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Abstract

Rank aggregation describes how one can derive a consensus from multiple pref-
erences over a given set of alternatives. Alternatives could be candidates in an
election, search results ranked by search engines or businesses which are ranked
by users with services like Yelp3.
There are different paradigms for how the consensus should be constructed. In
this thesis we will concern ourselves with the well known Kemeny and Slater
rules and the FLAP4 rule. As it is NP-hard to compute the consensus with
these paradigms there has been much research on producing good heuristics to
decrease computation time. We will introduce and evaluate different heuristics
for the different paradigms.

3www.yelp.com
4Feedback Linear Arrangement Problem
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Chapter 1

Introduction

Rank aggregation is the method of aggregating preferences over different alter-
natives of multiple parties. Alternatives could be a multitude of things, from
candidates in a political race to products in an online shop. Rank aggregation
is an important concept since there are many different possibilities how to form
a consensus from (often times) conflicting preferences. One could start with the
simple plurality rule. It simply ranks alternatives by the number of times they are
ranked highest. In an election for example we only cast a vote for the candidate
we favour the most and do not give any information about the other candidates.
Unfortunately we discard most information, so although plurality rule is easy
and fast to implement, sometimes it is not enough. Rank aggregation has gained
attention because of its possible uses in online shopping systems, review and rat-
ing websites and so on. There are different paradigms of scoring rankings. The
most researched are the Slater rule and the Kemeny rule. Another paradigm
devised by the Distributed Computing Group at ETH is the FLAP paradigm.
It is also known that it is NP-hard to compute an optimal ranking for the Slater
and Kemeny paradigms. So most of the algorithms known compromise optimal-
ity to lower the execution time. In this thesis we will investigate the properties
of heuristic methods developed by the writer and by other works. Aside from
designing and implementing algorithms that solve the rank aggregation problem,
we first have to find or produce data we can use to give our algorithms as input.
Therefore this thesis presents a method to produce artificial votes.

1.1 Related work

There is a large zoo of heuristics in the literature for the Kemeny and Slater rule.
A compilation of the more well-known heuristics for the Kemeny rule can be
found in[1]. They compare the heuristics for different input data. They conclude
that it is best to use an optimal method when possible to prevent suspicion
or disagreement since the non-optimal methods could produce different results.
They come to the same conclusion as this thesis that Local search is the most

1



1. Introduction 2

favourable method to use in this case.
There have also been advances in finding methods for the Slater rule. One of
them is described in[2]. But as we will see their approach has strong drawbacks.
Most methods for the Kemeny rule can be adapted to fit with the Slater rule
which we demonstrate in this thesis.
For the FLAP rule there is no literature yet because the Distributed Computing
Group at ETH devised it.
There are many different ways of generating synthetic test data described in the
literature. We decided to use the method described in [3].



Chapter 2

Background

2.1 Vote

A vote is defined by a sequence (a0, ..., an−1) that is some permutation on a given
set A of alternatives. The alternatives are ranked from highest to lowest, so in
this case a0 would be ranked the highest. A vote v can also be represented as a
function where v(ai) is the rank of alternative ai. A rank aggregation function
maps a give set of votes V to a single total ranking rtot which has the same form
as a single vote but should satisfy certain properties based on the votes given to
the rank aggregation function.

2.2 Majority Graph

For every two alternatives s and t, we define vst to be the number of votes in
V which rank s higher than t and vts the number of votes which rank t higher
than s. If vst > vts we define s > t as the majority vote and in turn t < s as the
minority vote.
From these building blocks we can construct a weighted graph G = (A,A×A,w)
called the preference graph with edges est pointing from alternative s to alterna-
tive t and weight function w(est) = vst.
We convert this preference graph to the majority graph by combining the re-
spective two edges between two nodes. If there are the edges in the preference
graph est and ets with w(est) > w(ets), then more votes prefer s to t. We denote
this in the majority graph by drawing one edge e′st from ns to nt with weight
w(est) − w(ets) i.e. the margin by which s wins the pairwise ranking against t.
Therefore all edges in the majority graph will have a non-negative weight. In
the special case that w(est) = w(ets) the direction of the edge in the majority
graph does not matter and the weight is 0. After an example we will show how
the majority graph can be used to express different rank aggregation paradigms.

Example 2.1. Consider a case with 3 alternatives A,B,C and 4 votes (B,C,A),

3



2. Background 4

(B,C,A), (C,A,B) and (C,B,A). From this we can construct the edges of the pref-
erence graph. For example eAB = 1 because there is 1 vote (C,A,B) which prefers
A to B. We can further compute eBA = 3 because there are 3 votes (B,C,A),
(B,C,A) and (C,B,A) which prefer B to A.
From this we compute the edges of the majority graph. For example we draw
the edge e′BA because w(eBA) > w(eAB). We then can calculate the weight
w(e′BA) = w(eBA)− w(eAB). Because w(eBC) = w(eCB) we can choose to draw
either e′BC or e′CB because they have weight 0.

C

A B1

3

0
4

2
2

C

A B
2

4 0

Figure 2.1: The preference graph of Example 2.1 on the left and the correspond-
ing majority graph on the right

2.3 Kemeny rule

The first paradigm we will define is the Kemeny rule. It tries to minimize the
Kemeny score of the total ranking, which is defined as follows. We take as
input the majority graph G and a total ranking rtot resulting from the rank
aggregation function. For each edge est in the majority graph we add w(est) to
the score if the total ranking ranks t higher than s. The intuition is that we pay
the weight of every edge we have to invert in the majority graph to satisfy the
total ranking. This means that an optimal solution regarding the Kemeny score
will try to minimize the sum of all weights of inverted edges resulting from the
total ranking. It is not always possible to find a total ranking with Kemeny score
0 because there may be a cycle in the majority graph and we have to break that
cycle by inverting at least one edge in that cycle.

KemenyScore(G, rtot) :=
∑
est∈E

rtot(t)<rtot(s)

w(est)

Example 2.2. Consider the majority graph given in Figure 2.2. The minimal
Kemeny score for this graph is 2 and there are two optimal total rankings: total
rankings (B,C,A) with edge eAB reversed and (C,A,B) with edge eBC reversed.
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C

A B
2

6 2 C AB

Figure 2.2: Example of a majority graph on the left and the total ranking (B,C,A)
represented by a graph on the right

The next paradigm will be very similar to this one and can be seen as the
Kemeny paradigm without weights.

2.4 Slater rule

The Slater rule tries to minimize the Slater score of a total ranking, which is
defined similar to the Kemeny score. We again take the majority graph G and
a total ranking rtot. The only difference is that instead of adding the weight of
a reversed edge est to the score we add 1 if w(est) > 0 and 0 if w(est) = 0.

SlaterScore(G, rtot) :=
∑
est∈E

rtot(t)<rtot(s)

wslater(est)

where wslater(e) = 1 if w(e) > 0, wslater(e) = 0 otherwise

Example 2.3. Consider the majority graph given in Figure 2.2. The minimal
Slater score for this graph is 1 and there are three optimal total rankings: total
rankings (B,C,A) with edge eAB reversed, (C,A,B) with edge eBC reversed and
(A,B,C) with edge eCA reversed.

2.5 FLAP rule

The Feedback Linear Arrangement Problem, in short FLAP, is the most complex
paradigm of the three discussed in this thesis. The FLAP rule aims to minimize
the FLAP score which is defined as the upset function that takes as arguments
a majority graph G with edge set E and a total ranking r.

upset(G, rtot) :=
∑
eij∈E

rtot(j)<rtot(i)

w(eij)(rtot(i)− rtot(j))
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One should note that r(j) < r(i) denotes that alternative j is ranked above i
since 0 is the highest rank.
The FLAP score is similar to the Kemeny score, but the weight of an inverted
edge is multiplied by how ’long’ the edge is, i.e. the distance between the two
alternatives in the total ranking r.

Example 2.4. Consider the majority graph given in Figure 2.3. The minimal
FLAP score is 14 with an optimal total rankings (C,B,D,A) with edges eBC ,
eDB and eAD reversed. In contrast the optimal Kemeny score would be 6 with
optimal total ranking (B,C,A,D) with only edge eDB reversed. The FLAP score
with total ranking (B,C,A,D) would be 18 since alternatives B and D have a
distance of 3 in (B,C,A,D) so we have to multiply w(eDB) by 3. This example
also shows that that the FLAP and Kemeny rules produce different optimal
solutions.

C

A B

D

4

2

44

6

4

C B D A

Figure 2.3: Example of a majority graph on the left and the total ranking
(C,B,D,A) represented by a graph on the right



Chapter 3

Data

In this chapter we will present the data we used to test our methods on. The
problem of finding or generating test data is an essential part of this thesis
because, as we will see, the hardness of a problem widely varies across different
datasets. Each dataset is a collection of votes over the same set of alternatives.
So each dataset can be characterized by the number of alternatives and the
number of votes.

3.1 PrefLib

PrefLib[4] is a reference library of preference data and contains most datasets
that are known. On the search for datasets we came across a few datasets (for
example the Sushi dataset) which we all found on PrefLib. For this reason we
took all real world data from the PrefLib database. This has the advantage that
PrefLib has unified data formats. There are two formats that are interesting for
us. The SOC - Strict Orders Complete List format contains all datasets that
only contain votes which rank all alternatives by a strict order. Because there
are few datasets in the SOC format we also looked at the TOC Orders with Ties
- Complete List format which contains all datasets which have ties in the votes
but the votes still rank all the alternatives. To represent all the datasets available
we plotted the individual datasets by their number of votes and alternatives in
Figure 3.1. As we can see the datasets have a substantial restriction. There are
no datasets with a high number of both vote count and alternative count.

7
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Figure 3.1: Datasets plotted by their characteristics. (i.e. vote count and alter-
native count)

3.2 Yelp Analysis

Yelp is a crowd-based review platform for local businesses. This means that
users can rate a business with a one to five star rating system. Every rating
can also include a review comment. The motivation for analysing this data is
to extract datasets for our evaluation. The businesses would be the alternatives
but the votes have to be extracted in an nontrivial way. We cannot use the star
based ranking system because it would be to granular with only 5 preference
categories. So we have to analyse the review text of which there are 1′125′457 in
the dataset we used, which was the dataset of the Yelp Dataset Challenge 2014.
The dataset specifies 30′944 business names without duplicates. We will define
the analysis method we used in the next chapter.
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3.3 Synthetic Vote Generation

Since we want to have a large amount of datasets where we can change the
properties as needed we have to design a vote generator. We take as basis the
definition given in [3]. As described before each dataset can be characterized
by the alternative count and vote count. These two parameters alone are not
enough as it does not describe the relation between the votes. For this reason
we define the consensus probability p ∈ [0, 1]. It is an approximate value that
describes the probability at which a vote ranks two alternative the same as
some imaginary guidance vote which is the same for all votes. We will always
choose p ∈ [0, 0.5] for consistency reasons. Note that with consensus probability
p ≤ 0.5 and guidance vote v the resulting dataset has the same characteristics
as a dataset with consensus probability 1 − p with the inverted guidance vote
of v since the alternatives are interchangeable. Our vote generator takes an
alternative count n and a consensus probability p. As guidance vote we always
use the vote (a0,a1,a2,...,an). So the vote we are constructing agrees with the
guidance vote with probability p in each pairwise ranking.

Algorithm 1: Vote Generator

Input : consensus probability p ∈ [0, 1], alternative count n
Output: one vote represented by a sequence of alternatives (ax, ay,...,az)

1 G := graph without edges and nodes representing alternatives
2 foreach two distinct alternatives ai, aj with i < j do
3 if edge (ai, aj) or (aj , ai) not already in G then
4 r := random number ∈ [0, 1)
5 agree := r < p
6 if agree then
7 add edge (ai, aj) to G

8 else
9 add edge (aj , ai) to G

10 add all resulting transitive edges to G

11 return G converted to the transitive sequence



Chapter 4

Algorithms Definitions

In this chapter we define each algorithm we implemented in this thesis. The
results of these algorithms will be presented in the next chapter.

4.1 Linear Programs

These algorithms serve as a basis of comparison for the other developed heuris-
tics. The Linear Programs have the property that they produce an optimal
solution at a reasonable computation time without needing a complex imple-
mentation. For the solution to be optimal we have to run the programs as
integer linear programs which means that variables can be restricted to N. This
has the implication that the program will generally have a higher computation
time. A possibility for future work could be to investigate the quality of the
non-optimal linear programs.

4.1.1 Linear Program for Kemeny

This linear program is Linear Program 3 from [5]. Given is a majority graph
G = (A,E,w). Note that w(e) = 0 if e /∈ E.

Linear Program for Kemeny

xab ∈ {0, 1}

minimize
∑

a,b∈A
w(eab)xab

subject to
for all distinct a, b ∈ A, xab + xba = 1 (1)
for all distinct a, b, c ∈ A, xab + xbc + xca ≥ 1 (2)

x(a,b) = 1 signifies that the edge from a to b exists in the total ranking. In other

10



4. Algorithms Definitions 11

words the final ranking ranks a above b. This implies that

x(a,b) = 1 ⇐⇒ x(b,a) = 0

Which is enforced by constraints (1).
Constraints (2) ensure transitivity of the rankings. It can also be seen as the
condition that for every group of 3 nodes in both directions of traversal there is
at least one edge in traverse direction. In other words there are no cycles.
The objective function minimizes the sum of the weights of all edges which have
to be reversed to satisfy the total ranking. This is precisely the definition of the
Kemeny rule.

4.1.2 Linear Program for Slater

This linear program is very similar to the Linear Program for Kemeny. All
specifications stay the same except the weight function, which is now the earlier
defined wslater. Again note that wslater(e) = 0 if e /∈ E.

Linear Program for Slater

xab ∈ {0, 1}

minimize
∑

a,b∈A
wslater(eab)xab

subject to
for all distinct a, b ∈ A, xab + xba = 1 (1)
for all distinct a, b, c ∈ A, xab + xbc + xca ≥ 1 (2)

The objective function minimizes the sum of all edges that reverse an edge from
the majority graph in the total ranking. In contrast to the Kemeny rule, the
Slater rule does not take into considerations the margin of how much a pairwise
contest was won but just who was the winner.

4.1.3 Linear Program for FLAP

We introduce variables r0, r2, ..., rn−1 which indicate the total ranking of the al-
ternatives. This means that if ri = k the i’th alternative has ranking k, with n−1
being the highest ranking. Note that this is in contrast to the order convention
in this paper, but the result can easily be inverted after the computation.
We also introduce variables ai,j ∈ {0, 1} with i, j ∈ {0, 1, ..., n− 1} The following
constraints establish that no two alternatives have the same ranking.
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a0,0 a1,0 a2,0 a3,0 ... an−1,0
a0,0 a1,1 a2,1 a3,1 ... an−1,1
a0,2 a1,2 a2,2 a3,2 ... an−1,2
a0,3 a1,3 a2,3 a3,3 ... an−1,3
a0,4 a1,4 a2,4 a3,4 ... an−1,4
... ... ... ... ... ...

a0,n−1 a1,n−1 a2,n−1 a3,n−1 ... an−1,n−1

ai,k = 1 indicates that alternative i is ranked k′th. To ensure that no two
alternatives are ranked the same rank we demand ∀k ≤ n− 1

n−1∑
i=0

ai,k = 1

and to ensure that one alternative cannot hold two ranks we demand ∀i ≤ n− 1

n−1∑
k=0

ai,k = 1

Now we can compute the rank ri of alternative i.

ri =
n−1∑
k=0

ai,kk

We introduce a new set of variables dx,y which indicate the difference between the
ranking of alternative x and y. We achieve this by introducing the constraints

dx,y ≥ rx − ry

dx,y ≥ 0

So dx,y specifies how much higher x is ranked above y and is 0 if x is ranked
below y. We prevent the case where x is ranked above y by adding the objective
function

minimize
∑

x,y∈{0,1,...,n−1}

w(exy)dx,y

where wx,y is the weight of edge exy in the majority graph. If we compare the
objective function to the FLAP score definition

upset(G, r) :=
∑

r(i)<r(j)

weight(ej,i)(r(j)− r(i))

we see that our objective function is equivalent to the upset function. If an
alternative x is ranked above y in the final ranking (i.e. rx > ry, as n − 1 is
the highest ranking.) dx,y = rx − ry > 0 and dy,x = 0. Now if x wins the
pairwise election against y, w(exy) = 0 and w(eyx) > 0. So if x is ranked above
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y in the total ranking we do not pay a price because both terms w(exy)dx,y and
w(eyx)dy,x are 0.
If we however rank y higher than x, dx,y = 0 and dy,x > 0. So we pay w(eyx)dy,x
which is exactly what the definition of FLAP describes. Since we know the values
of w(eij) before running the solver, we can exclude the terms where w(eij) = 0,
essentially halving the length of the sum.

Linear Program for FLAP

ai,j ∈ {0, 1}

minimize
∑

x,y∈{0,1,...,n−1}
w(exy)dx,y

subject to∑n−1
i=0 ai,k = 1∑n−1
k=0 ai,k = 1

ri =
∑n−1

k=0 ai,kk
dx,y ≥ rx − ry
dx,y ≥ 0

4.2 Heuristic Methods

In this section we define heuristic algorithms. They usually trade speed with
optimality. By comparing the results to the results of the linear programs we
can evaluate the quality of the heuristic results.

4.2.1 Copeland’s Method

The Copeland method[6] is a well known rank aggregation function which simply
ranks the alternatives in the majority graph by their in-degree. The intuition
is, that the more pairwise victories an alternative has, the higher it should rank
in the total ranking. Note that this method does not consider the magnitude
of the victories. In other words it does not include the weights of the edges in
the calculation. For this reason the pure Copeland method should be used for
Slater, since Slater does not consider the weights as well. An adapted version
for Kemeny will be presented after this one.

Algorithm 2: Copeland’s method

Input : Majority graph G
Output: Nodes of G sorted by in-degree

1 N := nodes(G)
2 return mergesort(N) // mergesort on in-degree
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4.2.2 Weighted Copeland’s Method

For this algorithm we take the basic Copeland method and instead of sorting the
nodes by in-degree we sort them by the added weights of the incoming edges.
This change makes it more suitable for Kemeny or possibly FLAP since those
paradigms also have weights in their definitions.

Algorithm 3: Weighted Copeland’s method

Input : Majority graph G
Output: Nodes of G sorted by in-degree times weights

1 N := nodes(G)
2 return mergesort(N) // mergesort on in-degree times weights

4.2.3 Borda rule

Another well known and very old rank aggregation function is the Borda rule.
It uses the Borda count which was devised in 1770 by Jean-Charles de Borda
and is calculated as follows. For each single vote the Borda count of a specific
alternative is the number of alternatives that are ranked lower. So the lowest
alternative would have a Borda count of 0. Furthermore the total Borda count
of an alternative for all votes is the sum of all Borda counts for each vote.
We can easily read this data from the weights of the edges of the majority graph.
For any alternative we compute the total Borda count as follows. In the major-
ity graph we look at each leaving edge eout and add |V |+w(eout)

2 where |V | is the

number of voters. For each entering edge ein we add |V |−w(ein)
2 .

This method should be applied to the Kemeny and possibly FLAP rule since an
unweighted Borda rule for Slater would just result in the Copeland method.

Algorithm 4: Borda Rule

Input : Majority graph G
Output: Nodes of G sorted by Borda count

1 N := nodes(G)
2 return mergesort(N) // mergesort on borda count

4.2.4 Search with pruning

This is a slow but optimal method which searches through the solution space like
a tree. It has been first described for rank aggregation in [7] where the method is
called branch and bound. The method tries to reduce computation time by prun-
ing branches of the tree that are guaranteed to be worse than the current best
solution. It accomplishes this by keeping track of the best paradigm score it has
yet seen. This works for Kemeny and Slater since we know that the score only
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increases when adding edges. Unfortunately the score of FLAP is too complex
since the impact of an edge on the score is not static. A possible optimization
that has been implemented is to run a faster but not optimal rank aggregation
function and start from the score of that solution. This allows us to prune bad
search paths much earlier.
The algorithm listed in Algorithm 5 will start with an empty graph we will call
currentGraph. We add all the nodes to currentGraph without the edges. We
also initialize the currentScore with 0. Now we can optionally use a fast but
inexact rank aggregation function we will call the preSolver function to get a
better starting point. If we do we set bestScoreYet and bestOrderYet to the
solution. If we start from nothing we set them 0 and empty respectively. Then
we set up the search stack unvisitedEdgesStack and fill it with all edges from
G.
Now that we have set up everything we can start searching the solution tree.
We start with the edge on the top of the stack and pop it. We then test if we
would introduce a cycle by adding the edge to currentGraph. If no we add
the edge and then add all edges that are implied by transitivity and remove
them from unvisitedEdgesStack. Then we update currentScore and test if
currentScore is still smaller than bestScoreYet. If yes and unvisitedEdgesStack

is empty we found a better solution and we can adapt bestOrderYet and bestScoreYet.
Otherwise if unvisitedEdgesStack is not empty we go further down the recur-
sion. After all these cases we reset currentGraph and currentScore and reinsert
edge into unvisitedEdgesStack. We then try the same thing with edge point-
ing in the other direction before returning.
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Algorithm 5: Search with Pruning

Input : Majority graph G, optional preSolver()
Output: order of nodes with the best possible paradigm score

1 currentGraph := nodeSet(G) // this graph will keep our progress

2 currentScore := 0
3 bestOrderY et := preSolver(G) // optional

4 bestScoreY et := score(bestOrderY et) // best score we have seen

5 unvisitedEdgesStack := edgeSet(G)
6 visit(edge ∈ unvisitedEdgesStack)
7 return bestOrderY et
8

9 Procedure visit(edge)
10 do Twice
11 remove(unvisitedEdgesStack, edge)
12 scoreBefore := currentScore
13 if no path from targetNode of edge to sourceNode of edge then

// calculated by breadth first search

14

15 currentGraph.add(edge)
16 addedTransitiveEdges := all edges that must be added to

ensure transitivity
17 currentGraph. add(addedTransitiveEdges)
18 unvisitedEdgesStack.remove(edge)
19 update currentScore
20 if currentScore < bestScore then
21 if unvisitedEdgesStack is empty then
22 bestScoreY et := currentScore
23 bestOrderY et := sorted nodes in currentGraph

24 end
25 else
26 visit(edge ∈ unvisitedEdgesStack)
27 end

28 end
// reset changes

29 currentGraph.remove(edge, addedTransitiveEdges)
30 currentScore := scoreBefore
31 unvisitedEdges.add(edge, addedTransitiveEdges)

32 end
33 reverse(edge)// try the same thing with the edge pointing

in the other direction
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4.2.5 Recursion on set of similar candidates

This rank aggregation function is taken from [2] and tries to divide the majority
graph into sets of similar candidates. First we need to give a definition of a set
of similar candidates.

Definition 4.1 (Similar Candidates). A subset S ⊆ A is a set of similar candi-
dates if for any s1, s2 ∈ S and for any a ∈ A − S, s1 → a if and only if s2 → a
(and hence a→ s1 if and only if a→ s2).

s2 s3s1

a

zyx

S

a

x+ y + z

Figure 4.1: The original majority graph without the edges irrelevant to classifying
s1, s2 and s3 as similar on the left and after the transformation on the right with
S = (s1, s2, s3)

If these conditions hold for S in the majority graph, S is a set of similar
candidates. We can see right away that there are always trivial similar sets. One
is the set Sall = A with all candidates in A and the sets containing at most
one candidate. We will see that these cases are not interesting for improving
computation time.
An interesting property for us is that we can transform a majority graph G with
a similar set S by regarding all orderings between nodes outside and inside S
as orderings with one meta-alternative representing all nodes in S. So we could
solve the smaller transformed majority graph G′ and the sub-graph consisting
of the nodes in S which is also a majority graph and then insert the result
in the result of G′. Now it becomes clear why the trivial similar sets are not
interesting because they do not change the complexity of the original majority
graph. Another property of this method is that we can apply it recursively until
there are no sets of nontrivial similar candidates. At the base case we still have to
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apply an arbitrary rank aggregation function we will call the base case algorithm.
Furthermore we introduce a theorem from [2].

Theorem 4.2. If S consists of similar candidates, then there exists a total rank-
ing rtot with optimal Slater score in which the alternatives in S form a (con-
tiguous) block (that is, there do not exist s1, s2 ∈ S and a ∈ A − S such that
rtot(s1) < rtot(a) < rtot(s2) ).

This theorem shows that we do not lose optimality by reducing the majority
graph with a set of similar candidates. So if the base case algorithm also is
optimal with regard to Slater score, the whole recursion method will be optimal
too.
The potential for computation time reduction follows from the observation that
the computation time increases superlinearily with the number of alternatives.
The fastest reduction of the number of alternatives would be to choose a set
of similar candidates which size is closest to half of the size of the set of all
alternatives. But since such a search could be costly it could be faster to just
pick the first similar set of candidates we can find. For this uncertainness we
tested both variants. The set of similar candidates is found by transforming the
problem into a Horn satisfiability problem as described in [2].
For every alternative ai we define a boolean variable vi. Then, for every ordered
triplet of distinct alternatives a1, a2, a3, if there are either edges from a1 to
a3 and a3 to a1 or edges from a2 to a3 and a3 to a1 we introduce the clause
v1 ∧ v2 =⇒ v3. We can now use a Theorem from [2].

Theorem 4.3. A setting of the variable vi satisfies all the clauses if and only if
S = {ai ∈ A : vi = true} consists of similar candidates.

With the help of Theorem 4.3 we can identify a set of similar candidates by
choosing two alternatives ai, aj and set their respective variables vi, vj to true.
We then go through the clauses and set further variables to true if they are
implied. We stop when all clauses are satisfied. By setting two variables to true
at the start we avoid trivial sets of similar candidates of size one. We also want
to avoid the trivial set of similar candidates where S = A. So after all clauses
are satisfied, we have to check if all variables are set and if they are, throw the
result away. We can repeat our search with every pair of two alternatives until
we have found a desired set of similar candidates.
Theorem 4.2 does not hold with the Kemeny score, as we will show in an example.

Example 4.4. Given the majority graph in Figure 4.2 we can see that there is
a nontrivial set S = {s1, s2} of similar candidates. Furthermore we can see that
there is a total ranking rtot = (s1, a2, a1, s2) with a Kemeny score of 2. We already
notice that the set S is split between the other alternatives and in turn would
violate theorem 4.2 with regard to the Kemeny score. On the reduced majority
graph we can also see that the recursion on the recursion algorithm would have a
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Kemeny score of at least 100 and would therefore violate the optimality property
we have with the Slater score.

a1

s1 s2

a2

1 100

100

1

1

100

a1

S

a2

101

101

100

Figure 4.2: The original majority graph on the left and the reduced majority
graph with similar set {s1, s2}

Algorithm 6: Recursion with similar candidates

Input : majority graph G, base case algorithm baseCase()
Output: sorted nodes based on the base case algorithm

1 similarSet := optimal nontrivial set of similar candidates or first found
nontrivial set of similar candidates

2 if similarSet not null then
3 subGraph := G ∩ similarSet
4 subResult := solve subGraph with ’Recursion with similar candidates’

algorithm
5 subNode := node representing the subGraph in the hyperGraph
6 metaGraph := (G \ similarSet) ∪ subNode
7 metaResult := solve metaGraph with ’Recursion with similar

candidates set’ algorithm
8 replace subNode with subResult in metaResult
9 result := metaResult

10 else
11 result := baseCase(G)

12 return result
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4.2.6 Local search

The algorithm described in this section aims to optimize a total ranking that is
already close to optimal. For each alternative it tries to find a new position to
improve the score of the specific paradigm. It is best used to improve the result
even further after a non-optimal method which we call the presort algorithm has
been applied. It stops searching if it does not find a better position for any of the
alternatives. This could lead to a very high computation time because we start
the search at the very beginning every time we have found an improvement. The
scoreEffect(positionBefore, positionAfter) procedure takes the edges attached to
the alternative a at positionBefore and calculates the effect of theses edges if a
were at position positionAfter.
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Algorithm 7: Local Search

Input : majority graph G, presort algorithm presort()
Output: sorted nodes based on the presort algorithm presort() plus local

improvements
1 preResult := presort(G)
2 foreach alternative ∈ preResult do
3 oldScoreEffect := scoreEffect(position of alternative, position of

alternative)
4 foreach newPosition ∈ preResult do
5 newScoreEffect := scoreEffect(position of alternative,

newPosition)
6 if newScoreEffect < oldScoreEffect then
7 set position of candidate to newPosition
8 reset foreach counters
9 break

10 return preResult
11

12 Procedure scoreEffect(positionBefore, positionAfter)
13 before := true
14 newScoreEffect := 0
15 foreach position in preResult do
16 if position ≥ positionAfter then
17 before := false

18 if position 6= positionBefore then
19 if before then
20 newScoreEffect := newScoreEffect+weight of edge from

positionBefore to position

21 else
22 newScoreEffect := newScoreEffect+weight of edge from

position to positionBefore

23 return newScoreEffect

4.3 Other Methods

In this section we describe methods which are not rank aggregation functions
but methods which are still used in this thesis.
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4.3.1 Probability Estimation

As we will see, the consensus probability p of synthetic datasets greatly influences
the hardness of the rank aggregation problem. The incentive for estimating p
would be that we could apply this to real world datasets and therefore estimate
their hardness. If we look at the definition of the consensus probability we see
that it uses a guidance vote which is then discarded. So if we want to estimate
p we have to come up with a workaround to estimate this guidance vote. We
devised two approaches to this problem which we will define now.
The first method is called probability estimation with alternative distance and it
takes each vote individually as guidance vote vguide and compares the index of
the alternatives with the indexes in the other votes. We sum up all the differ-
ences and then normalize the result with respect to the number of votes and the
number of alternatives.

Algorithm 8: probability estimation with alternative distance

Input : set of votes V
Output: normalized estimation for consensus probability

1 if |V | < 2 then
2 return 0

3 avgerageDifference := 0
4 foreach baseV ote ∈ V do
5 totalDifference := 0
6 foreach currentV ote ∈ V do
7 currentDifference := 0
8 foreach alternative ∈ baseV ote do
9 difference := difference+ |index of alternative in baseVote

− index of alternative in currentVote|

10 averageDifference :=
averageDifference+ totalDifference/(|V | − 1)

11 return averageDifference/(|V |·number of alternatives2)

The second method is called probability estimation with alternative pair dis-
agreement and it works the same way like the first but instead of comparing the
differences of the indices it counts how many pairs of alternatives are ordered
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differently between vguide and the other votes.

Algorithm 9: probability estimation with alternative pair dis-
agreement

Input : set set of votes V
Output: normalized estimation for consensus probability

1 if |V | < 2 then
2 return 0

3 avgerageDifference := 0
4 foreach baseV ote ∈ V do
5 totalDifference := 0
6 foreach currentV ote ∈ V do
7 currentDifference := 0
8 foreach distinct alternative1, alternative2 ∈ baseV ote do
9 if ordering of alternative1 and alternative2 in baseV ote

differs from ordering in currentV ote then
10 currentDifference := currentDifference+ 1

11 totalDifference :=
totalDifference+ currentDifference/((number of
alternatives2)/2− number of alternatives)

12 averageDifference :=
averageDifference+ totalDifference/(|V | − 1)

13 return averageDifference/(|V | − 1)

4.3.2 Yelp ’better than’-analysis

This is an automatic analysis method which uses the comments of the reviews
as a data source. First we only look at reviews with the substring ’better than’
in their comment. Then we look at the part after the ’better than’ substring.
The length of this suffix can be chosen beforehand. We then search the suffix for
the name of any other business. The resulting reviews can be used as a pairwise
comparison. More precisely the review is believed to rank the reviewed business
higher than the business found in the suffix. It should be obvious that there will
be many false positives. We will discuss the issues with this method in the next
chapter.



Chapter 5

Results

In this section we will show the results our testing produced. We conducted our
testing as follows. We first generated a large set of test cases with the vote gen-
eration mechanism we described earlier. More precisely we generated datasets
for each consensus probability category (0, 0.1, 0.2, 0.3, 0.4, 0.5) and in each
category we have the subcategory of an alternative count of 3 to 100 and in
those subcategories we generated 50 different datasets. When not specified oth-
erwise, the result graphs show the results of all datasets generated. We capped
the computation time at 300 seconds and if we exceed the cap we note a compu-
tation time of −1 seconds. We abort the computation altogether if we reach an
alternative count where all datasets exceed the time cap. We have normalized
the vote count to 100 as the number of votes has no impact on the complexity of
the majority graph. It just scales the weights of the edges but does not change
the structure of the graph.

5.1 Linear Programs

These are the results of the linear programs we described earlier. We are not that
interested in their running time, but rather the score the solutions produced. We
will use the optimal score of the linear programs to compare to the less optimal
but faster heuristics. For this reason we will not discuss the figures much in
this section but just remark noteworthy characteristics. We used the Gurobi
Optimizer1 for our implementation.

5.1.1 Linear Program for Kemeny

From Figure 5.1 we can see that the computation time will increase with the
number of alternatives and consensus probability. We will see that this is a
characteristic of every rank aggregation function.

1www.gurobi.com/products/gurobi-optimizer

24
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Figure 5.1: Computation time of linear program for Kemeny, 20 cases per alter-
native count category

5.1.2 Linear Program for Slater

The graph in Figure 5.2 is very similar to the one in Figure 5.1. The only
difference is that the computation time is worse overall. This can be explained by
the characteristics of linear programming and the Slater definitions. Essentially
the linear programs for Slater and Kemeny have to decide in which direction the
edges should point to. But in contrast to Kemeny, with Slater all the edges have
the same weight. So the linear program which uses branch and bound methods
does not have an indicator for which edge to start the search.
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Figure 5.2: Computation time of linear program for Slater, 20 cases per alterna-
tive count category

5.1.3 Linear Program for FLAP

As we can see in Figure 5.3 the computation time of the FLAP cases explodes
after just a few alternatives are introduced. For this reason we cannot compare
any algorithms for the FLAP paradigm since cases with very few alternatives
are not very interesting. The only category which could be evaluated are the
datasets with consensus probability 0 which means that all votes always take the
inverse vote of the guidance vote. In other words they are all the same, which
makes the rank aggregation problem trivial.
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Figure 5.3: Computation time of linear program for FLAP, 10 cases per alterna-
tive count category

5.2 Heuristic Methods

In this section we show the results of the implemented heuristic methods and
compare them with each other and with the linear programs.

5.2.1 Copeland’s Method

Since the algorithm is very basic, the problem is solved nearly instantaneously,
on the test machine specifically in 10 to 100µs. For this reason we only compare
the Slater score to the optimal linear program for Slater. We have computed
comparison graphs for consensus probability 0.1 to 0.5. We will only show the
graphs for consensus probability 0.1 and 0.5 since the intermediary results can
be interpolated. From Figure 5.4 and Figure 5.5 we can see that scorewise
the Copeland method is worse than the linear program but only by a constant
difference. How this relation could change for more alternatives we can only
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imply, since data for higher alternative count is not available because of the
exponential running time of the linear program. All in all the Copeland method
is a very fast approximation algorithm and has been used as a building block in
other algorithms we discussed.

0 20 40 60 80 100
−100

0

100

200

300

400

500

600

700

Alternatives count

S
la

te
r 

sc
or

e

 

 

linear
Copeland

Figure 5.4: Slater score of linear program for Slater and Copeland method with
consensus probability = 0.1
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Figure 5.5: Slater score of linear program for Slater and Copeland method with
consensus probability = 0.5

5.2.2 Weighted Copeland’s Method

Everything that has been said about the unweighted version can also be said
about the weighted Copeland method but with regard to the Kemeny score.
Because the linear program for Kemeny runs faster than the Slater version we
can compare the score up to a count of 100 alternatives for consensus probability
0.1. But we do not learn anything new as the constant difference of the two scores
just continues as before. The results are shown in Figure 5.6 and Figure 5.7.
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Figure 5.6: Kemeny score of linear program for Kemeny and weighted Copeland
method with consensus probability = 0.1
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Figure 5.7: Kemeny score of linear program for Kemeny and weighted Copeland
method with consensus probability = 0.5

5.2.3 Borda rule

The computation for the Borda is very fast. The time ranges from 10 to 1000µs.
It is just slightly slower than the weighted Copeland method. For this reason
we will compare the Kemeny score with the Copeland method in Figure 5.8 and
Figure 5.9. From Figure 5.9 we can deduce that Borda and weighted Copeland
are the same regarding their score. And in Figure 5.8 we see that the score of
the weighted Copeland is better. Combining this with the fact that Borda is
slightly slower we can deduce that the weighted Copeland method is superior to
the Borda rule.



5. Results 32

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

Alternatives count

K
em

en
y 

sc
or

e

 

 

Borda
weighted Copeland

Figure 5.8: Kemeny score of Borda and weighted Copeland method with con-
sensus probability = 0.1
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Figure 5.9: Kemeny score of Borda and weighted Copeland method with con-
sensus probability = 0.5

5.2.4 Search with pruning

Since this algorithm searches the whole solution space we know that it produces
the optimal solution we only have to look at the computation time. We decided
to run our computations with the Kemeny paradigm and used the weighted
Copeland method as our preSolver function. The results are displayed in Figure
5.10. The graph shows that a search over the solution space results in exponential
running time for an NP-hard problem even when cutting off branches of the
search tree like the prune method does. It is noteworthy that the datasets with
consensus probability 0 are solved virtually instantaneously. The reason is that
the preSolver function finds the already optimal solution with a Kemeny score
of 0. So all other branches in the search tree get cut off because any edge that
gets changed results in a score greater than 0. We also ran punctual tests on
the Slater paradigm with the Copeland method as preSolver. The results were
similar.
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Figure 5.10: Computation time of search with pruning, 20 cases per alternative
count category

5.2.5 Recursive on set of similar candidates

For our evaluation we used the Slater paradigm and the linear program for
Slater for our base case algorithm. Since our base case algorithm is optimal our
resulting algorithm will be optimal too. Furthermore we take the first set of
similar candidates we find and do not search for the optimal set. The resulting
computation times are shown in Figure 5.11. When we compare the data to the
linear Slater we can see that the running time is actually worse. The reason for
this is the overhead of finding the similar set of candidates.
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Figure 5.11: Computation time of Recursive on set of similar candidates, 20
cases per alternative count category

Next we look at the size of the optimal similar set of candidates. The mo-
tivation behind this is that we can estimate how much of a benefit we actually
could gain from splitting the majority graph into these two sets. Note that the
optimal set would split the majority graph in half. Figure 5.12 and Figure 5.13
show that there are no beneficial similar sets for higher alternatives counts. For
higher consensus probabilities it is even worse with datasets higher than 20 al-
ternatives having optimal sized sets of similar candidates with sizes 0 to 2. This
makes it close to impossible for the algorithm to improve computation time since
there are only barely beneficial sets of similar candidates for higher alternative
counts. So our algorithm just spends time by searching for a similar set that is
either not present or very small. For this reason we stopped investigating further
since the basis of the whole method is to find good sets of similar candidates.
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Figure 5.12: optimal set of similar candidates size, 10 cases per alternative count
category, consensus probability = 0.1
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Figure 5.13: optimal set of similar candidates size, 10 cases per alternative count
category, consensus probability = 0.5

5.2.6 Local search

This method is the undisputed winner of the discussed heuristics. We will first
look at the Slater paradigm. We used the Copeland method first and then used
local search. We show the computation times of the linear program for Slater,
only Copeland and Copeland plus local search in Figure 5.14. We can see that
even though local search seems like a brute force algorithm, the computation
time does barely increase with higher alternatives counts even with a consensus
probability of 0.5 as seen in Figure 5.15. Next we look at the Slater scores of the
methods. We see in Figure 5.16 that Copeland plus local search is barely worse
than the optimal linear program and a huge step up from the simple Copeland
method.
Next we look at the Kemeny paradigm. This time we used the weighted Coplenad
method to produce the input for the local search. Just as with Slater we can
see that the local search barely uses any additional computation time. When
comparing the Kemeny score we see the same result. The scores of the weighted
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Copeland plus local search results are nearly optimal.
We also compared the FLAP score of the results of weighted Copeland plus local
search to our results of the linear program for FLAP. The resulting Figure 5.19
should be taken with a grain of salt as the interesting alternatives counts start
when the linear program breaks down. Nevertheless it could be used as an upper
bound for future work.
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Figure 5.14: Computation time of local search after Copeland, linear program
for Slater and only Copeland, consensus probability = 0.1
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Figure 5.15: Computation time of local search after Copeland, linear program
for Slater and only Copeland, consensus probability = 0.5
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Figure 5.16: Slater score of local search after Copeland, linear program for Slater
and only Copeland, consensus probability = 0.1



5. Results 41

0 20 40 60 80 100
−50

0

50

100

150

200

250

300

Alternatives count

E
xe

cu
tio

n 
tim

e 
[s

]

 

 

local Search after weighted Copeland
linear
weighted Copeland

Figure 5.17: Execution time of local search after weighted Copeland, linear pro-
gram for Kemeny and weighted Copeland, consensus probability = 0.5
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Figure 5.18: Kemeny score of local search after weighted Copeland, linear pro-
gram for Kemeny and weighted Copeland, consensus probability = 0.5



5. Results 43

0 20 40 60 80 100
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Alternatives count

F
LA

P
 s

co
re

 

 

local Search after weighted Copeland
linear FLAP

Figure 5.19: FLAP score of local search after weighted Copeland and linear
program for FLAP, consensus probability = 0.1

5.3 Other Methods

5.3.1 Probability Estimation

We tested both methods by first generating datasets to cover the range of con-
sensus probability from 0 to 0.5. We can then run the datasets through our
estimation method and plot the results against the actual value. Fist we look
at Algorithm 8. In Figure 5.20 we can see that our score is indicative of the
consensus probability but for consensus probabilities 0.3 to 0.5 it would be hard
to infer the consensus probability. We can compare this to Algorithm 9 in Figure
5.21. We can see that Algorithm 8 is the better method since the score is more
indicative of the underlying consensus probability for higher values.
We then field-tested Algorithm 8 by giving it real world datasets from PrefLib
and then check the results by running the dataset through the linear program
for Kemeny. Unfortunately all of the 10 datasets we tested were estimated to
have a consensus probability of 0 to 0.1. Nevertheless the resulting computation
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time was also indicating a consensus probability between 0 and 0.1. This shows
that our method of estimation the consensus probability works with small con-
sensus probabilities. But it also shows that real world datasets typically have
very uniform votes.
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Figure 5.20: probability estimation score with alternative distance
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Figure 5.21: probability estimation score with alternative alternative pair dis-
agreement

5.4 Yelp analysis

We ran the ’better-than’ analysis over the 1’125’457 reviews which all include a
review comment. We searched for business references in suffixes with length 40.
The algorithm only returned 5’284 reviews that have the desired format, which
is a very low number if we remind us that there are 30’944 distinct business
names. We then manually looked at 50 random reviews to get an estimation of
how many of theses reviews are false positives. Only 35 had an actual reference
to another business and they all only referenced widely known businesses (e.g.
Starbucks). Reasons for false positives include names for businesses which have
other meanings (e.g. ’America’) or irony. For these reasons the ’better than’
analysis is not fit for preference data extraction since the few valid preference
relations would be to a small number of widely known ’reference’ businesses.
The ’better-than’ analysis can be viewed as a lower bound analysis since we now
know that this is the least we could get out of the give datasets. We will also
provide an upper bound analysis, showing the maximal potential of the datasets
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and in turn proving that the Yelp review comments are not fit for preference
ranking data overall. Since we have the list of business names we can assess how
many review text have a potential reference to other businesses. This is similar
to the ’better-than’ analysis but does not demand the substring ’better than’
and searches the whole review comment for the name of another business. We
also count each foreign business name in a review comment individually since
one review could reference multiple other businesses. The search returned 38’408
possible preferences, which is already a low number if we consider there are 30’944
business names. We again picked 50 random reviews and found that only 6 are an
actual reference. These few references have the same issues as the ’better-than’
analysis. This concludes the analysis of the Yelp dataset and we conclude that
the review texts cannot be used for preference ranking data extraction. There
is still the possibility for extracting data from the star ranking. But the data
could not be used in the context of this thesis because of the granularity of a
star based system.



Chapter 6

Conclusions

6.1 Summary

We have analysed a wide variety of rank aggregation functions and evaluated
their quality and efficiency for the three paradigms Kemeny, Slater and FLAP.
We concluded that from the methods covered the local search algorithm with
the Copeland heuristic produces the most optimal solutions with a very fast
running time. We also delved into other topics like real-world data extraction
and analysis. One could say that we barely scratched the surface as the topic is
very broad with much work still being carried out. We will outline some ideas
for future work in the next section.

6.2 Future Work

One topic for further research would be to unify the methodology of how rank
aggregation paradigms are defined and then try to analyse characteristics of
paradigm families. Currently their creation resembles more of an alchemy than
an exact science.
An issue with the FLAP rule is that the linear program defined in this thesis is
too complex for a reasonable running time for an optimal solution. Future works
could either try to come up with a better linear program or another technique
altogether to produce a reasonably fast optimal solver. Furthermore the FLAP
problem is strongly believed to be NP-hard but there has been no proof even
though it should be easy to show since Kemeny and Slater are known to be NP-
hard.
During the work on this thesis there were ideas to generate additional datasets by
comparing books by their sales numbers in different countries on online services
like Amazon1 but unfortunately Amazon does not openly publish their sales num-
bers. Nevertheless there could be great potential in automated data gathering
of this sort as we have seen the limitations of currently available datasets.

1www.amazon.com
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