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Abstract

Many people like to go jogging and use a variety of gadgets for that purpose,
especially cell phones. However, most of the mobile applications that assist
you which are currently on the market, usually only track you while running
or give you predefined routes to run along. Therefore, you typically start by
planning a route or selecting one created by someone else. We introduce a
new mobile application to replace this – rather boring – way of planning your
exercise. Instead of manual planning, our application dynamically generates a
route based on user parameters, such as desired length and current coordinates
of the user. To further improve user experience, the application responds to
changes during the run by dynamically generating a new route that satisfies the
original parameters.
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Chapter 1

Introduction

The main motivation of this thesis is to replace the either cumbersome way of pre-
planning your jogging exercise or using pre-defined routes with a new method:
generating routes “on the fly”. The user only needs to enter certain parameters
(e.g. length), and then, the application generates a suitable route. Our appli-
cation works in such a way that the user can start directly without waiting for
the completion of the route generation, which enables the user to start running
immediately while the calculation of the route is still in progress. Additionally,
one will not run the same route over and over again. Some applications which
try to apply this concept exist1, but they yield rather unsatisfying results.

Our work processes the huge amount of raw geodata available to small parts
which are more suited to work with. We use these small parts to generate
routes and display them on the user’s device. The computation-heavy work of
extracting data and generating routes is done on a server, whereas the relatively
light tasks of displaying routes and tracking are done by the client on a mobile
device.

1For example plotaroute.com or routeloops.com.
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Chapter 2

Overview

2.1 Open Street Map

We used the vast database of Open Street Map (OSM) [1] to populate our custom
geo-database. In contrast to other providers of geodata, OSM is free to use
and open source [2]. This has the big advantage that many small – maybe only
locally known – paths are potentially only in the OSM database, since commercial
projects usually care more about highways and generally larger streets. It is
obvious that accurate highway information is not really important to generate
good jogging routes. However, small paths are exactly what makes jogging routes
interesting. Therefore, the OSM database is ideally suited for our goal.

However, also OSM has its drawbacks: As it is created by a very large com-
munity, there are quite a few wrong entries, and also the naming scheme is not
used consistently (more in Section 2.5). Another issue of OSM is that the data
is saved in a raw binary format (i.e. not human-readable). In order to work with
this data, we first needed to condition and filter it (see Section 3.1).

2.2 Server

We implemented the server in Java, using the Tomcat framework [3]. The server
takes the raw data provided by Open Street Map, generates routes, and sends
them back to the client, as shown in Figure 2.1. The following paragraphs are

Figure 2.1: The structure of the application with the database,
the Tomcat server and the Android client.

2



2. Overview 3

only a conceptual overview, for more details, refer to Chapter 3.

2.2.1 Data

The raw data can easily be downloaded from one of the Open Street Map mirrors
[4]. The data is received in a binary file format which we preprocess for our
purposes: we only keep the data relevant to us. This is done with the help of
a tool called Osmconvert [5], which can be used to efficiently extract data of a
PBF file [6] for a specified bounding box as either XML or CSV.

2.2.2 How to generate good routes?

With the extracted and preprocessed data, we generate the route(s). Of course,
we could just generate random routes, but it is very unlikely that any user would
be interested in such routes. Therefore, we asked ourselves the question of what
makes a route good. We think that the answer to that question is to a certain
degree subjective. However, there are some criteria which define a good route
that most likely everybody could agree on. Given a start and an end point, as
well as a length, we determined the following:

1. Actual start and end point as close as possible to the provided ones

2. Actual length close to the provided one

3. Minimize the number of small loops (as illustrated in Figure 2.2) in the
generated route

4. Maximize the length of pedestrian friendly paths in the route

The last requirement turned out to be rather difficult to achieve. We therefore
decided to focus on the first three goals and deferred the last one as a future
improvement (see Section 6.1).

In order to achieve these goals, our algorithm first builds a (weighted, undi-
rected) graph from the preprocessed data. Then it tries to find a path, which
approximates a circle with correct start and end point. We chose this approach,
because a circular route prevents (at least to a certain degree) the forming of
loops (as mentioned in Criteria 3) and the length is easy to control.

It is important to note that this algorithm is only a heuristic and is not
guaranteed to yield the optimal result.
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Figure 2.2: A small loop in a route.

2.3 Client

The mobile client is implemented for the Android platform [7]. We used Android,
because it is very openly designed, free and programs can be written in Java.
The client has two main activities, one with a user interface for entering the data
about the route (such as start/end point and length) and one for displaying the
route and tracking the user. For more details, refer to Chapter 4.

2.4 Communication

The communication between the server and the client is implemented with a
REST API, using the data format JSON [8]. We chose JSON, because it is
a very simple and compact data format, which is openly available. Also, it is
widely used, so no compatibility issues should arise with possible future work.

2.5 Limitations

The data of Open Street Map is structured using tags [9] (see Section 3.1.1).
Even though the guidelines for tagging are very detailed and cover most use cases,
there is no guarantee that every element is tagged correctly or even tagged at all.
Because we only use tags for filtering out non-pedestrian streets like highways,
this was not too much of a problem, but if one wants to improve the algorithm
(as outlined in Section 6.1), one would have to rely more on the information
saved in tags.



Chapter 3

Server

3.1 Data

3.1.1 Structure of raw data

The raw data of Open Street Map is structured according to the rules defined
in [9]. Its basic components are called elements, which in turn can be either
nodes, ways or relations [10]. Nodes define points, ways define connections of
nodes and boundaries and relations explain how elements work together. For
our purposes, we only need nodes and ways between nodes, i.e., no ways which
describe boundaries and no relations.

A node element contains its coordinates (longitude and latitude), as well as
its id. All the other information, like the uploader’s user name or version code,
are not important for this work. A way element consists of at least two nodes
(more precisely their ids) and a collection of tags. Tags can contain a variety of
information about the way, but here, we only need to know, if a particular way
is accessible for pedestrians (i.e. that it is not a highway or the like). Relations
are completely discarded, since all the information we need is already contained
in nodes and ways.

3.1.2 Conditioning of raw data

The raw data provided by the various mirrors of Open Street Map (we used the
Swiss mirror [11]) is usually saved in the PBF format [6]. Since this is not a
common file format, standard editors cannot read PBF files. However, there are
tools available which extract XML and CSV files from a PBF file. In our work,
we used Osmconvert [5]. Given two corners of the bounding box (the area from
which we want to extract information), we can use Osmconvert to create a CSV
file with all the ids and coordinates of the nodes, as well as an XML file (which
has the ending .osm but still is an XML file), which contains all the ways with
the corresponding ids of the nodes in the bounding box.

Given these two files, we wrote a small program that stores this information

5



3. Server 6
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Figure 3.1: A graph grouped into numbered tiles.

(as nodes and edges) in a simple SQL database. Of course, an SQL database
is not the optimal means to store geographical information, but for the sake of
simplicity and because it performed well enough, we used it nevertheless.

Additionally, we grouped the entire area into square tiles with side length
500 meters and numbered them starting from the bottom left corner (as shown
in Figure 3.1). We allocated the corresponding tile id to each node and stored
that in the database as well.

3.2 Routing

The routing algorithm was the most difficult part of the thesis. To talk about
its implementation and some choices we made, we use the requirements stated
in Section 2.2.2.
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Raw PBF:
-large file
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Figure 3.2: The dataflow on the server.

3.2.1 Concept

As mentioned in the requirements, generating a route requires a start and an end
point (which can be the same) and a length. With this information, we extract
a small database from the raw data (as described in Section 3.1), which includes
all the nodes and edges around the required point(s). Since the database extract
might be larger than actually needed, we first determine which tiles are required
to avoid loading the entire database into memory. We then load the nodes in
these tiles, as well as the edges between them, in a graph data structure. We use
JGraphT [12] as a library for the graphs. Afterwards, the algorithm can easily
work on this graph without accessing the database again. The entire dataflow is
illustrated in Figure 3.2.

On an abstract level, the algorithm tries to approximate a circle around the
target (end point). It does that, by penalizing edges which go further away
from this hypothetical circle. Additionally, it tries to prevent loops, as this is
a requirement, mentioned in Section 2.2.2, also by penalizing edges, which have
been visited before.

3.2.2 Algorithm

Given the graph described in the last section, we can start the actual routing
algorithm (Algorithm 1). We decided to use a depth-first approach. First, we
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need to determine the closest nodes in the graph to the provided start and end
point, which is simply done by iterating over all nodes of the graph. We then
need to define the penalty function. As described earlier, we try to approximate
a circle around the target. For this purpose, we split the routing into two parts,
which we call circle and end phase. In the circle phase, the algorithm tries to
approximate a circle around the target by assigning larger penalties to edges,
which point away from the circle. In the end phase, the penalties are assigned
proportionally to the distance to the target. The end phase is needed because
otherwise the algorithm would most likely never actually reach the target and
keep circling around it.

Algorithm 1 Routing algorithm

1: function makeRoute(graph, source, target, length, penalty function)
2: currentV ertex← source
3: initialize currentPath
4: zero penalties of all edges;
5: while true do
6: nextEdges← edge set of currentV ertex
7: nextEdge← edge with smallest penalty in nextEdges
8: update currentPath with nextEdge
9: nextV ertex← other Vertex of nextEdge

10: if currentPath too long then
11: reset currentPath
12: continue
13: end if
14: if currentPath in range && target reached then
15: return currentPath
16: end if
17: set penalties of edge set of nextV ertex
18: end while
19: end function

The penalty function consists of three parts. On one hand, it is dependent
on the distance to the circle (or target respectively), as mentioned in the last
paragraph. On the other hand, it factors in the number of times a node and
an edge have already been visited and penalizes larger numbers. This prevents
loops (as mentioned in Section 2.2.2, Requirement 3) and encourages the algo-
rithm to take edges, which have not been visited before. Additionally, we added
some noise, so that the algorithm does not return the same route for the same
parameters every time it is called.

When a route has been found (with Algorithm 1), we remove any small loops
that made it into the solution. However, this introduces the problem that routes
which contain many loops are significantly shorter than required. For this reason,
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we initially multiply the length by a factor of 1.5 to request a longer route, which
addresses this issue.

After testing the algorithm, we discovered that generating a single route was
usually not enough, because many routes had either still some (larger) loops, or
were too short or too long. For this reason, and because the routing algorithm
(Algorithm 1) works rather fast (usually between 0.5 and 2 seconds), we decided
to calculate many routes at once (12 to be exact) and choose the best to return.
This approach worked well and, if more than one route, for example k routes,
were required, one can easily choose the best k.

We further improved the calculated routes, by calling the entire algorithm
multiple times (four at most) with slightly adjusted parameters, if no routes were
found. For example, if all calculated routes were too short, we increased the re-
quested length and vice versa. At this point, some sophisticated machine learning
algorithms would be much more efficient and yield better results, however, we
decided that this would go beyond the scope of this work.

Of course, looking at Algorithm 1, one can easily see that it might not ter-
minate. To address this, we introduced a timeout, after which the process will
be terminated and a new one started. The new one will most likely not be stuck
with the same problem as the previous one, due to the added (random) noise in
the penalty function.

3.2.3 Caching

Benchmarking showed that most of the time on the server side is spent on re-
trieving the database extract1, and thus we decided to cache the extracts. For
this purpose, we assigned a unique id to each of them and put the id in the
response to the client. The client saves the id and the corresponding center and
diameter of the bounding box. Therefore, the client can include the id in later
requests, which are in the same area and not much larger2. The server then
checks, if the id corresponds to a stored database and fits the criteria and, if so,
uses this database for the routing algorithm.

This solution is a compromise between no caching at all – which of course
would not need as much space – and pre-calculating database extracts for the
entire raw data – which in turn would need an enormous amount of space. With
our solution, a user who approximately starts their run in the same location with
the same length multiple times, will only have to wait once for the database
extraction and afterwards, the server can use the cached extract. On the other
hand, users who start their routes at a new location every time they use the app,

1The conditioned geodata within the bounding box around the start and end point of the
route to be used in the routing algorithm as described earlier.

2If the user requests a significantly larger route, the database extract will not contain the
required geodata.
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have to wait until the data is processed each time (which approximately takes
additional 10 - 15 seconds).

While the route is being generated on the server, the user can already start
running. After some time, the server will send the route back to the user’s
device. If the user is currently not following this route, a new route request
would automatically be sent and, because of the caching, the request will only
take a few seconds to complete.



Chapter 4

Client

4.1 User interface

4.1.1 Entering the route data

The interface which allows the user to input data about the route provides a
map view (see Section 4.2), as well as text views for entering the coordinates for
the start and, optionally, the end point, as shown in Figure 4.1. Since typing
in coordinates is rather annoying, the user can use their current position (by
pressing the corresponding button) or any other location (by clicking on the
map) as well. Once all the parameters are set, the user can start the route
generation, which leads to the next activity.

4.1.2 Displaying the route and tracking

Once the route generation is started, i.e., the client has sent the parameters of
the required route to the server, the user can either start running or wait until
the server sends the generated route back to the client. This may take some time
initially (up to a minute, especially, if the database is not cached (see Section
3.2.3) and the requested route is long) but goes rather quickly (a few seconds)
for subsequent queries.

After the client received a route, it displays it using Osmdroid’s interface (see
Section 4.2, [13]) as shown in Figure 4.2. Besides displaying the route on the map,
the client also displays the total length, the remaining length, the total altitude
(sum of absolutes of incline and decline) and altitude difference (difference of
altitude between start and end point). The next segment is always indicated
with a special color. While running, the client tracks the progress, i.e. which
nodes the user has already passed, and updates the route accordingly. Of course,
tracking your route visually while jogging is rather cumbersome. Therefore,
we implemented audio navigation information: The device outputs basic audio
signals: “Turn left” and “Turn right”. This is implemented using Android’s
TextToSpeech [14]. Additionally, the device outputs a short, acknowledging

11
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Figure 4.1: UI for entering
route parameters.

Figure 4.2: Displaying route
and metadata.

sound if there is no turn to take to make sure, the user knows that the app is
still running and tracking them.

When the user completed a route, i.e., when they reached the last node in
the route, the complete run is saved into a database on the mobile device along
with some metadata (like time and length) to be accessible later (see Section
4.1.4).

4.1.3 Requesting new routes

While a map is displayed, the user has four options to change the route:

1. Requesting a route with more total altitude

2. Requesting a route with less total altitude

3. Requesting any new route

4. Getting too far away from the current route (triggered automatically)

The first three options are triggered by the user pressing the corresponding
button. For Options 1 and 2, the client requests a route with more (or less) total
altitude. Of course, such a route cannot always be found, for example, if the
route is already very steep and the user requests a steeper route. In this case,
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the user is notified that no better route was found and can continue running the
current route.

If the user requests Option 3, a new route without any constraints for the al-
titude is requested. This corresponds to an initial route request with the current
position as start point and the remaining length as length.

Option 4 is triggered “on the fly”, if the user stops following the current route,
i.e., gets too far away from the next node. This can for example happen, if the
user wants to follow a nice track, which is different to the current route. In this
case, the new route has the same constraints as Option 3. Option 4 guarantees
that there is always a route available and that the user does not have to make
U-turns, i.e., the user cannot run the wrong way (we do not want to give the
user negative feedback). If they do not follow the route, a new one gets created
automatically.

All the options mentioned above take the current position, the end point
earlier defined and the remaining length as parameter for the route request.

4.1.4 Statistics

If a route is completed, information about it is saved in a simple SQL database.
If the user wants to check on their completed routes, the user can click on the
corresponding entry in a list view, which opens a map view displaying the route.

4.2 Osmdroid

For displaying maps, and with it, routes and points, we used the open source
library Osmdroid [13]. It provides an easy interface for retrieving map tiles
and centering at the current position. The provided map view made it very
easy to include the map in the Android layout XML files. Additionally, we
used the Osmbonuspack [15], a third-party library, which provides additional
functionality, for example, an interface for a route and the possibility to display
it.



Chapter 5

Testing

5.1 Beta

After testing the app ourselves, we decided to use the beta testing functionality
of the Google Play Store [16]. This made it very simple to distribute the app
to many people, since we could just send out a link, with which the testers
could download the app without the need to set up any developer environments.
Feedback can be sent per email or, if the app crashes, a stack trace is sent to
Google, which we can evaluate.

Because this only provided a feedback about the app’s usability and correct-
ness but not about how a user interacts with the app itself and what routes they
request and run, we decided to log their behaviour, namely:

• location updates every 7.5 seconds.

• route requests (which type and if one was successfully found).

• when a route is completed.

This yielded a lot of information, which can be used to improve the client and
the server. Also, it gave us a feedback of how well our routing algorithm worked
under different circumstances.

5.2 Evaluation

For evaluating our work, we focused on the quality, the latency and the success
rate of the route generation algorithm. Since there were not enough testers, we
locally tested the algorithm by querying routes with random parameters. As test
area for the queries, we chose the canton of Zurich and its surroundings to cover
rural and urban areas likewise. This was done on a virtual machine running
Ubuntu with 8 GB of DDR4 RAM at 2400 MHz and two physical (resulting in

14
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Figure 5.1: The differences between the requested length and
the length of the generated routes.

four logical) cores of an Intel 5820K CPU at 4.0 GHz. The number of requested
routes is around 1000.

We used the Criteria from Section 2.2.2 for measuring the quality of the
generated routes, in particular Criteria 2 and 3, since Criteria 1 was not an issue
to achieve and Criteria 4 was excluded early on. As illustrated in Figures 5.1
and 5.2, the difference between requested and actual length and the number of
nodes visited multiple times increases, as the length of the route increases. The
growth of the length delta was expected, since the routing algorithm accepts
route lengths relative to the requested length (i.e., the longer the requested
route, the larger the range of acceptable route lengths). At first, the number of
revisited nodes seemed quite high, but one has to consider that a multiply visited
street for example may contain many vertices. Nevertheless, these numbers are
still quite high and should be reduced for better quality of the routes.

The success rate of the routing algorithm, as illustrated in Figure 5.3, was
overall quite good. With the exception of the first group (0 - 2.5 km), more
than 90% of the requests succeeded. However, in the first group, the success rate
was only around 83%. We suspect the issue to be that the range within which
routes of different lengths are accepted (plus and minus 7.5 %) is absolutely
much smaller. For example, for a request of length 12 km, routes from 11.1 km
to 12.9 km are accepted, whereas the range for a route of length 1.5 km is eight
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Figure 5.2: The number of revisited nodes in generated routes.

times smaller. For this reason, it is possible that disproportionally many short
routes are discarded.

The time measurements and the average number of timeouts, as shown in
Figures 5.4 and 5.5, were quite unexpected. Our assumption was that the longer
the requested route, the longer the algorithm takes to complete and the more
timeouts occur. However, this turned out to be only partly true. The number of
timeouts increases, if the requested route is longer, but also if it is shorter. This
can be explained with the same reasoning as in the last paragraph. It should be
noted that a timeout does not mean that the entire query timeouted, but rather
that one of the many invocations (as described in section 3.2.2) of Algorithm 1
did. However, this of course increases the overall latency significantly.

Overall, the routing algorithm performed quite well. Especially in the range,
within which most users will query routes (5 - 12.5 km), the calculation time was
low and the success rate high. Of course, there is still room for improvement, for
example, in the number of revisited nodes and the success rate for small routes.
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Rate of successfully generated routes
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Figure 5.3: The rate of successful route generations.

Time measurements of route generation
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Figure 5.4: The average runtime of the routing algorithm.
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Number of timeouts in route generation
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Figure 5.5: The average number of timeouts of Algorithm 1.
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5.3 Example routes

This section contains some examples of generated routes in the surroundings of
Zurich.

Figure 5.6: 6.5 km route
around a lake.

Figure 5.7: 4.9 km route near
the city limits.
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Figure 5.8: 2.4 km route in
an urban area.

Figure 5.9: 3.9 km route in
the forest.



Chapter 6

Future work

6.1 Data

In this work, we made very few restrictions on what data we used for routing. In
particular, we only filtered highways and used anything else as equally important.
Of course, this is suboptimal, because jogging on a remote track is much nicer
than on a large street.

In order to pick more such tracks, one would need to use the tags provided in
the Open Street Map data (as described in Section 3.1.1) and alter the routing
algorithm that it prefers smaller over larger paths (or however one wants to define
the quality of a jogging route). Of course, this means that one has to rely on the
consequent tagging of ways, which in turn creates new problems as described in
Section 2.5.

6.2 Routing

As described in Section 2.2.2, the routing algorithm is only heuristic. Thus,
there is a lot of room for improvement. Ideas include applying machine learning
algorithms to tune the parameters of the routing algorithm or incorporating user
feedback about the generated routes.

6.3 Evaluation

As described in Section 5.1, we collected a lot of data which we evaluated. How-
ever, the collected data was from a small group of people. To get more represen-
tative results, one would need a larger testing group. With such data, one could
most certainly detect some trends amongst the users and adjust the application
accordingly.
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