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Abstract

Accelerometers have been included in different consumer devices for a couple
of years. They started being used for specific applications like detecting if a
hard disk is being dropped or which way a camera is being held. Today, every
smartphone is equipped with accelerometers, often combined with a gyroscope
and a magnetic field sensor, open to be used by developers. This has proven
to be a great opportunity for new applications, ranging from pedometers[1] to
sleep phase alarm clocks[2]. Also, accelerometers are used in lots of recent video
games.

In this thesis, we are trying to stabilize a smartphone’s screen that is being
held by a walking person. By analyzing the built-in sensors of the device, we
are deciding on how to shift the content of the screen. The purpose of the sta-
bilization is to increase readability for the person holding the phone. This could
prove especially useful for applications like pedestrian navigation instructions.
Different approaches are tested and evaluated in a prototype application.

We use four different stabilization approaches consisting of direct feedback,
position estimation, improved position estimation with the help of a PID Con-
troller, and using a hidden Markov model (HMM). The HMM is the most promis-
ing approach. This thesis provides first research steps for applications that need
to use content stabilization.
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Chapter 1

Introduction

In the last few years, the use of smartphones has increased rapidly. People now
spend more time on their phone than on their computers[3]. People want to be
always connected, wherever they are, whatever they are doing. In our experience,
using a smartphone while walking brings some inconveniences: because of the
shaking, it is imprecise to use the touchscreen and text is hard to read. Often,
it is required to slow down in order to complete an action or to read a body of
text.

1.1 Contributions

In this semester project, we explore ways to increase the readability of a smart
phone’s screen content for a person while walking. We do this by shifting the
content, using only the sensor data provided by the device. We show that there is
a correlation between the sensor measurements and the desired stabilization. The
main focus lies on finding and researching different approaches and on exploring
their effectiveness.

1.2 Related Work

Our work is related to the image stabilization system of a camera. Image sta-
bilization uses real-time sensor data to move parts of the camera (either a lens
element or the image sensor itself) in a way that stabilizes the projection of the
image. The stabilization of the image that needs to be captured on the image
sensor is a similar problem as stabilizing screen content relative to a walking
user’s reception.

Apple filed a patent in 2007 that proposes to scale elements of the user
interface (UI) based on movement[4]. For example, text and interface size would
become bigger if the phone’s measurements suggested that the user is moving
(Figure 1.1).
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1. Introduction 2

Figure 1.1: Apple patent: Variable Device Graphical User Interface—[4], filed
Nov. 8, 2007. The screen content, such as row spacing and font size, changes
depending on the device’s sensor data in order to allow for easier interaction
(left: standing still, right: moving).



Chapter 2

Stabilization

In this chapter, we describe our stabilization approaches and their prerequisites.
Basically, we use sensor measurements to compute the required screen offsets
in different ways. These offsets represent the absolute distance that the screen
content needs to be moved to achieve the stabilization. We use sensor data for
our approaches based on the assumption that they are correlated with the offset
(we analyze this in Section 2.2).

In order to test the stabilization attempts, an application that can be ex-
tended for different scenarios has to be developed (Chapter 3).

2.1 Sensors

An array of sensors is built into recent smartphones. Most of these phones include
accelerometers and light sensors (to manage display brightness). Certain devices
include gyroscopes, proximity and magnetic field sensors, some even have built-in
temperature and ambient humidity sensors. The Android Software Development
Kit (SDK) allows for easy access to all of these sensor data, independent from
the sensor and device type[5].

2.1.1 Accelerometer

An accelerometer returns the current acceleration that is applied to the sensor’s
axes (Figure 2.1), in m

s2
. Naturally, this includes the gravitational acceleration of

approximately 9.81m
s2

. This is handy to discover the current orientation of the
device, since we can use it to detect where the ground is. But it is a disadvantage
for our usage; we only want to look at the acceleration the device experiences
by the user’s movement. This is why we need to extract the gravity component
from the accelerometer. It is not possible to have a sensor that measures this,
we can only approximate it using the given sensor data.

Fortunately, the Android SDK added Linear Acceleration and Gravity sen-
sors starting in 2011. Basically, the values recorded by the accelerometer are

3



2. Stabilization 4

Figure 2.1: the sensor coordinate system[5]

separated into a gravitational and a linear acceleration, possibly using the help
of other sensors. While initially done in software, today’s devices include this
functionality in hardware. In Section 2.3, we will look at these values to check
if this separation is sufficiently accurate for our case.

2.1.2 Gyroscope

The device offers the ability to record the rotation rate of a device using its
gyroscope. It provides the rotation rate around the axes with a unit of rad/s.
While the acceleromter provides the most interesting sensor data for our use, we
can use the gyroscope as supplemental information.

2.1.3 Magnetic Field

The Magnetic Field Sensor measures the ambient geomagnetic field in µT (in
x-y-z directions). It can be used to sense the (absolute) rotation of the device.
Unfortunately, the measurements are easily disturbed and therefore not reliable.
We will not use the Magnetic Field Sensor for this project.

2.2 Data Collecting

In order to develop the desired stabilization, we need to develop an application
that records and timestamps the output of the chosen sensors. We can later use
this data to visualize and try to understand the relationship between sensor data
and the need for stabilization.
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Figure 2.2: screenshot of the sensor data storage application. The number is the
current timestamp in nanoseconds.

The Application records Accelerometer, Gravity, Linear Acceleration and
Gyroscope in the fastest rate possible by the framework, and outputs each into
its own file, ready to be used by other applications (example: Figure 2.3). To be
complete, the front-facing camera of the smartphone is recording, too.

2.3 Selecting Relevant Data

When looking at the recorded test data from both the Linear Acceleration and
the Gyroscope (Figure 2.4), only the Linear Acceleration’s y-axis shows a pro-
nounced output through the whole period. Each peak-valley pair corresponds to
one step. We are not able to distinguish between left and right steps. It might
be useful to use the Gyroscope’s y-axis as supplemental input since its readings
look consistent after the first two steps.

Our test data show no periodicity for the horizontal axis. This means that
we will limit our stabilization efforts to the vertical axis for approaches that rely
on periodicity.
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Figure 2.3: Linear Acceleration sensor data recorded by sensor data storage
application, x-axis: discrete sensor data (1442 samples), y-axis: acceleration m
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Figure 2.4: sensor data from Linear Acceleration and Gyroscope sensors: walking
6 steps
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2.4 Approaches

For our stabilization, we are looking at four different approaches, beginning with
the Direct Feedback that only uses the current sensor value (Section 2.4.1). We
start using past sensor values for Position Estimation (Section 2.4.2). Using a
proportional-integral-derivative controller (Section 2.4.3) and a hidden Markov
model (Section 2.4.4), we look into two complex approaches.

2.4.1 Direct Feedback

The idea behind this approach is to directly equalize every acceleration the phone
experiences. If the phone experiences an acceleration upwards, we try to shift
the content equally downwards. Primarily, it was implemented to verify the
prototype application’s functionality, but it might have its justification: under
the assumption that the phone’s movement can be approached by a sine curve,
the stabilization using this approximation would be optimal. This is because the
second derivative of sin(x) is −sin(x) (Figure 2.5)

0 100 200 300 400 500 600 700 800 900 1000
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error

Figure 2.5: direct feedback that is stabilizing a sine movement

Analysis

When using this approach, we notice that the stabilization does not work. Our
data shows that the phone’s acceleration while walking can not be approximated
by a sine curve (compare Figure 2.3). The result is that the content only can be
stabilized by this approximation if we intentionally move the phone in sine. For
different movements, either shaking is increased or the movement of the content
feels delayed. It is not enough to only look at the current sensor reading; we
need to use past values in order to get a good stabilization.
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2.4.2 Position Estimation

With this approach, we are attempting to stabilize movement by continuosly
calculating the phone’s offset from a reference point. For this, we store a certain
number of recent acceleration values and pass them to an iterative algorithm.

Algorithm

The Android framework provides us with value pairs consisting of acceleration
and their timestamp. To convert these accelerations a[t] first into speed v[t] and
then into absolute distances x(t), we use the following iterative algorithm:

v[tn] = v[tn−1] + a[tn] · (tn − tn−1) (2.1)

x[tn] = x[tn−1] +
1

2
· (v[tn] + v[tn−1]) · (tn − tn−1) (2.2)

We require starting values for the speed v and the distance x, so we assume
that x[t0] = 0 and v[t0] = 0.

Analysis

When testing, it becomes obvious that this approach does not work. The sensor
data is not precise enough to be integrated over large portions of time. Doing
an integration of the Linear Acceleration values would be realistic to do over a
few seconds at most. Unfortunately, this is not sufficient: since our approach is
doing a double integration (m

s2
to m), we need to know the position as well as the

speed at the start of the integration. That would mean, we would have to do a
calibration at the beginning and always integrate over the whole period. This is
always a big issue for doing this type of double integrations because even small
inaccuracies lead to big errors.

2.4.3 PID Controller

As an attempt to keep the approach of doing a double integration from the Po-
sition Estimation (Section 2.4.2) despite working with inaccurate sensor values,
we compensate the error propagation by using a PID Controller.

Theory[6]

A Proportional-Integral-Derivative-Controller (short: PID Controller) can be
used to regulate various systems. A standard application would be the control
of a valve so that a certain amount of liquid continuosly flows through it. The
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controller output u(t) is dependent on the error function e(t), which describes
the difference between the target and the measured value. It consists of a pro-
portional ”P”, integral ”I” and derivative ”D” element. They come together in
the following equation:

u(t) = Kpe(t)︸ ︷︷ ︸
proportional

+Ki

∫ t

0
e(τ)dτ︸ ︷︷ ︸

integral

+Kd
d

dt
e(t)︸ ︷︷ ︸

derivative

(2.3)

The Proportional term is directly dependent on the current error. With the
Integral term, the error gets summed up over time so that the control becomes
stronger the longer there is an error. This can lead to a so-called ”overshoot”
in the control behavior. This is the reason for the Derivative Term: it looks at
the rate at which the error changes; if it changes too rapidly, it decreases the
output, effectively acting as a damper. A lot of real-world systems do not use
the derivative element (and are therefore only PI Controllers). Kp, Ki and Kd

are the gains for each respective element and used to tune the PID Controller.

Tuning a PID Controller by hand can be extremely difficult; often, the
Ziegler-Nichols method is used. It states default values and gives instructions
on what to change by observing the system behavior. For industry uses, there is
software that takes over the job of PID tuning.

In our scenario of stabilization, u(t) denotes the distance that the content
has to be shifted. The error e(t) is calculated by subtracting the current offset
from the Position Estimation over the last few seconds.

Analysis

For us, a PID Controller looks appealing since we can dampen some of the wrong
output the Position Estimation causes, delivering smoother stabilization results.
As we try to tune the parameters of the PID Controller, we see that this approach
does not serve our purpose: we notice that the wrong movement is stabilized.
What we are attempting to stabilize is the absolute movement of the device, but
what we actually need to stabilize is the movement relative to the observer’s
eyes.

Even though this approach retains the issues we have with Position Estima-
tion, it might be possible to find a tuning where the phone’s absolute movement
is stabilized. It is not possible to stabilize it for relative movement. We need
an approach where the sensory input and the offset output are not directly con-
nected.
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2.4.4 Hidden Markov Model

One possible approach that does not directly stabilize based on the sensor data is
by using a hidden Markov model (HMM). Since this model is extremely flexible,
it is important to choose a clever setup to be able to get a decent output. For
this, we need to gather test data and process them in a way to determine a
reference step.

Theory[7]

A hidden Markov model allows us to map a sequence of observable data (called
emissions) to a finite state machine (FSM). In our case, we can look at the
measured accelerometer data and use the so-called Viterbi algorithm to map
each sensor measurement to a state of the FSM. This allows us to see in which
segment of the step we currently are - and shift the screen’s content accordingly.

The hidden Markov model is defined by two matrices: a state transition
probability and an emission probability matrix:

• The state transition probability matrix T is a NxN matrix, where N is the
number of states of the FSM. Ti,j describes the probability of transitioning
to state j when currently in state i.

• The emission probability matrix E is a NxM matrix, where N is the
number of states of the FSM and M is the number of possible emissions.
Ei,j describes the probability of the output being the symbol j given that
the FSM is currently in state i.

Additional Data Collecting

To be able to work with the HMM, we need to find a link between the acceleration
data and the relative motion between the device and the eyes of the subject. For
this, we mount a portable video camera to the head of the test subject and record
the movement of the device with high frame rate (Figure 2.6). For reference, the
application displays a timestamp for each frame it displays (Figure 2.2).

By analyzing the recorded video frame by frame, we can measure the offset
and note its timestamps. When we compare the acceleration data to the offset,
we see a relationship (Figure 2.7).

Creating a Reference Step

For the emission probability matrix, we need to find the relation between the
currently measured acceleration and the position in a walking step. For this, we
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Figure 2.6: portable video camera mounted to the head of the test subject
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Figure 2.7: acceleration data and movement between the device and the subject’s
eyes (vertical), 3 steps

isolate steps out of our test data and calculate mean and deviation for each value
pair (Figure 2.8). We use this data as a reference step.

Creating the HMM

We have all the data we need to create a state transition probability and an
emission probability matrix:

• For the state transition probability matrix, we create a loop. If the person
takes one step, the state machine should have gone through the whole loop
once. To be able to work with different walking speeds, we do not just
allow going from one state to the next in the loop; we allow staying in the
same state, and we allow skipping a state (Figure 2.9).
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Figure 2.8: reference step: mean ± deviation
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Figure 2.9: transition probabilities of state n

Ti,j =


0.15 if i = j

0.7 if i = j + 1

0.15 if i = j + 2

0 else

(2.4)

• To calculate the emission probability matrix, we first need to decide on how
to convert the continuous accelerometer values to discrete emissions. We
decide to use 41 possible emissions for our calculations; we use the values
from −2.0 to 2.0m

s2
rounded to intervals of 0.1m

s2
. Using the means and

deviations of the reference step, we can calculate the emission probability
matrix (example for emission 20 in Equation 2.5, result in Figure 2.10).
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E(i, 20) =

∫ −0.05

−0.15

1

σi
√

2π
e
− (x−µi)

2

2σ2
i︸ ︷︷ ︸

probability density funct.

dx =

[
1

2

[
1 + erf (

x− µi√
2σ2i

)
]

︸ ︷︷ ︸
cumulative distr. funct.

]−0.05

x=−0.15

(2.5)
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Figure 2.10: emission probability distribution, states on x-axis and emissions on
y-axis

As an approximation, we assume that the movement between the device and
the subject’s eyes corresponds to a sine wave (compare Figure 2.7). This means
that one cycle through the FSM will move the content of the screen in one
complete sine wave.

Experiments

Using the hidden Markov model we can compute the Viterbi algorithm in order
to find the most probable path, given a sequence of emissions. We do this by
rounding the Linear Acceleration values to the next possible emission (steps of
0.1m

s2
). All the Viterbi algorithm requires is a sequence and the two previously

determined matrices. We use MATLAB to confirm that the model is working,
(see Figure 2.11).

Because of time constraints, we are not able to test the approach of the hidden
Markov model in our prototype application. We have shown in theory that the
state recognition works. Unfortunately, it is hard to tell if the stabilization would
work without having a hands-on experience; part of the stabilization is how it is
perceived by the test subject.
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Figure 2.11: Viterbi algorithm used on a sequence of emissions. The output
should approximately look like a sawtooth wave because the corresponding HMM
is a loop.

Modifications

In case we notice that our chosen HMM is not precise enough, we have a couple
of options to improve its accuracy:

• Improving the matrices: MATLAB provides functions where we can
input test sequences of emissions and our own state transition probability
and emission probability matrices. The function attempts to improve the
two matrices in a way that state transitions become clearer[8]. It can use
the BaumWelch or the Viterbi algorithm for that.

In order to achieve good results with this method, a lot of test data should
be provided, ranging from walking very slowly to fast - maybe with different
subjects walking.

• Make a finer separation for emissions: We decided on an arbitrary
number of possible emissions. We could increase those by using a finer
grading (for example 0.05m

s2
intervals between emissions).

• Use emissions that are dependent on the derivative: We can create
more emissions by not only considering the acceleration but also its deriva-
tive. For example, we could have three times as many possible emissions
when we separate each emission by looking if the derivative (change from
the last emission) is currently positive, neutral or negative. We could use
data from the gyroscope in the same way.



Chapter 3

Implementation

Our stabilization prototype runs on Android and is developed in Java. Since
Java is an object oriented language, we are able to use a very modular approach,
where every part of the application can be switched out on demand. This allows
for great code reusability which is useful for our different approaches.

3.1 User Interface

The User Interface consists of a generated image that contains text in different
sizes (Figure 3.1). For each frame, the interface procedure requests a coordinate
from our stabilization model. The coordinate describes to which position the
image should be moved, as an offset in meters from the center of the screen.
This offset is then mapped to a pixel value on the screen by using the display’s
specifications.

3.2 Modules

The modular structure of the program allows us to extend the functionality of
the program on demand. For example, if we need our model to have access to
old sensor values, we can add a Cache class that lets us access those. We can
reuse the same model for future models or extend the Cache class to suit future
needs (for example Figure 3.2).

StabilizationModel

The StabilizationModel is an interface that is called from the interface procedure
whenever the screen is redrawn. It returns a coordinate that corresponds to the
offset the screen content should have at this time (in meters). It is implemented
and extended for all tested approaches (Direct, Estimation, PID). In Figure 3.2,
we show how it is extended to use sensor data.

15
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Figure 3.1: Screenshot of the Stabilization Prototype

<<Java Class>>
SensorStabilizationModel

ch.ethz.kjeisy.realtimestabilization.framework

sensorManager: SensorManager
sensor: Sensor

SensorStabilizationModel(Context)
pause():void
resume():void

<<Java Interface>>
StabilizationModel

ch.ethz.kjeisy.realtimestabilization.framework

getPosition():Coordinate
pause():void
resume():void

Figure 3.2: example of an extended functionality



Chapter 4

Conclusion

4.1 Results

In this thesis, we were able to find and implement different approaches to stabilize
a screen’s content for a walking person. Our prototype application has helped
us to determine if those approaches are suitable for effective stabilization.

By testing the direct feedback approach, we showed that the stabilization
needs access to past sensor values. When trying to estimate the current offset by
integrating the acceleration to an absolute distance, we noticed the inaccuracy
of the sensor data. We discovered that the seperation of the stabilization from
the sensor data is beneficial. Using a hidden Markov model, we have achieved a
good stabilization in theory.

4.2 Future work

Based on the results of this project, three interesting projects come to mind:

• Using the HMM in Java, it would be possible to first tune the parameters
in a way that stabilizes the content of the phone properly. Also, it would
be great to see the stabilization in use for a real-life application like a text
reader or a browser.

An interesting idea would be to implement the stabilization on a lower
level, to put the stabilization into the Android system. Of course, this
would bring up an array of questions that would need to be answered first.

• With the flexibility of hidden Markov models, it would be interesting to see
if it is possible to detect different situations (walking/not walking, sitting
in a bus etc.) and use an appropriate stabilization for each situation.

• Since our trials with the Position Estimation (Section 2.4.2) did not work
with our approach, it would be interesting to check if it could be done
anyway. This would require some sort of Sensor Fusion, where different

17
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sensor data would need to be combined. In case this could not be applied
to our initial problem of stabilization while walking, it could be used for
other purposes; an example would be to browse a map by moving the phone
through 3D space.
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