores the feature information. This
section appears to be critical because we have an intentional loss of information.
We chose this solution to avoid the loss of probabilities if the user suddenly starts
to dislike images. In order to fix this issue we would have had to come up with
an alternative learning method.

After the User Input Analysis the learning algorithm decides if a classification
based on the current like counters is meaningful or if a random image should
be displayed. The decisioning is currently manually set by a fixed number of
repetitions per cycle.

Image Classification

In the classification phase the Classification Formula 2.7 is applied to all remain-
ing images in the database. The probability function (see Section 2.1.1) for a
Like of any image is defined as follows (for completeness):

NLikes — NDislikes

2N

P(Y =1)=05+

Where npkes respective np;siikes is the current number of liked/disliked images
and N is the total number of images available in the database.
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Classified Image Selection

The Classified Image Selection is the counterpart to the Random Image Selec-
tion. All remaining images get ranked by their classification value in descending
order. The top image(s) are then transferred to the GUI for the Image Dis-
play. Optimally the learning algorithm always uses the classified path to display
images. Only in that way the effort can be minimized.

In order to increase the application speed, always a bundle of the best, classi-
fied images (currently 10 images) is selected instead of just one. Then the Image
Classification can be run simultaneously in an additional thread, while the user
is clicking through the bundle of previously selected images.

2.2 Data Acquisition

This section is providing an overview of the data acquisition process required by
our application. As stated by the implementation requirements (Section 1.3.2),
the extraction and storage of the data should be as autonomous as possible.
The process of going through online content and extracting information is also
referred to as Web Crawling. We use the term Web Crawler to label the part of
our application responsible for the data acquisition.

We distinguish between image data (actual images) and feature data (fields
such as title, Likes counters, Dislikes counters, etc.). As data source for both
types serves the online Memebase: http://memebase.cheezburger.com/

2.2.1 Image Data

In order to access online image data for manipulation, we have to find the hosted
location of an image by its URL. The easily readable HTML structure of the
Memebase web page allows a simple detection of the body containing the storage
URL for a particular image. We can retrieve the image URL from the HTML
body with a simple HTML parser. Once the image location is known we can
download the image or upload a copy of it to our database.

2.2.2 Feature Data

The HTML parsing for the feature data is not as simple as for the image data.
Since the amount of tags per image is not fixed we have to parse the content
generically. Most features are easy to obtain since they consist only of a single
fixed field entry in the HTML code. To have persistent access to our extracted
data we should insert it into a suitable database structure. The same database
is used for the two types of data.
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2.3 Software Design

Figure 2.2 shows an overview of our software components and their interactions:

/ ZEP P
GuUI

Learning Algorithm

=t

( MySQL Manager

: )

Memebase (Internet)

Figure 2.2: Chart of the software scheme. The structure is defined by the 3 main
components Web Crawler, MySQL Manager, and ZEP. All major interactions
between these components are marked with arrows, where the arrows’ orientation
indicates the direction of the communication between them.

The details of the learning algorithm are described in Section 2.1.3. In some
cases the element box is not part of an arrow (e.g. Computation of Learn-
ing Parameters), which indicates that this functionality is triggered manually
if required. Since the MySQL Manager manages our database, most evaluative
functions are also implemented there.

In the following passages we provide implementation details of the major com-
ponents including relevant sub units.
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2.3.1 Web Crawler

The Web Crawler is a independent application inside the project. Its purpose is
the autonomous acquisition and transformation of image and feature data from
the Memebase web page including final storage in the MySQL database.

The Web Crawlers main functionality lies in HTML parsing. As discussed
in the Data Acquisition passage (Section 2.2) almost all required data has to be
obtained from HTML text. The additional feature generation by the use of com-
puter vision algorithms is elaborated in a separate section due to its complexity.
Nevertheless this post-feature-generation, or so-called Image Analysis is part of
the Web Crawler.

This condition leaves us with the pure HTML parsing for this paragraph.
We used the Java component Jsoup to parse the HTML document into an tree
structure.

With the Jsoup attr function most of the required fields could easily be
accessed. The Likes and Dislikes counters get set by Javascript and are not
included in the initial HTML document. We managed to access the internal
URL, used to retrieve the counters of a particular image by Javascript, over
the Firefox Web Debugger. All acquired data is finally stored in our MySQL
database.

2.3.2 Image Analysis

For the derivation of the 2 additional feature types Text and Photograph (see
Section 2.1.2) we apply OpenCV [3] algorithms to the image data.

Text Detection

We start by computing the amount of text in an image. Text detection is a very
challenging task when aiming for high precision and reliability. Our case does
not require high precision but merely a reasonably low false positives rate to
provide a useful feature.

Upon receiving an image a series of OpenCV functions is executed on the
image raw data. After the successful execution of the 9 steps we receive an
image containing only a few large but many small boxes (Figure 2.3.9). Most of
the small boxes are caused by noise in the image and do not actually indicate a
text area. It is also possible that boxes appear completely within another box.
In order to get rid of the noisy small boxes and the double boxes, we apply
several filtering functions during the post-processing phase (Figure 2.3.10). The
final result of a text detection case and snapshots of the passed stages during
the process are shown in Figure 2.3.
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(7) Simple Thresholding  (8) Canny Edge Detection (9) Bounding Box Detection

(10) Custom Box Filtering  (11) Text Area Marking (12) Final image

Figure 2.3: Compilation of image RGB contents after the respective text detec-
tion stages. The final detected text areas are marked by the green frames in the
last image (2.3.12).
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Photograph Detection

For the second computer vision feature type, we separate drawings from pho-
tographs. A simple approach is to evaluate the color histogram for an image and
define the minimum variety of colors required for being a photograph. From the
histogram we compute the maximum averaged value, the standard deviation and
the mean. By measuring the variations of those attributes for different images
we derive certain thresholds to determine if an image is a photograph or not.
Below we discuss two images with typical RGB histograms:

NOT SURE IF HEADACHE FROM
TOOMUCH,COFFEE

OR NOT ENOUGH|COFFEE @M@L_JLM

(1) Drawing (2) RGB Histogram Drawing

Figure 2.4: Photograph Detection: Drawing. The RGB histogram of the drawing
consists of almost only peaks for each color type. This indicates that large
amounts of the respective color tone have been used in the image (e.g. the blue
color of the wall behind Fry [8]). The distinctive spiky shapes appear for most
histograms of drawings.

(1) Photograph (2) RGB Histogram Photograph

Figure 2.5: Photograph Detection: Photograph. In the RGB histogram of the
photograph we can observe a much smoother distribution of the color values over
the image.
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Since the high color variety is guaranteed for most photographs we are able
to distinguish photographs from drawings just by looking at the histogram plots
in Figure 2.4 respectively Figure 2.5. Our implementation compares the shapes
of histograms by the attributes of the respective curve. In addition to the RGB
histogram also a simple Grayscale histogram can be used with only minor losses
in prediction accuracy, enabling a significant speedup.

2.3.3 MySQL Manager

The MySQL database [4] of our project was hosted by the ETHZ network. The
database can be managed manually over the phpMyAdmin browser interface. A
direct interface to our database is implemented by the CMySQLManager class.

Most of the required I1/O functionality is provided by the java.sql package.
The link to the database is established using the JDBC connector. All MySQL
selections and insertions are done using the prepared statement technique.

In order to use the MySQL functionality a component has to instantiate the
MySQL manager with the correct configuration parameters. Parallel MySQL op-
erations are supported and exception handling immediately reports errors during
the execution of crucial procedures. The MySQL Manager is a standalone com-
ponent and can therefore be run independently on its own.

In addition to its MySQL interface the manager also provides the following
triggerable functionality (see Figure 2.2):

e Computation of Learning Parameters: Once the feature and image data
is acquired, we can compute static properties such as the feature type
probabilities.

e Computation of Diagrams: The complete data acquisition is logged in the
MySQL database. Hence we can easily compute graphical representations
of specific properties in our database (Section 3.1).

e Evaluation of Learning Performance: The learning algorithm continuously
logs its current learning parameters to the MySQL database. For the fi-
nal performance evaluation we only have to assess the information in our
database. This process is implemented by this function.

2.3.4 Learning

We realized the method introduced in Section 2.1.3 in the CLearnerBayes class.
The feature type probabilities are organized through HashMaps. As many steps
as possible are implemented as individually as described in Section 2.1.3.
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In addition to the learning functionality the learner provides the GUI with
fresh images. The learner does not store the actual image data but only the index
of the image in the database. The largest data structures inside the learning
implementation are the Maps holding the feature information.

For the performance evaluation we log every image selection and the corre-
sponding user response to the MySQL database. As previously discussed (Section
2.3.3), the evaluation of the learning sessions is done by the MySQL Manager.
The learner itself has no means of checking its live learning performance.

2.3.5 GUI

Another crucial component of our project is the GUI. The most important re-
quirements are discussed in Section 1.3.2. We implement the CGUI class using
the javax.swing package. The component is directly instantiated by the Java
main method and notifies the learning algorithm for image requests or labels.
Additionally, we integrate the KeyListener interface to enable convenient key-
board control of the GUI buttons. A Screenshot of the final GUI layout of ZEP
is displayed in Figure 2.6:

ZEP: Zero-Effort Procrastination

O R'leyh?

Figure 2.6: Screenshot ZEP GUI. The interactive elements Previous, Dislike and
Like are clearly visible and mark their controllability by the arrow keys. The
window is scalable and freshly requested images automatically adapt their size
to the new frame size.
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CHAPTER 3

Results

3.1 Data Acquisition

In this section we show multiple diagrams deduced from the autonomous Web
Crawling phase (defined in Section 2.2).

3.1.1 Data Growth

The Crawling was done within two sessions. The numbers of images from both
Crawling sessions add up to over 20°000. Both sessions were executed on a single
Laptop and took over 24 hours in total to complete.

Tag Density Graph

Data Growth
120000 w ‘ ; 12 ‘ ‘
— Features
——Tags
- - -Images
100000+ ]
80000 1
Z
60000 -
o0
<
E
40000 1
200007 o AT )
Q=" I L L L I L L L
5000 10000 15000 20000 25000 027, 5000 10000 15000 20000
Image Number Image Number
(1) Images and Features Growth (2) Tag density

Figure 3.1: Comparison of the images and features topology. The growth of
the tags is also displayed separately. The initially positive trend and the final,
unsatisfactory result of the tag density (defined as the ratio: ITT”Zgg:s, see Section

2.1.2) can be observed in the diagram to the Right.
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3.1.2 Tag Frequency Cutoff

22

In order to raise the tag density and therefore strengthen the Tag feature type we
chose to filter our database by tag frequencies. By tag frequency we understand
the number of appearances of a certain tag in different images. The filter pass
criterion was the minimum tag frequency at least one tag of an image had to

provide.

As a result, images containing only nearly unique tags got discarded and
the final tag density could be raised by a factor of over a hundred compared to
the original situation. This was only possible due to the negligible number of
discarded images relative to the total dataset. The effects of the minimum tag
frequency (also referred to as tag frequency cutoff) on the dataset are shown in
Figure 3.2, including our final choice for the cutoff value.

. Images(s
Ratio n(z): ng;q(i)(ﬁ

Cutoff Relation

Nmaz = 81.1148(;1; = 1()4)
| 20000

150001

Number of Images

10000

5000

L

—Tags (total: 21321)
——Images (total: 22609) I
- - - Current cutoff choice (104)

cutoff 104: images=16953, tags=105

0

x: Cutoff frequency

(1) Utility Function: Ratio n(x)

1000 2000 3000 4000
Cutoff frequency

(2) Relation: Images to cutoff

Figure 3.2: Display of the tag frequency cutoff evaluation. The decision for the
best cutoff was made by defining a utility function, expressing the normalized
tag frequency, and computing the position of its maximum value (shown in the
left figure, Figure 3.2.1). To the Right (Figure 3.2.2), we drew the number of
images for a particular cutoff. The cutoff value of our choice is marked by the

dashed, vertical line.

This choice defines the dataset for the learning algorithm. With a cutoff
value of 104 we possess 16’953 images to display.
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3.2 Learning

The point of this section is to clarify the assessment of the performance data from
the learning algorithm. We will discuss the results firstly in the next chapter. We
cover the performance evaluation of 3 distinct sessions to mediate our findings.
The evaluations can be computed any time after the user closed the application.
All performance evaluations of ZEP were performed unsupervised. We provided
people interested in testing with the required binaries including simple scripts
to run the application.

We start with a performance diagram of ZEP in one of the first configura-
tions (Figure 3.3). The configuration is determined by the settings of random
and classification cycles and the images available to classify. We defined the
properties Netto Likes (npikes — Npistikes) and Probability of Like (classification
value of an image) as the most relevant elements regarding the performance di-
agram. By analysis of the correlation between the two resulting curves one can
directly draw conclusions about the influence of ZEP. In the first configuration
ZEP had only access to a limited amount of images for classification (Limited
Classification).

Performance excluding Random Images: User [themanuuu]
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Figure 3.3: Learning Performance with Limited Classification. For this case we
set the Initial Random Selection cycle to 20 images and every 50 subsequent
images we triggered another Random Selection cycle for 10 images. The random
cycles are the shaded bars visible in the left figure (Figure 3.3.1).

The probability curves (blue) and the reason for their thread-like appearance
in this case are discussed in the next chapter. The right figure (Figure 3.3.2)
excludes the Random Selection cycles and shows the pure influence of ZEP.
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Figure 3.4 and Figure 3.5 show the performance of ZEP with the final config-
uration. For both evaluations the initial Random Selection phase lasts 20 cycles
and we insert only one randomly selected image after every series of 9 classified
images. Additionally we allowed the learning algorithm to access the complete
dataset for each classification (Unlimited Classification).
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Figure 3.4: Learning Performance 1 with Unlimited Classification. The prob-
ability curves appear smooth and the correlation of the two curves is easier to

observe than in the previous situation (Figure 3.3).

(2) Performance without Random Selection
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Figure 3.5: Learning Performance 2 with Unlimited Classification. This sample
is included for the result analysis because of its inconsistent, flickering Like rate.

(2) Performance without Random Selection
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CHAPTER 4

Discussion

4.1 Achieved Performance

In this passage we evaluate the correlation between the curves in the diagrams
(see Section 3.2) to draw conclusions about the performance of ZEP.

4.1.1 Limited Classification

Performance excluding Random Images: User [themanuuu]
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Figure 4.1: Learning Performance with Limited Selection. The thread-like prob-
ability strips (blue) in Figure 4.1 occur because the learning algorithm runs out of
matching features to classify the images, due to the limited image pool available
for classification. This means that ZEP could not provide Classified images for
selection during the Classification cycle and therefore the real amount of random
images is higher than indicated.

The beneficial effect of ZEP on the Netto Likes curve is easily observable,

but since the Classification cycle was limited, the relation is not completely
transparent.
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4.1.2 Unlimited Classification

Performance excluding Random Images: User [memyself]
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Figure 4.2: Learning Performance 1 with Unlimited Classification. The calibra-
tion phase is completed after roughly 60 images and the nicely correlated curves
underline the accurate predictions of ZEP.
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Figure 4.3: Learning Performance 2 with Unlimited Classification.

We analyse Figure 4.2 and Figure 4.3 simultaneously. Both diagrams were
obtained with the Unlimited Classification configuration. There are no more
thread-like probability function values visible as in Figure 4.1 because of the
unlimited amount of images (from the dataset) to classify. For Figure 4.3 we
observe a completely different behavior for the first 60 images. The rapid growth
of Probability for a Like goes hand in hand with a rapid decrease of the Netto
Likes indicating that the user strongly disliked the content presented by ZEP.

Netto Likes

Netto Likes
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This distinct phenomena (the same situation occurs again at around 100
images in Figure 4.3) is a result of the Unlimited Classification configuration.
Because of the availability of all images the learning algorithm is capable of pro-
viding images which perfectly match the liked content so far. This means that if
images with highly overlapping features are liked, the learner will provide similar
ones in his turn. Optimally this leads to even more Likes but it can also annoy
the user since the content variety shrinks dramatically, which happened in this
case. We call this effect spiral because of its increasingly growing effect. Besides
the negative spirals we can observe positive predictions for a slight majority of
images.

4.1.3 Tag Analysis

After the performance evaluation sessions we computed rankings for the top 10
liked and disliked tags. Figure 4.4 shows the resulting diagrams.

Tgp 10:‘ Tag§ Disli}{ed ‘

T“op 1Q: Tags Likfed
54/113
56/133 42/100

37/100 42/118 35/99

64/193
56/196

26/109
2221 2098 227110 |

55/180 32/107

33/131 28/113 24/98

Relative frequency [disliked /available]

Figure 4.4: Top 10 Tags over all Performance Evaluations. In order to avoid
the ranking of only tags with high frequencies we normalized the tag counts
by their respective frequency. The numbers at the top of the bars display this
method. Bars with a high number of tag frequencies indicate a strong presence
in describing the overall users taste.

Note that some tags show up in the Liked as well as in the Disliked ranking
(e.g. justing bieber, halloween and even jesus). This might be because of the
previously mentioned spiral effect (see Section 4.1.2). From that we can tell that
a user started to like predominately images with the same tags (e.g. justin bieber)
and got caught in a spiral. The user naturally started disliking the incoming,
annoying flood of images containing mostly these tags and this is the reason why
we obtain the same tags in both rankings in the end. On the other hand, these
double listings could also result simply from opposing user tastes.
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4.2 Final Conclusions

Conclusively we can say that ZEP achieved its target of reducing the amount of
effort for procrastination. For most of the users ZEP was able to recommend a
majority of appreciated images. But there were also cases where ZEP was not
able to sustainably provide images the user liked. Some possible solutions for
this matter are discussed in Section 4.4.

4.3 Applications

The purpose of ZEP is to enhance procrastination. ZEP is attractive for people
regularly browsing funny picture web pages (such as Memebase). This group
of people is usually highly content sensitive and each individual has its own,
preferred source of images. Since ZEP is currently bound to the Memebase it is
difficult to be a considerably tempting alternative to the users favorite web page.

For an alternative application, the manually triggerable performance evalu-
ations of ZEP could allow web pages to benchmark their images. In this way,
they could establish a high quality of their image database.

4.4 Future Work

There exist various enhancements applicable to ZEP. We list a selection of what
we consider the most important:

e User Profile: In the current state, all learning parameters for a specific user
get discarded as the ZEP applicationg gets closed. By enabling a persistent
login for a user and storage of all learning sessions, ZEP could create a user
specific profile. The profile could be loaded as soon as the corresponding
person logs into ZEP and the person could enjoy effortless procrastination
from the start.

e GUI Modification (GIF): Animated images (GIF) are currently disabled
because of display issues. If those issues can be resolved we could also
extend our image selection to animated images and provide a whole new
content spectrum.

e Web Page Selection: All images currently displayed originate from the
Memebase (http://memebase.cheezburger.com/). By enabling the crawl-
ing of custom image sources we could provide images from the preferred
source of the user without him bothering to view unwanted images. In this
state ZEP, could become a real threat to browser based image viewing.


http://memebase.cheezburger.com/

APPENDIX A

Application Guide

A.1 Dependencies

The complete source code is available on: pc-5413.ethz.ch/domis.git

The ZEP main method is located at:
domis/src/main/CMain. java

The Web Crawler main method is located at:
domis/src/crawling/CCheezcrawler. java

The MySQL Manager main method is located at:
domis/src/utility/CMySQLManager.java
The project can be imported into Eclipse with the following steps:

1. File = New = Java Project
2. Location: ZEP folder (src directory is not visible)
3. Project Name: domis (same as the ZEP folder after checkout)

4. Default Options = Finish

In order to compile and run the Web Crawler, the OpenCV library has to be set
up for Java Eclipse: http://docs.opencv.org/2.4.4-beta/doc/tutorials/
introduction/desktop_java/java_dev_intro.html

Additionally a runnable version of ZEP is provided in a zip file.

A-1


pc-5413.ethz.ch/domis.git
domis/src/main/CMain.java
domis/src/crawling/CCheezcrawler.java
domis/src/utility/CMySQLManager.java
http://docs.opencv.org/2.4.4-beta/doc/tutorials/introduction/desktop_java/java_dev_intro.html
http://docs.opencv.org/2.4.4-beta/doc/tutorials/introduction/desktop_java/java_dev_intro.html

APPLICATION GUIDE

A.2

Tutorial

All information required to run ZEP is included in the readme file:

A-2

RUN GUI:

- open a console
- change to directory: zep
- make sure the folders bin and thirdparty are visible

LINUX:
- run:
java -cp bin/.:thirdparty/*: main.CMain

WINDOWS
- run:
java -cp bin\.;thirdparty\*; main.CMain

KEY BINDINGS:

[Escape] : Quits GUI and closes the application

[LEFT ARROW KEY] : Visit previous image - deletes the last classification action
[DOWN ARROW KEY] : Classifies the current image as Dislike - opens next image
[RIGHT ARROW KEY]: Classifies the current image as Like - opens next image

TROUBLESHOOTING:

- Command java not found: make sure the java binary path is set in the $PATH environment variable
- Make sure to use a unique username without any magic, hebrew letters
- Continuous logging available through the console

CONFIG FILE:

- Create a local file: config.txt in the zep directory (top level)
- Make sure to set the MySQL login information correctly (username, password)
- The file has the following syntax (only the lines with = signs matter)

//ds GUI
m_iWindowWidth=1200
m_iWindowHeight=800

//ds MySQL
m_strMySQLServerURL=jdbc:mysql://pc-10129.ethz.ch:3306/domis
m_strMySQLUsername=username

m_strMySQLPassword=password
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