
Institut für
Technische Informatik und
Kommunikationsnetze

Towards Low-Power, Timing-Predictable

Medical Monitoring

Semester Thesis

Akos Pasztor

pasztora@student.ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Advisors:

Georgia Giannopoulou
Felix Sutton

Pengcheng Huang

Professor:

Prof. Dr. Lothar Thiele

January 29, 2016

mailto:Akos Pasztor<pasztora@student.ethz.ch>

Abstract

This semester thesis describes the design and implementation of a prototype

medical monitoring device. The device can measure human vital signs, such as

heart rate and blood oxygen saturation. The measured data is forwarded to a

connected device (e.g. PC, smartphone, etc.), moreover received control com-

mands are also interpreted and processed by the device. The two key design goals

of the medical device design are timing predictability and low power dissipation.

Timing predictability is motivated by the need to provide response and alerts

within guaranteed time bounds. Low power dissipation facilitate the portability

and mobility of the device. This thesis describes the design and development of

the system and its operation in details, and presents the results of the performed

timing and power analysis. The final conclusion summarizes the project and my

experience, moreover it contains my personal ideas and opinions, as well as an

envisioned proposal as a possible future work.

i

Acknowledgements

I would like to express my sincere gratitude to my advisors: Georgia Giannopoulou,

Felix Sutton and Pengcheng Huang for the continuous support of my semester

project. Beside my advisors, I would like to thank the Computer Engineering

and Networks Laboratory for providing me a personal workplace with access

to laboratories and equipments. My sincere thank goes to Prof. Dr. Lothar

Thiele, without whom this project would not have been possible. Last but not

least, I would like to thank my family and friends for supporting me spiritually

throughout this project and my life in general.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vii

Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Overview . 2

2 Background 3
2.1 Embedded Software . 3
2.2 Equipment and Tools . 4
2.3 BOLT . 6
2.4 Pulse Oximetry Sensor . 7

2.4.1 Measurement Range and Precison 7
2.4.2 Sensor Data . 8
2.4.3 Sensor Control . 13

2.5 User Interface . 14
2.6 Microcontroller . 15

2.6.1 Interrupt System . 16
2.6.2 Connectivity and Pinout 17

2.7 FreeRTOS . 17
2.7.1 Configuration . 17
2.7.2 Interrupt Priorities . 18
2.7.3 Memory Management . 19

3 System Design 21
3.1 System Architecture . 21

3.1.1 Communication . 22
3.2 Software architecture . 22

3.2.1 Initialization . 23

iii

CONTENTS iv

3.2.2 Interrupts . 24
3.2.3 Tasks . 25

3.3 Low Power System Design . 29
3.3.1 Microcontroller Low Power Modes 29
3.3.2 Sensor Duty Cycling . 29

4 Evaluation 32
4.1 Timing Analysis . 32

4.1.1 Medical Sensor . 32
4.1.2 BOLT . 34
4.1.3 RTOS Tasks . 35
4.1.4 RTOS Context Switching 38
4.1.5 Data Flow . 38
4.1.6 Response Times . 39

4.2 Power Analysis . 46
4.2.1 Analysis of Individual Interrupts and Tasks 47
4.2.2 Analysis of Operating Modes 52
4.2.3 Analysis of Duty Cycling 58
4.2.4 Idle Task Analysis . 64
4.2.5 Sensor Power Analysis . 65
4.2.6 Conclusion of Power Analysis 66

5 Conclusion 68
5.1 Future Work . 68

Bibliography 70

A Connectivity and Pinout 71

B Source Code Organization 72

C Device Outputs 74

D Sensor Timings 75

E BOLT Timing Analysis 76
E.1 Writing Operation . 76
E.2 Reading Operation . 77

F RTOS Task Timings 79

List of Figures

2.1 Workstation and development tools 5
2.2 Overview of the Bolt processor interconnect [1] 6
2.3 Bolt read and write operations, as illustrated in [1] 7
2.4 MCU UART RX signal captured with an oscilloscope 8
2.5 DataFormat #2 Status byte . 9
2.6 Heart rate value in DataFormat #2 10
2.7 Blood oxygen saturation (SpO2) in DataFormat #2 10
2.8 Byte 1 of packet in DataFormat #1 12
2.9 Byte 2 of packet in DataFormat #1 12
2.10 Byte 3 of packet in DataFormat #1 12
2.11 Interrupt priority values stored in TI MSP432 MCU 16
2.12 FreeRTOS interrupt priorities port to Cortex-M core MCU . . . 19
2.13 MSP432 memory management 20

3.1 System Architecture . 21
3.2 Software architecture . 23
3.3 Sensor RX structure that is transmitted in xQueueRx queue . . . 25
3.4 Sensor data structure . 26
3.5 Message structure for xQueueUI queue 28
3.6 Bitwise description of leds variable 28

4.1 RTOS trace using DataFormat #2 36
4.2 RTOS trace using DataFormat #1 37
4.3 Data Flow . 39
4.4 RTOS interrupt and task priorities 41
4.5 BOLT task response . 43
4.6 Packet response time . 44
4.7 Power analysis setup . 46
4.8 Sensor UART RX ISR and Data task execution analysis 48
4.9 Power profile: last byte of packet reception and send data to Bolt 48
4.10 Trace: last byte of packet reception and send data to Bolt . . . 49
4.11 Power profile: last frame of packet using DataFormat #2 49
4.12 Trace: last frame of packet using DataFormat #2 50
4.13 Power profile of last three frames of a packet using DataFormat #2 51
4.14 Power profile of a packet using DataFormat #2 51
4.15 Power profile of a packet using DataFormat#1 52
4.16 Power profile: basic operation using DataFormat#2 53
4.17 Trace: basic operation using DataFormat#2 53

v

LIST OF FIGURES vi

4.18 Power profile: basic operation with flashing LED after each writ-
ing operation to Bolt . 54

4.19 Power dissipation while LED is on 55
4.20 Power profile: basic operation using DataFormat#1 56
4.21 Trace: basic operation using DataFormat#1 56
4.22 Dynamically switch between sensor output data formats 57
4.23 Overview of a reading operation 57
4.24 Power profile of a reading operation 58
4.25 Power profile: duty cycling without periodic reading using DF#2 59
4.26 Trace: duty cycling without periodic reading using DF#2 60
4.27 Power profile: duty cycling with periodic reading using DF#2 . . 60
4.28 Trace: duty cycling with periodic reading using DF#2 61
4.29 Power profile: duty cycling without periodic reading using DF#1 61
4.30 Trace: duty cycling without periodic reading using DF#1 62
4.31 Power profile: duty cycling with periodic reading using DF#1 . . 63
4.32 Trace: duty cycling with periodic reading using DF#1 63
4.33 Difference between sensor on and off during duty cycling 64
4.34 Power analysis of idle task . 65
4.35 Power analysis of the pulse oximeter 65

5.1 Smartphone application with measurement data 69

B.1 Source code organization . 73

C.1 Device output when rested . 74
C.2 Device output after performing 50 push-ups 74

D.1 Sensor DataFormat #2 frame . 75
D.2 Sensor DataFormat #2 packet 75
D.3 Sensor DataFormat #1 packet 75

E.1 Write to Bolt: Request to ACK response time 76
E.2 Write to Bolt: ACK to first byte transfer 76
E.3 Write to Bolt: Last byte to REQ line release 77
E.4 Read from Bolt: Request to ACK response time 77
E.5 Read from Bolt: ACK to first byte transfer 77
E.6 Read from Bolt: Last byte to IND line release 78
E.7 Read from Bolt: IND to ACK line release 78

F.1 Data task execution . 79
F.2 Bolt task execution . 79
F.3 Bolt reading operation using DataFormat #2 79

List of Tables

2.1 Serial Output Formatting Options 9
2.2 STATUS byte description in DataFormat #2 10
2.3 DataFormat #2 packet description 11

3.1 TI MSP432P401R Power Modes [2] 30

4.1 Sensor timings using DataFormat #2 33
4.2 Sensor timings using DataFormat #1 33
4.3 Bolt writing operation timings (average values) 34
4.4 Bolt reading operation timings (average values) 35
4.5 RTOS timings using DataFormat #2 36
4.6 RTOS timings using DataFormat #1 37
4.7 Context switching times . 38
4.8 Maximum execution times and task periods 41
4.9 Worst-case response times . 45
4.10 Scenarios for power analysis . 47
4.11 Summary of current drain of different operating modes 66

A.1 Pinout of the microconroller . 71

vii

Abbreviations

API Application Programming Interface

BPM Beats Per Minute

DF#1 DataFormat#1

DF#2 DataFormat#2

HR Heart Rate

ISR Interrupt Service Routine

IT Interrupt

LPM Low Power Mode

LSB Least Significant Bit

MCU Microcontroller Unit

MISO Master In Slave Out

MOSI Master Out Slave In

MSB Most Significant Bit

MUX Multiplexer

NVIC Nested Vectored Interrupt Controller

PCB Printed Circuit Board

RTC Real Time Clock

RTOS Real Time Operating System

SCK SPI Clock

SPI Serial Peripheral Interface

SS SPI Slave Select

TI Texas Instruments

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

VCP Virtual Com Port

WDT Watchdog Timer

viii

Chapter 1

Introduction

Embedded systems provide unprecedented opportunities in every field of life. By

using state-of-the-art technologies in healthcare, the quality of medical monitor-

ing has been growing steadily. The topic of this thesis is the development of a

prototype medical monitoring device which can monitor human vital signs, such

as heart rate, blood oxygen saturation, respiratory rate, in combination with

ambient characteristics, for instance temperature and humidity. The envisioned

device can be used for not only long-term medical monitoring, but also for is-

suing warnings and alerts when abnormal changes in vital signs are observed.

Nowadays there are several devices that exist on market which are able to ful-

fill the requirements, however two key features - which are timing predictability

and low power dissipation - differentiate the device developed in this thesis from

commercially available products.

1.1 Motivation

Two major goals were focused on during development. When the device is used

for monitoring patients with critical or life-threatening health conditions, for in-

stance in emergency rooms, timing predictability is crucial. These devices need

to be certified, which means that strict bounds on the response time between

an abrupt change in vital signs and issuing an alert must be guaranteed. Con-

sequently both hardware and software have to be designed and developed with

the respect of timing predictability principles.

The second key goal is to achieve low power consumption in order to make

the device not only portable, but also to provide long-term monitoring on-the-

go. This is extremely important when constant monitoring can be a life-saver

although power supply cannot be guaranteed, for instance when a patient is

being transported. Therefore the device has to be designed with the evaluation

1

1. Introduction 2

of low power design principles in order to maximize battery lifetime.

1.2 Contribution

The contributions of this thesis can be summarized as follows:

1. A fully functional prototype which fulfills the requirements was developed

while focusing on the two major goals.

2. On the hardware side, the device was built from off-the-shelf components.

3. On the software side, FreeRTOS was used with preemptive scheduling pol-

icy for small overhead and timing predictability.

4. Sensor duty cycling and low power modes were used to focus on leveraging

low power system design to minimize power dissipation.

5. Considering a combination of fixed-priority and dataflow-driven scheduling

in FreeRTOS, timing analysis was performed to estimate bounds for the

response time of all system tasks.

6. Extensive timing and power measurements were conducted to validate the

analytical results and overall system operation.

1.3 Overview

Chapter 2 present an overview of system and the background of design and

development. Then in chapter 3, the system design is described in detail in

conjunction with the operation of system. In the evaluation chapter, the results

of meticulous timing and power analysis are presented. The conclusion chapter

contains a summary of the work along with my personal ideas for future work.

Chapter 2

Background

To develop the prototype of the medical monitoring device, off-the-shelf com-

ponents were used. A state-of-the-art ARM Cortex-M core microcontroller was

chosen as the application processor which incorporates high performance along

with low power dissipation. The microcontroller is located on a development

board called TI MSP-EXP432 LaunchPad which includes an on-board emulator

that provides programming and debugging without the need of additional tools.

I used a pulse oximetry sensor to measure human vital signs, including heart

rate and blood oxygen saturation. The sensor features different output data

formats, which provides the possibility to tune the application for maximum ef-

ficiency. I evaluated Bolt, a stateful processor interconnect for communication.

Bolt provides predictability by ensuring that communication takes a known,

bounded time regardless of the attacked processors, while leveraging efficiency

with ultra-low power consumption.

2.1 Embedded Software

Software development is inseparable from hardware, therefore embedded soft-

ware should be written with full knowledge of hardware components and their

performance in order to leverage efficiency. With keeping the two key goals

in mind, I decided to utilize a real-time operating system which not only pro-

vides portability, expandability and upgradability for future functions, but also

contributes towards developing applications with timing predictability and low

power system design.

3

2. Background 4

2.2 Equipment and Tools

The prototype consists of the following off-the-shelf hardware components:

• Nonin OEM III pulse oximetry sensor with internal spring finger clip

• Breakout board for pulse oximeter

• TI MSP-EXP432 LaunchPad

• Bolt processor interconnect

• Bolt to USB adapter

• 2-channel 2:1 multiplexer

During development, the following equipment was used for hardware develop-

ment:

• Saleae Logic 8 logic analyzer

• Keysight Technologies N6705A DC Power analyzer (formerly manufactured

by Agilent Technologies)

• Tektronix TBS1102 Digital oscilloscope

• Digital multimeter

2. Background 5

Figure 2.1: Workstation and development tools

The following list summarizes the tools and softwares that I used for software

development:

• Texas Instruments Code Composer Studio (TI CCS)

• FreeRTOS

• Putty and Bray’s terminal emulator

• MatLab

• Subversion (SVN)

I used a version control system, namely Subversion1 for collaboration and track-

ing my own progress. The remote repository is provided by the Department of

Information Technology and Electrical Engineering at ETH Zürich.

1 Subversion
http://subversion.apache.org

http://subversion.apache.org

2. Background 6

2.3 BOLT

Bolt1 is an ultra-low power processor interconnect that interconnects applica-

tion and communication processors while decoupling them with respect to time,

power and clock domains. It features asynchronous message passing with pre-

dictable timing characteristics. Bolt features two FIFO queues implemented in

non-volatile FRAM for both directions [1].

Figure 2.2: Overview of the Bolt processor interconnect [1]

The communication interface is SPI2 which is a synchronous serial communica-

tion interface that became a de-facto standard in embedded systems. SPI devices

communicate in full-duplex mode using a master-slave architecture.

Bolt uses an enhanced SPI communication interface. In addition to the four

traditional SPI wires (CLK, MISO, MOSI, SS3) there are three more control lines

which are required to evaluate Bolt in a system. The MODE pin is used for

indicating whether a Read (MODE is pulled low) or Write (MODE is pulled high)

operation is initiated. The IND pin is driven high by Bolt when one or more

messages are available for the appropriate processor. The ACK pin is also driven

by Bolt. After a processor pulls the REQ line to initiate communication, Bolt

pulls the ACK line high when ready to communicate and holds it high during

transmission. In Read mode, ACK is pulled low at the end of the read message;

in Write mode ACK is pulled low after a processor finished its writing operation.

Read and Write operations are demonstrated in Figure 2.3.

1 BOLT - Stateful Processor Interconnect
http://www.bolt.ethz.ch

2 SPI - Serial Peripheral Interface Bus
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

3 SS - Slave Select: in Bolt the SS wire is called REQ (Request)

http://www.bolt.ethz.ch
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

2. Background 7

Figure 2.3: Bolt read and write operations, as illustrated in [1]

Both processors that are interconnected operate in SPI master mode and initiate

communication with Bolt which is always in SPI slave mode. Bolt limits the

transfer speed to 4 MHz SPI clock frequency for communication.

By using Bolt, the application processor can be effectively separated from the

communication processor while ensuring data consistency, timing predictability

yet consuming several orders of magnitude lower power than the application and

communication processors.

2.4 Pulse Oximetry Sensor

In this prototype, a pulse oximetry sensor is used to measure heart rate and blood

oxygen saturation (SpO2). The chosen sensor is a Nonin OEM III Module1 with

an adult articulated internal spring finger clip. The power dissipation of the

sensor is not more than 29 mW (at 3.3V input voltage) in normal operation

mode [3].

2.4.1 Measurement Range and Precison

The sensor can measure pulse rate between 18 and 321 beats per minute (BPM).

With the finger clip, the precision of the heart rate is ± 3 digits while there is

1 Nonin OEM III Module - Internal OEM Pulse Oximeter
http://www.nonin.com/OEM-III-Module

http://www.nonin.com/OEM-III-Module

2. Background 8

no motion. The precision during motion is ± 5 digits.

The displayed oxygen saturation is between 0 and 100%. The precision of SpO2

is ± 2 digits regardless of motion.

2.4.2 Sensor Data

The sensor uses the UART interface to output measured data. Once the sensor is

turned on, it constantly outputs the measured data based on the chosen output

data format. The UART interface of the sensor operates from 9600 baudrate

with 8bit data, no parity and 1 stop bit (“N81” mode). This means that the

maximum theoretical output of the sensor is 1.2 kbyte/second.

Figure 2.4: MCU UART RX signal captured with an oscilloscope

This sensor supports up to three output data formats. The format can be set

directly on the module with the amount of resistance present between Pin9 and

GND. If Pin9 is left unconnected, the default data format is set which is called

DataFormat #2.

2. Background 9

Serial Format Pin9 Status

#1 0Ω to 626Ω

#2 297kΩ to ∞ Ω

#7 4.3kΩ, ± 5%

Table 2.1: Serial Output Formatting Options

DataFormat #2

This is the default output data format. In this mode the sensor continuously

transmits packets which consist of 125 bytes. A packet comprises 25 frames,

therefore each frame contains 5 bytes. Three packets (3 x 125 bytes) are trans-

mitted each second. The detailed packet description is shown on Table 2.3.

Each frame starts with a 0x01 character, then it is followed by the STATUS and

PLETH bytes. The fourth byte is different for each frame, for instance the 4th

byte of the first two frames contain the upper and lower byte of the heart rate

respectively. The 5th byte of a frame is the checksum of the previous four bytes.

PLETH is a 8bit Plethysmographic Pulse Amplitude value. The STATUS byte

contains the current state of the sensor. Each bit is active-high.

1 SNSD ARTF OOT SNSA
RPRF GPRF

SYNC

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7
YPRF

Figure 2.5: DataFormat #2 Status byte

Since the range of hearth rate is from 18 to 321 bpm, two bytes are necessary to

transmit the value. In each packet, the 4th bytes of the first and second frames

contain the heart rate value. The upper 2 bits are stored in the first frame and

the lower 7 bits are stored in the second frame. The combined value is a 4-beat

average heart rate value in standard mode.1

1 In Standard mode when HR and SpO2 cannot be computed, HR and SpO2 values are set to
missing data values and “OOT” is indicated.

2. Background 10

SNSD Sensor Disconnect Sensor is not connected to oximeter or sensor is
inoperable

ARTF Artifact A detected pulse beat didn’t match the current
pulse interval

OOT Out Of Track An absence of consecutive good pulse signals

SNSA Sensor Alarm Sensor is providing unusable data for analysis

RPRF Red Perfusion Amplitude representation of low signal quality

YPRF Yellow Perfusion Amplitude representation of medium signal
quality

GPRF Green Perfusion Amplitude representation of high signal quality

SYNC Frame Sync Occurs every first status byte of packet (1 of 25)

Table 2.2: STATUS byte description in DataFormat #2

x x x x x x HR8 HR7

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

x HR6 HR5 HR4 HR3 HR2 HR1 HR0

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 2.6: Heart rate value in DataFormat #2

The 4th byte of the third frame contains the blood oxygen saturation value. This

is also calculated on a 4-beat average in standard mode.

x SP6 SP5 SP4 SP3 SP2 SP1 SP0

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 2.7: Blood oxygen saturation (SpO2) in DataFormat #2

2. Background 11

Frames

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

01 STATUS PLETH HR MSB CHK

01 STATUS PLETH HR LSB CHK

01 STATUS PLETH SpO2 CHK

01 STATUS PLETH REV CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH SpO2-D CHK

01 STATUS PLETH SpO2 Fast CHK

01 STATUS PLETH SpO2 B-B CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH E-HR MSB CHK

01 STATUS PLETH E-HR LSB CHK

01 STATUS PLETH E-SpO2 CHK

01 STATUS PLETH E-SpO2-D CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH HR-D MSB CHK

01 STATUS PLETH HR-D LSB CHK

01 STATUS PLETH E-HR-D MSB CHK

01 STATUS PLETH E-HR-D LSB CHK

01 STATUS PLETH reserved CHK

01 STATUS PLETH reserved CHK

Table 2.3: DataFormat #2 packet description

2. Background 12

DataFormat #1

The basic output data format is called DataFormat #1. In this output format

only the status, heart rate and SpO2 values are transmitted once in every second.

Each packet consists of three bytes. The first byte contains status information

and the two upper bits of the heart rate. The second byte contains the lower 7

bits of the heart rate and the third byte contains the blood oxygen saturation

value. A packet is transmitted periodically every second. At the beginning of

the transmission all the three bytes are transmitted without pause, then there is

no transmission until the next second.

1 SNSD OOT LPRF MPRF ARTF HR8 HR7

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 2.8: Byte 1 of packet in DataFormat #1

0 HR6 HR5 HR4 HR3 HR2 HR1 HR0

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 2.9: Byte 2 of packet in DataFormat #1

0 SP6 SP5 SP4 SP3 SP2 SP1 SP0

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 2.10: Byte 3 of packet in DataFormat #1

This basic data format can be used when there is no need for all data transmitted

in DataFormat #2 or one measured value per second is enough for the system.

Moreover this format consumes less power, because the sensor sends data less

frequently.

2. Background 13

DataFormat #7

This data format is very similar to DataFormat #2 except the PLETH value is

extended to two bytes. The first byte of a frame is the STATUS byte, the second

and third bytes are for the PLETH value, and the 4th and 5th bytes are the same

as in DataFormat #2. Since DataFormat #2 fully satisfies all requirements, there

is no need to use this output format in our system. Therefore processing values

in DataFormat #7 is not implemented in this prototype.

2.4.3 Sensor Control

The sensor manufacturer provided a breakout board for the OEM module. On

this board there is an independent power supply for the sensor, DIP switches for

selecting output data format and USB connectivity for transmitting the mea-

sured data directly to PC. This breakout can be easily connected to the Lanuch-

Pad with one wire for UART and one wire for GND. However there are two

problems with simply connecting the sensor board to LaunchPad. Firstly after

booting the system, the sensor must be switched on manually by hand. Secondly,

changing the data format also requires manual handling. Therefore, we use a

2-channel 2:1 multiplexer module to be able to switch the sensor on or off and

switch between the output data formats easily with the microcontroller.

The multiplexer has ten pins, 2 of which are VDD and GND that are connected

to the LaunchPad. The remaining eight pins are for the two multiplexer channel.

The first is responsible for switching the sensor on or off and the second channel

is used for switching between DataFormat #2 and DataFormat #1. The module

can be supplied from 1.65V to 5.5V and can transfer maximum of 100mA. This

fulfills the requirements since the current drain of the sensor is much lower. More-

over the multiplexer has very low power dissipation, thus making the multiplexer

a suitable choice for the prototype.

For the prototype, the multiplexer was soldered to a small PCB adapter for ICs

by hand, then the pins were soldered to the sensor breakout board. Then the

appropriate pins can be connected to the LaunchPad.

2. Background 14

2.5 User Interface

A properly designed user interface is inevitable considering a monitoring de-

vice. Although nowadays a high-resolution LCD display with touch controller is

widely available for embedded systems, in terms of low power dissipation, cur-

rently they are not the most efficient choice. Viable choice would be an ultra-low

power consumption display with low resolution, for instance electronic paper (e-

paper) displays1. These displays can preserve their state without power and only

consume current when the content of display is changed. The disadvantages of

these displays are they are black and white and they have the so-called effect

of “ghost images”. However their greatest drawback is their refresh rate is ex-

tremely low compared to LCD displays, which heavily limits their usability in

interactive mobile applications.

Since nowadays almost everything is connected and controlled by our smart-

phone, many ultra-low power devices do not have user interfaces at all. Instead,

an application on the smartphone represents the user interface of the device.

Therefore the device could be significantly smaller and more compact, moreover

communication via Bluetooth LE2 consumes orders of magnitude lower energy3

than controlling an interactive user interface. The disadvantage of this method

is although the device still remains operational, without a smartphone the user

cannot interact with it.

A possible solution to evaluate a proper user interface while maintaining ultra-

low power dissipation is to use a Bluetooth LE module for communication and

forward data to an appropriate application installed on a smartphone, for in-

stance feed the data into the Health4 application developed by Apple for iOS.

1 Electronic paper
https://en.wikipedia.org/wiki/Electronic_paper

2 Bluetooth Low Energy
https://en.wikipedia.org/wiki/Bluetooth_low_energy

3 For instance, the ST SPBTLE-RF module draws 2µA in standby mode and around 100µA
when connected to a device.
http://www.st.com/web/catalog/sense_power/FM2185/SC1898/PF261927

4 Apple Health for iOS
http://www.apple.com/ios/health/

https://en.wikipedia.org/wiki/Electronic_paper
https://en.wikipedia.org/wiki/Bluetooth_low_energy
http://www.st.com/web/catalog/sense_power/FM2185/SC1898/PF261927
http://www.apple.com/ios/health/

2. Background 15

2.6 Microcontroller

The selected microcontroller for the application processor is a Texas Instruments

MSP432P401R1 which is a 32-bit ARM Cortex-M4F core MCU. This state-of-

the-art microcontroller combines high performance with low power dissipation.

It features:

• up to 48MHz frequency core clock with configurable internal bus system

and flexible clocking features

• up to 256KB of Flash Memory

• 64KB of SRAM

• 32KB of ROM with built-in MSPWare Driver Library2

• Various types of communication interfaces, including SPI, UART, USB and

many more

• Ultra Low Power operating modes

• and many more features [2]

The mentioned features makes this microcontroller a perfect choice for this pro-

totype. It provides the possibility for effectively implement the two main goals -

low power system design and timing predictability for bounded response times -

throughout the system.

To make the development easier, I used the TI MSP-EXP432P401R LaunchPad3

which includes the TI MSP432P401R MCU along with an onboard emulator

which provides programming and debugging features without any external tools.

It features:

• TI MSP432P401R 32-bit ARM Cortex-M4F core MCU

• Onboard XDS-110ET emulator for programming and debugging

• Back-channel UART via USB to PC for debug purposes

1 TI MSP432P401R
http://www.ti.com/product/MSP432P401R

2 TI MSPWare Driver Library
http://www.ti.com/tool/mspdriverlib

3 TI MSP-EXP432 LaunchPad
http://www.ti.com/tool/msp-exp432p401r

http://www.ti.com/product/MSP432P401R
http://www.ti.com/tool/mspdriverlib
http://www.ti.com/tool/msp-exp432p401r

2. Background 16

• 40 pin BoosterPack connector and support for 20 pin BoosterPacks

• 2 push buttons and 2 LEDs for user interaction

2.6.1 Interrupt System

ARM Cortex-M4 core microcontrollers feature advanced interrupt system, mak-

ing those largely appropriate for complex systems which have many interrupt

sources with different priorities.

For each interrupt, priorities are set by using 3 or 4 bits. This depends on the

chip manufacturer, for instance TI’s MSP432P401x microcontrollers have 3 bits

for interrupt priority. This means there are 8 different priority values that can

be assigned to interrupts and a specific priority value can be set to more than

one interrupt. The Cortex-M core stores interrupt priority values in the most

significant bits of its eight bit interrupt priority register. The highest priority

is always a zero value, and the lowest priority means the highest value in the

register. More specifically in the MSP432 core, an interrupt has a highest priority

with the value of 0 and the lowest possible priority value that can be assigned is

7.

P P P x x x x x

Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 2.11: Interrupt priority values stored in TI MSP432 MCU

ARM Cortex-M core microcontrollers feature a module called Nested Vectored

Interrupt Controller (NVIC). NVIC supports priority grouping which provides

the possibility to configure the interrupt priority system to be preemptive. This

grouping divides each interrupt priority register into two fields. The upper field

defines the group priority, and the lower field defines the subpriority within that

group. Only the group priorities determine preemption of interrupt exceptions,

and priorities with the same (or lower priority) group cannot preempt each other.

If multiple interrupts within the same priority group are pending, the subpriority

value determines the order they are going to be served.

2. Background 17

2.6.2 Connectivity and Pinout

The LaunchPad features a 100pin version of TI MSP432P401R microcontroller

and most of the pins are available for connectivity. Table A.1 summarizes the

connections.

2.7 FreeRTOS

FreeRTOS1 is a market leading de-facto standard and cross-platform Real Time

Operating System (RTOS). It provides extensive features to minimize overhead.

FreeRTOS is open-source and highly optimized for several processors and micro-

controllers. It is officially supported by numerous chip manufacturers, strictly

quality controlled, has excellent community support and free to use in commer-

cial products, which makes FreeRTOS the best choice for this application.

2.7.1 Configuration

FreeRTOS provides an official port for TI MSP432 microcontroller family. This

port is widely configurable depending on the actual system requirements by

editing the FreeRTOSConfig.h file.2 To reduce overall code size, it is highly

recommended to disable all unused functions and components.

In this prototype, the major configuration steps are the followings:

• System Tick period is set to 1ms

• Maximum priority level is 5 for tasks, and use preemption

• Use essential features: timers, mutexes, semaphores and task notifications

• Use features for debugging and trace purposes: application task tag, check

for stack overflow, idle hook callback, tick hook callback and malloc failed

hook callback

• Disable all unused modules and API functions

1 FreeRTOS - Real Time Operating System
http://www.freertos.org

2 FreeRTOS Configuration
http://www.freertos.org/a00110.html

http://www.freertos.org
http://www.freertos.org/a00110.html

2. Background 18

• Tickless Idle Mode is disabled

FreeRTOS features a special power saving mode, called Tickless Idle Mode.1

According to the description, the Tickless Idle Mode stops the periodic tick

interrupt during idle periods (periods when there are no application tasks that

are able to execute), then makes a correcting adjustment to the RTOS tick count

value when the tick interrupt is restarted. Stopping the tick interrupt allows the

microcontroller to remain in a deep power saving state until either an interrupt

occurs, or it is time for the RTOS kernel to transition a task into the Ready

state. With this mode enabled, the energy consumption can be slightly reduced,

especially when the frequency of the tick interrupt is high. The reason why this

function is disabled during development is that by suppressing the ticks makes

the system unpredictable and incalculable in terms of detailed timing analysis.

Suppressing the system tick causes the tick interrupt non-periodic, which makes

the calculation of response times ambiguous.

2.7.2 Interrupt Priorities

ARM Cortex-M core microcontrollers use a different convention for interrupt

priority. Zero means the highest priority and the highest numerical value means

the lowest priority. In contrast, FreeRTOS uses 0 for the lowest possible priority,

therefore this is important to keep in mind during software development.

After defining the maximum number of different interrupt priorities in the con-

figuration based on the microcontroller core, two unique priority levels should

be defined2:

• configKERNEL INTERRUPT PRIORITY

• configMAX SYSCALL INTERRUPT PRIORITY

configKERNEL INTERRUPT PRIORITY sets the interrupt priority used by the ker-

nel. This is always defined as the lowest priority in the system, and usually bound

to configLIBRARY LOWEST INTERRUPT PRIORITY which always defines the lowest

possible priority.

1 FreeRTOS Tickless Idle Mode
http://www.freertos.org/low-power-tickless-rtos.html

2 FreeRTOS Interrupt priorities
http://www.freertos.org/a00110.html#kernel_priority

http://www.freertos.org/low-power-tickless-rtos.html
http://www.freertos.org/a00110.html#kernel_priority

2. Background 19

A full interrupt nesting model can be achieved by defining configMAX SYSCALL

INTERRUPT PRIORITY higher than the kernel interrupt priority. The macro sets

the maximum level of priority for interrupt routines that can nest. This means

that interrupt routines with the same or lower priority can call FreeRTOS API

functions ending with FromISR. Interrupts running at higher priorities are never

delayed from executing by the FreeRTOS kernel, thus no API calls are allowed

from these interrupt routines.

Since Cortex-M core microcontrollers, including the TI MSP432P401R MCU

use different convention for interrupt priorities, therefore the interrupt priority

macros of FreeRTOS should be defined accordingly. The translation of priority

values are described in Figure 2.12.

7
6
5
4
3
2
1
0

Pr
io

ri
ty

KERNEL_
INTERRUPT_PRIORITY

MAX_SYSCALL_
INTERRUPT_PRIORITY

No FreeRTOS API
calls from ISR

(a) FreeRTOS interrupt priorities

0
1
2
3
4
5
6
7

Pr
io

ri
ty

KERNEL_
INTERRUPT_PRIORITY

MAX_SYSCALL_
INTERRUPT_PRIORITY

No FreeRTOS API
calls from ISR

(b) Cortex-M core interrupt priorities

Figure 2.12: FreeRTOS interrupt priorities port to Cortex-M core MCU

Lastly, the Nested Vectored Interrupt Controller (NVIC) of the microcontroller

should be configured that the interrupts can preempt each other.

2.7.3 Memory Management

FreeRTOS provides numerous memory management options for heap1, including

the simplest scheme which does not allow dynamic memory allocation to the

more complex schemes that allow combining adjacent free blocks into a single

larger block. However allocating memory in heap (for instance with malloc()

or calloc() C function) is never deterministic. That means there is no guaran-

tee for returning from allocation procedure in predictable or limited amount of

1 Heap memory is used for dynamic allocation

2. Background 20

time. Considering a medical device where timing guarantee and predictability

are essential, using dynamic allocation during runtime is not acceptable. This

conveys appropriate heap size allocation for RTOS.

Since the RAM in the microcontroller is limited, therefore calculations were per-

formed to allocate enough heap size for RTOS (which includes memory for tasks,

queues, and other objects) while keeping sufficient memory for non-RTOS objects

and stack. Moreover, the stack size for each task had to be set properly (without

running out of memory) to avoid stack overflow during execution. These calcu-

lations require deep understanding how the functions, tasks and RTOS works to

avoid sudden system crash, failure and memory corruption that is unacceptable

considering a medical device.

MSP432 RAM

RTOS Heap MCU Heap MCU Stack

RTOS Heap

Task 1

Stack

Task 2

Stack

Queue 1

Figure 2.13: MSP432 memory management

FreeRTOS provides a basic memory management scheme called heap 1 which

allocates the maximum amount of memory space defined by the configTOTAL

HEAP SIZE macro, then this area is subdivided into smaller blocks as RAM re-

quested. This scheme does not permit memory to be freed once it has been allo-

cated. The major advantage of this scheme is the memory management always

remains deterministic. The drawback of using heap 1 is that tasks, semaphores,

mutexes, etc. cannot be deleted during runtime. Therefore this scheme was used

with always keeping an eye out for memory usage during development.

Chapter 3

System Design

This chapter describes the design of the system and the required components for

the prototype.

3.1 System Architecture

Figure 3.1 shows an overview of the system which consists of a Pulse Oximetry

Sensor, an Application Processor, a Stateful Processor Interconnect called Bolt,

a Communication Processor and a User Interface.

The application processor handles the user interface, and receives data from the

pulse oximeter sensor which can measure heart rate and blood oxygen satura-

tion. After processing the received data, the application processor forwards data

to Bolt. The communication processor reads data from Bolt and transmits

data to other devices on a preferred communication interface. The communi-

cation between the application and communication processor is bi-directional,

therefore the received commands via the communication interface is forwarded

and processed by the application processor.

In this prototype the communication processor is located on a Bolt-USB adapter

which can be connected to a PC. Data can be sent between Bolt and PC with

a serial terminal emulator software.

Application
Processor

TI MSP432
32bit ARM Cortex-M4

Pulse Oximetry
Sensor

User Interface

BOLT

Stateful Processor
Interconnect

Communication
Processor

e.g. PC via USB

Figure 3.1: System Architecture

21

3. System Design 22

3.1.1 Communication

Considering an embedded system, usually there is one microcontroller which

handles every task. This MCU handles both application-related tasks and com-

munication tasks. In this case there are two major problems which should be

handled correctly. The first is data-consistency which means the collected data

should be forwarded to another device without data loss and data corruption.

Since communication is usually much slower than collecting and processing data,

it rather often occurs that new data is ready to be sent while the previous is still

being transmitted, which can lead to data corruption or loss. Therefore these

systems need to be carefully designed to effectively avoid these problems.

The second major issue is power dissipation. In systems - which aim for low en-

ergy consumption - usually the largest drain is caused by communication. There-

fore communication should be highly optimized by shutting down the communi-

cation interface when it’s not in use. The problem is caused by the difference be-

tween the durations of data processing and communication. Moreover data pro-

cessing is usually a periodic task, however communication is often asynchronous

or triggered by a specific event. Communication also requires implementations

of reading and writing with sophisticated error handling. In a single processor

system this leads to unnecessary wake-ups, ineffective scheduling between tasks,

therefore significantly higher power dissipation.

The solution is to separate the application-related tasks from communication.

By implementing these on different processors, the above mentioned issues can

be eliminated. The application processor handles the collection and processing

of data without the unwanted interruptions caused by communication. The data

is then forwarded to the Communication Processor which only focuses on the

effective transmission and reception. However in this case a new problem has

to be dealt with - which is the communication and synchronization between the

two processors. By using Bolt, this issue can be effectively eliminated [1].

3.2 Software architecture

The entire system architecture is shown in Figure 3.2. The architecture can

be divided into two major domains. The first contains the hardware-related

low-level components, and the second comprises hardware independent modules.

3. System Design 23

During development, I largely paid attention to write the source code accordingly

to make the whole software flexible, portable and easily modifiable.

MSP432

RTOS

Initialization

SPI Control

External IRQ

Queue
Data

Task

User
Interface

Task

BOLT
Write/Read

Queue
UI

Pulse
Oximeter

BOLT

Computer

USB VCP

Task

Data
Process

Queue
Rx

Sensor UART RX
IRQ

Figure 3.2: Software architecture

3.2.1 Initialization

Upon initialization of the system, all low-level components and peripherals are

configured:

• GPIOs for LEDs, trace pins, push buttons, peripheral communication in-

3. System Design 24

terfaces

• UART initialization for the pulse oximeter

• SPI initialization for Bolt

• USB VCP initialization for debug purposes

Then the RX interrupt is set enabled for Sensor UART with maximum priority

that RTOS API calls are still allowed from the interrupt service routine. This

priority value is defined by configMAX SYSCALL INTERRUPT PRIORITY (see Fig-

ure 2.12). Priorities for the external interrupts that can triggered by the push

buttons are configured to one value lower priority. Therefore it is ensured that

RX interrupt of the sensor UART never gets delayed by other interrupts.

The hardware initialization is followed by the RTOS initialization. FreeRTOS

main configuration is stored in FreeRTOSConfig.h (see Section 2.7.1). After ini-

tializing the application tasks, queues and timers, the RTOS scheduler is started.

3.2.2 Interrupts

Currently there are two types of interrupts that are served by the system.

Sensor UART RX interrupt

Depending on the output data format, the pulse oximetry sensor periodically

transmits data via UART to the microcontroller. Received bytes generate an

interrupt which is processed by the system. To make the interrupt service routine

as compact as possible, a structure (see Figure 3.3) is filled which contains the

received character and the type of the current output format. Then this structure

which contains the received byte and the current output data format is sent to

a message queue called xQueueRx. The size of the queue can be configured in

main.h and it is set to 125 messages by default.

Using DataFormat #2, an extra identification is needed to identify the very first

byte of packet. Since during this output format the sensor constantly transmits

data without extra delay between packets, and every frame starts with the same

byte, two consecutive bytes have to be investigated to identify the first byte.

3. System Design 25

There is a special variable in the structure called sync which is set when the

first byte is identified.

RxStruct
enum SensorDataFormat dataformat;
uint8_t sync; /* New Packet indicator */
uint8_t ch; /* Received character */

Figure 3.3: Sensor RX structure that is transmitted in xQueueRx queue

External interrupts

The external interrupts can be triggered by the push buttons located on the

LaunchPad. These interrupts are served by a common interrupt service routine,

and the interrupt source (which button is pressed) is identified inside the routine.

The priority of the external interrupts is configured to be lower than the sensor

UART interrupt, thus incoming measurement data is served first.

3.2.3 Tasks

There are three application tasks running on the RTOS. These tasks are the data

processing task for the sensor, the task for writing and reading from Bolt and

the task for emulating the user interface. Each task has separate priority defined

by macros. The tasks are communicating with each other by using message

queues. In case there is no task to run, the RTOS runs a task called Idle Task

which is automatically created by FreeRTOS after starting the scheduler. This

task has the lowest possible priority to ensure it does not use any CPU time if

there is a higher priority application task in ready state. The Data Task has

the highest priority to minimize data reception delay, the Bolt Task has lower

priority and the UI Task has the lowest priority.

Data Task

This task is waiting for messages in xQueueRx message queue which is filled

by the sensor UART ISR. The task is a blocking task which means that it is

3. System Design 26

suspended until new message arrives from the sensor UART ISR.

Identifying the first byte of the incoming packet is straightforward by investi-

gating the STATUS byte in DataFormat #1 (see Section 2.4.2). However in

DataFormat #2, two consecutive bytes have to be investigated. This is per-

formed in the UART ISR and the leading byte is signaled in the sync field of

the structure.

After receiving the first byte from the sensor, a new data structure is created.

This structure (see Figure 3.4) is filled with relevant data (current status1 of the

sensor, heart rate, blood oxygen saturation and plethysmographic pulse ampli-

tude) during packet reception. After receiving a full packet, the data structure

is ready to be sent to Bolt with measured data, and the structure is pushed

into a queue called xQueueSensorData. This queue is used for communication

between Data Task and Bolt Task.

This task has the highest priority of all tasks, thus it is ensured that processing

data from the sensor is never delayed by other tasks.

SensorStruct
enum SensorStatus status;
uint16_t HR; /* Hearth Rate */
uint8_t SpO2; /* Oxygen Saturation */
uint8_t pleth; /* Plethysmographic Pulse
 * Amplitude */

Figure 3.4: Sensor data structure

BOLT Task

This task performs writing2 and reading3 operations for Bolt. The task waits

for a new message arrival to xQueueSensorData queue. After reception, the

status is checked and in case the structure contains valid data, it is formatted

and transmitted to PC via Bolt. However if the finger clip is disconnected or

1 The STATUS byte received from the sensor contains information about data validity and
finger clip connection.

2 “Writing” means MCU sends data to Bolt which forwards it to the PC
3 “Reading” means MCU reads data (which was previously sent from PC) from Bolt

3. System Design 27

there is no finger present, an error message is sent accordingly.

After sending, Bolt is checked if there is a new message waiting to be read from

PC. Reading operation is always performed after writing operation in case there

is new data waiting. All received messages are transmitted to USB VCP of the

LaunchPad for debug purposes. There are three commands which the user is

able to configure and control the device.

• ‘‘dataformat1’’

• ‘‘dataformat2’’

• ‘‘duty X/Y’’

With the first two commands the sensor output data format can be configured.

The second command sets the sensor duty cycling. X and Y are numeric argu-

ments, both have to be valid numbers. X means the online duration of the sensor

in seconds, Y means the duration while the sensor is powered off in seconds. All

commands have to be terminated with Carriage Return (0x0D).

Periodic Reading Mode

When the sensor is switched off for a duration because of duty cycling (see Section

3.3.2), there is no message to be written to Bolt during this period. Therefore

when a new message arrives to be read from Bolt, the reading operation has

to be delayed until a new writing operation occurs. In case the ratio of sensor

on duration and sensor off duration is low, the response within a bounded time

frame is not guaranteed, which makes the system unpredictable. To eliminate

this delay, the task can be configured to be periodic. This can be done with

the mmdConf BoltReadPeriodicMode macro. In this mode the task blocks and

waits for new message in xQueueSensorData only for a limited time instead of

blocking infinitely when there is no message in the queue. After the timeout

which can be configured with the mmdConf BoltReadPeriod macro, the task

checks whether there is data to be read from Bolt, and performs a reading

operation if necessary.

Please note that on timing diagrams the Bolt task is labelled as RW task

referring to Reading and Writing operations.

3. System Design 28

UI Task

The UI task handles the user interface connected to the system. A possible user

interface can be a touch screen with low energy consumption or an electronic

paper (e-paper) display for ultra low power consumption. Because of time con-

strains, the user interface is simulated with LEDs which are a red and an RGB

LED located on the LaunchPad.

The task blocks and waits for a new message in xQueueUI queue which provides

communication for other tasks with the UI task. The queue accepts messages

with UIStruct type.

UIStruct
uint8_t leds; /* Selected LEDs */
uint16_t ms; /* Duration in millisec */

Figure 3.5: Message structure for xQueueUI queue

Focusing on using minimal resources, the structure comprises only two variables.

The leds variable is a 8bit unsigned integer which contains the required status of

the LEDs. More LEDs can be switched on or off at a time: the state of the last 4

bits define whether the appropriate LED will be turned on or off. The ms variable

contains the duration of the selected LEDs are switched on in milliseconds. After

receiving a structure from the queue, a timer is started with timeout defined in

ms variable. When the timer fires, the LEDs are automatically switched off.

However switching on LEDs for indefinite duration is also possible. The MSB

bit in leds variable is a control flag. If it is set, the selected LEDs will be turned

on or off for indefinite time period. In this case if the ms variable is set to 0, then

the selected LEDs will be turned off, else the LEDs will be turned on.

Flag x x x RGB
blue

RGB
green

RGB
red

LED_1
red
Bit 0Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6Bit 7

Figure 3.6: Bitwise description of leds variable

3. System Design 29

3.3 Low Power System Design

3.3.1 Microcontroller Low Power Modes

From the low power design perspective, the various low power modes supported

by the microcontroller are greatly important. This MCU supports an active mode

which comprises six different operating modes depending on the core voltage and

clock source. There are five different low power modes including two shutdown

modes. The modes are summarized in Table 3.1.

3.3.2 Sensor Duty Cycling

There is no option to configure the sensor, which means it constantly transmits

data when it is turned on. In most of the cases this generates unnecessarily

high amount of data and consumes a lot of energy. To reduce power dissipation,

duty cycling is implemented with a timer called xSensorWakeUp. The sensor is

switched on for a defined time period, then it is turned off for another defined

duration. The default times can be set with defaultSensorOnlineDuration

and defaultSensorOfflineDuration macros. Moreover these values can be

changed with commands via Bolt (see Section 3.2.3).

Idle Task with Low Power Modes

When there is no task running, an idle task is executed in FreeRTOS. The easiest

method to save power is to put the microcontroller in a low power mode (see

Table 3.1) when the RTOS switches in the idle task.

After investigating the low power modes, it is not suitable for our application

to use the Shut Down modes (LPM3.5 and LPM4.5), since the flash memory is

powered down and there is no state retention.

State retention is possible by using LPM3 or LPM41 modes. However the system

needs a way to wake itself up to perform a system tick and continue to run the

RTOS. Since the high frequency peripherals are turned off in these modes, this

means that the SysTick timer is also powered down. There are two possible

1 LPM4 mode is the extension of LPM3, where the low frequency peripherals are disabled,
including the real-time clock and the watchdog timer.

3. System Design 30

Power Mode Features

Active Mode CPU is active and full peripheral functionality is available
All low and high frequency clock sources can be active
Flash memory and all enabled SRAM banks are active

LPM0 CPU is inactive but full peripheral functionality is available
All low and high frequency clock sources can be active
Flash memory and all enabled SRAM banks are active

LPM3 CPU is inactive and peripheral functionality is reduced
Only RTC and WDT modules can be functional
All other peripherals and retention enabled SRAM banks are
kept under state retention power gating
Flash memory is disabled, SRAM banks not configured for
retention are disabled
Only low frequency clock sources (LXFT, REFO, VLO) can
be active
All high frequency clock sources are disabled
Device I/O pin states are latched and retained
DC/DC regulator can not be used

LPM4 Achieved by entering LPM3 with RTC and WDT modules
disabled
CPU is inactive with no peripheral functionality
All peripherals and retention enabled SRAM banks are kept
under state retention power gating
Flash memory is disabled, SRAM banks not configured for
retention are disabled
All low and high frequency clock sources are disabled
Device I/O pin states are latched and retained
DC/DC regulator can not be used

LPM3.5 Only RTC and WDT modules can be functional
CPU and all other peripherals are powered down
Only Bank0 of SRAM is under data retention, all other
SRAM banks and flash memory are powered down
Only low frequency clock sources (LXFT, REFO, VLO) can
be active
All high frequency clock sources are disabled
Device I/O pin states are latched and retained
DC/DC regulator can not be used

LPM4.5 Core voltage is turned off
CPU, flash memory, all SRAM banks and all peripherals are
powered down
All low and high frequency clock sources are powered down
Device I/O pin states are latched and retained

Table 3.1: TI MSP432P401R Power Modes [2]

3. System Design 31

options to trigger an interrupt that can wake up the system. Firstly an alarm

of the RTC can be configured to generate an interrupt, however after checking

the documentation, the minimum time duration for setting an alarm is 1 second.

Therefore this is not a viable option.

Secondly, the watchdog timer can be configured to run from a low frequency clock

source. When the WDT fires, an interrupt is generated which can wake up the

system. I tried to evaluate this method, however I did not observe the expected

behavior. I was able to send the microcontroller into LPM4 where the drain was

5µA, although using this mode the system cannot be configured to wake itself

up. Then I successfully sent the MCU to LPM3 with low frequency clock sources

enabled for watchdog, and configured the WDT to fire after approximately 1ms.

However this time I did not turn on the interrupt of WDT in order to have an

overview of current drain which was 530µA1 in this mode. Then I enabled the

interrupt and configured the ISR of WDT to wake up and continue to run the

RTOS. In this case the system did not work the way I expected. The MCU did

not enter LPM3 and the current drain remained in the order of magnitude of

milliampers before entering the low power mode. Although the watchdog timer

started and fired, moreover the ISR of WDT did execute, the microcontroller

was not able to go into LPM3 for an unknown reason.

There is a possible workaround for this problem by using an external interrupt

source to wake up the system. To evaluate this, a configurable, external hardware

timer chip is needed with ultra low power consumption which can generate a

pulse on a pin to trigger an interrupt. Every time the RTOS enters the idle task,

the microcontroller configures the timer to start and generate a pulse. Then the

MCU can enter into LPM3 or even LPM4 and the system can wake up and run

after receiving an interrupt from the external timer.

Because of the problems I encountered after experimenting with LPM3, I decided

to use LPM0 mode. This is a low power mode where CPU is inactive but full

peripheral functionality is available along with all high frequency clock sources.

Thus the SysTick timer can run after entering LPM0, and consequently the

system automatically wakes up after a tick interrupt and continues its execution

in active mode. See Section 4.2.4 for detailed power analysis of the idle task by

using LPM0 mode.

1 The datasheet of the microcontroller does not provide data about current consumption of
peripherals, because this chip is still in pre-production state.

Chapter 4

Evaluation

In this chapter the evaluation of the developed RTOS software are presented

along with both timing and power analysis. The execution times of all tasks

are measured, then bounded response times are calculated for each task. The

analytical results are validated in practice. In the power analysis section, the

results of power dissipation measurements performed in different scenarios are

presented.

4.1 Timing Analysis

To evaluate system behavior and bounded response times in different operation

modes and scenarios, I performed a thorough system-wide timing analysis. The

execution times of all tasks and runtime overheads were measured with a Saleae

Logic 8 analyzer with 10MS/s sampling rate. The trace.h and trace.c files

contain the pins, macros and functions used for RTOS trace. Each interrupt,

task, timer and the tick interrupt is assigned to a pin; and when they are triggered

or switched in by the RTOS, the appropriate pin is pulled high, then pulled low

before before context switch. The trace pins are connected to the logic analyzer,

therefore the operation of the system can be extensively analyzed.

4.1.1 Medical Sensor

After powering on the sensor, it takes 1812.349ms to receive the first byte on

average. However the sensor needs a few pulses to measure the heart rate and

blood oxygen saturation level correctly, which means the few first packets are

flagged as Out of Track. It takes 10 packets using DataFormat #2 and 4 packets

using DataFormat #1 on average to receive precise values. In conclusion, the

average time elapsed from power up to the first valid data arrives to the micro-

32

4. Evaluation 33

controller is 5.356s using DataFormat #2 and 5.746s using DataFormat #1. The

following tables summarize the timings for the sensor.

Event Min Avg Max Unit NoM1

Power on - First UART
RX

1808.395 1812.349 1815.700 ms 15

Power on - First valid
packet

4.136 5.356 6.809 s 15

Number of received
packets before first valid
packet

6 10 14 - 15

Time between interrupts 1.024 1.024 1.024 ms 5

Time between frames 9.148 9.148 9.148 ms 5

Whole packet reception 324.166 324.166 324.166 ms 5

Table 4.1: Sensor timings using DataFormat #2

Event Min Avg Max Unit NoM1

Power on - First UART
RX

1806.469 1813.987 1818.973 ms 15

Power on - First valid
packet

4.812 5.746 6.815 s 15

Number of received
packets before first valid
packet

3 4 5 - 15

Time between interrupts 1.024 1.024 1.024 ms 5

Time between packets 997.20 997.95 998.50 ms 10

Whole packet reception 2.100 2.101 2.102 ms 10

Table 4.2: Sensor timings using DataFormat #1

According to the measurements, using DataFormat #2 has slightly faster re-

sponse times after power-up.

1 Number of Measurements

4. Evaluation 34

4.1.2 BOLT

The SPI interface for Bolt is configured to 3MHz clock speed1. The timing

figures relating to both writing and reading operations can be found in Appendix

E.

Writing to BOLT

First the MCU sets the MODE line to high for writing operation. Then REQ

line is pulled high and the MCU is waiting for Bolt to pull ACK high. After

ACK, the MCU starts transmitting the data, then the REQ line is pulled down

and Bolt acknowledges the transmission by pulling the ACK line down. The

overheads of all operations related to writing to Bolt are presented in Table 4.3.

Event Duration [µs]

REQ pulled high - ACK response 34.0

ACK response - first byte transfer 8.9

Last byte transfer - REQ line pulled low 3.0

REQ pulled low - ACK pulled low 19.1

Table 4.3: Bolt writing operation timings (average values)

Reading from BOLT

Bolt notifies the microcontroller that there is new data to read by pulling the

IND line high. The MCU initiates the reading operation by setting MODE to

low and pulling REQ line high. Then the MCU waits for Bolt to pull ACK

high as an acknowledgement. After receiving the ACK, the MCU starts receiving

data. Bolt automatically pulls the ACK line low when the whole message is

transferred. In case there is no new message in Bolt to read, the IND line is

also pulled low. Finally the MCU pulls REQ line low. The overheads of all

operations related to reading from Bolt are presented in Table 4.4.

1Bolt allows up to 4MHz SPI clock frequency

4. Evaluation 35

Event Duration [µs]

REQ pulled high - ACK response 31.2

ACK response - first byte transfer 10.1

Last byte transfer - ACK line pulled low 1.0

ACK pulled low - REQ pulled low 6.6

Table 4.4: Bolt reading operation timings (average values)

The analysis of Bolt timing (see Appendix E) fully matches the results described

in the paper of Bolt [1].

4.1.3 RTOS Tasks

After initialization, the sensor is turned on (TimerWkUp trace goes high in

Figure 4.1) and the system is ready to receive data from the sensor. As the

sensor heats up, it transmits a dummy byte which can be seen as the very first

single pulse on IT Rx trace line. Then the sensor starts transmitting data. After

receiving a packet, the values are sent to Bolt. This occurs after every packet

reception. Because of the duty cycling, the sensor is switched off after 10 seconds

by default. This value can be changed in the configuration or via a command

sent from PC. After every writing operation, Bolt is checked whether there is a

new message to be read, and the MCU performs a reading operation if needed. If

the system is configured in a way that when there is no writing operation, then

Bolt task1 does not block indefinitely and it periodically performs a reading

operation.

Timing diagrams taken with the logic analyzer can be found in Appendix F.

1 Please note that on timing diagrams the Bolt task is labelled as RW task referring to Reading
and Writing operations.

4. Evaluation 36

Task timings using DataFormat #2

Figure 4.1: RTOS trace using DataFormat #2

Task execution Min Avg Max Unit NoM1

UART ISR 18.30 18.34 18.50 µs 10

Data Task 42.90 49.89 57.0 µs 20

Bolt Task (write only) 227.70 230.17 234.80 µs 10

Bolt Task (write & read) 53.644 53.672 53.758 ms 10

UI Task 193.30 196.61 203.80 µs 10

Period of Bolt Task 333.308 333.313 333.315 ms 10

Table 4.5: RTOS timings using DataFormat #2

The Data Task has slightly larger difference between minimum and maximum

values. The reason is after receiving the last byte of a packet, this task fills a

structure and pushes it into xQueueSensorData queue for the Bolt Task. This

requires more CPU cycles.

1 Number of Measurements

4. Evaluation 37

Task timings using DataFormat #1

Figure 4.2: RTOS trace using DataFormat #1

Task execution Min Avg Max Unit NoM1

UART ISR 17.70 17.76 17.80 µs 10

Data Task 42.80 49.83 56.70 µs 20

Bolt Task (write only) 225.90 233.69 236.10 µs 10

Bolt Task (write & read) 53.643 53.670 53.759 ms 10

UI Task 194.21 195.42 202.96 µs 10

Period of Bolt Task 998.80 998.90 999.40 ms 10

Table 4.6: RTOS timings using DataFormat #1

All tasks have similar execution time, however the sensor UART RX ISR ex-

ecution time is slightly higher using DataFormat #2. The reason is an extra

condition needed for identifying the first byte of a packet using DataFormat #2.

1 Number of Measurements

4. Evaluation 38

4.1.4 RTOS Context Switching

To measure the context switching times, the RTOS kernel was modified to be

able to trace the actual context switches and measure their execution times.

The context switching times are the same for using both data formats. The

values are summarized in Table 4.7.

Context switching times Min Avg Max Unit NoM1

UART ISR → Data Task 4.70 4.76 4.80 µs 10

Data Task → Bolt Task 2.80 2.86 2.90 µs 10

Bolt Task → UI Task 2.70 2.71 2.80 µs 10

SysTick & PendSV execution time 4.81 4.90 5.0 µs 10

Table 4.7: Context switching times

The scheduler execution time with a context switch (Systick & PendSV) is sig-

nificantly larger than the context switching time between tasks. The scheduler

execution time is measured from ISR begin to end, which means this is the

real overhead value. However during the PendSV routine - which manages the

context switch, the trace flag for the upcoming task is set during the actual con-

text switch, and not at the end of the ISR. Therefore the durations of context

switches are actually longer than the times directly measured with FreeRTOS

trace macros.

4.1.5 Data Flow

The sensor measures vital signs and sends data via UART to the microcontroller.

The received bytes are forwarded through the xQueueRx message queue to the

Data task where the incoming bytes are processed. After receiving a whole

packet, a structure is filled with the measured values. The structure is forwarded

through xQueueSensorData to Bolt task which sends the received data to Bolt.

The whole system is event-driven, which means each task is executed after trig-

gering the corresponding event. Sensor UART RX ISR is triggered after receiv-

ing a byte from the sensor, data task is executed when there is a message in

1 Number of Measurements

4. Evaluation 39

xQueueRx queue, and Bolt task is executed when a structure is pushed into

xQueueSensorData queue.

Queue
Data

Task

BOLT
Write/Read

ISR

Sensor
UART RX

Queue
Rx

Task

Data
Process

Measured data Data to BOLT

Figure 4.3: Data Flow

4.1.6 Response Times

Considering a medical device, having bounded response times is essential for all

tasks and interactions. The greatest challenge in a complex system is to accu-

rately calculate its response time. Tasks have interference with higher priority

tasks, interrupts and the RTOS system tick. The calculation is not only complex

because of all the delays caused by the system tick, context switches, interrupts

and other RTOS modules (i.e. software timers, co-routines, etc.), but also the

fact that switching in (and out) a task can occur without a system tick. For

instance, a context switch is forced after executing an interrupt service routine

regardless of system tick.

Most RTOS, including FreeRTOS, use a fixed priority preemptive scheduling with

known context switching time, every task has a different priority in the system

and their priorities do not change during operation. Therefore the maximum

response time can be calculated with Formula 4.2 as found in [4].

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri

Tj

⌉
Cj (4.1)

4. Evaluation 40

The iterative solution for Formula 4.1 is the following:

R0
i = Ci, R

(n+1)
i = Ci +

∑
∀j∈hp(i)

⌈
R

(n)
i

Tj

⌉
Cj (4.2)

For task i, Ri is the response time and Ci is the execution time and hp is the set

of tasks with higher priority than task i. Tj is the period and Cj is the execution

time of a task which has higher priority than task i.

In a real-time operating system, there are interrupts and there is a special in-

terrupt called system tick (SysTick) interrupt which is triggered periodically by

the scheduler. Therefore the above mentioned general formula (4.2) should be

enhanced for our system: [4]

R
(n+1)
i = Ci +

∑
∀j∈hp(i)

⌈
R

(n)
i

Tj

⌉
(Cj + Csw) +

∑
∀k∈it

⌈
R

(n)
i

Tk

⌉
(Ck + Csw)+

+

⌈
R

(n)
i

Tclk

⌉
Cclk + Tclk (4.3)

Csw is the delay caused by executing a context switch, the set of interrupts

is labelled as it, Cclk is the execution of the system tick interrupt and Tclk

is the period of the system tick. The first summation is the delay caused by

higher priority tasks and the second summation calculates the cost of handling

interrupts. Moreover the response time is delayed by the system tick interrupt

and the period of the system tick. In case the task becomes ready before a system

tick, then the task has to wait until the next tick when the scheduler switches in

the task.

The response times are calculated for using DataFormat#2.

Figure 4.4 shows the priorities in the system. Each task and interrupt has differ-

ent priority and there is no change of priorities during operation. The external

interrupt is only used for debug purposes, and the interrupts of push buttons

are disabled during normal operation. Therefore the external interrupts have no

effect on the response times.

4. Evaluation 41

System Tick ISR
Sensor UART RX ISR

External ISR

Data Task
BOLT Task
UI Task

Pr
io

ri
ty

Interrupts

Application tasks

Figure 4.4: RTOS interrupt and task priorities

Table 4.8 summarizes the maximum execution times and minimum periods for

each interrupt and task. The calculation of periods are described for better

understanding in the followings. Period of system tick is configured and fixed for

1ms. The pulse oximeter operates at a fixed baudrate of 9600. This means the

maximum transfer rate of the sensor is 9600 bit/s which equals 1200 byte/s. This

means that a byte arrives every 833.3µs at most, thus the minimum period of

sensor UART RX interrupt is Trx = 833.33µs. Optimally there is no congestion

in xQueueRx queue and every incoming byte is handled without delay by the

Data Task. Therefore the minimum period of Data Task equals the period

of sensor UART ISR: Tdata = Trx = 833.3µs. By using DataFormat #2, the

maximum frequency of a whole packet is 3 packet per second. Bolt Task is

triggered after receiving an entire packet, thus the minimum period of Bolt

Task is Tbolt = 333.3ms.

Task Cmax execution time Tmin period

System Tick and Context Switch 5.0 µs 1000.0 µs

Sensor UART RX ISR 18.5 µs 833.3 µs

Data Task 57.0 µs 833.3 µs

Bolt Task 53.759 ms 333.3 ms

UI Task 203.8 µs -

Table 4.8: Maximum execution times and task periods

4. Evaluation 42

Sensor UART ISR Response Time

The interrupt of sensor UART RX has the highest priority and only the RTOS

scheduler has higher. Moreover interrupts are immediately switched in regardless

of the system tick. Therefore the formula for calculating the response time of

sensor UART RX ISR is the following:

R(n+1)
rx = Crx +

⌈
R

(n)
rx

Tclk

⌉
Cclk (4.4)

R
(0)
rx = 18.5µs, R

(1)
rx = 23.5µs and R

(2)
rx = 23.5µs. After performing the calcula-

tions, the worst-case response time is Rrx = 23.5µs.

Data Task Response Time

The Data task has the highest priority among all other tasks and only interrupts

and system tick can delay its response time. Since FreeRTOS forces a context

switch after executing an interrupt routine, moreover the Data task is triggered

by the Sensor UART RX ISR, the execution of the Data task is not delayed by

the period of the system tick.

R
(n+1)
data = Cdata +

⌈
R

(n)
data

Trx

⌉
(Crx + Csw) +

⌈
R

(n)
data

Tclk

⌉
Cclk (4.5)

R
(0)
data = 57.0µs, R

(1)
data = 80.5µs and R

(2)
data = 80.5µs. Therefore the maximum

response time is Rdata = 80.5µs.

BOLT Task Response Time

Based on the data flow (see Figure 4.3), Bolt task execution can be interrupted

by Sensor UART RX interrupt routine, the execution of Data task and the system

tick interrupt, moreover it is delayed by the period of the system tick. Therefore

the calculation for the response time is the following:

4. Evaluation 43

R
(n+1)
bolt = Cbolt +

⌈
R

(n)
bolt

Tdata

⌉
(Cdata + Csw) +

⌈
R

(n)
bolt

Trx

⌉
(Crx + Csw)+

+

⌈
R

(n)
bolt

Tclk

⌉
Cclk + Tclk (4.6)

R
(0)
bolt = 54.7590ms, R

(1)
bolt = 59.9365ms, R

(2)
bolt = 60.4145ms, R

(3)
bolt = 60.4950ms

and R
(4)
bolt = 60.4950ms. The worst-case response time is Rbolt = 60.495ms.

This is the most relevant response time from a system-wide perspective. This

means the system can measure, process and forward data to a connected device

or PC within this time frame. This is a worst-case value and the response

is guaranteed within this time frame. Moreover Bolt also has a fixed response

time, therefore the overall response time of data from sensor measurement to the

arrival to a communication interface of a specific device can be easily calculated.

In case the reading operation is completely disabled in the system, the Bolt task

has significantly lower maximum execution time Cboltwriteonly
= 236.10µs. In this

case the response time of Bolt task can be calculated in the following: R
(0)
bolt =

1236.1µs, R
(1)
bolt = 1316.6µs and R

(2)
bolt = 1316.6µs. The worst-case response time

in a write-only scenario is Rbolt = 1.3166ms.

SysTick

UART ISR

Data Task

BOLT Task

D_clk

BOLT task execution

Data task execution

Bounded response time for BOLT task

Pr
io

rit
y

T_clk

UART ISR execution

Figure 4.5: BOLT task response

4. Evaluation 44

Packet Response Time

The system performs a writing operation after a whole packet is received from

the sensor. By using DataFormat #2, the Bolt task is triggered after receiving

125 bytes. However there are different delays between each received byte in a

frame, and between the frames. (See Table 4.1.) Each byte follows each other

with a delay of 1.024ms within a frame, and there is a delay of 9.148ms between

frames. These delays has to be taken into account when calculating the response

time of a whole packet. The response time can be calculated as follows:

Rpacket = Rdata · 125 +Rbolt +
∑

Dbytes +
∑

Dframes (4.7)

where Dbytes means the delay between bytes in a frame, and Dframes implies the

delay between frames.

∑
Dbytes =

25∑
1

(4 · 1.024ms) = 102.40ms

∑
Dframes =

24∑
1

9.148ms = 219.552ms

Rpacket = 80.5µs · 125 + 1.3166ms+ 102.40ms+ 219.552ms = 333.3311ms.

Sensor Data

BOLT Task

Frame

Packet

D_bytes D_frames

Bounded response time for packet

Figure 4.6: Packet response time

UI Task Response Time

This task has the lowest priority, thus every other task, interrupts and system

tick can delay its execution. The formula develops as the following for the UI

4. Evaluation 45

task:

R
(n+1)
ui = Cbolt +

⌈
R

(n)
ui

Tbolt

⌉
(Cbolt + Csw) +

⌈
R

(n)
ui

Tdata

⌉
(Cdata + Csw)+

+

⌈
R

(n)
ui

Trx

⌉
(Crx + Csw) +

⌈
R

(n)
ui

Tclk

⌉
Cclk + Tclk (4.8)

In case the Bolt task only performs write-only operations, the response time can

be calculated as below. R
(0)
ui = 203.8µs, R

(1)
ui = 1520.4µs and R

(2)
ui = 1520.4µs.

The UI task has the highest response time of all tasks, with the value of Rui =

1.5204ms.

However if the calculations are performed with the maximum response time of

Bolt task that performs a reading operation in every execution, the limit of UI

task response time does not exist. This is because the execution time of Bolt

task is high while its period is low, therefore in every iteration the response time

grows and does not converge to a number.

Summary of Response Times

Table 4.9 summarizes the worst-case response times for the tasks in the system.

These values are guaranteed and validated in practice, therefore each task and

operation has bounded response times. This conveys predictability and execution

in a maximum time frame.

Task Theoretical Bound Measurements Deviation

Sensor UART ISR 23.5 µs 18.3 µs 22.12 %

Data Task 80.5 µs 64.7 µs 25.20 %

Bolt Task 60.495 ms / 1.3166ms1 0.3012 ms 77.12 %

Packet (DF#2) 333.3311 ms 324.4501 ms 2.66 %

UI Task — / 1.5204 ms1 — —

Table 4.9: Worst-case response times

1 In the case where the Bolt task only performs write operations

4. Evaluation 46

4.2 Power Analysis

I set up different scenarios and made several measurements to obtain power dis-

sipation of the whole system. I used a Keysight Technologies N6705A1 (formerly

manufactured by Agilent) DC power analyzer to perform power profiling. I used

the maximum sampling rate of device to obtain precise real-time consumption

data. The sampling period was Ts = 2.048 · 10−5s.

To perform detailed power analysis, the LaunchPad and the pulse oximetry sen-

sor were connected to different channels of the power analyzer in order to measure

their power dissipation separately.

LaunchPad

Power Analyzer

Power supply +
Current measure

Channel 1

Power supply +
Current measure

Channel 2
Sensor

BOLT

Figure 4.7: Power analysis setup

Table 4.10 summarizes the eight scenarios chosen to evaluate the prototype de-

vice. The scenarios were constructed by adjusting the following setup parame-

ters:

• The sensor output data format.

• If a command was sent from PC via Boltwhich was read and processed

by the MCU. This is indicated in ’BOLT operation’ column.

1 Keysight Technologies N6705A DC Power analyzer
http://www.keysight.com/en/pd-1123271-pn-N6705A/dc-power-analyzer-modular-600-w-4-slots?

cc=US&lc=eng

http://www.keysight.com/en/pd-1123271-pn-N6705A/dc-power-analyzer-modular-600-w-4-slots?cc=US&lc=eng
http://www.keysight.com/en/pd-1123271-pn-N6705A/dc-power-analyzer-modular-600-w-4-slots?cc=US&lc=eng

4. Evaluation 47

• If the system was configured to check Bolt periodically for reading, re-

gardless of writing operation.

• If a LED was flashed after every successful Bolt write operation.

DataFormat BOLT operation Periodic read UI Duration

1 DF#2 Write 12s

2 DF#2 Write • 12s

3 Mixed Write & Read • 12s

4 DF#1 Write 12s

5 DF#2 Write 30s, DC1

6 DF#2 Write • 30s, DC1

7 DF#1 Write 30s, DC1

8 DF#1 Write • 30s, DC1

Table 4.10: Scenarios for power analysis

4.2.1 Analysis of Individual Interrupts and Tasks

In this section the basic individual interrupts and tasks which are most common

in all scenarios are analyzed.

Sensor UART RX ISR, Data and BOLT Task Execution

During the service of an interrupt request that had arrived from the sensor, a

message is pushed into the xQueueRx queue which is going to trigger the Data

task. Since this task has the highest priority, it will immediately execute after the

ISR. Figure 4.8 shows the power profile of execution using DataFormat #2. The

average execution time of UART ISR and Data task with the context switches is

18.5µs+ 57.0µs+ 2 · 5.0µs = 85.5µs, which match the width of the power pulse

which is approximately 100µs.

1 Duty cycling with 10s on and 15s off; 30s of total measurement duration

4. Evaluation 48

Figure 4.8: Sensor UART RX ISR and Data task execution analysis

In case the received byte is the last byte of a packet, a structure is pushed into

xQueueSensorData queue filled with data extracted from the packet in Data

task. The Bolt task has the highest priority after Data task, therefore Bolt

task is going to be triggered immediately after execution. The chain of execution

is shown in Figure 4.10, which is confirmed with the power analysis shown in

Figure 4.9. The width of power trace is approximately 330µs, while the average

duration of executing RX ISR, Data and Bolt task with the context switches

is 18.5µs+ 57.0µs+ 234.8µs+ 3 · 5.0µs = 325.3µs.

Figure 4.9: Power profile: last byte of packet reception and send data to Bolt

4. Evaluation 49

Figure 4.10: Trace: last byte of packet reception and send data to Bolt

Analysis of packet reception using DataFormat #2

Figure 4.11: Power profile: last frame of packet using DataFormat #2

4. Evaluation 50

Figure 4.12 shows the last frame of packet using DataFormat #2. A frame

consists of 5 bytes. The power profile is shown in Figure 4.11. The idle task

execution (marked with black) has an average of 4.2mW power dissipation using

LPM0. In the case LPM0 is not used and the microcontroller runs in Active

Mode in idle task, the power dissipation raises to 16.5mW. The system tick

interrupt execution has an average of 10.5mW power dissipation (marked with

purple). The reception of a byte (marked with green) triggers the UART ISR

and the Data task for execution. The reception of the last byte (marked with

red) triggers the UART ISR, the Data task and the Bolt task for execution.

During task execution, the average power dissipation is 21mW.

Figure 4.12: Trace: last frame of packet using DataFormat #2

The reception of the last three frames of a packet using DataFormat #2 is shown

in Figure 4.13. The power profile of a full packet that comprises 125 bytes is

shown in Figure 4.14. End of packet is easily noticeable because after reception,

Bolt task is triggered, resulting in slightly wider spike.

4. Evaluation 51

Figure 4.13: Power profile of last three frames of a packet using DataFormat #2

Figure 4.14: Power profile of a packet using DataFormat #2

4. Evaluation 52

Analysis of packet reception using DataFormat #1

A packet consists of only 3 bytes using DataFormat #1. The bytes follow each

other with a period of 1ms and the frequency of packets is 1 per second. As

seen at DataFormat #2, Bolt task is triggered after receiving the last byte of a

packet. The execution of Bolt task after reception manifests in a slightly wider

pulse on power profile.

Figure 4.15: Power profile of a packet using DataFormat#1

4.2.2 Analysis of Operating Modes

In this section the different scenarios are evaluated and summarized based on

their power dissipation. Table 4.11 shows the comparison of energy consumption

for each scenario.

Figure 4.17 shows the first scenario (see Table 4.10). This is a basic operating

mode using DataFormat #2: the sensor is switched on for 10 seconds and during

this time the data received from sensor is transmitted to PC via Bolt without

4. Evaluation 53

flashing the LED after each execution. Figure 4.16 shows the power profile of

this mode. The small spikes at the top represent the writing operation to Bolt.

Figure 4.16: Power profile: basic operation using DataFormat#2

Figure 4.17: Trace: basic operation using DataFormat#2

4. Evaluation 54

The only difference in the second scenario is that after every successful writing

operation to Bolt, a LED is flashed. This results in noticeable increase in power

dissipation which can be seen on the power profile (see Figure 4.18).

Figure 4.18: Power profile: basic operation with flashing LED after each writing
operation to Bolt

For the time the LED is on, the baseline of dissipation clearly increases to 32mW

as shown in Figure 4.19. The width of this pulse is 250ms which concurs the

duration of LED is switched on. During this interval the consumption of inter-

rupts and tasks remain the same, however the overall consumption increases by

the power demand of the LED.

4. Evaluation 55

Figure 4.19: Power dissipation while LED is on

In Figure 4.20 the power profile of the basic scenario is shown using DataFormat

#1. The measurement lasts for 12 seconds while the sensor is turned on for 10

seconds. Data is forwarded to Bolt once per second without blinking the LED,

and during this period no reading operation is performed. The timing diagram

of this scenario is shown in Figure 4.21. The average drain is 1.6027mA which is

4% lower compared to the same scenario when DataFormat #2 was used. This

implies that if the requirements can be fulfilled with using DataFormat #1, it

should be used to achieve lower power dissipation.

4. Evaluation 56

Figure 4.20: Power profile: basic operation using DataFormat#1

Figure 4.21: Trace: basic operation using DataFormat#1

Complex scenarios involve reading operations from Bolt. Scenario 3 (see Table

4.10) starts with using DataFormat #1, then a command is received from PC

via Bolt to change the output data format. After reading out the message,

4. Evaluation 57

the MCU dynamically switches the sensor to DataFormat #2 and continues

processing data received from sensor.

Figure 4.22: Dynamically switch between sensor output data formats

Figure 4.23: Overview of a reading operation

As seen in Figure 4.22, the execution of Bolt task (labelled as Task RW) is

significantly longer when reading message from Bolt. The power profile of

reading operation is shown in Figure 4.23 which is magnified in Figure 4.24.

4. Evaluation 58

Reading a message from Bolt that falls in the order of magnitude of 10 bytes

takes 53ms on average, although it heavily depends on the size of the message.

Currently all messages that are interpreted as commands are between 10 and 15

bytes. After processing a valid command during a reading operation, a LED is

flashed for 250ms. In Figure 4.24 the first pulse which has 15mW power dissi-

pation represents the Bolt task that performs a reading operation. After the

reading operation a LED is switched on, therefore the consumption does’t fall

back to the consumption of idle mode. When the LED is on, the energy con-

sumption raises to an average of 30mW. The pulse of Bolt task is approximately

50ms wide, furthermore after 250ms the energy consumption goes back to the

level of consumption during idle mode, which fully supports our timing analysis.

Figure 4.24: Power profile of a reading operation

4.2.3 Analysis of Duty Cycling

During scenario 5 to 8 (see Table 4.10), the effect of duty cycling is analyzed in

terms of power dissipation. Two major scenarios are tested using both output

4. Evaluation 59

data formats. First the periodic reading mode (see Section 3.2.3) is switched off,

then influence of 1s periodic reading is investigated. When the periodic reading

mode is switched off, the command sent from the communication processor to

the MCU via Bolt has to wait until a writing operation occurs. In case the

ratio of sensor on duration and sensor off duration is low, the response within a

bounded time frame is not guaranteed, which makes the system unpredictable.

Figure 4.25 shows the power profile of operation with sensor duty cycling of

10s on and 15s off using DataFormat #2 without periodic reading mode. The

average current drain is 1.3367mA.

Figure 4.25: Power profile: duty cycling without periodic reading using DF#2

4. Evaluation 60

Figure 4.26: Trace: duty cycling without periodic reading using DF#2

The result of the same case with periodic reading mode on is shown Figure 4.27.

It is clearly visible that the Bolt task wakes up every second to check Bolt

whether a reading operation needs to be performed. The average current drain

is 1.3861mA, which is only 50µA more than operating without periodic reading

mode.

Figure 4.27: Power profile: duty cycling with periodic reading using DF#2

4. Evaluation 61

Figure 4.28: Trace: duty cycling with periodic reading using DF#2

The above mentioned measurements were also performed with using DataFormat

#1. The conditions remained the same: sensor was switched on for 10s, then it

was switched off for 15s. Analysis was performed for 30s.

Figure 4.29: Power profile: duty cycling without periodic reading using DF#1

4. Evaluation 62

Figure 4.30: Trace: duty cycling without periodic reading using DF#1

Figure 4.29 shows the result of power analysis with using periodic reading mode.

Since the frequency of receiving data form sensor is one per second, moreover

the period of the periodic reading mode is configured to one second, it is difficult

to distinguish whether the sensor is switched on or off when having an overview

of the power profile. The only way to clearly differentiate is to zoom in and

investigate the pulses.

The difference is shown in Figure 4.33. When sensor is switched on, in every

second there are three pulses which follow each other with a period of 1ms. In

the case sensor is turned off, there is only one pulse in every second caused by

the Bolt task which periodically wakes up and performs a check whether there

is a message to be read from Bolt.

4. Evaluation 63

Figure 4.31: Power profile: duty cycling with periodic reading using DF#1

Figure 4.32: Trace: duty cycling with periodic reading using DF#1

4. Evaluation 64

(a) Packet reception and writing operation (b) Periodic check when sensor is off

Figure 4.33: Difference between sensor on and off during duty cycling

4.2.4 Idle Task Analysis

FreeRTOS switches in a special task called idle task when there is no task to

run. This task is called every time there is no task in ready state, therefore

the microcontroller can be put into sleep mode to reduce energy consumption.

Evaluating different sleep modes in the idle task is described in Section 3.3.2.

After entering the idle task, the microcontroller is put into LPM0 mode to

save power. In this mode the high frequency clock sources and all peripherals

are active while the CPU is inactive, therefore the SysTick timer can remain

functional. The interrupt generated by the SysTick wakes up the system and

puts the microcontroller back into active mode, therefore the RTOS can continue

to operate.

Figure 4.34 shows the power profile of the system when there is no task to run.

The spikes represent the execution of system tick interrupt. The system wakes

up, performs a system tick and goes back to LPM0 as there is no task to run.

The power dissipation in LPM0 is 4.2mW on average, while the execution of the

SysTick ISR dissipates 10.5mW for 5µs. In the case the microcontroller is in

Active Mode instead of LPM0 during idle task, the average power dissipation

raises to 16.5mW .

4. Evaluation 65

Figure 4.34: Power analysis of idle task

4.2.5 Sensor Power Analysis

Figure 4.35: Power analysis of the pulse oximeter

4. Evaluation 66

When the sensor is on, it performs measurements periodically with a period of

125µs and with a peak of 40mA at 3.0V. The average power dissipation is around

30-33mW. Figure 4.35 shows he power profile of the pulse oximetry sensor.

4.2.6 Conclusion of Power Analysis

The system dissipates 4.2mW during idle by using LPM0 low power mode. Ex-

ecuting a system tick dissipates approximately 10.5mW . Using communication

interfaces (UART, SPI) in tasks requires 21.5mW at most.

Table 4.11 illustrates the current drain measured in different scenarios. Using

a user interface represented by LEDs shows significant increase in power dis-

sipation. In scenario 3, where a reading operation was performed the average

consumption increased, because the microcontroller needs to perform a reading

operation, moreover it has to process the received commands. The difference be-

tween using DataFormat #2 and DataFormat #1 without duty cycling is 65µA.

By using 33% duty cycling without periodic reading mode, the difference be-

tween the data formats increased to 208µA, which suggest using DataFormat#1

to save power in the long run.

Scenario1 Min Avg Max Unit

1 0.9221 1.6676 6.6449 mA

2 0.8326 3.1041 14.3833 mA

3 0.9523 2.7297 14.7327 mA

4 0.9643 1.6027 6.7558 mA

5 0.8978 1.3367 6.5955 mA

6 0.7938 1.3861 6.6301 mA

7 0.8805 1.1280 6.6988 mA

8 0.8104 1.1521 6.6133 mA

Table 4.11: Summary of current drain of different operating modes

Comparing the scenarios where periodic reading mode is turned on to the scenar-

ios where it is switched off, the results show that by using the periodic reading

1 The different scenarios are summarized in Table 4.10.

4. Evaluation 67

mode only increases the average current drain by 50µA and 24µA using DataFor-

mat #2 and DataFormat #1 respectively. This conveys that by turning on the

periodic reading mode when the system is configured to use duty cycling, system

predictability and bounded response times can be guaranteed with tiny addi-

tional energy consumption.

Chapter 5

Conclusion

In the previous chapters I described the system design in detail, then explained

the operation of the system. I performed detailed timing and power analysis

and finally presented the results of evaluation. Throughout system design, I was

constantly focusing on the two main goals - timing predictability and low power

system design. I set up bounds on response times, thus system predictability and

responsibility is guaranteed within those frames. As discussed in the evaluation

chapter, I had some difficulties with using ultra-low power modes in FreeRTOS,

therefore currently in idle state the system uses the basic low power mode, which

results in a few milliampers of consumption on average. I am certain about this

number can be significantly lowered as my attempts with LPM3 and LPM4

ultra-low power modes were successful without FreeRTOS. I also suggested a

workaround for this problem, which utilize an external hardware timer to wake

up the microcontroller when needed. Despite the difficulties I encountered, I

can say that the prototype which I developed is a fully functional device, which

fulfills the requirements that had been set for this semester.

5.1 Future Work

I truly enjoyed working on this project. During development, a few ideas came

to my mind which I would gladly carry out as a project or even a master thesis.

The next step would be to discard off-the-shelf components, breakout boards,

and develop a specific hardware from scratch. Let me quote Alan Kay1, who said

the followings at Creative Talk seminar in 1982: “People who are really serious

about software should make their own hardware.” With designing the schematics

and the printed circuit board, not only an ergonomic, market-ready device could

1 Alan Curtis Kay
https://en.wikipedia.org/wiki/Alan_Kay

68

https://en.wikipedia.org/wiki/Alan_Kay

5. Conclusion 69

be developed, but also optimization and efficiency could be leveraged in terms

of timing predictability and ultra low power consumption.

I envision a compact device with its own hardware and PCB equipped with

extremely minimal or even without a user interface. Therefore it would be as

compact as possible and it could be portable and comfortably wearable. The

device would maintain connection with smartphones or medical equipments in

hospitals via Bluetooth Low Energy to save power, and the data would be fed to

an application. Since people have smartphones in their pockets or within reach

all day long, looking back old data, tracking measurements and overall health

condition would take only a few taps.

Figure 5.1: Smartphone application with measurement data

Not to mention, smartphones are becoming the central control interface of our

life: we want to control our houses, cars, smart devices - basically everything with

our phones. Why wouldn’t we track our health condition, receive notifications,

warnings and possible threats to the only device which is around us 24/7?

Bibliography

[1] F. Sutton, M. Zimmerling, R. Da Forno, R. Lim, T. Gsell, G. Giannopoulou,

F. Ferrari, J. Beutel, and L. Thiele, “Bolt: A Stateful Processor Intercon-

nect”, in Proceedings of the 13th ACM Conference on Embedded Networked

Sensor Systems, pp. 267–280, ACM, 2015.

[2] “TI MSP432P401x Datasheet.”,

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf, 2015.

[3] “Nonin OEM III Module Specification and Technical Information.”,

http://www.nonin.com/documents/OEM%20III%20Module%

20Specifications.pdf, 2007.

[4] P. Mellgren, “Response Time Calculation, Priority Assignment and Holis-

tic Scheduling with Integer Programming Methods”, Master’s thesis,

Mälardalens University, Sweden, 2001.

70

http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.nonin.com/documents/OEM%20III%20Module%20Specifications.pdf
http://www.nonin.com/documents/OEM%20III%20Module%20Specifications.pdf

Appendix A

Connectivity and Pinout

MSP432P401R pin Connection

P1.0 LaunchPad ”LED1”

P1.2 LaunchPad USB VCP RX line

P1.3 LaunchPad USB VCP TX line

P1.5 Bolt SPI Clock

P1.6 Bolt SPI MOSI

P1.7 Bolt SPI MISO

P2.0 LaunchPad RGB LED - Red

P2.1 LaunchPad RGB LED - Green

P2.2 LaunchPad RGB LED - Blue

P2.3 Bolt REQ line

P2.4 Bolt MODE (R/W) line

P2.5 Bolt IND line

P2.6 Bolt ACK line

P2.7 Bolt IND OUT line (not used)

P3.0 RTOS trace: timer wakeup

P3.5 RTOS trace: context switch

P3.7 RTOS trace: system tick

P5.1 RTOS trace: Sensor IT RX

P5.4 MUX channel 2: Sensor data format switch

P5.5 MUX channel 1: Sensor power switch

P5.6 RTOS trace: UI task

P6.4 RTOS trace: debug pin

P6.5 RTOS trace: debug pin

P6.6 RTOS trace: BOLT task

P6.7 RTOS trace: Data task

Table A.1: Pinout of the microconroller

71

Appendix B

Source Code Organization

The source code is written in embedded C and assembly. The organization of

the project is highly structured to make it flexible, modular and portable:

• driverlib folder contains all peripheral libraries for the TI MSP432 mi-

crocontroller family

• FreeRTOS folder contains the source of the RTOS, including memory man-

agement and port specific codes

• system folder contains the startup files for the microcontroller

• project root contains all configuration and source files of the system

RTOS related configurations are stored in FreeRTOSConfig.h. main.h contains

the system specific configurations. Low level and hardware specific functions are

written in hardware.c; trace macros and functions are implemented in trace.h

and trace.c respectively. All tasks are stored in separate .c files starting with

t , and main.c contains system initialization and RTOS callback functions.

72

B. Source Code Organization 73

Source Code Organization

Project/
 |—— driverlib/
 | `—— inc/
 |—— FreeRTOS
 | |—— include/
 | `—— portable/
 | |—— _memory/
 | `—— ccs/
 |—— system/
 | `—— ccs/
 |
 |—— FreeRTOSConfig.h
 |—— hardware.h
 |—— hardware.c
 |—— isr.c
 |—— main.h
 |—— main.c
 |—— t_bolt.c
 |—— t_data.c
 |—— t_ui.c
 |—— trace.h
 `—— trace.c

Figure B.1: Source code organization

Appendix C

Device Outputs

The device forwards the actual heart rate and blood oxygen saturation value to

the PC via USB VCP. The output is captured with a terminal emulator software.

Figure C.1: Device output when rested

Figure C.2: Device output after performing 50 push-ups

74

Appendix D

Sensor Timings

Figure D.1: Sensor DataFormat #2 frame

Figure D.2: Sensor DataFormat #2 packet

Figure D.3: Sensor DataFormat #1 packet

75

Appendix E

BOLT Timing Analysis

E.1 Writing Operation

Figure E.1: Write to Bolt: Request to ACK response time

Figure E.2: Write to Bolt: ACK to first byte transfer

76

E. BOLT Timing Analysis 77

Figure E.3: Write to Bolt: Last byte to REQ line release

E.2 Reading Operation

Figure E.4: Read from Bolt: Request to ACK response time

Figure E.5: Read from Bolt: ACK to first byte transfer

E. BOLT Timing Analysis 78

Figure E.6: Read from Bolt: Last byte to IND line release

Figure E.7: Read from Bolt: IND to ACK line release

Appendix F

RTOS Task Timings

Figure F.1: Data task execution

Figure F.2: Bolt task execution

Figure F.3: Bolt reading operation using DataFormat #2

79

29.01.16

1

||

Akos Pasztor
D-ITET, Semester Thesis
Fall Semester 2015

20.01.2016Akos Pasztor 1

Towards Low-Power, Timing-Predictable
Medical Monitoring

Supervisors:
Georgia Giannopoulou
Felix Sutton
Pengcheng Huang
Prof. Dr. Lothar Thiele

||

Concept
§ Medical Monitoring Device
§ Monitoring vital signs

§ Heart rate (HR)
§ Blood oxygen saturation (SpO2)

§ Decision model for critical situations

Goals
§ Timing guarantee and predictability

§ Safety-critical device
§ Low-power design

§ Portable

20.01.2016Akos Pasztor 2

Introduction
Introduction Design Timing analysis Power analysis Summary

29.01.16

2

||

§ BOLT – stateful processor interconnect
§ Developed at ETH TIK
§ Interconnect two platforms to provide deterministic communication
§ Ultra-low power consumption
§ Asynchronous message passing with FIFOs

§ Real Time Operating System
§ Scalability, modularity
§ FreeRTOS – de-facto standard RTOS

§ Minimal overhead
§ Highly supported (by community, chip manufacturers)
§ Open source, Free for commercial use

Key Design Decisions

20.01.2016Akos Pasztor 3

Introduction Design Timing analysis Power analysis Summary

||

System Design

20.01.2016Akos Pasztor 4

Application
Processor

TI MSP432
32bit ARM Cortex-M4

Pulse Oximetry
Sensor

User Interface

BOLT

Stateful Processor
Interconnect

Communication
Processor

e.g. PC via USB

Introduction Design Timing analysis Power analysis Summary

29.01.16

3

||

MSP432

RTOS

Initialization

SPI Control

External IRQ

Queue
Data

Task

User
Interface

Task

BOLT
Write/Read

Queue
UI

Pulse
Oximeter

BOLT

Computer

USB VCP

Task

Data
Process

Queue
Rx

Sensor UART RX
IRQ

Software Architecture

20.01.2016Akos Pasztor 5

Introduction Design Timing analysis Power analysis Summary

||

Data Flow

20.01.2016Akos Pasztor 6

§ Preemptive or non-preemptive?
§ Event-driven or time-triggered?

§ Event-driven RTOS
§ Fixed and different priority for tasks
§ Message-passing with queues
§ Tasks are blocking (wait for events)

Queue
Data

Task

BOLT
Write/Read

ISR

Sensor
UART RX

Queue
Rx

Task

Data
Process

Measured data Data to BOLT

Introduction Design Timing analysis Power analysis Summary

29.01.16

4

||

§ Cortex-M core IT system vs. FreeRTOS
§ Interrupt priorities à translate to Cortex-M core system,

including special FreeRTOS interrupt priority values
§ Task priorities à based on importance to avoid data

collision in queues

RTOS Configuration

20.01.2016Akos Pasztor 7

Introduction Design Timing analysis Power analysis Summary

Scheduler IT
Sensor UART RX IT

External IT

Data Task
BOLT Task
UI Task

Pr
io

ri
ty

Interrupts

Application tasks

||

RTOS Configuration

20.01.2016Akos Pasztor 8

§ Memory handling
§ Only deterministic operations allowed
§ Allocation before system start, no memory-free or re-allocating

operations during operation
§ Appropriate heap size for RTOS
§ Proper stack size for tasks

§ Thoughtful Software Design!

MSP432 RAM

RTOS Heap MCU Heap MCU Stack

RTOS Heap

Task 1

Stack

Task 2

Stack

Queue 1

Introduction Design Timing analysis Power analysis Summary

29.01.16

5

||

RTOS Configuration

20.01.2016Akos Pasztor 9

§ Many other challenges
§ FreeRTOS: wide

configurability
§ Developer’s task to

implement a reliable and
timing-predictable system

Introduction Design Timing analysis Power analysis Summary

||

Timing Analysis Challenges

20.01.2016Akos Pasztor 10

§ Task activation depends on task priority and availability of
data in task’s incoming queues

§ Context switch can occur
§ At system tick
§ After executing an interrupt service routine
§ After finishing a task

§ Interrupts can also be preempted

Introduction Design Timing analysis Power analysis Summary

29.01.16

6

||

Timing Analysis

20.01.2016Akos Pasztor 11

System Tick
§ Special interrupt generated every ms (T_clk = 1ms)
§ In case there is a ready task in task queue which has

higher priority than the current one à Context Switch

SysTick

Pr
io
rit
y

T_clk

Introduction Design Timing analysis Power analysis Summary

Queue
Data

Task

BOLT
Write/Read

ISR

Sensor
UART RX

Queue
Rx

Task

Data
Process

||

Timing Analysis

20.01.2016Akos Pasztor 12

UART RX Interrupt Service Routine
§ Interrupts are processed regardless of system tick
§ Forced context switch can occur at the end of ISR
§ Interrupted only by SysTick

SysTick

UART ISR

Pr
io

rit
y

T_clk

UART ISR execution

Introduction Design Timing analysis Power analysis Summary

Queue
Data

Task

BOLT
Write/Read

ISR

Sensor
UART RX

Queue
Rx

Task

Data
Process

29.01.16

7

||

Timing Analysis

20.01.2016Akos Pasztor 13

Data task: highest priority task
§ Can be interrupted by SysTick, UART ISR
§ Cannot be delayed by the period of tick

§ Triggered only by UART ISR
§ After ISR: forced context switch

SysTick

UART ISR

Data Task

Data task execution

Pr
io

rit
y

T_clk

UART ISR execution

Introduction Design Timing analysis Power analysis Summary

Queue
Data

Task

BOLT
Write/Read

ISR

Sensor
UART RX

Queue
Rx

Task

Data
Process

||

Timing Analysis

20.01.2016Akos Pasztor 14

BOLT task
§ Can be interrupted by SysTick, UART ISR, Data task
§ Can be delayed by the period of tick

SysTick

UART ISR

Data Task

BOLT Task

D_clk

BOLT task execution

Data task execution

Bounded response time for BOLT task

Pr
io

rit
y

T_clk

UART ISR execution

Introduction Design Timing analysis Power analysis Summary

Queue
Data

Task

BOLT
Write/Read

ISR

Sensor
UART RX

Queue
Rx

Task

Data
Process

29.01.16

8

||

Timing Analysis

20.01.2016Akos Pasztor 15

SysTick

UART ISR

Data Task

BOLT Task

D_clk

BOLT task execution

Data task execution

Bounded response time for BOLT task

Pr
io

rit
y

T_clk

UART ISR execution

Introduction Design Timing analysis Power analysis Summary

Queue
Data

Task

BOLT
Write/Read

ISR

Sensor
UART RX

Queue
Rx

Task

Data
Process

||

Timing Analysis

20.01.2016Akos Pasztor 16

SysTick

UART ISR

Data Task

BOLT Task

D_clk

BOLT task execution

Data task execution

Bounded response time for BOLT task

Pr
io

rit
y

T_clk

UART ISR execution

Tick
Data

BOLT

Context
Switch

Introduction Design Timing analysis Power analysis Summary

Queue
Data

Task

BOLT
Write/Read

ISR

Sensor
UART RX

Queue
Rx

Task

Data
Process

29.01.16

9

||

Timing Analysis

20.01.2016Akos Pasztor 17

SysTick

UART ISR

Data Task

BOLT Task

D_clk

BOLT task execution

Data task execution

Bounded response time for BOLT task

Pr
io

rit
y

T_clk

UART ISR execution

Introduction Design Timing analysis Power analysis Summary

||

§ The analytic results bound safely the execution times of
the tasks in practice

§ Sensor data have enough time to be written to BOLT,
therefore there is no data loss

§ Result of timing analysis: system leverages deterministic
computation and communication

Timing Analysis | Response times

20.01.2016Akos Pasztor 18

Introduction Design Timing analysis Power analysis Summary

29.01.16

10

||

MSP432

RTOS

Initialization

SPI Control

External IRQ

Queue
Data

Task

User
Interface

Task

BOLT
Write/Read

Queue
UI

Pulse
Oximeter

BOLT

Computer

USB VCP

Task

Data
Process

Queue
Rx

Sensor UART RX
IRQ

Low Power System Design

20.01.2016Akos Pasztor 19

2) Microcontroller
Low-power modes
(used in Idle task)

1) Sensor Duty Cycling

Introduction Design Timing analysis Power analysis Summary

||

Microcontroller Low Power Modes

20.01.2016Akos Pasztor 20

Challenges: system wakeup
§ RTC1 à min. 1sec
§ WDT2 à unlikely high

power consumption
§ External IT à external

hardware is required

Solution:
§ LPM0

1 RTC: Real Time Clock
2 WDT: WatchDog Timer

Introduction Design Timing analysis Power analysis Summary

29.01.16

11

||

System Setup for Power Analysis

20.01.2016Akos Pasztor 21

Introduction Design Timing analysis Power analysis Summary

LaunchPad

Power Analyzer

Power supply +
Current measure

Channel 1

Power supply +
Current measure

Channel 2
Sensor

BOLT

||

§ Idle task
(avg. 4.2mW)

§ SysTick
(avg. 10.5mW)

§ RX & Data task
(avg. 21mW)

§ BOLT task
(avg. 21mW)

§ Sensor
avg. 33mW

Power Analysis

20.01.2016Akos Pasztor 22

Introduction Design Timing analysis Power analysis Summary

29.01.16

12

||

Suggestions for further reducing power consumption

§ Design dedicated hardware
§ Use new revision of microcontroller
§ Use external hardware to trigger external interrupt to

wake up from low power mode

Future work

20.01.2016Akos Pasztor 23

Introduction Design Timing analysis Power analysis Summary

||

§ Working prototype of medical monitoring device
§ Focused on timing predictability and low power system

design
§ Timing analysis:

§ Bounded response times, timing guarantee for task execution
§ Validation

§ Power analysis:
§ Aimed for low power consumption
§ Duty cycling
§ Use of low power modes
§ Performed detailed measurements and power analysis of system

Conclusion

20.01.2016Akos Pasztor 24

Introduction Design Timing analysis Power analysis Summary

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Overview

	2 Background
	2.1 Embedded Software
	2.2 Equipment and Tools
	2.3 BOLT
	2.4 Pulse Oximetry Sensor
	2.4.1 Measurement Range and Precison
	2.4.2 Sensor Data
	2.4.3 Sensor Control

	2.5 User Interface
	2.6 Microcontroller
	2.6.1 Interrupt System
	2.6.2 Connectivity and Pinout

	2.7 FreeRTOS
	2.7.1 Configuration
	2.7.2 Interrupt Priorities
	2.7.3 Memory Management

	3 System Design
	3.1 System Architecture
	3.1.1 Communication

	3.2 Software architecture
	3.2.1 Initialization
	3.2.2 Interrupts
	3.2.3 Tasks

	3.3 Low Power System Design
	3.3.1 Microcontroller Low Power Modes
	3.3.2 Sensor Duty Cycling

	4 Evaluation
	4.1 Timing Analysis
	4.1.1 Medical Sensor
	4.1.2 BOLT
	4.1.3 RTOS Tasks
	4.1.4 RTOS Context Switching
	4.1.5 Data Flow
	4.1.6 Response Times

	4.2 Power Analysis
	4.2.1 Analysis of Individual Interrupts and Tasks
	4.2.2 Analysis of Operating Modes
	4.2.3 Analysis of Duty Cycling
	4.2.4 Idle Task Analysis
	4.2.5 Sensor Power Analysis
	4.2.6 Conclusion of Power Analysis

	5 Conclusion
	5.1 Future Work

	Bibliography
	A Connectivity and Pinout
	B Source Code Organization
	C Device Outputs
	D Sensor Timings
	E BOLT Timing Analysis
	E.1 Writing Operation
	E.2 Reading Operation

	F RTOS Task Timings

