
Distributed
 Computing

Kännsch - Swiss German Keyboard
for iOS

Bachelor Thesis

Melanie Hüsser

huesseme@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Philipp Brandes, Laura Peer

Prof. Dr. Roger Wattenhofer

September 3, 2015

Abstract

Many software keyboards for mobile devices these days offer various support
to assist users when writing text. Algorithms for prediction and correction of
typed input have been developed and tuned in speed and accuracy. Sadly, those
algorithms only work for languages with clear orthography and a defined dic-
tionary. In this thesis, we developed a keyboard application for Apple iPhone
users that supports Swiss German. Similar to the already existing Android ap-
plication Kännsch it is designed to work with various dialects and accesses the
same resources. The application reaches reasonable performance results that can
compete with similar applications.

i

Contents

Abstract i

1 Introduction 1

1.1 Related Work . 2

1.2 Outline . 2

2 Design 3

2.1 Prediction . 3

2.1.1 Word Completion . 3

2.1.2 Word Prediction . 4

2.2 Correction . 4

2.2.1 Auto-Correction . 4

2.2.2 Levenshtein Algorithm . 5

2.2.3 Adjusted Levenshtein Algorithm 5

2.3 Frequencies . 6

2.4 Trade off between Completion and Correction 6

2.5 Format of Dictionary . 8

2.5.1 Core Dictionary . 8

2.5.2 Personal Dictionary . 9

2.5.3 Top list . 10

3 Implementation 11

3.1 Swift Programming Language . 11

3.2 Framework and Libraries . 11

3.3 Retrieval of Local Dictionaries 11

3.3.1 Research Logger . 12

3.3.2 Kännsch Server . 12

ii

Contents iii

4 Results 13

4.1 Typing Error Analysis . 13

4.2 Prediction Benchmark . 14

4.3 Correction Benchmark . 16

5 Conclusion and Outlook 19

Bibliography 20

Chapter 1

Introduction

Swiss German is not a full language by regular standards. For example, there
is only one form of past tense. It is only used for talking but there is no clear
orthography and no complete dictionary. In fact, every region developed its very
own version of Swiss German. These dialects are very diverse such that they
can be differentiated based on the choice of words only. Official documents and
letters are commonly written in standard German.

Nowadays, with the huge popularity of mobile devices, most communication
over distance takes place by SMS and chat applications. These ways of com-
munication feel much more direct than letters and e-mails and more similar to
talking face-to-face so people started to write those in Swiss German. Typing
on a mobile device can be quite cumbersome and typing errors occur frequently.
Software keyboards are designed to overcome this problem. Prediction algo-
rithms reduce the amount of keystrokes which is needed to write a word while
auto-correction counteracts the mistakes made by the user. But these algorithms
highly depend on a well-defined and complete dictionary. Such a dictionary does
not exist for Swiss German. Therefore Swiss German natives cannot benefit from
these advantages because those algorithms need a collection of words to operate
on.

A first attempt to improve the situation was made with Kännsch [1], an appli-
cation for Android [2]. It is a software keyboard design for individual language.
The application comes with a preinstalled list of common Swiss German words.
Kännsch got further improved [3]. The data that was collected by the appli-
cation got analyzed and was used to create region specific dictionaries. These
dictionaries are then sent back to each user based on their writing style.

In this thesis, we will develop a similar application for Apple iPhone [4] users.
Since the original keyboard [5] is closed source and inaccessible, a new keyboard
must be designed from scratch. The main parts of the thesis are the design
and implementation of prediction and correction algorithms and corresponding
data structures. The application is tuned to adapt to the user’s writing style.
Furthermore, it will send the same data as the Android counterpart to benefit
from the local dictionaries as well.

1

1. Introduction 2

1.1 Related Work

This thesis will transfer the work of Kännsch - a Swiss German Keyboard for
Android [1] to iOS [6], the operating system for Apple iPhone [4]. Kännsch is a
software keyboard designed to improve writing in Swiss German. The application
is based on Google’s Android Open Source Project LatinIME [7]. LatinIME
contains a large amount of standard dictionaries in different languages which are
referred to as Google dictionaries in this thesis. The German dictionary is used
as a basis for our word collection.

Kännsch - Improving Swiss German Keyboard [3] added more features to
Kännsch. Logs created by users of the application are used to create region
based dictionaries. Our application will use the same web server to fill the word
collection with words adjusted to the user’s dialect.

There already exist a couple of different keyboards for iOS. One of our goals is
to give the user the same experience that he is accustomed to while using Apple’s
standard keyboard QuickType [5]. Other notable keyboards are Swype [8] and
SwiftKey [9]. Both keyboards are capable of filling the dictionary with words
based on the user’s SMS history as well as learning new words. In addition, they
offer the possibility to use swipe gestures as alternative input: Instead of typing
every key individually, the user may sweep over the intended keys in one stroke.
Tasty Imitation [10] is an plain open source keyboard. It offers nothing but a
close resemblance to the standard keyboard. We will use it as a template for our
project.

The Levenshtein distance [11] is an algorithm that compares the similarity
between two words. In Section 2.2.2 we will use it to calculate the likelihood of
dictionary words if the user misspelled the input. An open source implementation
[12] of the algorithm will serve as a basis for us.

ZipArchive [13] is a library to compress and decompress files on iOS. We will
use it in Section 3.3.1 to compress the log files before sending them to the web
server. An implementation for JSON in Java [14] is used to parse the dictionary
and log files for testing.

1.2 Outline

In Chapter 2, we discuss the features that a keyboard application should offer and
which algorithms and data structures were chosen to accomplish them. Chapter
3 gives an overview over implementation details and used tools. In Chapter 4,
we set up test benchmarks to measure our algorithms in accuracy performance
and calculation speed. Chapter 5 summarizes the state of the application and
gives an outlook on future improvements.

Chapter 2

Design

This chapter discusses every feature a keyboard should offer and which algorithm
was chosen to fulfill a particular purpose. The parameters used in the implemen-
tation are determined with test benchmarks to tune the performance as shown
in Chapter 4. We can assume that we already have a dictionary and know the
frequency of every word.

2.1 Prediction

Word prediction is one of the two major features a mobile keyboard should
offer. Its purpose is to reduce the number of keystrokes a user must type. We
differentiate between two sub areas: Word prediction is the process of suggesting
words that are often used together based on the current context while word
completion only tries to figure out how the word that the user started to write
will end.

2.1.1 Word Completion

Word completion is the process of suggesting the intended ending of a user input.
Every word in the dictionary is sorted by its frequency and the most probable
ones will be suggested by the application. The algorithm is designed to be case
and umlaut insensitive since most people do not want to take the detour. There-
fore the input and the dictionary word are adjusted into a comparable version
by omitting umlauts and change all to capital letters. As an example, consider
a dictionary that contains the words ”ich”, ”hallo” and ”Haus” with decreasing
frequency. If the user types the letter ”h”, word completion will suggest the word
”hallo” even though the word ”ich” has higher frequency because the prefix does
match the input.

3

2. Design 4

2.1.2 Word Prediction

Word prediction is all about suggesting words based on the current context
rather than the beginning of the input. A simple approach is the use of bigrams.
Bigrams are pairs of words which often occur together. We know how often
each pair occurs inside a typical text. That way the suggestions can be sorted
by probabilities. For instance, the dictionary may contain the word pair (”ich”,
”bin”). If the last written word was ”ich”, word prediction will suggest the word
”bin”. If the user continues with the letter ”h”, word prediction will withdraw
its suggestion and word completion takes over.

Additionally, the bigrams can be used to improve the word completion. This
means that whenever the first word of the bigram is written the second one will
be shown as a suggestion. As soon as the user begins to type the beginning of
a word which matches the second one, it will be prioritized over other possible
words in the dictionary.

2.2 Correction

Word correction is the other major part of a keyboard application. Since mobile
keyboards are quite small, errors are common. Our system needs to distinguish
errors from intended input and correct the detected mistakes.

2.2.1 Auto-Correction

Auto-correction is the process of eliminating typing errors made by the user on-
the-fly. If the user writes a word and hits space, the typed word is exchanged
with a corrected version. The user can decline a correction by selecting another
suggestion or revert an applied correction by hitting backspace.

For every word in the dictionary, the algorithm uses an adjusted version of
the Levenshtein distance as explained below to count the amount of mistakes
that were made if the user intended to write that specific word. If a word in
the dictionary is very similar to the input, it is very likely that the user wanted
to write this word but made an typing error. We can neither believe that our
dictionary is complete nor that our algorithm is perfect. This is why the auto-
correction is only applied if the distance between both words does not surpass a
certain limit.

For example, consider a dictionary with the words ”ich”, ”habe” and ”hallo”.
If the input of the user is ”hllo”, it will be corrected to ”hallo” because only one
error would have been made (the user forgot the letter ”a”). Three errors are
needed to reach the word ”habe” (the user mistyped ”llo” for ”abe”) and four
for ”ich” (the user mistyped three letters and added one).

2. Design 5

2.2.2 Levenshtein Algorithm

The Levenshtein distance calculates the similarity of two words. The algorithm
alters one word into the other by applying different modification steps (like in-
serting, deleting, and modifying letters). For example, to transform the word
”Stuhl” into ”Stil”, we need two modification steps. The letter ”u” is changed
into an ”i” and the letter ”h” is omitted. These modification steps can be con-
sidered as the amount of mistakes that are made if one word is the input and
the other is the actual intention. The algorithm uses dynamic programming to
run in O(nm) time where n and m are the lengths of the two words.

The algorithm in its original form is not suitable for our purpose because of its
runtime. The correction algorithm will run after every keystroke to improve the
result. Running a full Levenshtein algorithm on every word in question will take
too long and keeping the intermediate results (the two dimensional matrices used
for dynamic programming) is too memory expensive. Here are some properties
we want to have:

• O(nm) is too costly. We need a near linear approximation since we need
to check a lot of words in our dictionary every time the user types.

• The algorithm should be able to reuse the last result since we will run it
after every key stroke.

• We are interested in more diverse modification steps. For example, it is
quite reasonable to distinguish whether the mistyped key was adjacent to
the intended one or not.

• Some mistakes are more likely than others. The algorithm should use this
to improve the result.

• We do not actually need the correct Levenshtein distance. A good approx-
imation is sufficient.

2.2.3 Adjusted Levenshtein Algorithm

The algorithm we use is considering one input letter after the other. It will
run on every word in the dictionary that is considered to be the correct word.
A pointer to the corresponding letter position in the dictionary word is kept.
Normally, this pointer gets increased after each operation. Both letters, the one
from the input and the one at the current pointer position at the dictionary
word, are compared according to the following criteria in the given order:

1. Is the input letter exactly the same as the dictionary letter? If so, add a
copy operation (distance untouched).

2. Design 6

2. Is the input key adjacent to the dictionary key on the keyboard? If so, add
a near operation (distance raised by 1).

3. Is the input letter the same as the previous dictionary letter? If so, decrease
the dictionary pointer, revert the last operation and add an insert (distance
raised by 2).

4. Is the input letter the same as the next reference letter? If so, increase the
reference pointer by an additional step and add a delete operation (distance
raised by 7).

5. If nothing fits, add a modify operation (distance raised by 2).

Figure 2.1 illustrates an example calculation of the algorithm. Each operation
is weighted according to the probabilites of occurrences of this particular error in
the results of the typing error analysis in Section 4.1. The current distance and
reference pointer as well as the last action and input word is temporarily saved
for every word that is computed. The last action is needed for reverting in case
of an insert and the last input word is needed to ensure that the intermediate
result is still fresh and suitable.

2.3 Frequencies

Using frequency numbers is a crucial part of any prediction system. Naturally,
some words and word compositions occur more often than others. Every word
in the dictionary gets associated with a number within a given limit that should
represent its average appearance within a text. Since we have highly individual
and probably incomplete dictionaries, we need a system that adapts its frequen-
cies dynamically to the user. Increasing the frequency of a word is easy. Its
number is simply raised each time it is written. More difficult is decreasing the
frequency of all other words without needing too much computation time. With-
out decrease, words will eventually end up with very similar numbers. We will
divide the frequency of all words by two as soon as one word reaches the upper
limit. This way, all frequencies will still remain within the given limit. Addi-
tionally, the numbers will keep up the diversity because the system acts similar
to AIMD (additive increase/multiplicative decrease) used in TCP to distribute
data streams of different throughput.

2.4 Trade off between Completion and Correction

The keyboard application is trying to find out the most probable words the user
was intending to write. Word prediction and correction are two different ways

2. Design 7

T

T E I C H

T
Copy

(a) At first, the pointer is at the
beginning of the word. The first
input is a ”T” which matches the
dictionary word. Therefore, a copy
operation is used and the pointer
moves one letter to the right.

T

T E I C H

T
Copy

R
Near

(b) ”R” does not match ”E”. But
the two keys are adjacent on the
keyboard. Therefore a near opera-
tion is used and the pointer moves
one letter to the right.

T

T E I C H

T
Copy

R
Insert

E
Copy

(c) The input letter and the letter
at the pointer are neither the same
nor adjacent keys. But the algo-
rithm detects that the input letter
matches one letter previous to the
pointer. It assumes that the ”R”
was inserted by accident. The pre-
vious operation gets reverted and
the pointer stays at the same point.

T

T E I C H

T R E O
Copy Insert Copy Near

(d) Because of the insert opera-
tion, the input letter and the dic-
tionary letter are shifted by one.
The pointer keeps track of these
shifts. In the next step, ”O” and
”I” are compared which are neither
the same nor adjacent. In addition

Figure 2.1: Example of four possible calculation steps of the adjusted Levenshtein
algorithm. The upper letters (”Treo”) resembles the input word and the lower
letters represent the dictionary word (”Teich” in this case). The blue arrow
indicates the current pointer position at the dictionary word. In each step, the
last input letter is compared with the letter at the pointer.

2. Design 8

to do that and both are needed for the best result. The problem is finding a
suitable combination of the two approaches leading to one single result. Both
algorithms will calculate a list of words. First, we observe that the word com-
pletion algorithm usually only finds a few results because it searches for exact
matches. But showing the suggestions of the word completion first and then
append the results of word correction is no option since this scales badly with
dictionary size, short inputs and high error rate. Instead, we use a heuristic to
compare the probability of correct words with mistyped words. We alter the fre-
quency of misspelled word based on the correction algorithm. Then the altered
frequency is used to perform the prediction algorithm together with all correct
words. We can use the calculated Levenshtein distance and multiply it with a
penalty factor. The result is subtracted from the frequency of the word.

For example assume that the word ”habe” is much more frequent than
”heben”. When user types ”hebe”, the prediction algorithm will suggest ”heben”
since both share the same prefix. But the Levenshtein distance to ”habe” is only
1. It is likely that the frequency number of ”habe” after the reduction is still
higher than the frequency number of ”heben”. Therefore the word will be cor-
rected to ”habe”.

2.5 Format of Dictionary

The dictionary should have a practical data structure, which supports all oper-
ations that are mentioned above in reasonable time.

2.5.1 Core Dictionary

The core dictionary holds all words from the original Google dictionary. It
contains the most frequent words of the German language. The words match the
rules of the German orthography and already have frequency numbers assigned.
The words are in a separated dictionary because we want these words merely as
a basis. If a suitable word in Swiss German is found, it has precedence.

The words are stored in an asymmetric tree. Every node has 27 children, one
for every letter in the latin alphabet and one for numbers and special characters.
If a child contains more than 200 words, it gets split up into another 27 nodes
up to a maximum tree depth of 3. Each leaf of the tree is a linear list containing
words, which share a certain prefix. The implementation for prediction and
correction traverses the tree based on the prefix and applies its algorithm on the
list in the found leaf.

2. Design 9

Dictionary

A B C ... N O ... Z #M

A ... O ... A ... E ...

N

Zaun
Zelle
Zunft
...

U ...

oder
ob
Obst
...

Mann
Mandel
Mango
...

Maul
Maus
...

Messer
Meer
Mehl
...

Ball
Bauer
Band
...

Bote
Börse
...

...

Figure 2.2: Schematic illustration of the asymmetric dictionary tree. Depending
of the number of stored words each node either splits up into 27 additional nodes
or points to a list of words. Words in the same list share the same prefix.

2.5.2 Personal Dictionary

The personal dictionary has the exact same structure as the core dictionary but
it contains words that are added by the Kännsch server. Additional words are
added whenever a user types a word that is not yet listed in either dictionary.
Those words are first copied into a temporary buffer and then inserted into the
personal dictionary as soon as they are typed a second time. Words that were
not used for a long time are forgotten whenever the frequency of all words are
decreased since this dictionary contains seldom used words and typing errors.

2. Design 10

2.5.3 Top list

The tree structure creates an additional problem: Since only words in the cor-
responding leaf are compared, the correction algorithm can only suggest words
which share the same prefix. But the user’s type errors might also occur in the
beginning of the word. Assume that the user wrote ”ivh” but intended to write
”ich”. The algorithm will traverse the tree and end up in a list of words with the
prefix ”iv”. The auto-correction algorithm will not consider the word ”ich” since
it is stored in a different list. To cope with this, an additional linear list of the
thousand most frequent words overall is kept. The algorithm will be performed
on these words as well and is able to detect a large part of typing errors. Practice
has shown that, it is more accurate to multiply their Levenshtein distance by
a higher penalty factor. This is because the list contains words with very high
frequency numbers.

Chapter 3

Implementation

3.1 Swift Programming Language

The Kännsch application for iOS is programmed in Xcode with a language called
Swift. This is a new programming language designed by Apple to offer an al-
ternative to Objective-C. It is fully compatible with Objective-C and offers the
same features but with a more readable syntax.

3.2 Framework and Libraries

In this section, a list of open source projects that are used to realize this appli-
cation is given.

Tasty Imitation [10] is a simple keyboard implementation completely written
in Swift. It is specifically designed to look like the standard keyboard by Apple.
This keyboard was used as a framework and forms the major part of the project.
Some minor changes were made to adjust the keyboard layout and a custom
banner is added. This is the part above the actual keyboard, which is used to
show several word suggestions based on the input of the user.

An implementation of the Levenshtein algorithm [12] was used as a basis
for the word correction algorithm. The algorithm was changed to match our
requirements.

ZipArchive [13] is a library to compress and decompress files. It is used to
bundle the log files in a zip archive to send it to the Kännsch server. The library
is written in Objective-C.

3.3 Retrieval of Local Dictionaries

The design and implementation of the Kännsch server infrastructure was a part
of the master thesis of Marcel Bertsch. Its purpose will be explained briefly as

11

3. Implementation 12

well as all mandatory parts that the client application needs to fulfill.

3.3.1 Research Logger

The research logger is that part of the application which is responsible for col-
lecting data about the user. Many parts of it are designed to imitate the function
of the Android counterpart. The logger is called at several input operations. In
particular, it will log the following events:

• Every keystroke of the user.

• Every explicitly picked suggestion together with the originally typed input.

• Every automatically corrected word together with the originally typed in-
put.

• Every reverted correction together with the originally typed input. A cor-
rection is reverted when the user presses backspace after an auto-correction
took place.

All events are stored in a buffer and after several minutes saved as a JSON
file. Every five hours, all logged files are bundled in a Zip archive and sent to
the server together with a hashed user ID.

3.3.2 Kännsch Server

The main task of the server is to provide a regional dictionary based on the
user’s dialect. Every user input will be logged and sent to the server. It will
then analyze the log and compare it to the data of other users. After a user
has produced enough data, a list of words and frequencies that should represent
the user’s dialect is sent back to the application. The logging and sending of
data continues on a regular basis. The whole process is designed so that the user
should not notice any of these processes.

Chapter 4

Results

4.1 Typing Error Analysis

This section describes a method to measure the distribution of various typing
errors made by an average user. We are interested in what mistakes are being
made and how often they occur. This information is used in two different ways.
First, the resulting numbers are used as weights in the Levenshtein algorithm.
Second, we can use the distribution to create test cases for evaluating the auto-
correction algorithm.

Our analysis is based on the data logs that were collected by the Kännsch
Android application. The logs gather all keystrokes, picked suggestions and auto-
corrected words. These log entries are reinterpreted as a stream of deletion and
insertion events. Whenever a sequence of letters was removed, it considers the
same amount of letters that were inserted to replace them. A full Levenshtein
algorithm (not the adjusted version) is calculated on the two words. The Lev-
enshtein algorithm calculates a way to alter one word into the other. The used
modification steps are summed up over the whole log.

For example, if the log states that the word ”elefsnt” was corrected into
”Elefant”, seven deletion events (”t”, ”n”, ”s”, ”f”, ”e”, ”l”, ”e”) and seven in-
sertion events (”E”, ”l”, ”e”, ”f”, ”a”, ”n”, ”t”) registered. The process detects
that the sequence ”elefsnt” is replaced with the input ”Elefant”. The Leven-
shtein algorithm computes that the first letter was capitalized and the fifth was
replaced.

Some of the detected substitutions may be uncorrelated because the log files
do not track cursor movements. This may lead to a problem whenever the user
deletes a word, moves the cursor and continues to write. We will only accept the
result of a substitution if at least one third is unchanged.

The following modifications are distinguished:

• Copy: A letter is unchanged.

• Near: A letter is exchanged with an adjacent key on the keyboard.

13

4. Results 14

(a) Correct typed letters compared
to misspelled letters.

(b) The distribution of errors made
by an average user.

Figure 4.1: Figure 4.1a shows how many errors are made overall. Figure 4.1b
splits up the blue part of Figure 4.1a to show which error occurred how often.

• Umlaut: E.g. if the letter ”ä” is exchanged with ”a”.

• Case: A letter is capitalized or vice versa.

• Edit: A letter is exchanged with a letter that does not fit into any of the
first four categories.

• Insert: A letter occurs in the second word which is missing in the first.

• Delete: A letter was omitted in the second word.

3957 log files are used for the analysis. The results are illustrated in Figure
4.1. More than three percent of all typed letters are not intended. Hitting a
key adjacent to the intended key occurs about twice as often than hitting a
completely different key. Omitting a letter is the least frequent mistake.

4.2 Prediction Benchmark

The prediction benchmark is used to measure the performance of word comple-
tion and word prediction. It counts the amount of saved keystrokes using our
application compared to writing every single letter of a text separately.

The benchmark splits a given text into a list of words and scans every word
letter by letter while performing the algorithm used in the application to suggest
words. If the original word is among the suggested words, the amount of letters

4. Results 15

Number of Words in Test Sequence

1
0

0

2
5

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

5
0

0
0

7
0

0
0

1
0

0
0
0

C
h

a
ra

c
te

r
S

a
v
in

g
 R

a
ti
o

 [
%

]

0

5

10

15

20

25

30

35
Prediction Performance on Texts of different Length

Figure 4.2: Performance of word prediction and word completion. The algo-
rithms were performed on texts of various length.

that did not need to be typed are added to the result. This number is called
Saved Characters. For example, if we intend to write the word ”Elefant” and
the suggestion shows up after typing ”Ele”, we saved four characters. We are
interested in the Character Saving Ratio which is the result of dividing the Saved
Characters by the total amount of characters in the text.

The algorithms were performed on parts of the Harry Potter books by J.K.
Rowling. The books offer a large amount of orthography checked text passages.
Some of the words and names are made up which are an additional challenge.
The results in Figure 4.2 show that short input sizes perform worst since the
dictionary has no chance to adapt to the writing style. Longer texts help the
dictionary to adapt to the writing style. The standard aberration is smaller after
long inputs which indicates that the dictionary gets more accurate. The overall
performance settles between 26% which is about the same as the algorithm used
in Google’s LatinIME [3]. Figure 4.3 shows the performance while frequency
adaption is disabled. That means all frequencies stay the same over the whole test
run. While the results do not change much over time, the average performance

4. Results 16

Number of Words in Test Sequence

1
0

0

2
5

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

5
0

0
0

7
0

0
0

1
0

0
0
0

C
h
a

ra
c
te

r
S

a
v
in

g
 R

a
ti
o

 [
%

]

0

5

10

15

20

25

30

35

Prediction Performance with disabled Frequency Adaption

on Texts of different Length

Figure 4.3: Performance of word prediction and word completion with unchang-
ing frequency. The algorithms were performed on texts of various length.

is about the same as before.

4.3 Correction Benchmark

The correction benchmark will test the accuracy of the auto-correction algo-
rithm. The benchmark puts mistakes into a text with correct spelling. It will
feed our algorithm with the altered text letter by letter similar to the prediction
benchmark. But it expects that the correct, original word is among the sugges-
tions. We are interested in how many words can be corrected and how often
the correction failed and suggested a wrong word instead. The Corrected Words
Ratio is the division of the number of successfully corrected words divided by all
words that contained at least one error.

Again, the Harry Potter books were used as input for the benchmark. The
texts were altered according to the distribution results of Section 4.1 with a fixed
random seed. The results are illustrated in Figure 4.4. The sample size for short

4. Results 17

Number of Words in Test Sequence

1
0

0

2
5

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

5
0

0
0

7
0

0
0

1
0

0
0
0

C
o

rr
e

c
te

d
 W

o
rd

s
 R

a
ti
o

 [
%

]

0

10

20

30

40

50

60
Correction Performance on Texts of different Length

Figure 4.4: Performance of word correction. The algorithm was performed on
texts of various length.

texts are too small because not more than 4% of all letters contain an actual
error. This is the reason why tests with less than 500 words have very high
standard aberrations. The correction performance remains above 25% even with
high input sizes while the standard aberration gets smaller over time. Google’s
algorithm achieves a significantly higher performance. Depending on the test
case, it reaches between 28% and 40% [3]. Figure 4.5 shows the performance while
frequency adaption is disabled. While the standard aberration looks similar, the
performance slightly increases over time instead of decreasing.

4. Results 18

Number of Words in Test Sequence

1
0

0

2
5

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

5
0

0
0

7
0

0
0

1
0

0
0
0

C
o

rr
e

c
te

d
 W

o
rd

s
 R

a
ti
o

 [
%

]

0

5

10

15

20

25

30

35

40

45

50

Correction Performance with disabled Frequency Adaption

on Texts of different Length

Figure 4.5: Performance of word correction. The algorithm was performed on
texts of various length.

Chapter 5

Conclusion and Outlook

The Kännsch keyboard application for iOS is a first step to give Apple iPhone
users the possibility to profit from a Swiss German dictionary just like Android
users already do. The keyboard offers word suggestions with prediction, comple-
tion and correction mechanics. It offers reasonable accuracy and speed that can
compete with similar applications. It is designed to access the Kännsch server,
which means it is based on the same resources as its Android counterpart.

Besides further improvements on speed and accuracy of the proposed algo-
rithms to match other keyboards, there are more aspects that can be improved
in the future. The application has no support for multiple languages. It may be
extended so that it holds various dictionaries for more languages or dialects and
chooses the right one based on context and user input. The keyboard layout may
be more user friendly by adding more umlauts, special characters and emoticons
like Emoji. Many keyboards such as Swype offer the possibility to swipe over
the intended keys instead of typing them one after the other. Our application
could be expanded with an algorithm that detects swipe gestures and matches
them with words in the dictionary.

19

Bibliography

[1] Peer, L.: Kännsch - a Swiss German Keyboard for Android. Master’s thesis,
ETH Zürich (2014)

[2] Google: Android. https://www.android.com/ Accessed 2015/09/03.

[3] Bertsch, M.: Kännsch - Improving Swiss German Keyboard. Master’s
thesis, ETH Zürich (2015)

[4] Apple: iPhone. http://www.apple.com/iphone/ Accessed 2015/09/03.

[5] Apple: QuickType. http://www.apple.com/ios/whats-new/quicktype/

Accessed 2015/09/03.

[6] Apple: iOS. http://www.apple.com/ios/ Accessed 2015/09/03.

[7] Google: Android Open Source Project LatinIME. https://android.

googlesource.com/platform/packages/inputmethods/LatinIME/ Ac-
cessed 2015/09/03.

[8] Swype: Swype. http://www.swype.com/ Accessed 2015/09/03.

[9] SwiftKey: SwiftKey. http://www.swiftkey.com/ Accessed 2015/09/03.

[10] Baboulevitch, A.: Tasty Imitation Keyboard. https://github.com/

archagon/tasty-imitation-keyboard Accessed 2015/09/03.

[11] Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady 10 (1966) 707

[12] Riegler, M.: Levenshtein - Swift. https://gist.github.com/kyro38/

50102a47937e9896e4f4 Accessed 2015/09/03.

[13] ZipArchive: ZipArchive. https://github.com/ZipArchive/ZipArchive

Accessed 2015/09/03.

[14] Crockford, D.: JSON in Java. https://github.com/douglascrockford/

JSON-java Accessed 2015/09/03.

20

https://www.android.com/
http://www.apple.com/iphone/
http://www.apple.com/ios/whats-new/quicktype/
http://www.apple.com/ios/
https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
http://www.swype.com/
http://www.swiftkey.com/
https://github.com/archagon/tasty-imitation-keyboard
https://github.com/archagon/tasty-imitation-keyboard
https://gist.github.com/kyro38/50102a47937e9896e4f4
https://gist.github.com/kyro38/50102a47937e9896e4f4
https://github.com/ZipArchive/ZipArchive
https://github.com/douglascrockford/JSON-java
https://github.com/douglascrockford/JSON-java

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Design
	2.1 Prediction
	2.1.1 Word Completion
	2.1.2 Word Prediction

	2.2 Correction
	2.2.1 Auto-Correction
	2.2.2 Levenshtein Algorithm
	2.2.3 Adjusted Levenshtein Algorithm

	2.3 Frequencies
	2.4 Trade off between Completion and Correction
	2.5 Format of Dictionary
	2.5.1 Core Dictionary
	2.5.2 Personal Dictionary
	2.5.3 Top list

	3 Implementation
	3.1 Swift Programming Language
	3.2 Framework and Libraries
	3.3 Retrieval of Local Dictionaries
	3.3.1 Research Logger
	3.3.2 Kännsch Server

	4 Results
	4.1 Typing Error Analysis
	4.2 Prediction Benchmark
	4.3 Correction Benchmark

	5 Conclusion and Outlook
	Bibliography

