
Distributed
 Computing

Kännsch - Updates and
Improvements to the Swiss German

Keyboard

Bachelor Thesis

Valentin Trifonov

vatrifon@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Philipp Brandes, Laura Peer

Prof. Dr. Roger Wattenhofer

August 16, 2016

Acknowledgements

I would like to thank my supervisors Philipp Brandes and Laura Peer for their
help and support for this project. Thanks to Professor Roger Wattenhofer and
the Distributed Computing Group at ETH for giving me the opportunity to work
on such an interesting and practical project for my bachelor thesis.

i

Abstract

In the German speaking parts of Switzerland, it is common among young people
to write in their dialect when communicating in a non-formal setting. As there
are masses of Swiss German dialects, it is very difficult to build a mobile keyboard
application that can suggest Swiss German words taylored to the user’s typing
style. One project which attempts to fill this gap is Kännsch, a mobile keyboard
for Android smartphones, developed over two master thesis at the ETH. In this
project we refine some of the application’s internal mechanisms to provide more
accurate word suggestions, and we update the application to a newer, more
visually appealing and feature-rich version. Finally, we build a framework that
uses the accumulated usage data to estimate the effectiveness of the different
variants of the new algorithms.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Contributions . 1

1.2 Outline . 2

2 Related Work 3

2.1 Mobile Keyboards . 3

2.2 Kännsch . 4

2.3 Improving Kännsch . 5

3 Kännsch Mobile Keyboard 7

3.1 Architecture Overview . 7

3.1.1 Dictionaries . 7

3.1.2 Languages . 8

3.1.3 Research Logging and Dictionary Updates 12

3.1.4 Personalization . 13

3.1.5 Other . 15

4 Kännsch Server Backend 18

4.1 Architecture Overview . 18

4.1.1 Clustering . 19

4.1.2 Personalization . 20

5 Results 23

5.1 Evaluation . 23

5.2 Language Detection . 24

iii

Contents iv

5.3 Cluster Dictionaries . 27

5.4 Server User History Dictionaries 27

6 Conclusion and Future Work 30

Bibliography 32

Chapter 1

Introduction

Over the last few years, smartphones have become very popular and a central
part of our everyday lives. Typing with a smartphone’s mobile keyboard, with
the thumbs on the touchscreen, is by far not as comfortable as typing on a
computer keyboard. To ease typing, modern keyboard applications such as A.I.
Type [1], SwiftKey [2] or similar, include functionality such as suggesting words
for completion or correction in a bar above the keys, while the user is typing.
A lot of research has gone into optimizing these algorithms and improving the
user experience. Some keyboards even have features like memorizing common
word combinations that a user types and trying to predict the next word entirely,
or allowing typing by dragging the finger across the keyboard roughly over the
letters of a word, known as swyping [3] or gesture typing [4].

A major part of how young people use their phones is for informal texting
among friends or on social media. In the German speaking part of Switzerland,
many dialects have emerged. Unlike other countries, Swiss people like to type in
their dialect when in an informal setting.

All the typing aid features of modern keyboard applications are based on
static dictionaries containing words and metadata of the used languages. And
therein lies the dilemma: the lack of a common dictionary makes accurate sug-
gestions difficult for informal Swiss German conversations.

1.1 Contributions

In this project, we are adding improvements to an existing Android mobile key-
board which tries to tackle the problem of typing in Swiss German, Kännsch.
We will call the original version of Kännsch, i.e. the precursor of our application,
Kännsch-KitKat.

Kännsch-KitKat was first released in August 2014, and since then the user
interface has not been adapted, which gives the Keyboard an outdated feel. In
particular, it does not comply with Material Design [5], Google’s design guide-
lines for Android applications, which they introduced with the release of Android

1

1. Introduction 2

version Lollipop.

We therefore chose for this project to re-implement the functionality of the
Kännsch project in a fork of the current version of the open-source keyboard
Kännsch-KitKat is based on. Not only does the new version comply with Mate-
rial Design, but it includes refined algorithms for more accurate word suggestions,
as well as handy new features.

Furthermore, we decided to work on some of the internal mechanics as well.
The keyboard includes improvements for our features for allowing quick switching
between the different input languages, and better generation of personalized
dictionaries.

1.2 Outline

In Chapter 2 we have a look at the currently available Android mobile keyboards,
as well as at the precursor of our application, the approaches for solving the ad-
dressed problems, and the open-source application it is based on. In Chapter
3 we explore the functionality of our Android application and give an overview
of the architecture of the relevant components. In Chapter 4 we have a look
at the algorithms used at our server backend for generating personalized dictio-
naries. Chapter 5 summarizes the results from the evaluations of our different
approaches for said algorithms. Finally, Chapter 6 concludes the project and
gives suggestions for future work.

Chapter 2

Related Work

2.1 Mobile Keyboards

There is a countless number of mobile keyboards available for Android mobile
phones. The Google Keyboard [6], A.I. Type [1], and SwiftKey [2] are a few
examples.

The Android Open Source Project [7] includes a mobile keyboard called La-
tinIME [8]. The most notable related pieces of work and precursor projects
continued in this thesis are Kännsch - a Swiss German Keyboard for Android [9]
by Laura Peer, and Kännsch - Improving Swiss German Keyboard [10] by Marcel
Bertsch. The keyboard developed in these theses is based on LatinIME. We will
go into these projects in the next two Sections.

Since mobile keyboards are rendered on a touchscreen, the user cannot actu-
ally feel the keys. In addition to that, users usually type using only their thumbs.
Therefore, typing is significantly more tedious and takes more time to get used
to it, and it is much more likely to mistype. Nonetheless, nowadays smartphones
are ubiquitous and thus mobile keyboards are used constantly. For that reason,
it is taken for granted that a modern mobile keyboards include features to assist
the user as he is typing. More often than not, mobile keyboards include a sugges-
tion bar above the keys which shows a few (usually three) words, that the user
is likely to have in mind as he is typing. These include corrections of the pre-
viously typed word, suggestions (or completions) for the currently typed word,
both combined (a suggestion which also corrects the typed prefix), or predictions
for the next word.

Another feature that seems to have become compulsory for mobile keyboards
is the support for what is known as swype [3] input or, for Google’s keyboards,
gesture typing [4]. Instead of having to tap each key for separately, swyping
allows the user to drag the finger over the keys and roughly draw the shape of
the word he is trying to type. The keyboard then analyses the motion, and tries
to guess which word was most likely the intended word by the user, based on
the brushed keys and their order. The keyboard then inserts the most probable

3

2. Related Work 4

word and displays the alternatives in the suggestions bar, so that the user can
quickly correct the text, if need be.

The algorithms used to compute these typing aids are based on dictionaries,
which usually include a collection of words and associated metadata, such as
how common each word is. LatinIME uses a number between 0 and 255, called
the word frequency, as a word commonness measure. In addition, it stores for
each word if it can be classified as an offensive word, if it is often used for the
beginning of a sentence, and a timestamp indicating when it was added. It also
stores bigrams, expressing a combination of two words which are commonly used
together. The new version uses n-grams, a generalization to include combinations
of more than two words which belong together. Like the words, bigrams and n-
grams are associated with a frequency.

None of these keyboards focuses on people typing informally in Swiss German,
as static dictionaries for languages simply do not suffice for accurate predictions,
given the many different dialects of the language.

Most of the mentioned keyboards have some limited means of adaptation to a
users typing style by storing and maintaining what LatinIME refers to as a user
history dictionary. This dictionary is a collection of commonly typed words and
word sequences which are not in the main dictionary and thus taylored to the
user. This approach does not work good enough for a user typing in a dialect:
they would have to type their dialect-specific words and phrases multiple times
until the keyboard application memorizes enough of them and assigns them high
enough frequencies to give reasonable suggestions. For users typing in an Swiss
German dialect, it would take a very long time for the keyboard to adapt, and
as such it is unsuited for them.

Most competing keyboards have other focuses. For example, some keyboards,
like the Go Keyboard [11], allow personalizing the keyboard by using different
themes, background pictures or sound effects. Kika Keyboard [12] provides, for
supported applications, searching and sending animated GIF images directly
from the keyboard. Almost all keyboards have a view for inserting emoji [13] to
the typed text.

2.2 Kännsch

For Laura Peer’s master thesis [9], she developed the Android mobile keyboard
Kännsch, a fork of Google’s open source keyboard LatinIME, made with Swiss
German dialects in mind.

The project adds support for multiple simultaneously active input languages
by combining the suggestions and corrections of multiple dictionaries. This
allows the user to switch between Swiss German, Standard German, English,
French, Spanish and Italian at will. Standard German and French are Switzer-

2. Related Work 5

lands most used national languages, therefore Swiss users have to switch fre-
quently between these languages.

LatinIME uses input method subtypes, i.e. combinations of a language for
the used dictionary, and a keyboard layout. Since it does not support automatic
switching for the former, it requires the user to select another subtype from the
Android notification area, which is somewhat cumbersome.

Kännsch improves this by using a mechanic referred to as the Language De-
tector to estimate the currently used language based on the last five typed words.
It generates weights for the different dictionaries roughly based on if they will
likely be used next. Each dictionary weight is used to skew the score of its gener-
ated suggestions, such that for the top words in the suggestions bar dictionaries
likely to match the user’s current input language are preferred. We will cover
the algorithm in greater detail in Chapter 3.

Kännsch ships with the Swiss German Core Dictionary : a collection of 990
words used in almost all Swiss German dialects, obtained by crawling Swiss
German groups on Facebook.

Further, Kännsch applies an aggressive word learning scheme: each word
a user types is added to Android’s user dictionary [14]. This simple way of
memorizing words speeds up the process of adapting to the users typing style.
The words in the user dictionary are included in the suggestions and remember-
ing a word only requires it to be typed once. We will discuss the advantages,
drawbacks and alternatives of this approach in Chapter 3.

The app uses LatinIME’s built-in logger to store a history of events used to
analyse the keyboard usage. In particular, it can be used to recover a user’s
typed text, which in turn can be used for language research and as a way to
collect data for Swiss German dialect dictonaries. Kännsch logs this data, stores
it in files and sends them to our evaluation server for further analysis. It is
important to note, that for password fields no data is logged, that all digits in
the logs are replaced with zeros, and that each user is assigned a unique and
non-reversible hash used as the ID to work and associate the logs with. These
measures ensure that the user’s privacy is respected. Users of the keyboard are
informed about the data that is being collected.

2.3 Improving Kännsch

With Marcel Bertsch’s master thesis, Kännsch - Improving Swiss German Key-
board [10], the Kännsch project is continued. The Swiss German Core Dictionary
is extended to include 6161 common Swiss words. The new version of the ap-
plication periodically synchronizes with our server. Additionally to submitting
research data, it receives updates for the Swiss dictionary.

2. Related Work 6

This approach allows us to work on the algorithms for personalised dictio-
naries on the server-side, and the client app only needs to download and to
apply them. That way, Swiss users do not rely solely on their own typed dialect
words, but recieve updates of words they will likely use once their dialect can be
estimated well enough.

The update application uses an HTTPS connection to the server, and an
opt-out option for users that do not want to upload any data.

To create new dictionaries, collaborative filtering techniques are applied and
evaluated. In particular, K-Nearest Neighbors with various similarity measures,
K-Means Clustering and Latent Semantic Analysis are explored. Refer to the
thesis [10] for a detailed description and evaluation results of the algorithms.

Chapter 3

Kännsch Mobile Keyboard

Our application is based on LatinIME [8], an open source implementation of
an Android mobile keyboard. For this project we chose to re-implement the
functionality of Kännsch starting from the Marshmallow release of LatinIME,
i.e. the source code as it was included in the Marshmallow release of the Android
Open Source Project.

This release includes new features that were not available in Kännsch-KitKat.
Most notably, the application uses Material Design [5]. This improves the user
experience as the keyboard design complies with the uniform design of the An-
droid OS and applications, instead of having an outdated feel. In addition, the
internal functionality has been further elaborated. Static language dictionaries
now work with n-grams instead of bigrams, which allow for more accurate word
predictions, since they are no longer based on only the preceding word.

The following Section includes an overview of the implementations for the
relevant components of Kännsch.

3.1 Architecture Overview

3.1.1 Dictionaries

As previously mentioned, LatinIME works with static dictionaries. It includes
implementations for the BinaryDictionary, a dictionary supporting serialization
to a compact binary format. A BinaryDictionary stores words with associated
metadata. Most notably, each word has a frequency, a value between 0 and 255,
representing how commonly a word occurs. In addition to words, the BinaryDic-
tionary can also store n-grams, i.e. sequences of words which belong together.
Examples of n-grams could include “How are you” or “Happy birthday” or “What
the hell”. Like words, n-grams also have an associated frequency.

LatinIME’s dictionaries support a fuzzy search over the words, used to gen-
erate suggestions as well as corrections. The outputs are assigned a score value.

7

3. Kännsch Mobile Keyboard 8

A high quality match and a high word frequency both increase the score. Thus,
the words with the highest score are most likely to be the word a user meant to
type.

While these dictionaries work well in countries like Germany or Britain, for
Swiss people they are very unsuitable.

The first reason is that there are a great many different Swiss dialects. It is
very difficult to classify and define them, let alone develop and ship designated
dictionaries for each one of them individually.

The second reason is that Swiss people commonly need to switch languages.
The same dictionary cannot be reused for German and Swiss German, but de-
pending on the formality of the setting and the recepient, the users might choose
or prefer to write in either one of them. We will take a look at how Kännsch
handles these problems in the next Section.

3.1.2 Languages

We chose to reuse LatinIME’s robust dictionary implementation, but we also
wanted to add multilingual support.

Kännsch has options in the application settings where the user can activate
any combination of the languages English, German, French, Spanish and Italian.
Swiss German is always active. For all lanugages other than Swiss German,
LatinIME provides dictionaries, which we ship with Kännsch. For Swiss German
we initially use the Swiss German Core Dictionary, a collection of Swiss German
words common among all dialects, originally containing 990 words obtained by
crawling Swiss German Facebook groups (see Laura Peer’s master thesis [9]). It
has later been improved using the accumulated usage logs and now it contains
a total of 6161 words (see Marcel Bertsch’s master thesis [10]). Kännsch adapts
the Swiss German dictionary over time to match the user’s dialect (described in
Section 3.1.3).

Modifying LatinIME’s source code allows us to combine the suggestions and
corrections of all selected language dictionaries into the suggestion set, that La-
tinIME uses for its single input language. The words used to display the top
suggestions to the user in the suggestion bar, and to apply autocorrections, thus
come from a mixture of language dictionaries.

The user will likely want suggestions in the language he is using at a given
moment, not all languages he is using in general. For this reason, Kännsch is
using the Language Detector, a scheme used to estimate the the most likely cur-
rent input language. Please refer to [9] for a detailed description of the language
detector mechanism. Here we will give a brief summary of the algorithm.

As already mentioned, a dictionary’s suggestions come with a score value
attached. The different language dictionaries’ score values need to be scaled to

3. Kännsch Mobile Keyboard 9

produce a final ordering for the suggestions, where relevant, currently used input
languages are preferred over other active but unused languages. “Scaling” here
means, that score values need to be set higher or lower, depending on which
language’s dictionary they were generated from.

The language detector uses a sliding window of size n (in our application
set to 5). When estimating the input language, the last n typed words are
considered. Each language is assigned a boost factor, initially 1. For each word
in the sliding window which can be found in the language’s dictionary, this
language’s boost factor is incremented. For example, if the last 5 typed words
were “hey what’s up, wie geht’s?”, then English has the boost factor 4 because of
the words “hey”, “what’s” and “up” and German has the boost factor 4 because
of the words “hey”, “wie” and “geht’s”. Thus, the formula for a language’s boost
factor is given as:

b(l) = 1 +

n∑
i=1

1Dl
(wi) (3.1)

Where:

l ∈ {English,German, · · · } = a possible input language

b(l) = the boost factor for language l

1 = the indicator function

Dl = the set of all words in the language l

wi = the i-th word in the sliding window

The higher a language’s boost is, the more likely we consider it to be the lan-
guage the user is using for his current input. Kännsch-KitKat used the language’s
boost factor to multiply the score value of all suggestions from the corresponding
dictionary (we call this the kitkat-ld algorithm):

scalekk(s, l) = b(l) · s (3.2)

Where:

s = the dictionary score value

l = the language of the dictionary the suggestion came from

scale(s, l) = the scaled score value for score s and language l

We evaluate the language detector performance using the performance eval-
uator, which gives us the ratio of saved characters to total characters for a piece
of text. We describe the performance evaluator in greater detail in Section 5.1.

In addition to keeping track of the saved characters, we modified the perfor-
mance evaluator to log the score values of all suggestions generated by Latin-
IME’s Dictionary implementation. Figure 3.1 shows a histogram of the distribu-
tion of all suggestion scores.

3. Kännsch Mobile Keyboard 10

Figure 3.1: Distribution of suggestion scores for the first 1000 words of J.K. Rowl-
ing’s Harry Potter and the Sorcerer’s Stone. Note that the mass of suggestion
scores lie around 0 and that the scores of this group do not exceed 800’000, and
that there is a second group of values roughly between 1’000’000 and 2’000’000.

3. Kännsch Mobile Keyboard 11

The LatinIME version, on which we based our update of Kännsch, uses both
positive and negative values for suggestion scores. Accordingly, multipying with
the boost factor to increase a suggestion’s score has the opposite effect for neg-
ative scores, which is why kitkat-ld can give bad results. We therefore chose to
deveolp some alternative algorithms for transforming suggestion’s score values
to rank input languages.

We introduce the notion of a normalized boost factor, i.e. a boost factor
scaled to be between 0 and 1:

n(l) =
b(l)

maxl′∈L b(l′)
(3.3)

Where:

n(l) = the normalized boost factor for language l

L = all active input languages

By normalizing the boost factor we can hinder suggestions of unused lan-
guages to rank high among all suggestions, instead of boosting suggestions of
desired languages. This avoids drowing suggestions from auxiliary dictionaries,
such as the dictionary containing the names of the user’s contacts, in boosted
suggestions from the language dictionaries.

One simple fix to avoid the problem with negative scores is our zero-center-ld
algorithm:

scalezc(s, l) =

{
s · n(l) n(l) ≥ 0
s
n(l) otherwise

(3.4)

While zero-center-ld does not scale negative scores in the wrong direction,
it does have a flaw. The output scores around 0 are scaled a lot less than
suggestions which inheritantely have high (positive or negative) scores.

For the next strategy, grouped-ld, we distinguish between group 1 suggestions
and group 2 suggestions. The score values of group 1 suggestions lie mostly
between −1′000′000 and 800′000 (which we define as g−1 and g+1 , respectively).
As seen on Figure 3.1, they make up for the majority of suggestions, corrections
and predictions. Group 2 suggestions lie between 800′000 and 2′000′000 (g−2 and
g+2) and are a special type of corrections which are considered very likely to be
picked, where the typed and suggested word are almost identical and the letters
differ only in terms of accents or capitalization. Grouped-ld clamps the scores
between the bounds of their group and normalizes them along the lower bound
before scaling:

3. Kännsch Mobile Keyboard 12

scalegr(s, l) =

{
n(l) · (s1 − g−1) + g−1 for s ≤ g+1
n(l) · (s2 − g−2) + g−2 otherwise

(3.5)

Where:

s1 = min(max(s, g−1), g+1)

s2 = min(max(s, g−2), g+2)

g−1 = −1′000′000

g+1 = 800′000

g−2 = 800′000

g+2 = 2′000′000

While grouped-ld works good, it still has one bothersome flaw. Scaling both
suggestion groups seperately has the side effect that no matter how low the
boost factor of a language is, i.e., no matter how unlikely it is to be the desired
language, the group 2 suggestions will always dominate the group 1 suggestions,
since we forced them to lie between g−2 and g+2 (g−1 and g+1 , respectively), even
after applying the scaling.

A modification to grouped-ld yields our group-1-ld algorithm. The intuition
here, is that if we are unsure about a language, group 2 suggestions should be
forced to lie in a lower inteval (h− to h+), chosen such that they only show up
if there are no group 1 suggestions with high scores available.

scaleg1(s, l) =

{
h− + n(l) · (h+ − h−) for s > g+1 ∧ n(l) < 1

scalegr(s, l) otherwise
(3.6)

Where:

h− = −400′000

h+ = 100′000

See Section 5.2 for performance evaluations of the different language scaling
algorithms.

3.1.3 Research Logging and Dictionary Updates

The Kännsch project follows the following evolution cycle: the user uses the
keyboard and types words. The keyboard logs the whole input, but scrapes
away information that might invade the user’s privacy such as numbers (which
might contain credit card or phone numbers), e-mail addresses, inputs from fields
marked for passwords, and the original string used to generate the user’s identity.

3. Kännsch Mobile Keyboard 13

The logged data is sent to our server, where we can analyze it and develop
new algorithms. In return, the server sends back a dictionary update, i.e., a
set of words and bigrams with associated frequencies. The dictionary update is
automatically composed and aims to estimate the user’s dialect and thus match
his typing style. The communication is secured over https.

The update data from the server is inserted into the keyboard’s Swiss German
dictionary (described in 3.1.2) to increase its precision.

To collect said keyboard usage data, the Kännsch project came to rely on
the logs generated by the Research Logger, a program construct that comes with
LatinIME-KitKat. While a simple boolean flag made it very easy to activate
research logging in Kännsch-KitKat, it has been removed from LatinIME in
the meantime. We ported it from Kännsch-KitKat for the current version of
Kännsch.

3.1.4 Personalization

With our project, personalization in terms of typing style comes first. Addition-
ally to adapting to a user’s dialect as described in the last Section, our keyboard
provides other means of adaptation as well. One of them is Android’s user
dictionary [14].

The user dictionary is a service provided by the Android OS, which maintains
a dictionary for user-specific words and frequencies. The user dictionary is shared
among all applications used on the phone and can be displayed and edited in
LatinIME’s settings. It allows the user to manually add words and phrases,
which can be accessed by all keyboards and spellchecker applications. These
words can then be suggested, and autocorrecting them can be avoided. One
feature that comes with the user dictionary are shortcuts: a user can define a
word or piece of text to act as a shortcut for another word or phrase. When
the user then types the shortcut text, Kännsch suggest the expanded phrase.
Figure 3.2 shows a screenshot of a suggestion with a user-defined shortcut.

Another piece of software heavily used by the keyboard is the user history
dictionary (not to be confused with the user dictionary). The user history dic-
tionary has the same purpose as the user dictionary, i.e., to store user-specific
words for suggestions and corrections. We discuss the key differences in the next
Section.

The user history dictionary is not an Android service, but part of LatinIME.
As such, it is managed and used only by the keyboard itself. There is no settings
screen where a user can see the stored words and define shortcuts, and the
fequencies are entirely managed and adapted by the keyboard. LatinIME uses
this construct to memorize falsely autocorrected words. It is stored in the same
format as the static language dictionaries.

3. Kännsch Mobile Keyboard 14

(a) Defining entries (b) Suggestions

Figure 3.2: The user can defining entries with shortcuts in the user dictionary,
and the keyboard will suggest the phrase when it encounters the corresponding
shortcut.

3. Kännsch Mobile Keyboard 15

Kännsch-KitKat used the user dictionary to aggressively learn Swiss German
words, and stored every typed word in the dictionary with a constant frequency
value. This approach has many downsides: since every typed word is memorized,
every typogrphic error and every word only used once will be suggested and
corrected to in the future. Furthermore, since the frequencies are set to a constant
value without ever being adapted, all words are regarded as equally important
and common.

For the current version of Kännsch, we chose a different approach for the user-
specific words. We modified the user history dictionary to store typed words in
any case (in LatinIME it is only used when autocorrection is enabled). This
has the advantage that the keyboard maintains and balances word frequencies
internally, reusing the algorithms from the user history dictionary.

Further, with every dictionary update the user history dictionary is cleared,
and the user-specific words are merged into the dictionary update by the server.
That way, the user history dictionary acts only as a cache for user-specific words
an update containing them is available. Managing the user-specific words hap-
pens on the server side, we refer to that as the server user history dictionary.

With this approach, a user’s history dictionary is in sync between all his
devices. A user can reinstall the keyboard application and it will rapidly adapt
to his typing style with the next dictionary update, using only his ID. In addi-
tion, we can develop algorithms for balancing user-specific and dialect words, i.e.
server user history dictionary and cluster dictionary words on our server. We
will come back to that in Chapter 4. Any updates to the algorithms maintaining
the server user history dictionary can be rolled out by updating the server only.

3.1.5 Other

A few other minor adaptations to LatinIME were necessary to provide the best
user experience for Kännsch.

For one, we wanted to make sure that there would be no major problems
with the application which go unnoticed or do not occur on our testing devices.
For that reason we used acra [15], a framework which allows automatic crash
reports to be sent to our server and is very easy to integrate into the existing
application.

Another thing which seemed out of place for our application is the Android
input method subtype API, which does not make sense with our language model.
LatinIME uses input method subtypes, i.e. user-selected language models, con-
sisting of an input language and a keyboard layout. When the user wants to
switch the language used for autocorrections, suggestions, and the keyboard lay-
out, he has to select the subtype from Android’s notification bar (see Figure 3.3),
or cycle through them with a language switching key on the keyboard.

3. Kännsch Mobile Keyboard 16

(a) selecting active input method subtypes (b) subtypes work like self-contained keyboards

Figure 3.3: For keyboards which make use of Android’s input method subtype
interface, the user has to manually switch subtypes when he wishes to type in
another language.

3. Kännsch Mobile Keyboard 17

As mentioned earlier, Swiss users have to switch commonly between lan-
guages, and we chose to combine all language’s suggestions and corrections to
be active at all times with our language detector ranking them. The subtype
selection model therefore does not make sense for Kännsch and we removed the
corresponding interface. Instead, we added a preference in the application set-
tings where the user can select the active input languages, and one where the user
can select a keyboard layout. The options for the latter are qwerty (the stan-
dard keyboard layout), qwertz (the Standard German keyboard layout, with the
’y’ and ’z’ keys swapped), and swiss (qwertz with keys for the German umlaut
letters).

Chapter 4

Kännsch Server Backend

As described in Section 3.1.3, our application synchronizes periodically with
our server. It provides us with logged usage data, and relies on the returned
dictionary updates. Our application components for estimating a user’s dialect
and providing them with dialect words reside on the server-side. Additionally,
the server maintains sets of distinct per-user words and phrases.

4.1 Architecture Overview

We call our web application Kännsch-server. Kännsch-server accepts requests
from Kännsch applications, receives and stores the usage logs. It checks for a
new available dialect dictionary for the user, merges user-specific words into a
dictionary update and sends it to the client. The stored logs are used for further
analysis and for the creation of personalized dictionary updates.

Additionally, our daily data aggregation application runs on the server once
a day. It looks for new logs and processes them. It reconstructs the user’s typing
history and records all typed words. It then updates our words and bigrams
database, a store for all words and bigrams typed by each user. It also keeps
track of all associated occurences, i.e. how often a user has typed a word or
bigram in total.

The application further runs a clustering algorithm, to associate groups of
users with similar dialects. The output is stored as a set of words and bigrams
(with frequencies) corresponding to the users’ dialects. It is used for dictionary
updates, delivered by the Kännsch-server. In the next Section we look at the
algorithms used for finding said dialect groups.

Please refer to our precursor project, Marcel Bertsch’s master thesis [10], for
more details on the Kännsch-server and the daily data aggregation process.

18

4. Kännsch Server Backend 19

4.1.1 Clustering

To define dialects, we use the unsupervised learning technique of clustering. The
application builds word vectors, i.e. vectors containing a user’s word frequencies
for all typed words our application has encountered and which we consider not
to be typographic mistakes. Clustering means that we try to divide the users’
word vectors, lying in a high-dimensional euclidian space, into groups. Each
group, called cluster, is a collection of word vectors, such that they are as similar
as possible within the cluster. “Similar” in this case is defined as the euclidian
distance. A cluster centroid is the mean vector of a cluster’s vectors. Each word
vector has a cluster membership variable, assigning it to a cluster. This problem
is referred to as K-Means. In our case, the cluster centroids are the different
dialects we are trying to distinguish, and the cluster memberships assign a dialect
to each user.

One algorithm to find an approximation for the optimal clusters and mem-
berships is called Lloyd’s heuristic. It is an iterative algorithm and works by
randomly initializing cluster centroids and memberships, and then alternatively
updating centroids as the mean cluster vector, and memberships as the nearest
cluster centroid, until the memberships have converged. Please refer to Marcel
Bertsch’s thesis [10] for a more detailed description of the algorithm.

In this thesis, we chose to evaluate another algorithm for clustering. It is
called the expectation maximization or Soft-EM algorithm [16]. It is an iter-
ative algorithm and follows the same outline as K-Means, but there are a few
important differences. Soft-EM models a cluster’s samples as a Gaussian distri-
bution. The analogous to K-Mean’s cluster centroid would be the mean value
of Soft-EM’s cluster. Additionally, Soft-EM models clusters such that they can
have different variances per-cluster and per-dimension (the frequency of specific
words in our case). This model of the data corresponds to a Gaussian Mixture
Model. Also, with Soft-EM, the samples are not mapped to clusters with a many-
to-one relation (hard assignments, as in K-Means), but instead for every sample
a vector of cluster membership probabilities is maintained (soft assignments).
These are calculated according to the modeled Gaussian distributions.

The Soft-EM algorithm is a generalization of K-Means/Lloyd’s heuristic,
which can be seen as a Soft-EM model where the variances are restricted to
be equal across all dimensions and clusters, and the memberships probabilities
are restricted to equal one for one cluster and zero for all others.

To choose a number of clusters, we used the following heuristic: we run the
algorithm for 30 clusters, and then we remove all clusters with too few (less than
5) users. Then we run the algorithm again (using the current values instead of
randomly intializing) with the remaining number of clusters.

We aggregated the data to clusters with both algorithms, and used our per-
formance evaluator to compare the performance. The results are in Section 5.3.

4. Kännsch Server Backend 20

4.1.2 Personalization

As mentioned earlier, we decided to manage the user-specific words on the server-
side, and deploy them with our dictionary updates. We refer to the user-specific
words stored at the server as the server user history dictionary.

The applications we described above aggregate a user’s typed words, along
with their occurences, to the words and bigrams dataset. To mix them into the
dictionary update we need to scale a word’s occurences to a frequency value, as
it is used by the keyboard. Figure 4.1a is a histogram of the word occurence
distribution for 9 random users from our dataset. As can be seen on the plot,
some few words (such as words for “me”, “you”, “no”, “the”, etc.) have very
high occurences, but most words occur only rarely. For that reason, linear scaling
is not a possibility. One option that can be used instead is logarithmic scaling :

flog(w) = f+ · log(o(w) + 1)

maxw′∈W log(o(w′) + 1)
(4.1)

Where:

f(w) = frequency of word w for the keyboard dictionary

o(w) = occurences of word w in the user’s typed text

W = the set of all words typed by the user

f+ = the maximum output frequency (set to 230)

Figure 4.1b shows the distribution of the frequencies after logarithmic scaling
has been applied to their occurence values. It is noticeable that the distribution
is somewhat better balanced, but most frequency values are hardly ever used.

Another option is order scaling. This can be understood as keeping only the
ranking of the words and chosing the frequencies such that they are uniformly
distributed in a certain range:

forder(w) = f− + (f+ − f−) · i(w,W)

|W|
(4.2)

Where:

i(w,W) = |{w′ ∈ W | o(w′) < o(w)}|+ 1

f− = the minimum output frequency (set to 100)

i(w,W) can be understood as the index of the word w, in the list of W,
sorted by word occurences. Figure 4.1c shows the distribution of the frequencies
after order scaling has been applied. The histogram shows straight lines because
we synthetically distributed the frequencies such that they are uniform.

4. Kännsch Server Backend 21

Logarithmically scaled frequencies are badly distributed, but order scaled
frequencies disregard word occurences too much. Mixed scaling attempts to
combine the best of both worlds, and is essentially the weighted average of both:

fmixed,α(w) = αflog(w) + (1− α)forder(w) (4.3)

Where:

α ∈ [0, 1] = parameter for log versus order frequency preference

Figure 4.1d shows the mixed scaled frequencies, with α set to 0.5. Finally,
Figure 4.1e is a combined plot of all scaling algorithms with data from 4 users.
Note that the y-axis uses a logarithmic scale to fit all values into one plot.

The final dictionary update the server returns is the user’s cluster dictionary,
merged with the server user history dictionary. For words occuring in both
dictionaries, one has to decide on a frequency value. One option is to use the
weighted average:

mavg,β(fc, fu) = βfc + (1− β)fu (4.4)

Where:

fc = the cluster dictionary frequency

fu = the server user history dictionary frequency

m(fc, fu) = merged final frequency for dictionary update

β ∈ [0, 1] = parameter for cluster versus user frequency preference

Another possibility is using the maximum frequency:

mmax(fc, fu) = max(fc, fu) (4.5)

4. Kännsch Server Backend 22

(a) raw occurence values (b) log scale

(c) order scale (d) mixed scale

(e) all

Figure 4.1: Word occurence value historgrams.

Chapter 5

Results

5.1 Evaluation

To assess how well the different algorithms and parameters work and how high
the quality of the suggestions is, we developed the performance evaluator for
Kännsch. The performance evaluator is essentially an instrumentation test for
Android that uses a stubbed-out version of the keyboard, providing only a pro-
gramatic interface instead of an actual UI.

The performance evaluator receives a list of words as an input, and simulates
typing these words with the keyboard character by character. Before each char-
acter is typed, the suggestions generated by the keyboard are retrieved. If the
currently typed word is equal to one of the top three suggestions, it counts as a
match and the rest of the characters of the word count as saved. For example,
if the intended word is “Evaluation”, the user types “Eval” and the keyboard
displays “Evaluate”, “Evaluation” and “Evaluated” in the suggestion bar, then
that counts as 10 total, 4 typed and 6 saved characters. Note that predictions
are considered as well. A prediction is a word suggestion based solely on the
previous words, e.g. if the evaluation text is “how are you”, then after the user
has typed the word “how” the keyboard suggests the word “are”. After that
has been picked, it suggests “you”, therefore it counts as 9 total and 6 saved
characters.

During the performance evaluation, the total number of characters, the num-
ber of saved characters, the total number of words, the number of completed
words, and the number of predictions are kept track of. We use the ratio of
saved characters to total characters for our primary measure of dictionary qual-
ity.

To evaluate how well our cluster and personalization algorithms and settings
work, we constructed an evaluation framework using the data from the accumu-
lated application usage logs and the performance evaluator. The first step is to
obtain a dataset of typed text. We wrote a program to parse the logs reconstruct
a history of all words the user has typed, in the correct order.

23

5. Results 24

We picked random users, and used their first 4000 words to compute sample
dictionary updates. We picked the number 4000, because that is enough words
for the server user history dictionary to memorize an important part of the user’s
typing style and to estimate their dialect cluster. At the same time it leaves
enough new words the user has not yet typed, to test the cluster dictionary’s
performance.

We evaluated our server-side settings for 20 randomly picked users (with
sufficiently long histories). For each user, we simulated said dictionary update on
an Android phone. The application data has been wiped befor each evaluation.
We used the next 500 words from the user’s history as our validation input and
ran the performance evaluator to obtain the number of saved characters.

Figure 5.1 shows the amount of distinct words, plotted against the total
number of typed words, constructed from the user histories. Only users with
over 4500 typed words are considered.

5.2 Language Detection

As an input text for the language detector evaluations, we used the first 1000
words of J. K. Rowling’s Harry Potter and the Sorcerer’s Stone, in English and
in German. The keyboard uses the default settings, with all languages activated
(Swiss German, Standard German, English, French, Spanish and Italian). Before
each evaluation the application data is wiped and no dictionary updates are being
performed. Note that the user history dictionary is active, i.e. typed words are
suggested throughout the rest of the text.

We evaluated 5 different algorithms. No-ld does not use the language detector
and simply combines the suggestions of all dictionaries without ranking them in
any way. Kitkat-ld, zero-center-ld, grouped-ld and group-1-ld are defined as in
Section 3.1.2.

Figure 5.2a shows the evaluation results. As expected, the group-1-ld algo-
rithm works best, with over 30% saved characters for the English text. This is
a clear improvement over not using the language detector, which yields a ratio
of just over 20% saved characters. The dashed lines are the reference values, i.e.
the evaluation ran with the same input but all other languages deactivated and
thus the best result we can hope for. Note that for the reference values, Swiss
German (which overlaps with both English and German and is usually always
active) is deactivated as well.

Figure 5.2b shows the part of the words that are completed or entirely pre-
dicted by the suggestions, for the English input text. Note that predicted words
do not count as completed and are a separate set of words. Also note that the
number of suggested words is not as expressive for a measure as the saved char-
acter ratio, as it does not take into account what part of the word had to be

5. Results 25

Figure 5.1: Number of distinct word plotted against the total number of words.
The dotted line is the reference value, of a user who does not type words a second
time. The dashed line is the margin of our dataset split: the left part, i.e. the
first 4000 typed words, correspond to the part used to estimate the user’s dialect
and/or fill the user history dictionary, The right part, i.e. the 500 words after
that, is used to analyse the suggestions and evaluate the performance.

5. Results 26

(a) Language detector algorithms for German and English input text

(b) Saved, predicted and total words

Figure 5.2: Language detector algorithm performance results. With well tuned
settings, about 30% of all characters can be saved.

5. Results 27

typed (e.g. words for which only the last character was completed count just like
all other completions). Again, the group-1-ld algorithm works best, with more
than half of the words found among the suggestions and just under a tenth of
the words predicted.

5.3 Cluster Dictionaries

An important thing to consider for both the Soft-EM and the K-Means algo-
rithm is that they improve the solution in each step, but only calculate a local
minimum of the cost function, meaning that the final solution may not always
be optimal and that it depends a lot on the initialization of the cluster centroids
and memberships. For that reason, we ran both the K-Means and the Soft-
EM algorithms three times each, to incorporate the effect of different randomly
initialized parameters.

Figure 5.3a shows the average rate of saved characters. On average, all ini-
tializations and both algorithms perform equally well, with about 13.5% saved
characters. Figure 5.3b shows an overlay of for a few notable rates of individual
users. Regarding the individual performances, the K-Means algorithm depends
a lot more on the initialization and there is higher fluctuation across the users,
while the Soft-EM values are virtually identical across the three random initial-
ization parameter sets.

5.4 Server User History Dictionaries

We evaluated five different algorithms for obtaining dictionary frequencies: loga-
rithmic scaling, order scaling, and mixed scales with weight α ∈ {0.25, 0.5, 0.75}.
As seen on Figure 5.4a, order scaling (on average about 14% saved characters)
performs slightly better than logarithmic scaling (about 13% saved characters),
but a mixed scale with order scaling preferred yields the best performance (al-
most 15% saved characters).

Figure 5.4b shows a server user history dictionary (obtained with a mixed
scale with α = 0.75) merged with a Soft-EM cluster dictionary. For the aver-
aging strategy we chose the values 0.5, 0.25 and 0.75 for β (corresponding to
mix, mostly suhd, and mostly cluster, respectively). All combinations perform
equally well with just above 15% saved characters and none of them is a signifi-
cant improvement over the others.

5. Results 28

(a) Average performance values

(b) User-individual performance values

Figure 5.3: Cluster dictionary performance values

5. Results 29

(a) User history dictionary frequency algorithms

(b) Merging cluster and user history frequencies

Figure 5.4: Cluster dictionary and merged dictionary performances

Chapter 6

Conclusion and Future Work

In this thesis we develop an update to the Kännsch Swiss German mobile key-
board application. It is based on the Android Marshmallow release of LatinIME
and includes its features and updates. We improved the language detection
scheme to make it more accurate. We also implemented an alternative cluster-
ing algorithm for dialect dictionaries and evaluated its performance and added
a user-specific, server-side word store to our application.

This project is by no means concluded and there is a lot of potential for future
work. The language detector could be improved further to consider only one or
two active languages at a time, to have some tolerance for random anglicisms
occuring in the input text, or maybe, when certain, to switch immediately to
another language without the user having to type five words first. The Swiss
German language used in an informal setting inherently overlaps with the Stan-
dard German language. For that reason, and because our clustering methods
are based on user typed words (and not filtered based on languages), most of our
generated Swiss German dictionaries overlap considerably with the other lan-
guage dictionaries. Our dictionary-based language detection scheme thus prefers
Swiss German as usually many German, English or French words can be found
in it. Future work could tackle that problem and develop a system to better
distinguish these languages. Furthermore, our language detection scheme could
be applied on the server-side when analyzing the data, to build purely Swiss Ger-
man dictionaries and thus not consider other languages as an influence to the
user’s dialect, therefore improving the dialect analysis precision. Our algorithms
for analyzing and reconstructing user-typed words from usage logs need more
work as well. One could consider the events for switching of text fields and text
selection to accurately reconstruct the user’s typing history and to reduce the
number of random words, and hence decrease history noise and increase overall
dictionary and evaluation accuracy.

The probabilistic nature of the Gaussian mixture model the EM algorithm
uses can be used to find an optimal number of clusters: each algorithm output
can be analyzed in terms of probability to occur under the current model/cluster
parameters. These probabilities, together with a well tuned regularization pa-

30

6. Conclusion and Future Work 31

rameter, could be used to find a good number of dialects to distinguish. A better
method to automatically estimate a sensible dialect count could become increas-
ingly important, as our application has lately awaken interest in Austria as well,
and there might be more than a total of 30 dialects to distinguish.

Words could be assigned an universal ID and could be matched across di-
alects. One could try to automatically generate Swiss German dialect trans-
lations. Once dialect translations are accurate enough, one could build and
optimize a single universal word prediction algorithm and translate it to the
correct Swiss German dialect. One could experiment with Recurrent Neural
Networks [17], which are great for natural language processing and machine
translation. One could build a next-generation word suggestions engine, similar
to SwiftKey Neural [18].

Bibliography

[1] ai.type: ai.type - home. http://aitype.com/ Accessed: 2016-07-14.

[2] TouchType Ltd.: Swiftkey - smart prediction technology for easier mobile
typing. https://swiftkey.com/ Accessed: 2016-07-14.

[3] Swype: Swype - type fast, swype faster. http://www.swype.com/ Accessed:
2016-07-14.

[4] Google: Use gesture typing - nexus help. https://support.google.com/

nexus/answer/2811346?hl=en Accessed: 2016-07-14.

[5] Google: Introduction - material design - google design guidelines. https:

//material.google.com/ Accessed: 2016-07-14.

[6] Google: Google-keyboard. https://play.google.com/store/apps/

details?id=com.google.android.inputmethod.latin Accessed: 2016-
07-14.

[7] Google: Android open source project. https://source.android.com/

Accessed: 2016-07-14.

[8] Google: platform/packages/inputmethods/latinime - git at
google. https://android.googlesource.com/platform/packages/

inputmethods/LatinIME/ Accessed: 2016-07-14.

[9] Peer, L.: Kännsch - a Swiss German Keyboard for Android. Master’s thesis,
ETH Zürich (2014)

[10] Bertsch, M.: Kännsch - Improving Swiss German Keyboard. Master’s
thesis, ETH Zürich (2015)

[11] GO Dev Team: Go keyboard. https://play.google.com/store/apps/

details?id=com.jb.gokeyboard Accessed: 2016-07-14.

[12] Kika Keyboard Team: Kika keyboard - emoji, gifs. https://play.

google.com/store/apps/details?id=com.qisiemoji.inputmethod Ac-
cessed: 2016-07-14.

[13] Unicode, Inc.: Faq - emoji & dingbats. http://www.unicode.org/faq/

emoji_dingbats.html Accessed: 2016-07-14.

32

http://aitype.com/
https://swiftkey.com/
http://www.swype.com/
https://support.google.com/nexus/answer/2811346?hl=en
https://support.google.com/nexus/answer/2811346?hl=en
https://material.google.com/
https://material.google.com/
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://source.android.com/
https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
https://play.google.com/store/apps/details?id=com.jb.gokeyboard
https://play.google.com/store/apps/details?id=com.jb.gokeyboard
https://play.google.com/store/apps/details?id=com.qisiemoji.inputmethod
https://play.google.com/store/apps/details?id=com.qisiemoji.inputmethod
http://www.unicode.org/faq/emoji_dingbats.html
http://www.unicode.org/faq/emoji_dingbats.html

Bibliography 33

[14] Android Developers: Userdictionary - android developers.
https://developer.android.com/reference/android/provider/

UserDictionary.html Accessed: 2016-07-14.

[15] Gaudin, K.: Acra - know your bugs. http://www.acra.ch/ Accessed:
2016-07-13.

[16] Dempster, A. P. and Laird, N. M. and Rubin, D. B.: Maximum likeli-
hood from incomplete data via the em algorithm. In: Journal of the Royal
Statistical Society, Series B. (1977)

[17] Andrej Karpathy: The unreasonable effectiveness of recurrent neural net-
works. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Accessed: 2016-07-21.

[18] TouchType Ltd.: Swiftkey debutes alpha keyboard pow-
ered by neural networks. https://blog.swiftkey.com/

neural-networks-a-meaningful-leap-for-mobile-typing/ Accessed:
2016-07-24.

https://developer.android.com/reference/android/provider/UserDictionary.html
https://developer.android.com/reference/android/provider/UserDictionary.html
http://www.acra.ch/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://blog.swiftkey.com/neural-networks-a-meaningful-leap-for-mobile-typing/
https://blog.swiftkey.com/neural-networks-a-meaningful-leap-for-mobile-typing/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related Work
	2.1 Mobile Keyboards
	2.2 Kännsch
	2.3 Improving Kännsch

	3 Kännsch Mobile Keyboard
	3.1 Architecture Overview
	3.1.1 Dictionaries
	3.1.2 Languages
	3.1.3 Research Logging and Dictionary Updates
	3.1.4 Personalization
	3.1.5 Other

	4 Kännsch Server Backend
	4.1 Architecture Overview
	4.1.1 Clustering
	4.1.2 Personalization

	5 Results
	5.1 Evaluation
	5.2 Language Detection
	5.3 Cluster Dictionaries
	5.4 Server User History Dictionaries

	6 Conclusion and Future Work
	Bibliography

