ETH

Distributed
Eidgendssische Technische Hochschule Ziirich B
Swiss Federal Institute of Technology Zurich Computing

Smart Web Filtering

Bachelor Thesis

Sibylle Jeker

jekers@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Zirich

Supervisors:
Philipp Brandes, Pascal Bissig
Prof. Dr. Roger Wattenhofer

August 22, 2016

Abstract

The internet consists of a range of different undesired information. Besides ad-
vertising or spam there is also other content, which specific users do not want
to read about. While some do not want to see spoilers about the last episode of
Game of Thrones, others may watch the finals of the European Championship
one day later and therefore do not want to be informed about the result. Apart
from that, there is a lot of annoying and uninteresting information as well, for
example news about the private life of some celebrities. We introduce a web filter
that takes undesired topics of the user as input and finds related terms using
Wikidata. After applying our filtering algorithm, unwanted content is hidden
and the user can decide to unhide it, if he wants to see it anyway.

Our system managed to hide nearly 90% of chosen undesired topics of dif-
ferent types on 200 web pages. By only considering topics of specific types the
system was able to filter 97% of the unwanted content.

Contents

Abstract

1 Introduction

1.1 Related Work Lo
1.1.1 Advertising Filter (Ad Filter)
1.1.2 Email Spam Filter,

2 Background

2.1 Wikidatao
3 Design
3.1 Spoiler Terms
3.1.1 Generation of Additional Spoiler Terms
3.2 Filtering System L
3.2.1 Overview
3.2.2 Spoiler Detection 0oL
3.2.3 Spoiler Filtering 0L

4 Implementation

4.1 Graphical User Interface (GUI)
4.2 Generation of Additional Spoiler Terms

4.2.1 Wikidata Query Service
4.3 Storage and Communication
4.4 Spoiler Detectiono

4.4.1 Dynamic Content
4.5 Spoiler Filtering

5 Evaluation

5.1 Results. s

ii

w NN =

w

o xR

10
11
12

14
16
17
17
17
17
18
18

19

CONTENTS

6 Conclusion and Future Work

Bibliography

iii

25

27

CHAPTER 1

Introduction

Nowadays the Internet has a big impact on our daily life. We use it for commu-
nication, to look up important information, to get updated about current events
and much more. But besides useful content, the appearance of annoying and un-
desired content is not rare either. For advertising there already exist numerous
blocker systems, which are very successful. But while the filtering of this content
is the same for all users, there exists undesired content that is very user-specific
as well. Especially news pages tend to contain either annoying information or
spoiler content, which upsets lots of users. We think that a filtering system which
takes any unwanted topic as input and then filters the text content of this topic
on all web pages is desired by a lot of users. As it is a very user specific problem,
it is important that each user can define his own terms that he wants to hide.

There is a big occurrence of shortcuts in reports, for example the alias GoT
to report the happenings in the last episode of Game of Thrones, or the term
FCB to inform about the result of a game of FC Basel. As we want our spoiler
filter to block as much related content of the unwanted topic as possible, one of
the most important parts of our filter system is to find related terms of the input
topic. With this approach we want to make sure that the filter achieves a good
performance.

We define our goal to provide a smart web filter that first of all finds related
content to any undesired subject and secondly filters spoilers in all kinds of web
pages. In further sections user-defined spoiler term is used as generic term
for undesired topics the user gives as input to our system.

1.1 Related Work

This thesis follows up on the bachelor thesis Hide Spoiler [1] and improves it
further. The most important improvement was to find additional spoiler terms
that are related to the user-defined spoiler terms and can therefore contribute
to a better filter performance. Further, we improved the usability of the spoiler
filter and found a solution to filter dynamic content on web pages in addition to

1. INTRODUCTION 2

the normal content.

There exist numerous filter systems of different types. Well known are
browser-based filters like the browser extension AdBlock [2], or email filters
to block spam content. Other examples are network-based filters or safety filters
offered by search engines, which filter out inappropriate search results. These
filters differ fundamentally from our system, since one can clearly identify ad-
vertising or spam, whereas our web filter depends heavily on the user. Some
user-specific approaches already exist, but they are limited either to the input
topics or to the web pages. For example Guo et al. [3] use Latent Dirichlet Al-
location to find movie spoilers on IMDB. However this is limited to IMDB and
since we want to be able to filter arbitrary topics on any web page, different filter
methods are required.

In the next section we provide more insight into advertising filters and email
spam filters.

1.1.1 Advertising Filter (Ad Filter)

Ad filters [4] are often used as web proxy or browser extension and some an-
tivirus software can act as ad blocker as well. They block advertising, which
can pop-up in a new window or is integrated in a web page as image, video, au-
dio or text content. Ad filters often use whitelisting and blacklisting to control
advertisements. While whitelists contain elements that can always be approved
and do not contain advertising, blacklists store elements that must be hidden.
Compared to the browser extension, web proxies have more freedom from im-
plementation limitations, because they are browser independent. However they
have difficulties to filter SSL traffic and not the full web page is available to the
filter [5].

1.1.2 Email Spam Filter

The job of spam filters is to detect emails containing spam out of all incoming
emails of an account. The filters take an email as input and then decide whether
it can be moved to the inbox. The difficulty is, that it is much worse to falsely
mark an email as spam, than to accidentally permit an email that contains spam
in the inbox.

There exist many approaches to implement spam filters. There are list-based
filter systems [6], which use lists (e.g. whitelists or blacklists) to find out if the
user sending the email can be trusted or not. Alternatively one can use content-
analysis [7] by analyzing words or phrases that are contained in the email. More
advanced are Bayesian Filters [8], which are trained by user inputs and use
machine learning to calculate the probability of spam content in each email.

CHAPTER 2

Background

2.1 Wikidata

To find related content to the user-defined spoiler terms, we queried the database
of Wikidata [9]. Wikidata is a large knowledge database, that provides structured
data. The data consists mainly of different items with unique identifiers, that
represent a topic. The items contain optional labels, descriptions and aliases in
different languages and several statements. A statement consists of an optional
reference and a claim, where the claim contains a property, a value and an
optional qualifier. All properties consist of unique identifiers as well. The value
can be another item or other data types (e.g. date, time, coordinates). When
the value of a statement is another item, the item is linked to the value.

Figure 2.1 represents a simplified Wikidata entry of Game of Thrones. It
contains a label, an identifier, a description and aliases. The statement contains
a reference, collapsed to >reference 1 and a claim. The property of the claim
is cast member and the value is Kit Harington. The claim also contains a
qualifier character role with the value Jon Snow.

—

Y
~t> Game of Thrones [Q23572]

Identifier

Label —

Description 7»[American fantasy drama television series }

Aliases —»{GDT, Tronu spéles, Juego de Tronos }

Property

cast member P Kit Harington

Value

Qualifier character role Jon Snow
) L ¥l
Claim ——
>reference 1
Reference | 7

TA

Statement

Figure 2.1: Simplified representation of the Wikidata entry of (Game of
Thrones.

CHAPTER 3

Design

3.1 Spoiler Terms

One of the most important parts of the spoiler filter are the spoiler terms. The
spoiler terms help to hide content on web pages, the user does not want to
read about. The first part of spoiler terms is defined by the user, we call them
user-defined spoiler terms. If the user wants to, he can link his terms to the
corresponding Wikidata items. This allows us to find additional spoiler terms,
which are related to the user-defined spoiler term by querying the Wikidata
dataset.

We define the set of spoiler terms as the union of the user-defined spoiler
terms and the corresponding list of additional spoiler terms. All duplicated terms
and terms that contain other terms are removed from the set. This means, if
the spoiler term set for example contains the values Federer and Roger Fed-
erer, the term Roger Federer is removed, because every report that contains
Roger Federer also contains the term Federer. By removing those terms, the
algorithm achieves a better run-time performance, but filters the same spoiler
content.

The next section describes the approach to generate additional spoiler terms
for the user-defined spoiler terms.

3.1.1 Generation of Additional Spoiler Terms

The first idea to query additional spoiler terms was to request all incoming and
outgoing nodes from the Wikidata item of the user-defined spoiler term and filter
the returned items. We analyzed the sum of incoming and outgoing nodes of the
returned items and thereby wanted to determine the importance of them. It
turned out to be more difficult than assumed to find a parallelism in this sum
of different items. Especially geographical items such as USA appeared quite
often with a big divergence of the mentioned sum. Therefore, we did not find a
way to determine the importance of the returned items and dropped this idea.

3. DESIGN 5

Game of Thrones (3572

American fantasy drama television series edit
~ In more languages “°"foure

Language Label Description Also known as

English Game of Thrones American fantasy drama television series

German Game of Thrones US-amerikanische Fantasy-Fernsehserie

Swiss German Game of Thrones

French Le Tréne de fer série de télévision américaine Game of Thrones

GoT

More languages

Figure 3.1: Wikidata entry of Game of Thrones [10]. The aliases are listed in
the column Also known as.

The second approach was to query the Wikdidata dataset with more precise
queries. We implemented four different queries to find additional spoiler terms.
The first is a general query, which we applied to all user-defined terms.

As Wikidata provides a list with aliases of all items, we queried those aliases
and added them to our additional spoiler term list. The aliases are defined in
different languages. In Figure 3.1 we can see the first section of the Wikidata
entry of Game of Thrones. The important alias GoT is not listed in all
languages and therefore, the Game of Thrones item is not complete. This is
the case for a lot of items and the reason we decided to add the aliases of all
languages with latin alphabet to the additional spoiler list. Thereby we assure
not to miss any important alias that is given in at least one language.

Some Wikidata item labels start with an article. Whenever this was the case
for a user-defined spoiler term, we added an additional spoiler term with the
same content, but removed the article. For example the names of the television
shows The Bachelorette or The Big Bang Theory start with an article. As
a report about the series does not necessarily always use an article before the
actual term, it is better to filter the report with the terms Bachelorette and
Big Bang Theory.

We formed three more queries, which we only requested for user-defined spoiler
terms of a particular type. The first group belonged to user-defined spoiler terms
that are people, to hide for example information about certain famous people,
elections or individual athletes. Because the tendency of spoilers in television
series or films and sports is very high, we secondly focused on those two groups
of items. We labeled these three groups People, Sports and TV. To find out,
of which type the user-defined spoilers are, we used the properties instance of
and subclass that Wikidata provides. We requested those properties recursively
for the Wikidata item of the user-defined spoiler term and compared them to

3. DESIGN 6

football club
television program

Germany's next @ sports club @

Topmodel

association

television series football club

Real Madrid
Game of Thrones

(b) Example of the Wikidata item Real
Madrid, which we grouped into the Sports
class.

(a) Example of two items, which we
grouped into the TV class.

Figure 3.2: Two examples to illustrate how we grouped the items into the dif-
ferent classes.

the items human for the group People, sports club and sports team for the
group Sports and television program and film for the group TV. As we as-
signed each user-defined spoiler to at most one group, we stopped the recursion
as soon as we found a match.

In Figure 3.2 we show examples of how we grouped certain items into the
groups TV and Sports. The first Example 3.2a is a simplified graph of the
items of the TV series Game of Thrones and the TV show Germany’s next
Topmodel and their recursive request of the properties instance of and sub-
class of. While the property instance of of Germany’s next Topmodel is
television program and Germany’s next Topmodel is added to the TV
class directly, we have to apply recursion to find, that television series is a
subclass of television program and Game of Thrones can be added to the
TV class as well.

The second Example 3.2b illustrates the recursive request of the properties
instance of and subclass of of the Wikidata item Real Madrid. After query-
ing the subclass of property on association football club twice, we discover
that Real Madrid belongs to class Sports, because the queries returned the
item sports club.

The next section describes the queries of the three groups in detail.

People

If the user-defined term is a human, it is advantageous to add the last name
to the additional terms. When a writer refers to a person, he often only uses
the person’s family name. To query the family name, we first requested the

3. DESIGN 7

Xherdan Shagiri

member of sports team
no end time defined
participating teams Swiss national member of sports team
UEFA Euro 2016 football team O oy Johan Vonlanthen

member of sports team
no end time defined

Eren Derdiyok

Figure 3.3: A simplified example of the Wikidata item Swiss national football
team to illustrate the queries of the Sports group. The items in red are added
to the additional spoiler list.

family name from the Wikidata database with the property family name. If
the Wikidata item of the user-defined spoiler term was incomplete and did not
contain a claim with the property family name, we parsed the last word of the
user-defined term manually and assumed, it matched the correct last name.

Sports

To filter content that is related to a specific sports team, we first queried all
members of that sports team. We achieved this by first requesting a list of items
that contained a claim with property member of sports team and the user-
defined item as value. Because we only wanted to consider current members,
we filtered the items, whose member of sports team statement contained a
qualifier end time.

Secondly, we found out in which tournaments the sports team was currently
participating. To achieve that, we queried all Wikidata items, which contained
a claim with property participating teams and the user-defined item as value.
To filter out tournaments that already took place in the past, we requested the
end time property of each tournament and compared it to the date on which
the user defined his spoiler term for the first time. If the value of the end time
property was an earlier date than the date of definition, the tournament got
filtered out.

Figure 3.3 shows an example of the item Swiss national football team.
The items Xherdan Shagqiri and Eren Derdiyok, which are highlighted in red,
both contain a claim with property member of sports team without a qualifier

3. DESIGN 8

end time and are therefore added to the additional spoiler list. The item Johan
Vonlanthen on the right hand side is not a current member, because the claim
contains a qualifier with property end time and is therefore not added to the
spoiler list. On the left hand side is the tournament item UEFA Euro 2016,
which contains a claim with property participating teams with the value Swiss
national football team, but the value of end time is in the past, which is
why it is not added to the additional spoiler list. We added for all additional
spoiler terms the aliases and for humans the last names to the additional spoiler
list, in case Wikidata provided them.

TV

To get additional terms of television programs or films, we wanted to find all
characters and cast members. Because many Wikidata items do not contain
complete claims with property cast member and qualifier character role, we
applied a more general approach. Our query first requests all outgoing claims
with maximum distance 1 and all incoming claims with maximum distance 2
of the Wikdiata item of the user-defined spoiler term. Because we are only
interested in real humans or fictional characters, we filtered out all the other
claims not belonging to these categories. To filter the list, we used the instance
of property and compared its value to the items fictional human, fictional
character and human.

Figure 3.4 illustrates a simplified example of this query. The Wikidata items
USA, David Beniott and Kit Harington are values of outgoing claims of the
item Game of Thrones with distance 1. While USA is of instance country
and therefore not added to the additional spoiler list, Kit Harington and David
Beniott are of instance human and added to the list. Another example is the
Wikidata item of the Game of Thrones character Jon Snow. It is linked to the
item Game of Thrones with distance 2. Because it is of instance fictional
human, is is added to the additional spoiler list. We added for all additional
spoiler terms the aliases, for humans the last names and for characters the last-
and given name to the additional spoiler list, in case Wikidata provided them.

3.2 Filtering System

This section explains the filtering system we applied to search and hide spoiler
content on web pages. The algorithm is based on a former Bachelor Thesis [1].
It accesses and changes the HTML Document Object Model (DOM) [11] tree of
web pages, which contains different objects and is created by the browser when a
web page loads. Figure 3.5 shows an example of a DOM tree in HTML structure
and Figure 3.6 shows the same document in tree representation. The document
abstracts a web page that contains spoiler content in three nodes (3, 7, 10). The

3. DESIGN

country of origin

ame of Thrones) Game of —
character present in work Thrones cast member Kit Harington
instance of
instance of —> fictional human @

David Beniott instance of — human

Figure 3.4: Simplified example of the additional spoiler term search of Game
of Thrones of the class TV. The items highlighted in red are the detected

additional terms.

<html>
<head> </head>
<body>
<div> 1: No spoiler
<div> 2: No spoiler </div>
<div> 3: Spoiler
<div> 4: No spoiler </div>
<div> 5: No spoiler </div>
</div>
</div>
<div> 6: No spoiler
<div> 7: Spoiler </div>
<div> 8: No spoiler </div>
<div> 9: No spoiler
<div> 10: Spoiler </div>
</div>
</div>
<div> 11: No spoiler </div>
</body>
</html>

Figure 3.5: Simplified HTML document with some spoiler content to illustrate
how the sub-tree of the body node can be structured.

3. DESIGN 10

<HTML>

1: No Spoiler 6: No Spoiler

8: No Spoiler 9: No Spoiler

2: No Spoiler

4: No Spoiler

5: No Spoiler 10: Spoiler

Figure 3.6: DOM tree of the HTML document in Figure 3.5.

next sections will follow this example document closely to illustrate the filter
algorithm in detail. Because the head node only contains meta information and
scripts, we do not consider it and leave it out in the next sections.

3.2.1 Overview

The main approach was to filter not just the spoiler terms, but also related
content to those spoiler terms. For example, when a user defines Game of
Thrones as a spoiler term, he probably wants whole articles about Game of
Thrones episodes hidden and not just the term Game of Thrones in it. To
achieve that, an obvious solution is to hide the whole content of the web page.
As this is clearly not a good approach, our algorithm must find a way to hide
the content at the right DOM node. According to these thoughts, we defined
two equally important goals of our filter system as follows:

1. Hide all content that contains a spoiler term or spoiler related information.

2. Do not hide any content, which does not contain any spoiler term or spoiler
related information.

The algorithm traverses the DOM tree three times. The first two traversals
are used for spoiler detection and the third one to finally cut the tree and filter
the spoilers. The next two sections explain these traversals in detail.

3. DESIGN 11

<body>
i=7,c=2]

1
i=2c=1]

Figure 3.7: DOM tree with the spoiler content in red and the paths containing
spoilers in green. For every node we calculated the innocent length i and the
number of cuts c.

9

3.2.2 Spoiler Detection

To detect spoilers the algorithm traverses the DOM tree from the body node
to the leaf nodes. To achieve a good run-time performance, it only traverses
the tree where actual spoiler content occurs. It makes a depth-first traversal and
stores in every node the number of spoilers that occur in the node or the sub-tree
of the node. If the spoiler count is greater than zero, it continues the search for
all children nodes.

In Figure 3.7 the three green highlighted paths (<body>, 1, 3), (<body>, 6,
7) and (<body>, 6, 9, 10) are containing spoilers and traversed by the algorithm.
The path (<body>, 1, 3) stops at node 3, because node 3 contains a spoiler.
The inner node 2 or his sub-tree does not contain spoiler content and is therefore
not included in a spoiler path.

Now we must decide, where in the path it is best to cut the tree and therefore
hide the nodes containing spoilers. For this purpose we traverse the same paths
from the bottom to the top and calculate two new parameters for every node.
The first parameter is the number of cuts ¢ we have to perform at each node,
to hide all children nodes with spoiler content. In the example of Figure 3.7, we
must perform two cuts at the body node (nodes 1 and 6) to hide all spoilers.
An alternative solution is to cut the spoiler nodes at node 1, node 6 and node 9,
which would result in a total of 3 cuts.

The second parameter is the innocent length 4. It is defined as the length
of the text content that does not contain any spoilers. The innocent length ¢ of
non-leaf nodes sums up the innocent length of all children nodes and the node’s
text length. If a node contains spoilers, we define its innocent length as 0. We
simplified the example of Figure 3.7, by defining the text length of all nodes as

3. DESIGN 12

<body>
[e=0.29]

1
[e=0.5]

Ci

Figure 3.8: DOM tree with the calculated value of e of every node.

1. While the innocent text of all red highlighted spoiler nodes is 0, the innocent
length of the non-leaf node 6 sums up all innocent lengths of his children nodes
(7, 8,9) and then adds its own text length to it, which results in the sum 0 + 1
+14+1=23.

3.2.3 Spoiler Filtering

The parameter ¢ shows how much innocent content a node has. The greater the
value of ¢ is, the less likely the node should be hidden, because the goal is to hide
as little innocent content as possible. This means that we want to perform the
cut such that the sum of innocent text is minimized, but we also have to take
the value of ¢ into account.

As an example we imagine a tree that contains 4 sibling nodes and three of
them contain spoilers. Now the question is, if it is better to cut the parent of
those nodes and therefore hide the fourth non-spoiler node as well, or perform 3
independent cuts. It depends on the value of i, which approach is better. If the
value of i of the fourth node is great, it may be better not to hide it, because we
would hide a lot of innocent text. When the value of i is small, the probability
is bigger, that the fourth node’s text content is related to the text content of
the other nodes and therefore should be hidden as well. This is for example the
case when the fourth node contains the title of an article whose remaining text
content is contained in the other three nodes. To cut the DOM tree at the right
position we want to find the optimal trade-off between the values ¢ and 7 and
define the threshold e as follows:

<000

The algorithm calculates e for every node in the last traversal of the paths

3. DESIGN 13

containing spoilers from the root node to the leaf nodes. When the value of e is
greater than a predefined threshold, we perform the cut to hide the node and all
sub-nodes. To make sure that nodes with spoiler content are always hidden, we
define the threshold e of these nodes as infinity.

In Figure 3.8 e is calculated for every node. We can see that in each spoiler-
path, which is highlighted in green, the value of e increases while traversing
from the top to the bottom of the tree. Somewhere in this path the value of e
must be bigger than the predefined threshold, as the last node is always set to
infinity. The algorithm therefore finds the optimal node somewhere in the path
and performs the cut. The predefined threshold is determined in the Evaluation
5.1.

CHAPTER 4

Implementation

We chose to implement the web filter as a Google Chrome extension mainly be-
cause the extension has direct access to the web page’s content and Chrome pro-
vides several very useful Javascript APIs [12]. Another reason was that Google
Chrome is currently the most used web browser [13, 14] and therefore, our tool
can easily be used by many people.

The Chrome extension contains three main scripts:

1. The background script is an invisible event page and is executed when
it receives a message from one of the other scripts.

2. The popup script contains a web page that is used as a pop-up window,
where the user can define his preferences.

3. The content script can read and modify the content of web pages. Every
tab in Google Chrome runs its own content script. It has no access to the
background or popup script and can only communicate with them via
storage or messages.

In Figure 4.1 we show the main tasks of each script and interactions with
other scripts. The starting points are highlighted in green and the conditions are
marked yellow. We can see that the background script gets invoked by the other
scripts and does not run on its own. The popup script is executed as soon as
the DOM tree of the pop-up window is loaded (1). The content script runs first
when the DOM tree of the web page starts loading (2) and can then be invoked
by the two events DOMContentLoaded (3) and DOMNodelnserted (4) as
well. We will now explain the execution of each starting point to illustrate the
tasks of the Chrome extension in more detail.

The first starting point is in the popup script, whose task is to receive and
store the preferences (Figure 4.2) the user wants to define. For this purpose, the
script stores all preferences to memory as soon as the user submits them. Search-
ing the additional spoiler terms cannot be done by the popup script, because it

14

4. IMPLEMENTATION

15

Popup Script
[Executed on load of
preferences menu]

Background Script

Content Script

[Executed as soon as the DOM tree starts loading]

© Find additional Show filtered 4 @
terms and store web page DOMNodelnserted
them to memory T
Spoiler Filtering iserfecinoce yes
Store preferences Coztililns T%qclilgrs
and is not hidden
(user-defined spoiler K Hide web page

terms, language, 9

active etc.)

Resolve iframes |«

Figure 4.1: Simplified representation of the main tasks and interactions of the
popup, background and content scripts in the Google Chrome extension.

Spoiler Detection DOMContentLoaded

runs only as long as the pop-up window is opened. This is why the script sends
a message to the background script, which says that it should search additional
spoiler terms for the new user-defined spoiler terms. The background script first
checks, if the additional spoiler terms are already stored in memory. If they are
not, it requests them and stores them.

Our goal was to hide the whole web page until we filtered all spoilers of
the web page. Otherwise spoilers on top of the web page could be visible for
a very short time and seen by the user. Because the starting point 2 is exe-
cuted when the DOM tree starts loading, the web page is not yet visible at that
time. Therefore, it is the best moment to hide the web page until the algorithm
finished filtering the spoilers. We only hide the web page if the user set the
variable Active to true. Active defines if the spoiler filter runs for every page
automatically and is set to true by default.

The main part of the filter algorithm is executed after the starting point 3,
when the event DomContentLoaded is fired. At this point we have access
to the full DOM tree and can therefore start the tree traversals. If the Active
variable is set to true it first executes the Spoiler Detection, then the Spoiler
Filtering and at the end it makes the web page visible again. Resolving inline-
frames, is done by the background script, which gets notified by the content script
as soon as the URLs of the inline-frames are stored to memory. We explain this
further in Section 4.4.1.

Starting point 4 is executed when the DOMNodelnserted event is fired.
This event notifies the script as soon as any node is inserted to the DOM tree.
The purpose of this starting point is to fetch dynamic content, which is loaded
after the DOMContentLoaded event. If the inserted node contains a spoiler
term, is not hidden yet and Active is set to true, the content script filters the

4. IMPLEMENTATION 16

Select Language: | German ¥

Spoiler Terms
Game of Thrones[Q23572]

Ratio
120

#| Active
¥/ Generate Additional Terms

Submit Preferences

Figure 4.2: Toolbar button with the preferences menu of the Google Chrome
extension.

inserted node in the same way it filtered the whole DOM tree in the execution
of starting point 3.

4.1 Graphical User Interface (GUI)

The GUI consists of a toolbar button and the preferences menu. The preferences
menu can be accessed by clicking on the toolbar button and has the purpose to
define different parameters. The user can choose between the languages Ger-
man and English for the search of additional terms with Wikidata, which we
described in Section 3.1.1. He can also enter, whether he wants to generate ad-
ditional terms with the value of Generate additional spoiler terms and if
the extension is active with the value of Active.

The user can define all spoiler terms in the text-box Spoiler Terms. While
entering the spoiler terms, a drop-down menu with corresponding Wikidata en-
tries appears. When the user clicks on a Wikidata item, the identifier of the
Wikidata item is stored in addition to the spoiler term and can therefore be
used to search additional spoiler terms. In Figure 4.2 we can see that next to
the spoiler term Game of Thrones the identifier Q23572 is stored. If the
user does not click on a Wikidata entry no additional terms are generated. In
the text-box Ratio the user can enter the value of the threshold e, which we
defined in Section 3.2.3. The default value is set according to the results of the
Evaluation 5.1. As soon as all preferences are set, the user can store them and
close the menu by clicking Submit Preferences.

4. IMPLEMENTATION 17
4.2 Generation of Additional Spoiler Terms

4.2.1 Wikidata Query Service

The Wikidata Query Service [15] allows us to run complex queries on the Wiki-
data knowledge graph. The data is exported as Resource Description Frame-
work (RDF) dump, which is basically a list of subject-predicate-object triples.
To provide fast access, the RDF dump is preprocessed and finally imported to
a Blazegraph database. The data can be accessed by SPARQL [16] queries,
which we defined in the background script according to the queries we resolved
in Section 3.1.1. The background script accesses the Wikidata Query Service
with XMLHttpRequests [17] to request additional spoiler terms of the Wikidata
dataset and parses the received data from JSON format to additional spoiler
term labels.

4.3 Storage and Communication

We used the asynchronous scripts onMessage and sendMessage, which are
provided by the chrome.runtime API [18] to receive and send messages. To
store the preferences of the user, the additional spoiler terms and different eval-
uation data we used the chrome.storage API [19].

4.4 Spoiler Detection

In the first depth-first traversal of the DOM tree, we stored in every node element
an attribute nodelndex, which we used in the further steps of the algorithm
to identify each node uniquely. To hide the correct nodes and to compute the
parameters e, ¢ and ¢ of each node, we counted the occurrences of spoiler terms
in each node. Therefore, we requested the text content of each node and searched
it with regular expressions. The text content of each node does also contain the
text content of its sub-tree. This simplified finding the paths containing spoilers
of the DOM tree.

The image nodes do not contain text content, but an alt attribute, whose
text content is a description of the image and a src attribute, which contains
the URL of the image. To filter the image we requested these attributes of each
image node separately. Because we only traversed the DOM tree where actual
spoiler content occurred, we requested at every node we visited all sub-nodes
that were images. Then we searched these images separately for spoiler content.

4. IMPLEMENTATION 18

4.4.1 Dynamic Content

We distinguished between two dynamic content classes. The first ones are the
inline-frames (iframes), which are basically other HTML documents placed into a
web page. They contain a URL or path with the corresponding HTML document
and are often used for live tickers. To find spoiler content in iframes, we requested
the DOM tree of the corresponding URL with an XMLHttpRequest and applied
the filter algorithm to it. If somewhere in the iframe’s DOM tree a spoiler term
was found, we hided the iframe.

The second dynamic content is inserted to the DOM tree by script nodes
after the DOMContentLoaded event is fired. Many news pages load new content
continuously when the user scrolls to the bottom of the page. By explaining
Figure 4.1 we already showed how we used the event DOMINodelnserted to
find spoilers in such dynamic loaded web pages.

4.5 Spoiler Filtering

As soon as we found the right nodes to hide we set the visibility of those nodes as
hidden and inserted a spoiler button as sibling node. The spoiler button toggles
the visibility of the hidden node whenever it is clicked.

CHAPTER 5

Evaluation

To evaluate the spoiler filter and the choice of the additional spoiler terms, we
compared the performance of the filter with and without additional spoiler terms.
We tested 10 different news web pages with different spoiler terms daily for 20
days. This is a total of 200 web pages we evaluated. We downloaded the web
pages from 20th April 2016 until 9th May 2016 to analyze the pages offline.
Table 5.1 lists the detailed spoiler terms and web pages. To evaluate the web
pages we manually determined for each web page and spoiler term the parts that
should be hidden and stored the corresponding nodeIndex of the node with the
character text length. During the evaluation we compared this information with
the web page filtered by the system.

News Page Spoiler Terms

srf.ch Prince

handelszeitung.ch | Volkswagen, Mitsubishi

20min.ch Game of Thrones, Die Bachelorette

bernerzeitung.ch | Donald Trump
tagesanzeiger.ch Roger Federer, Wladimir Putin

blick.ch Simonetta Sommaruga
news.google.ch Hillary Clinton, Nashville Predators
swissinfo.ch Katastrophe von Tschernobyl
nzz.ch FC Basel

news.ch Cristiano Ronaldo

Table 5.1: List of web pages with the corresponding spoiler terms we used to
evaluate the spoiler filter.

We used the Receiver Operating Characteristic (ROC) [20] curve to plot the

results of our tests and to analyze it. To construct a ROC curve, a few parameters
need to be computed in advance:

e True Positive (TP): True positive is the number of characters that were
correctly hidden.

19

5. EVALUATION 20

1
\ ---- Random Classification| .
Good
[Classification
o
=
Q
©
oo
2 0.5
.(‘%
o
a
[
2
=
Bad
Classification
0|,
0 0.5 1

False Positive Rate (FPR)

Figure 5.1: ROC curve interpretations.

e True Negative (TN): True negative is the number of characters that
were correctly not hidden.

e False Positive (FP): False positive is the number of characters that
should not be hidden, but the filter system hided them by mistake.

e False Negative (FN): False negative is the number of characters that
should be hidden, but the filter system did not hide them.

e True Positive Rate (TPR): The true positive rate is computed with

the following formula:
TP

TPR=——
R=Tpirn

e False Positive Rate (FPR): The false positive rate is computed with

the following formula:
FP

FPR=5p 7N

The ROC curve plots the FPR (x-axis) against the TPR (y-axis). As we
wanted to find the optimal value of the threshold e, we computed the FPR
and TPR for different e, which results in a curve. Figure 5.1 illustrates how to
interpret the ROC curve. The red line in the middle is the result of a random
classification, since the number of hits and misses is the same. As a perfect
classification is in the upper left corner, we choose the value of e with minimal
euclidean distance to this corner to be the optimal threshold.

5. EVALUATION 21

0.95
0.9F q
2
5 0.85+ q
o
(Y]
2
P
=0 8«4 4
o
[
(]
E 0.75 1
0.7 4 q
0.65 _ _ q
—ROC curve without additional terms
—ROC curve with additional terms
x Optimal point
06 L T I T I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

False Positive Rate

Figure 5.2: ROC curves with and without additional terms with the threshold e
in range from 0 to 0.004.

5.1 Results

We computed the TPR and FPR for e in the range from 0 to 0.004 of the
spoiler filter with and without additional spoiler terms. Figure 5.2 shows the
resulting ROC curves. The lines start on the right where e is equal to zero and
end in the bottom left corner. A point close to the y-axis means, that it has
a low FPR and the number of non-spoiler characters that were wrongly hidden
is therefore close to zero. When the point is located near the line where y is
equal to 1, it means that it has a high TPR and has therefore hidden most
of the spoiler content. The reason why the lines do not reach the top where
the TPR is equal to 1 is that when the filter finds no spoiler term on the web
page, nothing gets hidden no matter how small the value of e is. The optimal
point (0.0075,0.8634) has the smallest euclidean distance to the point (0,1) and
is achieved with additional spoiler terms. The coordinates of the optimal point
state that the filter with additional spoiler terms hides approximately 86% of the
spoiler content and 0.75% of the non-spoiler content. When we compare the two
curves, we can say that the upper curve nearly doubles the true positive rate of
the lower curve. Therefore, the filter hides almost 30% more spoiler content by
using additional spoiler terms. On the other hand, the filter hides 0.05% more
non-spoiler content.

5. EVALUATION 22

Because normally just a small part of a web page contains spoilers, the value
of TN is compared to the values of TP, FP and FN much greater. The average
value of true negatives is 58470, while the other average values are 247(TP), 345
(FP) and 39 (FN). Therefore, our web filter achieves a very good FPR compared
to the TPR.

The next section shows the results of each web page separately with the value
of e equal to the optimal threshold. As we look at the results of a particular
e, the plots contain points and not curves anymore. To evaluate the choice of
the additional spoiler terms, we plotted the performance of the filter without
additional spoiler terms (blue) together with the performance of the filter with
additional spoiler terms (green) on Figure 5.3. To be able to analyze the results
more in detail, we evaluated the web pages 20min.ch and news.google.ch for
each spoiler term separately.

We can see that the points 1, 10 and 12 achieved the same performance with
and without additional spoiler terms (red). Point 1 with the user-defined spoiler
term Prince can not be improved, because the TPR. is equal to 1, which means
that every article with spoilers contained the term Prince and was therefore
hidden correctly. Regarding the other two points, the spoiler filter did not find
meaningful additional spoiler terms for the user-defined spoiler terms Katas-
trophe von Tschernobyl and Cristiano Ronaldo. The Wikidata entry of
Katastrophe von Tschernobyl does not contain useful aliases and because the
articles about this topic in the news page swissinfo.ch not always contain the
whole term Katastrophe von Tschernobyl, there was a lot of spoiler content,
that was not correctly hidden. The problem with the spoiler term Cristiano
Ronaldo is related to the absence of Wikidata entries as well. Much articles
refer to Cristiano Ronaldo by just using his second given name Ronaldo.
As we mentioned in Section 3.1.1, we parsed the last word of the user-defined
spoiler term manually only if there is no claim defined with property family
name. Because the Wikidata entry of Cristiano Ronaldo does refer to his
family name and his middle name is not contained in the aliases list, the filter
misses some important spoilers.

Point 11 with corresponding spoiler term FC Basel achieved a much better
TPR with additional spoilers, especially because of the additional spoiler alias
FCB, which was used in a lot of articles. When a report about a previous
game just contained for example the phrases Basel 1:0 Vaduz or Wann wird
Basel Meister?, the filter had problems finding the spoiler, because the term
Basel was not contained in the additional spoiler terms list. Another noticeable
problem is that the false positive rate has changed for the worse and therefore the
filter has hidden too much content. The reason for this are the last names of the
association football players. For example the last names of the players Eduard
Bauer or Danique Stein can also be used in other contexts, therefore too much
content gets hidden. Because Wikidata contains a lot of incomplete items, some

5. EVALUATION 23

8124 39
09 56 7
X
9x x12 11
0.8- *4 1 srf.ch: Prince i
2 handelszeitung.ch: Volkswagen, Mitsubishi
o) 0.7 ["x 2 3 20min.ch: Game of Thrones i
§ 0.6*11 4 20min.ch: Die Bachelorette i
q>_) 5 5 bernerzeitung.ch: Donald Trump
So5) 6 tagesanzeiger.ch: Roger Federer, Wiadimir Putin | |
8 7 blick.ch: Simonetta Sommaruga
% 0.4 *10 8 news.google.ch: Hillary Clinton il
2 7 9 news.google.ch: Nashville Predators
= 0.3 10 swissinfo.ch: Katastrophe von Tschernobyl!
11 nzz.ch: FC Basel
0.2 12 news.ch: Cristiano Ronaldo H
® Additional Spoiler Terms
0.1 ;6 @® User-Defined Spoiler Terms M
® Additional + User-Defined Spoiler Terms
0 1

| | I
0 0.01 0.02 0.03 0.04 0.05 0.06
False Positive Rate

Figure 5.3: ROC points of the evaluation with additional terms (green) and
without additional terms (blue). The numbers in red achieved the same result
in both tests.

players, which do not play for FC Basel anymore still do not contain an end
time property and therefore many outdated additional terms were found.

By looking at the other points, we can see that the remaining web pages
got filtered a lot better with additional spoiler terms. For example adding the
alias VW of the spoiler term Volkswagen, the last names of humans or the
term Bachelorette for the user-defined spoiler term Die Bachelorette to the
additional spoiler list resulted in much better filtered web pages.

Obviously the user-defined spoiler term Katastrophe von Tschernobyl per-
forms by far the worst. As historical event it is a completely different spoiler
term than the others, which are humans, companies, TV shows or sports teams.
Because users can not be spoiled about a passed event, it is rather not a topic
that is chosen to be hidden by a lot of people. This is why we plotted an ad-
ditional ROC curve without the web page swissinfo.ch with the spoiler term
Katastrophe von Tschernobyl on Figure 5.4. The new optimal point achieves
a much better true positive rate than the optimal point of the ROC curves with
all test sets. Without the web page swissinfo.ch, the filter system hides about
97% of the spoiler content in the web pages. The conclusion of this observation
is that it is very important to choose the correct user-defined spoiler term. It
is very likely that the spoiler filter would have achieved a better performance
with the user-defined spoiler term Tschernobyl instead of Katastrophe von

5. EVALUATION 24

0.95+ 1

0.9H]

o

o)

]
.

True Positive Rate
o
] o
wv [ec]
. .

0.7 4
—ROC curve without additional terms
—ROC curve with additional terms

0.65 ROC curve with additional terms
& without the results of swissinfo.ch
x Optimal points
06 L L T I T I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

False Positive Rate

Figure 5.4: The ROC curve with additional spoiler terms and without the test
set of the web page swissinfo.ch in addition to the curves with all test sets.

Tschernobyl. As the new optimal point (0.0055,0.9762) is reached with the
value of e equal to 0.0012, we define the optimal threshold eo as 0.0012.

CHAPTER 6

Conclusion and Future Work

We implemented a web filter that finds related content of spoiler terms and is
able to hide most of the spoiler content on web pages. While it is optimized for
the three categories People, Sports and TV, it is also able to find meaningful
additional spoiler terms in other categories, given that aliases are defined in the
corresponding Wikidata items. Therefore the performance of the filter depends
on the choice of the correct Wikidata item and on the completeness of the corre-
sponding Wikidata item. If important aliases are not mentioned in the Wikidata
item of a spoiler topic, it is possible that the filter is unable to hide some related
content. In the next section we suggest some approaches, which can be used to
improve the spoiler filter in the future.

The first improvement addresses the search of additional spoiler terms. We
mentioned before that the incompleteness of Wikidata affects the performance
of the filter a lot. To bypass this issue, one could query additional databases to
receive related content. As the queries are currently optimized for three groups,
the search can be improved by either adding more queries for specific groups or
by changing them to a more general query which would probably result in better
additional spoiler terms for user-defined spoiler terms that are not instance of
such a group.

We provided a solution to fetch dynamic content on web pages, which is
added by scripts. Even though our solution works in practise, there may be a
way to improve it further by not applying the filtering algorithm to the inserted
node, but to the body node. This approach would avoid the insertion of too
many spoiler buttons, because the system would reapply the filtering algorithm
to the whole page every time new spoiler content is loaded, but it is difficult to
still achieve a good run-time performance.

So far we hided nodes when they contained at least one spoiler term. As im-
provement one can define combined spoiler terms, which must occur together
in a text node so that the corresponding node will be hidden. For example when
the terms Basel and Fussball both appear in a text node, it is likely that the
node involves content about FC Basel. To define these two terms as normal
additional terms of the user-defined spoiler term FC Basel would result in too

25

6. CONCLUSION AND FUTURE WORK 26

much hidden content, because both of them can be used in many other contexts
as well.

Another interesting approach is to provide a feedback system for the user,
which allows to mark either wrongly hidden content or spoiler content that was
not hidden. With this additional information the spoiler filter can adapt the
choice of the additional spoiler terms to the user and improve its performance
over and over. When we assume that several users want to filter the same topics,
the filter system could even reuse the collected data collaboratively for different
users.

1]
2]
[3]

Bibliography

Willi, R.: Hide spoiler. Bachelor thesis, ETH Zurich (2014)
AdBlock. https://getadblock.com/ Accessed on 2016-08-19.

Guo, S., Ramakrishnan, N.: Finding the storyteller: Automatic spoiler tag-
ging using linguistic cues. In: COLING 2010, 23rd International Conference
on Computational Linguistics, Proceedings of the Conference, 23-27 August
2010, Beijing, China. (2010) 412-420

Pomeranz, H.: A simple dns-based approach for blocking web advertising.
(2013)

Wikipedia: Ad blocking, external programs. https://en.wikipedia.org/
wiki/Ad_blocking#External_programs Accessed on 2016-08-19.

Dietrich, C.J., Rossow, C.: Empirical research of IP blacklists. In: ISSE
2008 - Securing Electronic Busines Processes, Highlights of the Informa-
tion Security Solutions Europe 2008 Conference, 7-9 October 2008, Madrid,
Spain. (2008) 163-171

Alexandros Ntoulas, Marc Najork, M.M.D.F.: Detecting spam web pages
through content analysis. In: 15th International World Wide Web Confer-
ence (WWW), Edinburgh, Scotland, Association for Computing Machinery,
Inc. (May 2006)

Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A bayesian approach
to filtering junk E-mail. In: Learning for Text Categorization: Papers from
the 1998 Workshop, Madison, Wisconsin, AA AT Technical Report WS-98-05
(1998)

Wikimedia-Foundation: Wikidata. https://www.wikidata.org/ Accessed
on 2016-08-04.

Wikidata: Game of thrones. https://www.wikidata.org/wiki/Q23572
Accessed on 2016-08-04.

Mike Champion, Steve Byrne, G.N.L.W.: Document object model (core)
level 1. https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
level-one-core.html/ Accessed on 2016-08-05.

Chrome, G.: Javascript apis. https://developer.chrome.com/
extensions/api_index/ Accessed on 2016-08-06.

27

https://getadblock.com/
https://en.wikipedia.org/wiki/Ad_blocking#External_programs
https://en.wikipedia.org/wiki/Ad_blocking#External_programs
https://www.wikidata.org/
https://www.wikidata.org/wiki/Q23572
https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html/
https://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/level-one-core.html/
https://developer.chrome.com/extensions/api_index/
https://developer.chrome.com/extensions/api_index/

BIBLIOGRAPHY 28

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

StatCounter: Top 5 desktop, tablet & console browsers. http://gs.
statcounter.com/ Accessed on 2016-08-04.

W3Counter: Web browser market share. https://www.w3counter.com/
globalstats.php/ Accessed on 2016-08-04.

Wikimedia-Foundation: Wikidata query service. https://query.
wikidata.org/ Accessed on 2016-08-04.

Eric Prud’hommeaux, A.S.: Sparql query language for rdf. https://www.
w3.org/TR/rdf-sparql-query/ Accessed on 2016-08-04.

Anne van Kesteren, Julian Aubourg, J.S.H.R.M.S.: Xmlhttprequest level
1. https://www.w3.org/TR/XMLHttpRequest/ Accessed on 2016-08-04.

Google: chrome.runtime api. https://developer.chrome.com/
extensions/runtime/ Accessed on 2016-08-04.

Google: chrome.storage api. https://developer.chrome.com/
extensions/storage/ Accessed on 2016-08-04.

Fawcett, T.: An introduction to roc analysis. Pattern Recogn. Lett. 27(8)
(2006) 861-874

http://gs.statcounter.com/
http://gs.statcounter.com/
https://www.w3counter.com/globalstats.php/
https://www.w3counter.com/globalstats.php/
https://query.wikidata.org/
https://query.wikidata.org/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/XMLHttpRequest/
https://developer.chrome.com/extensions/runtime/
https://developer.chrome.com/extensions/runtime/
https://developer.chrome.com/extensions/storage/
https://developer.chrome.com/extensions/storage/

	Abstract
	1 Introduction
	1.1 Related Work
	1.1.1 Advertising Filter (Ad Filter)
	1.1.2 Email Spam Filter

	2 Background
	2.1 Wikidata

	3 Design
	3.1 Spoiler Terms
	3.1.1 Generation of Additional Spoiler Terms

	3.2 Filtering System
	3.2.1 Overview
	3.2.2 Spoiler Detection
	3.2.3 Spoiler Filtering

	4 Implementation
	4.1 Graphical User Interface (GUI)
	4.2 Generation of Additional Spoiler Terms
	4.2.1 Wikidata Query Service

	4.3 Storage and Communication
	4.4 Spoiler Detection
	4.4.1 Dynamic Content

	4.5 Spoiler Filtering

	5 Evaluation
	5.1 Results

	6 Conclusion and Future Work
	Bibliography

