
Distributed
 Computing

Torrent Recommendation System
Based on Data Gathered from the

Mainline DHT

Bachelor Thesis

Pascal Widmer

pawidmer@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Christian Decker

Prof. Dr. Roger Wattenhofer

April 22, 2015

Abstract

BitTorrent is the most widely used peer-to-peer file sharing protocol and attracts
millions of users every day. It allows for easy distribution of all sorts of files
including movies, TV shows, music, games, and other applications. In this thesis
a closer look is taken at what files users are sharing. To acquire the necessary
information a list of active torrents and in particular their infohashes is extracted
from a popular torrent indexing website. In a second step all peers sharing a
given torrent are found using look-ups in the Mainline DHT and aggregated in a
database. After gathering enough data torrent recommendations are calculated
using the technique of collaborative filtering. These are then presented to visitors
on a website.

i

Contents

Abstract i

1 Introduction 1

1.1 Related Work . 1

2 Background 3

2.1 BitTorrent Protocol and Torrents 3

2.1.1 How BitTorrent works . 3

2.2 Mainline DHT . 5

3 Implementation 6

3.1 Torrent Crawler . 7

3.2 DHT Crawler . 7

3.3 Recommender System . 8

3.3.1 Item-item-based Collaborative Filtering 8

3.4 Website . 10

4 Evaluation 11

5 Conclusion 13

Bibliography 14

ii

Chapter 1

Introduction

Ever since distributed hash tables (DHT) became popular as an addition to
trackers a lot of work has been done in regards to monitoring the DHT and
its users. Probing the DHT and capturing messages exchanged between nodes
helps uncover performance bottlenecks and design flaws and it allows to analyze
the composition of its users. In particular the user’s geographic locations, their
seeding behavior within swarms and their average stay in the network have been
examined. Only rarely did studies investigate which torrents users of the DHT
were sharing. In this paper the torrent indexing website kickass.to1 is accessed
and infohashes of over 6 million torrents are extracted and stored in a database.
They are used to uniquely identify the torrent and serve as a means to find
all peers sharing the torrents in the Mainline DHT. A complete recommender
system is built on top of this data helping users of the DHT find similar tor-
rents. Naturally it is not possible to monitor all torrents and their peers at any
given moment using the DHT, but to build a recommender system complete
information is not required and a representative sample of peers suffices. A rec-
ommender system which uses the common technique of collaborative filtering
similar to what the online shop Amazon [1] has implemented is used to calculate
predictions.

1.1 Related Work

Much research has been done on the topic of monitoring users of torrent DHTs.
Jünemann et al. developed a DHT crawler which monitors the number of peers
in the DHT and the peer’s IP addresses, used port numbers, countries of origin
and session lengths [2]. Memon et al. developed a crawler which monitors traffic
within the DHT [3]. Scott Wolchok and J. Alex Halderman [4] show how a
torrent search engine of over one million torrents can be recreated by crawling
the DHT used by Vuze, a BitTorrent client previously known as Azureus. Their
DHT crawler makes use of a well known exploit called sybil attack. The attack

1https://kickass.to/

1

1. Introduction 2

works by simulating thousands of nodes and waiting for the DHT to replicate
values of neighboring nodes to these nodes. Michael Piatek et al. [5] show that
law enforcement agencies are regularly monitoring both tracker servers and the
DHT for copyrighted material. They show how easy it is to accredit arbitrary
users with sharing illegal files successfully misleading law enforcement agencies.
Zeilemaker et al. [6] use a different approach to gather user data. They present
a way to monitor millions of peers in the Mainline DHT by exploiting caches of
the DHT’s bootstrap servers. This allows to determine geographic location of
peers but no information about the files that are shared. In this thesis data is
gathered by inserting a few nodes into the Mainline DHT and actively querying
for infohashes found on a popular torrent indexing website. While gathering all
peers at all times is not feasible a representative sample of data is enough to
build a recommender system on top of it.

Chapter 2

Background

2.1 BitTorrent Protocol and Torrents

BitTorrent is a protocol used for peer-to-peer file sharing, it was designed by
Bram Cohen in the year 2001 [7]. Various BitTorrent clients implementing the
protocol have since been developed and roughly 15 percent of Europe’s internet
traffic can be attributed to the BitTorrent network [8]. Every day millions of
user upload and download files using one of the many BitTorrent clients. In a
traditional client-server model a download can often not be resumed once the
connection is interrupted and users are then forced to restart the transmission.
In the client-server model the file itself is stored on a central server and its
operators are responsible for the content they provide. When many users access
files on the same server scalability issues arise and the download speed decreases
for all users. BitTorrent mitigates some of these problems. It allows users to
pause and resume downloads and distributes network traffic on many different
connections without having to rely on a central server. This is achieved by first
segmenting the files into multiple equally sized parts and then sharing them
simultaneously with all users interested in the same file making use of each users
upload capacity. Because files are transmitted from peer to peer it allows for no
easy way to remove copyrighted material from the network. This is arguably one
of the main factors that contributed to BitTorrents tremendous growth since its
inception.

2.1.1 How BitTorrent works

Downloading a file from the BitTorrent network involves several steps. Initially
a user has to find a torrent file corresponding to the file she is interested in. A
torrent file or simply torrent does not contain the file itself but instead provides
information needed to find users sharing the file. Torrent indexing websites such
as piratebay.se1 provide a convenient way of finding torrents. Users can search a

1https://thepiratebay.se/

3

https://thepiratebay.se/

2. Background 4

specific title of a file they are interested in or browse various categories. A list of
torrents is then displayed and a user can download any one of them. Alternatively
some websites offer magnet links instead of torrent files. A magnet link serves the
same purpose but does not need to be downloaded and can directly be parsed
by a BitTorrent client. Besides being more convenient for users magnet links
also reduce storage consumption on torrent indexing websites. Upon completing
the download the torrent is opened with a BitTorrent client which downloads
the actual file described by the torrent. Note that depending on the context
torrent might refer to the content as well. The torrent downloaded from the
indexing website contains among other things addresses of one or more trackers,
a list of SHA-1 checksums for each part of the file and an infohash which uniquely
identifies the torrent. Infohashes are SHA-1 checksums and can also be calculated
using all other information in the torrent file as input. A tracker is a server which
keeps track of users sharing the file. It can be contacted by the BitTorrent client
and it will return a list of peers sharing the same file. A peer is a BitTorrent
client instance sharing one or more files with other users. The SHA-1 checksum
or hashes are used to check the integrity of the downloaded parts. Some well-
known BitTorrent clients for opening the downloaded torrent include µtorrent,
Vuze, BitTorrent and Transmission, all of which are freely distributed on the
web. When a torrent file is opened the BitTorrent client proceeds with finding
peers which share the same file. All peers sharing the same file are referred to as
the torrent’s swarm. Finding peers in the torrents swarm can be done by either
asking the trackers provided in the torrent file or by querying the DHT for the
torrent’s infohash. The method involving the DHT is covered in more detail in
the following section. When peers are found the BitTorrent client tries to connect
to them and request the missing parts of the file. At the same time requests from
other peers are processed and requested parts are uploaded. Peers which are still
downloading part of the file are called leechers while peers which have acquired
the complete file but still share it with others are called seeders. When all parts
of a file are downloaded they are reassembled to yield the complete file. The
completed file is usually distributed until the user decides to stop sharing the
file. The ratio between seeders and leechers plays a crucial role in the speed
of which a file is distributed in the swarm. When a torrent has lots of seeders
and few leechers the torrent is considered healthy and downloads generally finish
fast. When no peer possess a certain part of a file the torrent download is stalled
and the file can no longer be downloaded. Oftentimes when a new torrent file
is published on piratebay.se it experiences a surge of new downloaders but users
rarely seed after their download has finished.

2. Background 5

2.2 Mainline DHT

The Mainline Distributed Hash Table, from now on referred to simply as DHT,
provides a way for peers to find each other without contacting one of the cen-
tralized trackers listed in the torrent file. Its design is based on a DHT called
Kademlia introduced in 2002 [9]. Hash tables are data structures that map keys
to values. In the case of the DHT the values are lists of peers and keys are torrent
infohashes. The hash table is distributed among its participants called nodes.
Each node in the network is responsible for storing part of the hash table and
providing the peer list if asked for it. In effect each node using the DHT becomes
a tracker itself and provides information on where to find peers. Note that Bit-
Torrent client instances participating in the DHT are called nodes while instances
participating in a swarm of a torrent are called peers. Upon joining the DHT
a BitTorrent client generates a random 160 bit address called node ID which
uniquely identifies the node and determines the node’s location in the DHT. The
KRPC protocol specifies how DHT nodes may interact with each other. It allows
for three different types of messages, namely queries, responses and error mes-
sages. The most common query is get peers which includes a torrent’s infohash
as an argument and is used to find peers sharing the file. Messages are sent in
a special format called bencoding, which is also used to encode torrent metafiles.
Bencoding is used to structure the messages and helps make BitTorrent platform
independent. Each node maintains a routing table containing a list of buckets.
Each bucket contains a fixed number of nodes, usually around eight. A node
consists of a node ID, an IP and a UDP port. The routing table is designed in a
way such that in the beginning only one bucket covers the whole 160 bit address
space of node IDs. New nodes are inserted into this bucket until it is full. When
it is full the bucket is split into two buckets, each covering half of the address
space. The bucket containing the node ID associated with the routing table is
further split when it becomes full while the second bucket is never split. This
is done recursively while at the same time removing and replacing nodes which
have not sent any message within 15 minutes. It ensures that the node associ-
ated with the routing table knows a lot of close and active neighbors in the DHT
but only a few that are far away. Closeness is measured with the XOR metric.
If two node IDs are interpreted as a binary number and XOR is used on them
then the resulting number is defined as the distance between them. The same
procedure can also be used on an infohash and a node ID. When the resulting
value is small then the node ID is more likely to know about a given infohash.
When a node receives a get peers query from another node it either replies with
an answer containing a list of peers which are sharing the file or it returns nodes
from its routing table which are more likely to have an answer, i.e., are closer to
the queried infohash. Finding peers can then be seen as iteratively asking closer
nodes about the infohash until a node knows about it.

Chapter 3

Implementation

The implementation can be roughly divided into four separate steps, although
technically they could all be run simultaneously. As a common interface all data
is aggregated in a SQL database.

1. Torrent Crawler
The Torrent Crawler accesses all webpages of kickass.to, parses the HTML
code and uses regular expressions to extract information about torrents.
In particular it extracts each torrent’s infohash, name, IMDb1 (Internet
Movie Database) reference number, weblink to kickass.to and number of
leechers and seeders. The information is stored in a SQL table.

2. DHT Crawler
In a second step the DHT Crawler is run. Its job is to look up the infohash
stored in the database by the Torrent Crawler and find all peers currently
in the torrents swarm. This is done by querying the DHT for the infohashes
and then aggregating this information in the SQL database.

3. Recommender System
Using the aggregated data about the composition of each torrent’s swarm
recommendations are calculated. The recommender system works on an
IP basis, which means two peers sharing an IP but using different ports
are considered to be the same user. Calculating the recommendations is
done using a collaborative filtering technique called cosine similarity.

4. Website
The final recommendations are presented on a website. A visitors IP is
automatically determined and predictions are calculated based on what
she has shared in the past. Additionally users can manually enter links to
kickass.to webpages of their favorite torrents. These links are parsed and
interpreted as if the user downloaded the torrent to provide more accurate
predictions.

1http://www.imdb.com/

6

http://www.imdb.com/

3. Implementation 7

3.1 Torrent Crawler

In a first step a list of torrents has to be retrieved to provide infohashes for
the DHT crawler. The torrent indexing website kickass.to provides an archive
of all the torrents they index which is updated every 24 hours. It consists of
around 6 million entries and includes an infohash, a name and a link to the
torrent’s webpage for each torrent. Because some of the listed torrents are not
active anymore, i.e., they can not be downloaded anymore because parts of it
are not shared by anyone and some information is missing in the archive file,
the listed webpages still have to be accessed to find the missing information.
Some webpages have already been removed due to legal issues. The remaining
webpages are downloaded and all data is extracted using regular expressions.
This includes the torrent’s name, the amount of seeders and leechers, its genre
as specified by kickass.to, its kickassaffiliation and if available a link to IMDb.
When two torrents are of similar content, e.g., two episodes of the same TV
show, they have the same kickassaffiliation. In the case of two TV show episodes
the kickassaffiliation is simply the name of the TV show. Two torrents which
either have the same kickassaffiliation or reference the same IMDb entry are later
viewed as one entity when recommendations are calculated. Kickass.to also has
a page that lists links to the more recent torrents which are not contained in
the archive file yet. This page is periodically rescanned and all linked webpages
are accessed and information extracted just as with the links in the archive.
All gathered information is eventually stored in the database and later accessed
by the DHT crawler. Kickass.to is used as opposed to thepiratebay.se because
it provides an easier way to extract the categories of individual torrents and
piratebay.se has sometimes been offline due to legal issues.

3.2 DHT Crawler

The DHT Crawler is responsible for finding all peers associated with each torrent
infohash by querying the DHT. Instead of populating a routing table with around
one hundred active nodes and repeatedly sending get peer requests to the closest
nodes the way it is described in the protocol specification [10] the decision was
taken to restructure the routing table. The 160 bit address space is divided into
65536 (216) equally sized buckets, each of which covers some predefined address
space. The first two bytes of each node ID is interpreted as an integer n and put
in the n-th bucket together with the node’s IP and UDP port. This speeds up
infohash look-ups as finding peers for a given infohash is now a matter of simply
asking the nodes in the bucket corresponding with the infohash and possibly its
neighboring buckets.

3. Implementation 8

Bootstrapping Initially the buckets are empty and need to be populated.
To reduce stress on the bootstrap server router.bittorrent.com only one hundred
nodes are requested. Further nodes are found by iteratively querying the returned
nodes for random infohashes. After a few minutes each bucket averages around
twenty nodes amounting to a total of around 1.5 million starting nodes.

Finding peers Two identical threads continually fetch the 10 least recently
used infohashes from the database. For every infohash they send get peer queries
to all nodes of the corresponding bucket and its neighboring buckets. When peers
are returned they are accumulated and later inserted into the database. If closer
nodes are returned they are reinserted into the buckets and asked again. This
is done around 10 times before fetched the next 10 infohashes. All replies are
processed and decoded in background threads. Reinserting closer nodes has
the advantage that buckets become even denser populated and fewer loops are
necessary to find most peers for an infohash. Because the database itself limits
the speed at which infohashes can be queried there is no need to immediately
remove inactive nodes from the buckets.

3.3 Recommender System

The purpose of a recommender system is to predict and recommend additional
items a particular user might be interested in given the users previous likings.
The two classical approaches of doing so are content-based filtering and col-
laborative filtering. Content-based filtering works by finding items with similar
properties to the items the user liked. In case of torrents, imagine a user down-
loaded a movie starring Robert De Niro. Then a content-based recommender
might suggest a different movie where the main actor is Robert De Niro. In this
thesis a more common method was implemented called collaborative filtering.
The idea behind collaborative filtering is that if user 1 downloaded item A and
user 2 downloaded item A and item B, then there is a greater chance that user
1 likes item B as well. The main advantage of collaborative filtering is its ability
to predict what a user might like without analyzing the items themselves.

3.3.1 Item-item-based Collaborative Filtering

While there are many different collaborative filtering methods, not all of them
suit the gathered data equally well. Torrents tend to be very short lived as
most users don’t seed their torrents once their download has finished. The vast
amount of different users using the DHT compared to the relatively few active
torrents suggests using an item-item based similarity table as opposed to a user-
user based similarity table. In an item-item based similarity table entries change
only little when new users rate items because items are rated by many users

3. Implementation 9

and a single user’s rating has little effect on its value. The DHT itself does not
provide a way for users to rate torrents, as such the implicit ratings are used. In
other words, being an active seeder or leecher of a torrent is equivalent to liking
it. Thus all peers which participated in the swarm of a torrent and were active
in the DHT at the time of the crawl have implicitly rated the torrent 1 and all
others rated the torrent 0. This also removes the need to normalize ratings, i.e.,
subtract the user’s mean rating from every rating.

Cosine-based Similarity

Item Similarity Calculation In cosine-based similarity [11] each torrent is
represented as a n-dimensional vector ~v where n is the total number of peers
found by the DHT Crawler. The i-th component of the vector is 1 if the i-th
peer has downloaded the torrent and 0 otherwise. The similarity between two
torrents ~v1 and ~v2 is then defined by

similarity(v1, v2) = cos (~v1, ~v2) =
~v1 · ~v2

‖~v1‖ ∗ ‖~v2‖
(3.1)

where · is the scalar product. Since all vector components are either 0 or 1
the resulting similarity values lie in the interval [0,1]. A value of 0 signifies no
correlation between the two torrents, i.e., no peers in common and 1 complete
correlation, i.e., all peers are identical. Calculating the similarities for all combi-
nations of torrents yields a (possibly sparse) m×m item-item similarity matrix,
where m is the number of torrents. In certain cases where two torrents have
only very few peers and those few peers happen to coincide the equation 4.1 will
return similarity 1 even though not much can be said about the two torrent’s
similarity. To reduce this effect torrents with less than 3 common peers are never
considered to be similar and their similarity is set to 0.

Prediction calculation Having calculated the similarity between each pair
of torrents a list of predictions for a user has to be determined. Let an element
of the item-item similarity matrix be denoted as si,j . Let n be a torrent similar
to torrent t and ru,n the rating user u gave to torrent n. ru,n is 0 if user u did
not download torrent n and 1 otherwise. Then the predicted rating user u would
give to an item t is defined by

prediction(u, t) =

∑
n st,n ∗ ru,n∑

n st,n
(3.2)

The resulting predicted rating estimates how user u would rate torrent t and is
again in the interval [0,1]. In a Top-N Recommendation System the N torrents
with the highest predicted ratings are recommended to the user. Torrents which
are already rated by the user are removed from the list of recommendations.

3. Implementation 10

3.4 Website

The website provides a front-end for users to obtain torrent recommendations. A
visitor’s IP is automatically discovered and handed over to the recommendation
tool which in turn calculates and returns a list of torrent recommendations. The
list of torrents is displayed as links to the corresponding kickass.to webpage. A
visitor can additionally enter a list of kickass.to links from individual torrents
she liked. These are then parsed and interpreted as if the user downloaded the
torrents and are similarly used to calculate recommendations.

Chapter 4

Evaluation

The torrent crawler periodically checks the 10’000 newest torrents on kickass.to
and inserts them into the MySQL database. This process takes around 15 min-
utes for each run. From the total 6’166’840 inserted torrents 192’639 have a
combined amount of at least 45 seeders and leechers and are considered active.
The chart in Figure 4.1 shows the distribution of categories among these active
torrents. Only active torrents are further analyzed by the DHT crawler. After
a few days of crawling the DHT crawler found 20’118’613 unique peers. When
viewing peers with the same IP but different ports as belonging to the same user
this results in 9’337’841 users sharing a total of 34’192’448 torrents. On average
each user partakes in 3.6 swarms. Constructing the an item-item similarity ma-
trix takes around 15 hours and another 1 or 2 seconds is needed to generate a
list of recommendations for an individual user.

Figure 4.1: Genres of torrents published on kickass.to

11

4. Evaluation 12

Recommender system evaluation For the purpose of measuring the rec-
ommendation quality the recommender system is compared with a system that
predicts torrents randomly [12]. Note that in the list of predictions torrents that
a user has rated are not removed yet. The recommendation quality for a single
user is calculated by first summing up the position in the sorted list of predic-
tions of each torrent the user has rated. A lower position in the list corresponds
to a higher predicted value. This sum is then divided by the total number of
ratings the user has given yielding an average position in the list. The average
position is again divided by the number of evaluated torrents to obtain a value
between 0 and 1. If the resulting value is lower than 0.5 we can conclude that the
recommeder system works better than a random recommender system because
the rated torrents are on average in the lower part of the prediction list. This
procedure is repeated for all users and the resulting values are averaged to get
a more accurate measure. Let u be a user and t a torrent rated by user u. Let
pu,t be the position of torrent t in the list of predictions calculated for user u
and ratings the total number of ratings from all users. Then the final measure
of quality can be written as

quality =

∑
u

∑
t pu,t

ratings
(4.1)

Because of performance reasons not all users can be included but instead a
random sample is chosen. Using roughly 20000 users a quality of 0.39 is achieved.

Chapter 5

Conclusion

A great amount of data was gathered on the course of this thesis. While many
researches have monitored the DHT to gain insights into its composition and
analyze its weaknesses not many have used their gathered data in a practical
application as is done here in the form of recommendations. It is interesting to
think about how BitTorrent users are most likely not aware of being monitored.
Even if some users heard about the fact that law enforcement agencies monitor
certain files they might not expect their torrent download history to be archived
by researchers. Visitors to the website might be surprised when a list of torrent
recommendations is automatically displayed.

13

Bibliography

[1] Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-
item collaborative filtering. IEEE Internet Computing 7 (2003) 76–80

[2] Jünemann, K., Andelfinger, P., Dinger, J., Hartenstein, H.: Bitmon: A tool
for automated monitoring of the bittorrent dht. In: Peer-to-Peer Comput-
ing’10. (2010) 1–2

[3] Memon, G., Rejaie, R., Guo, Y., Stutzbach, D.: Montra: A large-scale
DHT traffic monitor. (2012) 1080–1091

[4] Wolchok, S., Halderman, J.A.: Crawling bittorrent dhts for fun and profit
(2010)

[5] Piatek, M., Kohno, T., Krishnamurthy, A.: Challenges and directions for
monitoring p2p file sharing networks. In: In 3rd USENIX Workshop on Hot
Topics in Security (HotSec ’08. (2008)

[6] Zeilemaker, N., Pouwelse, J.: 100 million dht replies. In: Peer-to-Peer
Computing (P2P), 14-th IEEE International Conference on, IEEE (2014)
1–4

[7] Cohen, B.: Incentives build robustness in bittorrent (2003)

[8] Incorporated, S.: Global Internet Phenomena Report, 1H 2014. Technical
report (April 2014)

[9] Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information
system based on the xor metric (2002)

[10] Loewenstern, A., Norberg, A.: BEP 5: DHT protocol. http://

bittorrent.org/beps/bep_0005.html (2008)

[11] Badrul Sarwar, George Karypis, J.K., Riedl, J.: Item-based collaborative
filtering recommendation algorithms

[12] Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: In IEEE International Conference on Data Mining (ICDM
2008. (2008) 263–272

14

http://bittorrent.org/beps/bep_0005.html
http://bittorrent.org/beps/bep_0005.html

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 BitTorrent Protocol and Torrents
	2.1.1 How BitTorrent works

	2.2 Mainline DHT

	3 Implementation
	3.1 Torrent Crawler
	3.2 DHT Crawler
	3.3 Recommender System
	3.3.1 Item-item-based Collaborative Filtering

	3.4 Website

	4 Evaluation
	5 Conclusion
	Bibliography

