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Abstract

The widespread application of crowd simulation in movies and games has led to
numerous tools that offer a simplified approach to this topic and have a strong
focus on visual quality. The objective of this thesis is to evaluate if one such
tool is suitable for the implementation of more complex, intelligent behavior.
The chosen Autodesk Maya plug-in Miarmy has been extended with multiple
Python scripts to provide the agents with the ability of realistic pathfinding
with obstacle avoidance. Additional features are the individualization of the
agents, flight behavior near dangerous objects, as well as the ability to chase
other agents. The decision logic has been tested in numerous scenarios to receive
a visual feedback and to confirm the realistic behavior of the agents. While the
model has limitations and there are problems with the used tool, the result is a
working example, positively answering the central question.
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Chapter 1

Introduction

1.1 Motivation

Large numbers of characters or other entities behave in ways that can be difficult
to predict because of the complex interaction and navigation. The simulation
of such a crowd can provide valuable information for the planning of buildings,
traffic ways or events, where an efficient guidance of people is critical for their
safety or is of economic interest. A lot of research has been focused on the
movement of pedestrians. Such as in the case of Kneidl et al. [1] with the
evacuation of a soccer stadium or Curtis et al. [2], simulating huge numbers of
pilgrims circling the Kaaba during the tawaf to compute the density, speed and
the number of people completing it per hour.

Crowd animation has found its way into the entertainment industry. Not
only do many movies feature impressive images of thousands of individuals on
screen, video games also need efficient algorithms to simulate many characters
in real-time. In recent years, a large variety of software has been developed to
offer a simpler approach to creating these animations. The best known may well
be Massive [3], developed for the Lord of the Rings trilogy [4]. Another tool is
Miarmy [5], a plugin for simulations in the 3d software Maya [6].

Most of these programs have been designed for artists and therefore mainly
feature more intuitive but less complex tools for configuration of the simulation
and rather limited extension possibilities. They allow the fast creation of inspir-
ing videos like I’ve fallen, and I can’t get up! [7], in which the characters do not
act in a realistic way, but by simpler decision patterns. Building on the work of
Michael Weigelt [8], we analyze the suitability of these tools for scientific work
by developing more a complex decision and movement logic with Miarmy and
Python. The result is tested in multiple different scenarios.
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1. Introduction 2

1.2 Related Work

There are many different approaches one can take to simulate large numbers of
individual entities. Zhou et al. [9], and more recently Ijaz et al. [10], propose
the classification of those methods by crowd size and time scale. Even though
the borders have gradually been blurred with respect to the size, one can of-
ten distinguish macroscopic from microscopic approaches. Macroscopic models
describe abstract behavior and mostly ignoring unique traits and interactions
between the characters. Microscopic models, on the contrary, focus on those
individual entities with possibly individual features. Therefore, they need more
computational power to simulate the behavior of an individual entity and the
approach is more suited for a smaller scope. But within the last years, many
models have combined benefits and aspects of those two extremes, as seen in the
survey of Ijaz et al. [10].

Another important aspect of the model is the representation of each entity or
rather the crowd itself. Naturally, this has a big influence on the computational
cost and is therefore directly influenced by the number of entities in the scene.
One possibility is to describe each individual as a particle in a physics system,
which is influenced by global and local laws that represent physical and social
rules. The homogeneity of such a crowd allows for a more efficient and less
complex computation. Braun et al. [11] used such a global particle model from
Helbling et al. [12], which describes panicking pedestrians, and expanded it with
additional parameters for different personalities.

In an agent based approach, each entity in the crowd is an autonomous
character with its own decision rules and properties. Individual characteristics,
complex pathfinding, awareness of the environment and social interaction can be
implemented. This high degree of freedom results in a very natural behavior of
the crowd but comes at a high cost of computational power. Even path planning
with multiple groups having different origins and destinations is already NP-hard
[13]. Thus, this approach is only reasonable for lower numbers of agents.

In this thesis, we extend the agent based system of Miarmy to incorporate
complex logic for collision avoidance, pathfinding and fleeing with the influence of
individual attributes in a microscopic approach. The term agent is subsequently
used to refer to an individual entity in the simulation, which is described by
Miarmy’s own representation (see Chapter 2) and the corresponding state that
is stored and updated separately in Python (see Section 3.1).



Chapter 2

Simulation System

2.1 Overview

In Miarmy, the individuals of a crowd in a scene are instances of a specific agent
type. Such an agent is a description of a certain appearance and behavior that
is shared among all characters of his type. Important components of this group
are:

Original Agent: A collection which includes the skeleton (commonly called
character rig) and a simple approximation of the geometry used for physical
simulation and the representation of this type of agent prior to rendering.

Actions: These nodes describe animations by the transformation of the agent’s
bones per frame.

Decisions: The logic described by decisions is the driving force of the agent.
In each frame, every agent checks its decisions sequentially. If the input
conditions of a node evaluate to true, the output sentences are executed.
With the human language logic Miarmy offers a variety of phrases for such
inputs and outputs to interact with Maya and the plugin itself. For example
“change action:. . . playback speed . . . ” to adjust the playback speed of a
specific animation.

Geometry: The visual representation of the agent is defined by a collection of
textured geometry, bound to the character rig. To vary the appearance of
an agent type, Miarmy offers the possibility of randomizing the assignment
of geometry groups to each character instance.

The agents are instantiated by defining placement nodes in the scene. The
crowd’s animation is then computed by simulating each agent’s decisions and
interactions with additional objects in each frame, with a second of the final
simulation being 24 frames. The movement is cached by saving the transforma-
tion of the character’s rig per time step. For rendering, every agent is assigned
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2. Simulation System 4

some or all of the geometry defined in the agent type, which is then deformed
according to the cached animation.

While this approach seems tedious for a simple crowd simulation, the organi-
zation of the data and the separation of these steps allow for much customization
in the visual aspect. The user has many possibilities to adjust the appearance
of the crowd and the environment by having all the tools of Maya available. By
caching the simulation itself before the visualization, Miarmy is able to offer the
preparation of the geometry for other rendering solutions like Arnold [14].

A problem with such crowd animation tools with a focus on the visual as-
pect is that the simulations created for movies are usually rather short and less
complex. Therefore, the possibilities offered by the default logic sentences are
limited. Complicated processes like pathfinding can be imitated with Miarmy’s
perception objects as helper. An example would be a road defined by a curve:
agents can be guided around obstacles without the need of intelligent decisions.
While this is a benefit for a specific animation, it is clear, that the independent
behavior needed in more complex simulations, can’t be achieved this way.

Luckily in Miarmy, there is the possibility of calling Python scripts from in-
put conditions and from resulting commands of decisions. This enables large
extensions to the logic system, as all the standard Maya commands and even
additional Python modules can be used. Unfortunately, the interaction between
Miarmy with its agents and such a script is limited and there is little documen-
tation available.

The Software used for this thesis is Miarmy Express 4.7 in Autodesk Maya
2016, along with the included Python 2.7 interpreter. In addition to the offi-
cial maya.cmds and the standard modules in Python, Numpy has been used to
simplify some calculations.

2.2 Python Interface

The visual part of the scene, including geometry and animations, the physics,
as well as driving and caching the simulation is done with the standard tools
of Miarmy. As these features work well and have no influence on the agent’s
behavior, there is no need to redo this work. For the realistic performance of
the characters, the complex computations are done in Python scripts. They are
called by decision nodes, that act as links between the custom logic and Miarmy
but also execute specific commands if necessary. Each frame, the scripts are
called when Miarmy updates the agents. They compute the current state of
each individual and return values to steer the animations. With this approach,
the standard system is only expanded by some calls to custom python scripts.

While it would be convenient to directly code and define custom functions
in the input and output fields of the decision nodes, or being able to expand the
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human language logic of Miarmy, such features do not seem to be planned. And
even though there are hints that the development on these parts is encouraged,
the documentation lacks fundamental information to do so. Still, the approach
mentioned above works quite well for this purpose.

2.3 Agents and Decisions

For this thesis, we designed one system for the decision logic of all human charac-
ters. Multiple different agents were created in Miarmy because the character rig
and the animation differ between certain types (e.g. between men and women).
Each agent has a set of three actions: idle, walking, running. As they prac-
tically only have to solve navigational problems, this simple set of animations
suffices. The actions can be varied in speed to adjust the velocity. To diversify
the appearance of the characters, the male and female agent type both have
three different geometries that are chosen randomly. The 3d character models
have been created with Adobe Fuse [15], with the automated rigging and the
animations from Mixamo [16].

As previously mentioned, the decision nodes are the link between the cus-
tomized logic in the Python scripts and the representation of each character in
Miarmy. To decouple the logic system as much as possible, most decision nodes
mainly act as getter and setter for the values in the scripts and of the agents.
The following nodes have been implemented:

updateAgent: This node only calls the method AS updateAgentState(agent id)
which updates the state of the agent, namely of the class AgentState, stored
in memory. This object holds values such as the current action to be
executed, its playback speed, a description of the target and many others,
which then are retrieved by other decision nodes. Please see Chapter 3 for
additional details on the implementation in Python.

getID: Because it is not possible to directly pass the agent’s ID to a Python
function, a separate decision node is needed to write it into to an attribute
attached to the agent at runtime. The value of the attribute can then be
referenced as argument to the function call.

updateAlive/checkAlive: To keep the information between Miarmy and the
agent’s state in memory coherent, these nodes repeatedly call Python func-
tions to update and read the value indicating if the agent still is alive. This
is necessary, as the agent may either collide physically or may be deacti-
vated for some other reason by a script. One reason, that the updateAlive
node is needed, is that calling a Python function from a decision node’s out-
put sentences is bugged and highly unreliable. Arguments are not passed
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Figure 2.1: An example of the usage of expression mode in Miarmy. The rotation
value is determined in multiple Python scripts, written to the agent’s state and
finally retrieved and directly set by this decision.

correctly and sometimes the function is not called at all. Therefore, some
of the calls had to be moved to the input sentence of additional decisions.

stand/walking/running: The agent can either stand still or move forward.
There is no motion such as strafing left or right, jumping, crouching, or
other. Such actions would be needed rarely, as with varied speed forward
and mostly free rotation to left and right, practically every target can be
reached. Each of these three nodes gets the value actionId, which is set in
the agent’s state. It states, which animation needs to be executed. Multiple
different nodes are required because Miarmy doesn’t allow case distinctions
on a value to decide between different outputs.

speed: Similar to the nodes getting the current action, these nodes retrieve the
value that defines how fast the animations should be played. As walking
and running are animations that move the character’s position, the play-
back speed directly influences the movement speed of the actor. There are
four different levels of speed: 0.5, 0.75, 1, and 1.5 (1 is the default speed).
This discrete approximation is necessary because setting the values via the
direct expression mode inexplicably crashes Maya.

rotate: To set the agent’s rotation to either left or right, a feature introduced in
Miarmy 3.5 is used. A decision node can be marked to use direct expression
control. In this mode, the input sentence of the decision may be altered
to not return True or False but the value generated by this new sentence.
So in the agent’s state, one can explicitly define, how fast left or right
(negative left) should rotate. This value is then passed on to Miarmy to
adjust the character’s direction (Figure 2.1).

collision: In some scenes, kinetic primitives are used. These are objects that
are considered in the physics simulation run by Miarmy. It is possible to
check for a collision in the input conditions of a decision node. If one has
occurred, the agent can react properly and adjust values, influencing the
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behavior of other agents. In some scenes, such a primitive is marked as
dangerous by the agents, if it did collide with one of them.



Chapter 3

Logic System in Python

With Miarmy’s own decision nodes mostly reduced to simple value passing func-
tionality, the system is missing the part where each agent’s behavior is controlled.
As Maya and Miarmy support Python, more complex computations are easily
possible. Miarmy also allows calling MEL commands (Maya Embedded Lan-
guage: Maya’s internal scripting language), but the convenience and versatility
of Python, let alone the huge number of external libraries, was preferable. Espe-
cially because Miarmy offers a Python wrapper with support for most commands.

Miarmy, of course, can handle movement in all three dimensions. But to
simplify the system needed in this thesis, navigation has been reduced to the
X/Z axes. In most situations, this is enough and does not limit the possibilities
significantly.

3.1 Structure

The main functionality for the decision logic has been packed into two different
modules: decision pathfinding and obstacle detection but there are multiple ad-
ditional scripts. Most importantly scene initialization, which is executed to set
up the states of the agents and search for objects in the scene that are to be
recognized by the obstacle detection.

Each agent has its state in a global list, addressable by his identification
number, which is assigned by Miarmy on creation. As an instance of the class
AgentState, it contains basic information for the interaction with Miarmy (such
as the previously mentioned actionId) and additional values needed for more
complex computations (e.g. a collection of recently seen obstacles, acting as a
memory of the character). The latter are explained and discussed in the following
sections.

Nearly all changes in the behavior of an agent are initiated by the method
AS updateAgentState(agentId) in the module decision pathfinding. In multiple
stages, the current target is located and it is determined if the character is

8



3. Logic System in Python 9

Figure 3.1: An illustration of the interactions between the Miarmy agent on
the bottom left and the Python scripts used in this project. Function calls are
depicted by arrows. Please note that some functions are omitted to keep the
figure comprehensible.

escaping an enemy, if there are any obstacles, how to evade them, and in which
direction to go at which speed. According to the given situation, the agent’s
state is adjusted. As mentioned in Section 2.2, this function is invoked each
frame, when Miarmy updates the agent’s decision nodes. All the changes then
are again queried by the agent via other nodes.

In the following sections, important parts of the decision system organized
in AS updateAgentState(agentId) are explained further.

3.2 Movement

In the AgentState class, there are four values directly affecting the movement of
an agent in the scene: actionId, actionSpeed, rotLeft, and evadeRotLeft. While
the first two define, if and how fast the agent is walking or running forward, the
other two are responsible for adjusting the direction of the movement. When
querying the rotation, evadeRotLeft, which is only responsible for redirecting the
agent around an obstacle, always has priority over rotLeft. This has the effect,
that the agent’s primary goal always is to avoid obstacles. All these values are
influenced by most of the other parts of the decision system.

3.3 Targets

An essential aspect of human navigation is to direct one’s movement towards a
specific destination. In our solution, every agent can aim for one target, which is
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either described by the name of an object or a tuple of X/Z coordinates. Usually,
this position is defined when setting up the scene and creating the agent. Of
course, it can be changed by a script during runtime (e.g. see Section 3.6) by
adjusting the target variable in the agent’s state.

At the same time, each agent has a list of checkpoints that can be used to
define a path towards the final target. They carry additional information of when
they were created and which, if any, obstacle was the reason for a checkpoint.
The checkpoint list is used as a stack: the most recently appended point is
visited first and deleted when reached. Checkpoints are dynamically added to
avoid obstacles but also removed in certain situations (e.g. when one seems
unreachable or not beneficial anymore). After a certain amount of time, they
are forgotten and removed.

If there is a valid target or checkpoint at the beginning of the update of
the agent’s state, the difference to the agent’s current direction is computed.
Depending on whether it lies to left or the right, rotLeft is set a positive or
negative number to indicate the rotation speed to the left.

3.4 Obstacle Avoidance

Designing a system that is able to navigate around objects collision-free and
in an intelligent manner is an intricate task. Obviously, to achieve human-like
performance is beyond the scope of this thesis. As with the targeting mechanics,
a compromise is made regarding the complexity of the system and the quality of
its results. As a result, agents react to obstacles they see. There is no abstract
mapping of the environment as humans usually perform. Navigating with such
an overview would help the agent to find very efficient paths around objects
and towards targets. But grid-based algorithms have not been used because of
the increased complexity of such a model and the memory needed for storing a
representation of the environment accurate enough for each agent separately.

Objects that are to be recognized as obstacles must be listed in the global
container OBSTACLES. During the initialization of the scene, they are auto-
matically detected by the prefix ”geom ” for objects and the standard naming
of the Miarmy agents ”McdAgent”. By default, an agent doesn’t treat itself and
its target as an obstacle.

3.4.1 Detection

The field of vision of the agents is composed of six circular sectors (depicted
in Figure 3.2). The frustum is defined by two of those, one on each side and
adjacent to the z-axis (in front of the agent). Each side’s sector is separately
defined by a radius and an angle. Two other sectors are symmetric to the z-axis
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and defined by only one radius and one angle (sphAng), again oriented to the
front and intended much smaller than the frustum. With the focus on this closer
area, these two are mostly used to react to obstacles that appear directly in front
of the agent and require an immediate reaction. In contrast, the large frustum
with the first two sectors offers the possibility of recognizing obstacles in the
distance, which is especially useful for the prediction of their movement (Section
3.4.2). Representing the backside of the perceptive area, the last two sectors
are also symmetric and described by yet another radius and the supplementary
angle to sphAng.

Figure 3.2: The six sectors used
for obstacle detection. Specified
by the variables frustDis (r1, r2),
frustAng (α1, α2), sphDis (r3, r4),
and sphAng (β). Please note that
γ = 180◦ − β.

When checkFrustSphereColl() in obsta-
cle detection.py is called, every object
marked as an obstacle and not excluded by
the caller is checked for collisions with each
of these sectors. Other agents are tested by
their position with a specified radius around
them. Objects marked with the ”geom ”
prefix are checked by observing each of the
vertices defining their geometry. For perfor-
mance reasons, it is recommended to use sep-
arate, more simple meshes for collision detec-
tion of high-poly 3d models.

In each sector, only the obstacle closest
to the agent is remembered. In addition to
the binary value that indicates, if a sector
is obstructed, further information is gath-
ered: the distance to the obstacle, its name,
if it is a predicted obstacle, and the angu-
lar values of how far it extends to the left
and right (in (-180◦,180◦]) from the perspec-
tive of the agent. Also, every object collid-
ing with one or more of the sectors is re-
membered with the name, position, as well
as the rotation around the vertical axis, and
the current frame number and is returned as
part of a dictionary.

3.4.2 Object Memory and Prediction

In many cases, when objects move, reacting only to the current situation can
guide an agent to a spot, which is blocked after the next time step. An example
is the scene with the rotating bar (such as in [7]). To avoid such situations,
agents need to predict the position of an obstacle for a certain number of future
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frames.

To achieve this effect, all the obstacles that have been seen in one of the six
circular sectors (see Section 3.4.1) are memorized in the agent’s state. When
checking all potential obstacles for collision and one of these objects is remem-
bered from a previous frame, its future position and its rotation around vertical
axis are predicted linearly in each aspect with the difference per frame of the
remembered values and the current ones. It is possible to configure the amount
of predictions calculated per object or agent and to set a factor that influences
the number of time steps between each prediction. If an object at the current
frame has not moved from its position in the past, no prediction is computed. By
default, the current position of a moving object is neglected and at least the first
prediction is checked on collision. This simulates the expectation that object in
motion keep moving.

If a prediction obstructs one of the six areas is indicated by another list that
is returned with the other information gathered from the obstacle detection (see
Section 3.4.1). This can be useful in situations, where an agent seems to be
completely enclosed by obstacles. If one of those is just a prediction, the agent
can still try to evade the others by choosing this direction.

Keeping the information about encountered obstacles indefinitely long, is
often not necessary and can result in wrong predictions. For example, when an
object is last seen on the right side of an agent’s visual range and later appears
from the left side again. From these two positions, the agent would predict a
possibly incorrect movement from the right to the left. To prevent such mistakes
and for performance reasons, memories of obstacles are deleted after a certain
number of frames after their creation.

3.4.3 Reaction

How well the obstacle avoidance works clearly does not only depend on the
perception of objects, but also on how the agents react to them. While the goal
is to create a collision-free system, reality is different. If the density of people
in some area is too high, collisions occur. To simulate the effect of harmless
collisions and pushing, we use the auto collision avoidance feature of Miarmy.
Other characters are simply pushed out of a certain radius around an agent.

Three values of the agent’s state are adjusted to actively avoid obstacles:
evadeRotLeft, actionId, and actionSpeed. Having the first value affect the direc-
tion and the remaining two adjust the speed, maneuvering around an object is
easily possible. As mentioned in Section 3.3, checkpoints can be used to improve
the path taken by the agent.

The forward speed is set separately from the rotation. By default, if the front
up close is not obstructed, the agents are playing action running. If the front is
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blocked, the walking speed is linearly decreased until a minimum distance to the
object is reached and the agent halts. This creates time to rotate to the correct
direction.

To determine how to evade a certain obstacle, the circular sectors to the front
are checked from the inner frustum to the outer one. If either the left or right
side from the agent’s perspective is free, the character can be rotated accordingly
to steer towards this free space. But if both sides are obstructed, the situation
is examined in more detail. To compensate for the uncertainty of which parts of
the sectors are blocked, the angular extent of the obstacles computed before (in
Section 3.4.1) is used to determine the parts of the front, that are not blocked. If
there is a gap between the objects blocking the left and the right side, the agent
can be guided towards it. If the obstacles are rather small, a slight rotation may
be enough to evade them. Yet if the whole front is blocked, it can be smart to
create a checkpoint, to lead the agent around the obstruction.

As agents act mostly stateless, it would be easy to create a situation, where
they would enter a loop (e.g. by trying to evade to the left, after some correction
to the right, then to the left again and so on). A checkpoint smooths the path
and is used as short-term memory to remember the chosen direction. Along with
the position, the reason (the names of the obstacles) for this checkpoint and the
current frame number is stored. No other checkpoint can be created for the same
objects, while one is already active. Otherwise, multiple identical ones would be
created during the evasion in the following frames, as the situation usually is
practically the same. If there is a valid checkpoint for the currently obstructing
objects, evadeRotLeft is set to 0, so that the agent may freely move towards it.

3.5 Enemies and Flight Behavior

To achieve a high density of people in a crowd or a realistic path around objects,
obstacle avoidance can’t be too careful when evading. But in cases where a
human is actually blocked by a dangerous object, just barely avoiding it would
not be realistic. Threatening obstacles need to be evaded more actively.

To this end, there is a global list ENEMIES, with the names of objects that
are dangerous. In large scale scenes, it would make more sense, that each agent
has his own set, but as most of the scenarios are reduced to a small area and
at most 100 agents, this simplification works well. While such objects do not
have an influence on obstacle avoidance, they alter the direction towards an
agent’s target. If an agent is within a certain distance to one or multiple of the
ENEMIES, he will adjust rotLeft to move away from the closest one. The chosen
direction still depends on the current target. But the closer he is to a dangerous
object, the more he deviates from his path to evade it. When an agent is evading
an enemy, its state is adjusted, which has an influence on the character’s speed.
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The list of the dangerous objects can be changed dynamically by adding
names or removing entries. In some scenarios, this is used to simulate a collective
learning effect regarding hunting agents or kinetic primitives.

3.6 Hunting Behavior

Another addition made to the system is the hunting behavior. A hunting agent
will target some other agent closest to him, that is alive and not hunting itself.
Once the hunting agent reached his target, the variable bIsAlive of its victim is
set to False. As a result, the agent will search for another character close to it.
When the hunter adjusts bIsAlive of a victim, its name will also be added to
ENEMIES, marking this agent as dangerous.

3.7 Individualization

Having a great number of agents with exactly the same behavior is not authentic.
In reality, there are multiple differences in character and physical ability between
people. To imitate this diversity, male and female agents feature different anima-
tions and a small number of character-specific attributes are introduced, which
influence aspects of the obstacle avoidance and the movement in general. They
are drawn randomly from a normal distribution with the default value 1 as mean
when the scene is initiated. The following attributes have been added:

riskFactor: Agents with a higher riskFactor are more careful and keep a bigger
distance to obstacles and enemies.

speedFactor: Some people are faster than others. The speedFactor directly
influences the playback speed of the character and therefore the movement
speed itself.

stressFactor: Characters that are in a hurry, have a lower stressFactor. They
take a higher risk by running up closer to other agents and obstacles. The
value also has an influence on how fast they are able to change direction.

fearFactor: Set to a higher value, the fearFactor increases the distance an agent
tries to keep from an enemy. Additionally, the movement and rotation
speed is increased when escaping.

memoryFactor: Agents forget checkpoints and obstacles faster if the memoryFactor
is low. A higher value indicates a better memory.

In addition to the characteristics mentioned above, the values defining the
perceptive area for recognizing obstacles are varied similarly. This has the result,
that some agents have better eyesight than others.



Chapter 4

Evaluation

To test the system and receive visual feedback, a large number of scenarios were
created. Some of them are presented in this chapter to give an impression of the
results.

4.1 Obstacle Course

Figure 4.1: On the left: An overview of the obstacles (in grey) between the
agents (spawned in the blue area) at the bottom and their target (marked red).
A rendered image of the resulting simulation is shown on the right.

One of the most straight-forward scenarios to test the abilities of the mechan-
ics is to let the agents find a target in an environment with multiple obstacles.
The goal, of course, is that as many as possible reach their destination. In this
scene, 100 agents are placed on one side of multiple obstacles with their target
on the other side (Figure 4.1).

15
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In the simulation, the agents first spread to bring some distance between
each other. Some of the more risk-averse people then try to walk around the
obstacles while others search a path through them. This works reasonably well,
even if real humans probably would be more efficient. Only a few situations arise,
where people get too close to an obstacle and believe to be blocked. After a short
while, most have managed to reach the target. A problem which can arise is that
because the agents check the obstacles by their vertices, the models might not
be detailed enough. People may not recognize them properly and pass through
them. This can be solved by adding more vertices to the obstacles’ geometry or
by checking the objects by their edges. Such a test would be computationally
more demanding, but the meshes could be kept simpler.

4.2 Rotating Bar

Figure 4.2: Ignoring other agents in the large frustum decreases the number of
collisions (shown in the left image), as the rotating bar is not hidden by other
agents (image on the right) and can be avoided. Marking the bar as dangerous
has a similarly positive effect.

As this thesis is partially inspired by the video I’ve fallen, and I can’t get
up!, a scene had to include a rotating bar between the agents and their target.
In contrast to the original video, the agents now can benefit from the obstacle
avoidance and the movement prediction. Theoretically, there should be signifi-
cantly fewer collisions. In the scene, a kinetic primitive was attached to the bar.
On collision with an agent, the characters’ body dynamics is enabled.

We tested multiple configurations of this situation. One, where the bar was
not assessed as dangerous, even after it had hit someone. Another one, where it
was added to ENEMIES after the first collision. And finally, with the rotating
bar declared dangerous at the start of the simulation.
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As expected, the number of people reaching the target increased from the
first to the third approach. Even though the rotating motion is fairly difficult to
handle (probably even for real humans), a majority of the 100 agents survived the
experiment. In the second configuration, there usually were around one or two
victims until the characters realized, that the bar was indeed dangerous. When
the obstacle was marked as an enemy at the start of the simulation, usually there
was no victim at all. Only when one of the agents’ fearFactor and riskFactor
were more extreme, the path was sometimes chosen too boldly.

While a single agent evades the rotating bar without any difficulty, detecting
only the nearest obstacle per sector is a significant disadvantage for people in a
crowd. Usually there are always agent close-by and thus limit the vision. As a
result, agents may ignore bigger obstacles such as the rotating bar, until they
stand right in front of them. By having them ignore other agents in the frustum
and only react to people in close proximity (when detected by the two smaller
sectors in front), the rotating bar is detected early enough and all agents can
easily evade it.

4.3 Obtrusive Clowns

Figure 4.3: An overview of the scene with the clowns (in yellow) hunting the
normal people (in blue) that try to reach the target (marked red). An image
from the simulation is shown on the right.

To test the hunting mechanics implemented in the decision logic, we con-
structed a scene, where a group of the normal male and female agents is chased
by a smaller number of clowns, armed with bad jokes. At the beginning, no
clown is treated as dangerous, but each clown is added to ENEMIES, as soon
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as he has reached his first victim. To make the scene more interesting, obstacles
were added to the environment and the clowns were given a small speed bonus.

The simulation rapidly becomes chaotic. Depending on the individual at-
tributes of the characters, some of the agents can get away for a long time, while
others are caught easily.

In some situations, the hunting clowns are an obstacle to themselves. When
two or more close in on a victim, they occasionally slow down because of each
other, allowing the victim to escape repeatedly. To address this, some special
logic would be needed for obstacle avoidance as a hunter.

4.4 Crossing the Road

Figure 4.4: As illustrated by the overview on the left, the agents can only reach
their target by crossing the road in between and trying to evade the cars on it.

Evading fast moving objects like cars is a difficult task for agents and is there-
fore an interesting scenario to observe their ability of predicting the movement
of obstacles. The agents and their target are set on the opposite sides of a road.
Some cars, which are a combination of a high-poly 3d model (from TurboSquid
[17]), a low-poly approximation for collision detection, and another simple model
for physics simulation are animated to occasionally cross the path of the crowd
at rather high speeds.

As expected, most, but not all, agents are able to reach the target unharmed.
Many of the accidents are results of the compromises in the decision model. For
achieving an efficient evasion around stationary objects and other agents, the
distance held to an obstacle can’t be too large. But this means that they risk to



4. Evaluation 19

collide with a fast car when evading it.

The movement prediction itself works well. In most cases, the agents correctly
anticipate the car in front of them and wait. To prevent more accidents, the
object prediction could be configured to predict more steps or adjusted by scaling
the temporal difference between each step. This can provide a better coverage of
the area obstructed later on. Additionally, the agents’ frustum could be widened
to detect the cars earlier and to give more time to react.



Chapter 5

Conclusion

In this thesis, we have presented decision logic for Miarmy agents that simulates
human behavior and features complex aspects, such as pathfinding with obstacle
avoidance. The standard decision nodes of Miarmy have only been used as a link
between the logic programmed in Python and the agent’s visual representation.
As all the information from the Python scripts has to be gathered individually
by those nodes, there is some impact on the performance. But by keeping their
number small, the effect can be reduced. This approach works surprisingly well
and allows extending Miarmy with practically all possibilities Python has to
offer. With regard to the visual aspect, as well as the physical simulation, this
combination is a convenient and powerful tool.

Unfortunately, some of the bugs in Miarmy are problematic. In some cases,
the outputs of decision nodes were not executed, calling a Python script from
them usually didn’t work and the direct expression mode has lead to crashes in
some cases. Even though there is a workaround for most of the problems, the
solutions are not always ideal. But in the end, the system works.

The decision logic itself is a working approximation of realistic human be-
havior. There are limitations from the choice of some procedures and the sim-
plification of some aspects. The restriction on six circular sectors for perception
and only reacting on the closest obstacle in each of them does not always allow
for an ideal decision. How an agent reacts to obstacles could also be improved
by including a more detailed assessment of the situation the character is in. Ad-
ditionally, the recognition of obstacles by checking their vertices is a compromise
with the limitation, that at some point close to the object, the resolution never
is high enough.

But as demonstrated in multiple videos with different scenarios, the result
is convincing. It is a working example, that intelligent behavior with a more
complex logic can be implemented in Miarmy. With enough time at hand and
maybe with a better documentation regarding the expandability of the software,
much better results would surely be possible. An intriguing idea for further
extending the system is to use neural networks as decision logic on the values
received by the obstacles detection and with the direction and speed of the

20
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agent as output. One would need to create a large amount of training data
describing the ideal reaction in numerous situations. But this could probably be
generated automatically from an ideal path placed in a 3d scene by using the
agent’s perception functions. There are even multiple Python libraries offering
a simple interface for creating and using neural networks. Unfortunately, due to
the limited time, this idea could not be explored.
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