
Distributed
 Computing

The Metadata Troll Detector

Semester Thesis

Stephan Dollberg

dstephan@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Tobias Langner, Jochen Seidel

Prof. Dr. Roger Wattenhofer

January 15, 2015

Abstract

Reddit.com offers a discussion platform for various topics. Given its huge size
and its comment based discussion structure it attracts internet trolls. We write
a bot that crawls Reddit for new comments and that tries to automatically
detect trolling in them. In contrast to conventional solutions we do not only use
text analysis of the comments but also take metadata into account. Metadata
describes properties such as the degree of the participation in a discussion. For
classification, we compile several characteristics of a comment based on data
and metadata. These characteristics are used to train the machine learning
algorithms of support vector machines to classify each comment. We show that
it is generally very difficult to automatically detect trolls and see that metadata
based approaches are still inferior to text based ones. However, the combination
of both shows promising results.

i

Contents

Abstract i

1 Introduction 1

1.1 Metadata Based Analysis . 2

2 Comment Classification 4

2.1 Troll Feature Types . 4

2.2 Troll Features . 5

3 Reddit Bot Design 8

4 Results 10

4.1 Offline Results . 11

4.2 Feature Comparison . 12

4.3 Online Results . 12

Bibliography 14

ii

Chapter 1

Introduction

With the ongoing expansion of the internet social platforms such as Youtube,
Facebook or Twitter continuously gain new members. Once a platform has
reached a certain user base not all new users want to participate in a construc-
tive discussion. Instead, their only objective is to invoke other users’ emotions
and lead the discussion into a different and unrelated direction by directly or
indirectly attacking certain groups. They are commonly referred to as trolls.

It is desirable to avoid such unnecessary disruptions and keep discussions
clean. Manual intervention of moderators becomes infeasible after a certain user
size. As such, several automated approaches have been the aim of research.

In a data analysis competition to find insulting posts in social networks [1]
most participants used text analysis techniques [2]. One such technique is to
count the words in a text to get a measure of the length of the text. Such
counting techniques can be extended or specialized to not count all the words
but only a certain subset, for instance, insulting curse words. Another technique
is to use word or character n-grams. N-grams describe a sequence of words or
characters. For example, the word 2-grams for the sentence ”the fox jumps” are
”the fox” and ”fox jumps”. Those n-grams are compared to other known n-grams
or used to create statistical models. Others have tried to find trolls by using
natural language processing to analyze the sense or sentiment of the text. It is
classified by analyzing the sentiment of the used words and by assigning a certain
emotion to them. Emotions such as rage or anger are hints for a troll comment
[3]. Similar text based analysis has been used in areas that are related to troll
detection such as fake online review detection [4, 5] or email phishing [6]. Most
social networks or online platforms keep their automated anti-troll mechanisms
private to avoid exploitation by trolls even if the rest of their software stack is
open source.

1

1. Introduction 2

1.1 Metadata Based Analysis

All the approaches listed in the previous section focus on the analysis of the
actual content of a troll post. However, they ignore the metadata of such a
post. Metadata is ”data about data”. It can be separated into descriptive and
structural metadata. Descriptive metadata specifies certain properties of data.
Structural metadata describes how the data is related to other data [7]. Taking
a comment to a blog post as an example, the data of the comment is the actual
text that the user posted. The metadata describes properties such as the author,
the creation time and the length of the comment. In addition, the structural
metadata explains whether the comment is a direct reply to the blog entry or to
another comment.

In this project we also take metadata into account. The idea is that troll posts
or the discussions resulting from them show descriptive and structural metadata
which is different to non-troll posts. For instance, the comment text might be
simple and short and spawn several quick replies which otherwise would appear
slower and be more elaborate.

We test our approach on reddit.com (Reddit) which is a news- and link-
aggregator. Users can submit links to other websites and subsequently discuss
and comment the content of the linked page. They can also reply to other users’
comments which results in a tree-like discussion structure. Users can up- or
downvote comments and submissions to rate them. Higher rated comments or
submissions are more likely to be shown to users than lower rated ones. Reddit is
structured into sections called subreddits. They separate different topics such as
politics or gaming. This structure fits perfectly for heavy discussions and allows
us to extract metadata from the comments and the comment-trees. Figure 1.1
depicts a comment and its family members in a comment tree. For each comment
on Reddit we have access to its text, the author, the creation time and to its
parent amongst others.

1. Introduction 3

X

P

C1 C2

GC1 GC2

Parent

Comment

Children

Grandchildren

Figure 1.1: Comment tree showing the family relation of a comment. The com-
ment X has the parent P, the children C1 and C2 and the grandchildren GC1
and GC2. Further children of GC1 and GC2 do also count as grandchildren
of X. C1 and C2 are siblings.

Chapter 2

Comment Classification

To classify a comment as trolling or not we compile certain characteristics based
on the data or metadata that we have about that comment. Those characteristics
are called features. Such a feature can for instance be the number of words in
a post or the rate at which other people reply to it. The specific features are
described in the next section. All features together form the feature vector of
a comment. Each feature vector is labeled according to which class (troll or
non-troll) it belongs to.

We use the machine learning technique of support vector machines (SVMs)
to classify the comments. SVMs take a certain set of correctly labeled feature
vectors as input and learn from them. Thereafter, SVMs can be used to classify
unlabeled data sets based on their learned knowledge.

SVMs treat the training feature vectors as points in a high dimensional space.
This space is separated by one or more hyper-planes that separate the classes
best. Test data points are interpreted in the same space and labeled depending
on which side of the hyper-plane they are positioned. Figure 2.1 depicts such a
simple separation of two classes.

In Figure 2.1 we see that the separating hyper-plane is linear. However,
SVMs do also support the use of kernel functions that produce a non-linear
hyper-plane. SVMs can be tuned by modifying the SVM specific cost parameter
C or by adjusting the parameters of the kernel. For the best performance we
standardize our dataset to zero mean and unit variance before passing it to the
SVM [8, 9].

2.1 Troll Feature Types

We differentiate between two kinds of features. The first kind describes properties
of the actual comment. These features can be dynamic or static. A dynamic
feature might change while the actual post doesn’t change. An example for
this is the structure of a comment tree that changes when somebody replies to
a comment. Static features, such as the word count, stay the same once the

4

2. Comment Classification 5

Figure 2.1: SVM hyper-plane separation of two classes. The hyperplane per-
fectly separates the two class types (blue and red). Test data points are labeled
depending on which side of the hyperplane they are located. 1

comment has been created.

The second kind refers to properties coming from the user that posted the
comment. This kind of feature is independent from the actual comment and
could already be generated before the user posts his next post. It describes the
history of the user’s previous posts.

2.2 Troll Features

Static Comment Features

Word Count As the name suggests, the Word Count defines the words per
comment. The comment text is split by whitespace and the length of the resulting
word list is the word count.

Bad Word Count Similar to the Word Count, the word list is compared to
a predefined list of ”bad” words and matches are counted.

Compression Ratio For this feature the comment body is compressed. The
Compression Ratio specifies the ratio of the absolute length of the compressed

1Figure taken from Scikit-learn [9].

2. Comment Classification 6

comment to the length before compression.

We use the zlib library for compression [10]. It is possible to pass a predefined
dictionary to the compressor that is expected to compress well. An alternative to
the standard approach without passing a dictionary is to first create a dictionary
by counting the most frequent words in a number of comments that are known
to be trolling. The expectation is that troll comments compress better than
non-troll comments.

All Capital Word Count The All Capital Word Count is a counter of how
many words the comment contains that consist of capital letters only.

All Capital Word Count Ratio The All Capital Word Count Ratio is cal-
culated by dividing the All Capital Word Count by the absolute Word Count.

Dynamic Comment Features

Total Number Of Replies The Total Number Of Replies is the sum of all
children and grandchildren.

Average Reply Word Count The Average Reply Word Count defines the
average of the Word Counts of all children and grandchildren of a comment.

Regular User To One Time User Ratio We look at all the authors of the
children and grandchildren of a comment. The users are categorized into either
being a one time user of the current subreddit or a regular user. A regular user
is characterized by having more than a certain threshold of posts in the given
subreddit. An alternative is to not look at the count of posts in the subreddit
but instead at the overall number of posts.

Children Count The Children Count is the absolute number of direct replies
to a comment. This can be seen as the breadth of the first level of a comment
tree. For the comment in figure 1.1 the Children Count is two.

Length Of The Deepest Comment Tree Branch In comparison to the
Children Count which describes the breadth of a comment tree this feature de-
fines the depth. It is defined as the length of the longest branch of a comment
tree. Looking at figure 1.1 both branches are equally long with a length of two.

2. Comment Classification 7

Children Count Growth Rate The Child Count Growth Rate describes the
rate at which the Children Count is initially growing. We define it as the number
of replies that were created in a certain time span after the comment was posted.
If the timespan reaches into the future we assume that no further replies would
be generated. This is a pessimistic assumption as we prefer to rather classify a
troll comment as not being trolling than the other way around.

Deepest Branch Growth Rate The Deepest Branch Growth Rate is similar
to the Children Count Growth Rate with the difference that it measures how
fast the length of the deepest branch increases.

User Based Features

User Up/Down Ratio The upvote to downvote ratio is calculated by taking
the average of the scores of all posts from a user. Comments with an absolute
score smaller than two are ignored as we assume them to be not judged by the
community.

Chapter 3

Reddit Bot Design

Reddit offers a HTTP API that eases the creation of an automated bot. The bot
is designed to consist of two parts. On the one hand side there is the crawler and
on the other side is the troll detector that analyzes and classifies new comments
using the SVM technique. The full design is depicted in figure 3.1.

Reddit

Crawler Detector
Store Poll

Database

Reply to troll

com
m

entsCra
wl n

ew

co
m

m
en

ts

Figure 3.1: Design of the Reddit Bot. The crawler stores new comments from
Reddit in a database. The troll detector reads these new comments from the
database and analyzes them. If a troll comment is found, then a reply to Reddit
is posted.

The crawler polls the API every two seconds (adhering to the Reddit rate
limiting standards) to get the latest comments in a list of selected subreddits.
New comments are stored in a local database. If a new comment is from a
submission which we have not seen yet or has a parent that we did not store yet,
we retrieve the submission and recursively fetch all the unseen parent comments.
This way we can locally compute the comment tree and compile our features.

The troll detector on the other hand is constantly polling the database for
new comments from the crawler. Whenever the detector sees a new comment it

8

3. Reddit Bot Design 9

rechecks all the comment’s parents. This is necessary because the dynamic fea-
tures of the parents change. The SVM initially learns from a manually classified
dataset. However, in contrast to offline testing the learning process is slightly
different. Instead of learning from the feature vectors of the marked comments
only, we add additional feature vectors for each point in time at which a reply is
added to a comment. These additional data points have the same static features
but different dynamic features. Using this learning scheme we do train the SVM
to detect trolls as soon as possible. In comparison, the offline learning method
only learns from the state in which all trees have fully evolved. If a comment is
positively identified as trolling, it is marked in our database so that it will no
longer be checked. In addition, we post a reply on reddit indicating that we have
identified the comment as trolling.

Splitting the bot into two separate entities gives us several advantages. At
first, we can easily let both parts run independently. This enables us to crawl
Reddit while not necessarily having to analyze the comments. Second, by running
on two different IP addresses we can avoid being rate limited from a single
IP address. Finally, the design allows us to distribute the two components to
multiple machines. This allows for a setup with a cheap virtual machine for the
crawler and stronger machines for the database server and the troll detector.
In addition, it would allow splitting up the two roles into multiple crawler and
detector instances with each being responsible for a certain set of subreddits.

Chapter 4

Results

To test our approach we first create a ground truth by marking around 400 reddit
comments from several subreddits as being trolling or not. We judge a comment
as trolling if it is overly provocative or hateful against a certain group.

Our marked dataset consists of an equal amount of trolls and non-trolls to
avoid any bias or variance caused by an uneven split. Concerning the SVM
configuration parameters, we use the default C = 1 setting together with the
default kernel (radial basis function [8]) of our implementation. Tuning of these
parameters does not show any improvements.

To evaluate the prediction performance of our SVM we perform an N -fold
cross-validation test. In an N -fold cross-validation test the data set is split up
into N equal sized sets. After the split, the SVM is trained on N − 1 sets and
tested on the remaining test set. This process is repeated N times until each set
has been the test set once.

Given the cross-validation results we measure the classification quality by
looking at the metrics accuracy, precision, recall and f1-score. They are defined
as follows. Troll comments are interpreted as a positive classification while non-
troll comments are negatives ones.

accuracy =
true positives + true negatives

size of the dataset

precision =
true positives

true positives + false positives

recall =
true positives

true positives + false negatives

f1 = 2 · precision · recall

precision + recall

The accuracy describes the percentage of how many comments we classify

10

4. Results 11

correctly. Precision and recall(sometimes called sensitivity) put focus on the
behavior of the classifier concerning positives. Precision can be interpreted as
how much more correct than incorrect positive classifications are returned. This
is especially important to us because we prefer false negatives over false posi-
tives. The reason for this is that in our scenario false negatives do not have any
consequences compared to false positives. In other areas such as cancer classifi-
cation both error types are equally unacceptable. On the other hand, the recall
describes how much percent of the positives are classified correctly. Finally, the
f1-score is the harmonic mean of the recall and precision. Its advantage over
the two metrics is that it is not possible to misleadingly modify the score. For
instance, by simply classifying everything as negative it is possible to get a very
high precision. However, the f1-score would be very low because it also takes
the recall into account which is very small in this case [11].

4.1 Offline Results

Doing a five-fold cross-validation on our marked dataset we obtain classification
results as depicted in Figure 4.1.

Accuracy Precision Recall f1
0

0.2

0.4

0.6

0.8

1

Figure 4.1: Overall Performance Estimation of our classifier using all features
(with 95% confidence interval).

We see that all metrics are around the seventy percent mark. While this
is definitely better than random classification it leaves room for improvements
and is around ten percent worse than what was reported for the technique that
analyzes the emotions of a text [3]. As precision and recall are in the same range
we see that we do not have any bias in either of the classification directions. Using
only comments from a single subreddit shows no improvements in performance.

4. Results 12

4.2 Feature Comparison

To evaluate which of our features performs best we again run our cross-validation
test. However, the SVM only uses a single feature and not all of them. For
comparison we look at accuracy and f1-score.

Feature Accuracy f1-score

User Up/Down Ratio 0.69 0.67
Compression Ratio 0.68 0.71
Word Count 0.67 0.73
Average Reply Word Count 0.64 0.69
All Capital Word Count Ratio 0.60 0.66
All Capital Word Count 0.58 0.61
Children Count Growth Rate 0.55 0.48
Total Number Of Replies 0.53 0.68
Bad Word Count 0.52 0.25
Children Count 0.50 0.51
Deepest Branch Growth Rate 0.48 0.53
Regular User To One Time User Ratio 0.46 0.45
Length Of The Deepest Comment Tree Branch 0.45 0.43

Table 4.1: Classification accuracy and f1-score with only one of the features.

Looking at the results from Table 4.1 we see that the strongest features
are text analysis related features such as the Word Count or the Compression
Ratio. Pure metadata features such as the Children Count or the Children Count
Growth Rate are only minimally better than random classification while some
are even worse(Deepest Branch). However, features that combine text analysis
with structural metadata such as the Average Reply Word Count show that it
is worth to not only look at the comment itself but also at related data.

It would be interesting to see how more advanced text based techniques
perform in this combination. In addition, another possible further research topic
is to see how features perform that put a comment in comparison to its siblings.

Finally, for the growth rates a time span of one or ten hours proves to be the
best duration. Using a specialized dictionary for the Compression Ratio does
not show any improvements.

4.3 Online Results

We do also perform a test run of our troll detector bot on Reddit. The reply
we post back to Reddit once we find a troll asks the community to judge our
classification by up- or downvoting the reply.

4. Results 13

The feedback is mixed. While we agree with most of the upvotes on the
correct classifications and downvotes on the incorrect ones there are some debat-
able cases. Some of the classifications are heavily downvoted from the community
even if we would say by human judgment that the posts are indeed trolling.

From this we learn two important points. First, we see that a good ground
truth is very important. Second, some online communities, such as Reddit, live
from their trolls as they define the culture of the platform. Therefore, if troll
detection is desired on such a platform, the ground truth should be setup by the
community itself.

Finally, the online test makes it clear that features that rely on structural
metadata have a disadvantage for use in trolling prevention. Structural proper-
ties first have to develop themselves with a growing comment tree. As such, they
are not useful to prevent an active troll attack but can be used to retrospectively
detect users that have successfully trolled in the past.

Bibliography

[1] Kaggle.com: Detecting insults in social commentary. http://www.

kaggle.com/c/detecting-insults-in-social-commentary (2012) Ac-
cessed: 15.01.2015.

[2] Kaggle.com: Detecting insults in social commentary - discussion. http:

//blog.kaggle.com/2012/09/26/impermium-andreas-blog/ (2012) Ac-
cessed: 15.01.2015.

[3] Cambria, E., Chandra, P., Sharma, A., Hussain, A.: Do not feel the trolls.
(2010)

[4] Jindal, N., Liu, B.: Opinion spam and analysis. In: Proceedings of the 2008
International Conference on Web Search and Data Mining. WSDM ’08, New
York, NY, USA, ACM (2008) 219–230

[5] Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: Opinion
extraction and semantic classification of product reviews. In: Proceedings
of WWW. (2003) 519–528

[6] Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails.
In: Proceedings of the 16th International Conference on World Wide Web.
WWW ’07, New York, NY, USA, ACM (2007) 649–656

[7] Press, N.: Understanding Metadata. National Information Standards Or-
ganization Press (2004)

[8] Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning:
data mining, inference and prediction. 2 edn. Springer (2009)

[9] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research
12 (2011) 2825–2830

[10] Deutsch, P., Gailly, J.L.: Zlib compressed data format specification version
3.3. RFC 1950 (May 1996)

[11] Powers, D.M.W.: Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness & Correlation. Technical Report SIE-07-001,
School of Informatics and Engineering, Flinders University, Adelaide, Aus-
tralia (2007)

14

http://www.kaggle.com/c/detecting-insults-in-social-commentary
http://www.kaggle.com/c/detecting-insults-in-social-commentary
http://blog.kaggle.com/2012/09/26/impermium-andreas-blog/
http://blog.kaggle.com/2012/09/26/impermium-andreas-blog/

	Abstract
	1 Introduction
	1.1 Metadata Based Analysis

	2 Comment Classification
	2.1 Troll Feature Types
	2.2 Troll Features

	3 Reddit Bot Design
	4 Results
	4.1 Offline Results
	4.2 Feature Comparison
	4.3 Online Results

	Bibliography

