
Distributed
 Computing

Temporal Map of Switzerland

Semester Thesis

Florian Zinggeler

zifloria@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

June 13, 2016

Abstract

In this project, I created an interactive map of Switzerland to bring the past
closer to the present. The map displays old and new aerial photographs and
allows the user to easily compare the same location at different times.
In this paper, I will present how the images were obtained and how they were
automatically georeferenced and warped such that they fit nicely on top of each
other.
A fully automatic solution is presented that performs all needed steps automat-
ically. This method works well with pictures taken above a certain height. For
images where the system fails, a simple manual process can be used to fill the
gaps. Both approaches combined could be used to eventually cover the whole of
Switzerland.

Keywords: Georeferencing, computer vision, aerial photos, GIS, image regis-
tration

i

Contents

Abstract i

1 Introduction 1

1.1 Goals . 1

1.2 Related Work . 2

2 Automatic Georeferencing 3

2.1 The Raw Data . 4

2.2 Obtaining the Data and Preprocessing 5

2.2.1 Getting the Images . 5

2.2.2 Rough Georeferencing . 5

2.3 Removing the Frame . 8

2.4 Georeferencing . 9

2.4.1 Area Based Image Registration for Georeferencing 9

2.4.2 Manual Georeferencing . 10

2.4.3 Georeferencing Using Feature Matching 10

2.4.4 Tile Image Generation . 16

2.5 Putting It All Together . 17

3 The Frontend Application 19

4 Results 21

4.1 Frame Cropping . 21

4.2 Feature Based Georeferencing . 21

4.2.1 Manual vs. Automatic Georeferencing 21

4.2.2 Did it Work? . 22

4.2.3 Effects of Flying Height and Time Taken on Success Rate 23

ii

Contents iii

5 Conclusion and Outlook 25

5.1 Outlook . 25

5.1.1 Similarities on the Same Layer 25

5.1.2 Lines and Intersections . 26

5.1.3 Layer Merging Using Voronoi Diagram 26

5.1.4 Layer Merging Using Image Stitching 26

5.1.5 Orthorectification Using Digital Elevation Model 26

5.1.6 Crowd Sourcing . 27

A Code Example A-1

Chapter 1

Introduction

Recently, the Federal Office of Topography, Swisstopo, released a huge part of
its national treasure1: over 200000 aerial pictures of Switzerland, dated from
1926 to 2007. They are publicly accessible on their LUBIS viewer website [28].
On this map, we can see when and where the pictures were taken. By clicking
on an image we can view it in a separate window. While this way of viewing is
certainly useful at times, the user cannot really see the bigger picture this way.
Since we can only view one image at a time, it is hard to compare the same
location at different times. It is even harder to get an overview of the whole area
if the images were not taken high enough, as is the case with many of the older
images.

Wouldn’t it be nice if we could see the whole of Switzerland just as with
the normal aerial view, but at much earlier dates? This question was the main
motivation for this project. The idea was to use the images made available by
Swisstopo, merge them onto a single giant image per date and display the result
in an interactive web application created specifically for the purpose of presenting
the past.

1.1 Goals

The goal of this project was to create an interactive map of the past.
The task could therefore be divided into two main tasks: Creating the user
interface and processing the images into an appropriate format for the frontend.
Accordingly, this report is divided into two main chapters. In the first chapter,
the methods used to obtain the images and to process them such that they can
be later used by the frontend, are presented. The second part describes how the
web based map application was created. Then, there is an additional chapter
that gives an outlook to the future, where several ideas are presented that could

1Historic Geodata, Key data and features, http://www.swisstopo.admin.ch/internet/

swisstopo/de/home/topics/geodata/historic_geodata/im_coll/key_dat.html, Accessed:
June 13, 2016[21]

1

http://www.swisstopo.admin.ch/internet/swisstopo/de/home/topics/geodata/historic_geodata/im_coll/key_dat.html
http://www.swisstopo.admin.ch/internet/swisstopo/de/home/topics/geodata/historic_geodata/im_coll/key_dat.html

1. Introduction 2

be implemented for better results.

To bring the images into an appropriate format, they first had to be obtained
and heavily processed. The difficulties here were that each image was taken at
a different time, with a different camera, from a different height and not exactly
straight down. Additionally, the older images had a much lower resolution than
the newer ones. To make matters more complicated, all images had a frame
around them, but not always the same one. This made an automated solution
to remove this frame slightly more complicated.

The map application should allow the user to easily choose between different
times. The idea was to provide different controls, such as a slider or a dropdown.
Also, it should be easy to compare the same location at different times. For this,
a way to split the view into two parts seemed to provide the best solution.

1.2 Related Work

This is not the first time something similar was created. The processes of geo-
referencing and orthorectification are well understood, as well as displaying tile
maps on the web.
This project is a follow up to an almost identically named project by Marc Müller
[38] in Spring 2015. However, he took a different approach in both the design
and functionality of the web application as well as in the method used for pro-
cessing the images. He used a method called image stitching, as presented in the
paper by Brown et al. [5] to merge the pictures together. This is mainly used
in creating panorama photos and works very well for small areas, however errors
accumulate with area size and this method is therefore not very useful for my
application here.

For automatic georeferencing, there exist various approaches. Some use an
area based method based on cross-correlation or mutual information such as in
[6] by Bunting et al. Others try to find matching features between a reference
image and the old images via edge detection, as in [29], [16] or [52]. Another
approach is to vectorize the data. For this, roads and other line features need to
be detected. In retrospect, this approach seems to be most promising, as shown
in [32], [33], [55] and [7].

Chapter 2

Automatic Georeferencing

Georeferencing is the process of assigning every pixel on a picture to the correct
geographic location. Usually, this requires some control points on both the pic-
ture and on an already accurate map of the same physical location as a reference.
At least three points are required, but the more ground control points are used,
the more accurate can the pixels in between be assigned to their location. More
than three points are required because the points have to not only correct the
location, but also the lens distortion of the camera, the uneven terrain and the
perspective distortion. (See Figure 2.1). In cities or flat areas we can mostly
neglect the terrain deformities, however in more hilly areas or even the Alps this
has to be accounted for. Currently, the assignment of these ground control points
is mostly a manual process, supported by a GIS software such as the free and
open-source QGIS[44] or the commercial ArcGIS [42] software. To my knowl-
edge, there does not exist any free software that can automatically georeference
an image. On the commercial side, ArcGIS is capable of automatically assign-
ing ground control points, however even their solution “does not work well with
scanned maps or historical data”1.

(a) Terrain distortion (b) Perspective distortion

Figure 2.1: Reasons that make georeferencing difficult. (From [22], [23])

1Georeferencing a raster automatically, http://desktop.arcgis.com/en/arcmap/10.

3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm, Ac-
cessed: June 13, 2016[17]

3

http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm

2. Automatic Georeferencing 4

2.1 The Raw Data

The data used for this project were the aerial images available at LUBIS [28].
These pictures have some metadata associated with them, as seen in Figure 2.2.
Of most interest to us is the approximate location, the approximate rotation and
the approximate flight height. Other useful information are the pixel dimensions
of the pictures and the date the pictures were taken. This information can be
obtained by either clicking on the ‘more info’ button in the LUBIS viewer2 or,
more useful for programmatic access, by using their JSON REST API [53]. With
this information we can get a good first guess for the actual geolocation.

Figure 2.2: An image with its metadata. (From [51])

The pictures themselves come in various shapes and sizes. They have different
aspect ratios, different resolutions and different colours (not just grayscale vs.
colour, but also the sepia tone that old pictures tend to have). Additionally,
they depict different sized regions of the map, some of them with a very small
viewport, just showing a close up of the city while others show the whole of
Zürich. On top of that, each picture is surrounded by a dark frame. Additional
metadata is displayed on the frame, such as the exact time the picture was
taken plus some information about the camera. Older images have measurement
devices lying on the frame, such as a watch or a barometer. An additional hurdle
is present when obtaining these images. Although they are publicly accessible to
view, they are not intended for downloading. Since the images are divided into
many subimages, downloading them automatically was slightly complicated.

2Example metadata, https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/
ch.swisstopo.lubis-luftbilder_schwarzweiss/19320480121010/extendedHtmlPopup?

lang=en, Accessed: June 13, 2016, [9]

https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19320480121010/extendedHtmlPopup?lang=en
https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19320480121010/extendedHtmlPopup?lang=en
https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19320480121010/extendedHtmlPopup?lang=en

2. Automatic Georeferencing 5

2.2 Obtaining the Data and Preprocessing

2.2.1 Getting the Images

The LUBIS online viewer displays these images using a popular JavaScript li-
brary called OpenLayers [40], by using a Web Map Tile Server (WMTS [36]).
A WMTS server is organised in a straightforward way. The URL plus the file
name describe the coordinates and the zoom level of the tile. By knowing this,
it was possible to download one image by downloading all tiles on the highest
zoom level. After that, I used the popular image processing tool imagemagick
[27] to merge them together to get a single high resolution image. As a penalty
for doing it this way, the downloaded images have a barely visible watermark on
them.

2.2.2 Rough Georeferencing

To position our images correctly on a map, we need more information about
the camera. We need to know the focal length to guess the scale of our images.
However this information is not available in the metadata, and we have to esti-
mate it. Luckily, the bounding box of our images is provided in the metadata.
The bounding box specifies the lower left coordinate and the upper right one.
Together with the rotation, we can calculate the actual image dimensions. (See
Figure 2.3).

α

α

w h

bh

bw

α

w cos(a)h sin(a)

Figure 2.3: The bounding box of an image. We need to find out w and h

2. Automatic Georeferencing 6

However, if we only use this information, we end up with the following equa-
tion which is numerically unstable and completely wrong when our rotation gets
close to 45◦.

w =
−bh · | sinα| − bw · | cosα|
| cosα|2 − | sinα|2

h =
−bh · | cosα| − bw · | sinα|
| cosα|2 − | sinα|2

This would not be such a problem if the given bounding box was perfectly
accurate, as we could add a special rule for this case. However, since the bounding
box is not exact, we get even worse results using this simple solution. The
instabilities arise from the fact that given a square as the bounding box and an
angle of 45◦ we get infinite solutions, as illustrated in the Figure 2.4 below. For
other inputs, no solution exists. In our case this would occur quite often, as the
bounding box is not very accurate.

(a) Infinite valid solutions at rotation 45◦ (b) Given these parameters, no exact solu-
tion is possible. The result found by the
näıve solution is so large that it lies far out-
side this paper. The depicted solutions are
from the other approach, given different as-
pect ratios r.

Figure 2.4: Reasons that make the näıve solution unstable with errors in the
given parameters.

To get a more robust solution for all angles, we can make use of an additional
parameter, the pixel dimensions. Thanks to this, we know the ratio of the picture
width and height r = pw

ph and get a much more robust equation. This is also
stable with small errors in the bounding box. We get the modified equations by
simply substituting w by h · r or h by w

r . This way we get two solutions for w
and h so we just take the average of both solutions.

2. Automatic Georeferencing 7

h1 =
bw

| sinα|+ r| cosα|
w1 =

bw
1
r | sinα|+ | cosα|

h2 =
bh

| cosα|+ r| sinα|
w2 =

bh
1
r | cosα|+ | sinα|

h =
h1 + h2

2
w =

w1 + w2

2

Together with this information and the position and rotation from the meta-
data, we can create a first rough georeferenced image. I used the GeoTIFF
format [46] for this, as it is capable of storing all the needed metadata along-
side the image in the same file. A GeoTIFF is simply a TIFF file, with a very
specific set of attributes that need to be present. This had the advantage that I
could use existing GIS software such as QGIS [44], GrassGIS [20] and uDig [54]
to visualize and interact with the data early on. The GeoTIFF format has an
attribute that specifies the transformation from pixel space to some geographical
coordinate system. This transformation is specified by an affine transformation,
that is a matrix containing the rotation, scale and position information. Figur-
ing out this transformation was harder than expected, as all references I found
only made use of the position and scale, but not any rotation. The fact that
our images are rotated around the centre and not the origin of the picture made
it even more challenging, as this affects the position. Nevertheless, after some
experimentation, I managed to derive the correct transformation:

x̂ =

[
w
pw

cosα − w
pw

sinα

− h
ph

sinα − h
ph

cosα

]
x+

[
cx + −w cosα+h sinα

2

cy − −w sinα−h cosα
2

]

x are the pixel coordinates, x̂ the geo coordinates, pw, ph the width
and height of the image and cx, cy the centre point of our image in
geo coordinates

2. Automatic Georeferencing 8

2.3 Removing the Frame

To seamlessly tile our photographs, we first have to get rid of the frame sur-
rounding each picture. Here are two examples of how this frame may look:

Figure 2.5: Two examples of the black frame. (Images from [1])

To move along quickly and not slow down the development of other parts of
this project, I initially cropped these frames manually. One small hurdle here
was that our images contain additional geodata, which gets lost if the images
are processed with a normal image editing application such as GIMP [18]. To
overcome this, I used GIMP only to read out the pixel coordinates of a selection
and used this information to do the actual processing with gdal translate [14].
This way the new metadata is produced correctly.

Later, this process was automated using the powerful open-source computer
vision library OpenCV [39]. Our task is to find the biggest possible rectangle
that does not contain any parts of the border. To do this automatically, we need
to define what it takes for a pixel to be part of the frame. What worked nicely
was the following formula. It classifies whether a line of pixels is part of the
frame or not.

de f i s f r a m e l i n e (p i x e l s) :
num frame pixe l s = 0
f o r p i x e l in p i x e l s :

i f p i x e l <= min black or 255 <= p i x e l :
num frame pixe l s += 1

return num frame pixe l s / l en (p i x e l s) > th r e sho ld

Where a pixel is described as its brightness, from 0 to 255. We chose the pa-
rameters min black and threshold to be approximately 20 and 0.01 respectively.
You might wonder why the threshold was chosen as such a low percentage. The
reason is that some of the pictures have round objects on the frame that are part

2. Automatic Georeferencing 9

of the frame, so it should detect even just a small part of those objects. Besides,
the images normally do not contain many near black pixel values, so even with
a threshold such low, there were no false positives in practice.

The algorithm for finding the biggest possible rectangle to crop the image
works similar to a binary search. There is an inner rectangle that is definitely
not on the frame, and there is an outer rectangle that is definitely on the frame.
Then, in each step, the rectangle in the middle is computed. Then, each side of
the rectangle will be checked using the formula defined above to find out whether
it is intersecting the frame or not. If it is, the side corresponding to the line that
was checked on the outer rectangle will be set to the middle one. Conversely,
if it is not part of the frame, the inner rectangle’s side will be adjusted. This
algorithm converges very quickly; with our images we rarely needed more than
ten iterations. The full algorithm can be found in Appendix A.

2.4 Georeferencing

2.4.1 Area Based Image Registration for Georeferencing

Image registration is the process of aligning two or more images of the same
scene into a unified coordinate system. It is often used in medical imaging and
also in remote sensing, among others.

In a first approach, I tried to use an automated image registration algorithm
provided by The Remote Sensing and GIS software library (RSGISlib) [49]. The
library provides various useful tools for remote sensing, such as image calibration
or an image registration module, just what I needed. This module implements an
area based algorithm for image registration, as presented in the paper by Bunting
et al.[6]. Unfortunately, I got very unsatisfactory results using this method. The
algorithm found way too many false positives, making an accurate transformation
impossible. Additionally, even with a very low resolution image it took hours
to find enough matches. The algorithm has an adjustable search window that
specifies how many pixels around some initial tie points are searched. When this
value was set too low, it did not find any points at all. If it was set too big, it
would not finish within any reasonable time.

I concluded that an area based method is not suitable for our data, as others
have before me: ”feature-based methods [are] recommended if the images contain
enough distinctive and easily detectable objects. This is usually the case of
applications in remote sensing and computer vision. The typical images contain
a lot of details (towns, rivers, roads, forests, room facilities, etc). On the other
hand, medical images are not so rich in such details and thus area-based methods
are usually employed here.” [56]

I therefore was looking for another solution. To start working on the frontend

2. Automatic Georeferencing 10

I needed some nice data, however the tried method would not give me any
satisfying results. Since the available time for this project was limited, I had to
move on.

2.4.2 Manual Georeferencing

Since my first try at automatic georeferencing failed, I started doing the geo-
referencing process manually, using uDig [54] and QGIS [44]. This way, I could
move on to the next step even though the first step was not satisfying yet. By
placing a moderate amount of ground control points in a GIS software, I was
able to get much better results than with the area based attempt before, at the
cost of doing each picture manually. To get satisfying results, I had to place
approximately 16 evenly distributed points per image.

Using this method, I could use the obtained ground control points to warp
the image such that it fits nicely on top of the reference map. To do this, I used
the very versatile GDAL [11] application, namely its gdalwarp command [15].
This utility is an image mosaicking, reprojection and warping tool that is also
able to warp an image according to some transformation specified by ground
control points. I compared different interpolation methods and decided that tps
(thin plate spline)[4] gave the best results.

I used this process to create a sample set of georeferenced images that could
then be used for the last part of the image enrichment process, the creation of
tile images.

2.4.3 Georeferencing Using Feature Matching

After experimenting with the manual georeferencing process, I took a second
stab at automatic georeferencing. This time, equipped with some experience
with openCV from the frame cropping, I had a better idea of how such an
algorithm might work. The algorithm is supposed to match features of the image
to be registered onto the base image. Therefore, the algorithm should produce
a mapping from pixel coordinates of one image to the coordinates of the other
image. In our case, we are given an image and its approximate bounding box
(floating image) and the corresponding part of the base image, which is already
georeferenced. By matching features from one image to the other, we can figure
out the correct coordinates for our floating image.

2. Automatic Georeferencing 11

The process I ended up using can be divided in these steps:

1. preprocessing

2. feature detection and description

3. feature matching

4. filtering

5. postprocessing

The individual steps are explained in the following paragraphs.

Preprocessing

In a first step, a base image from the same bounding box as the floating image
is obtained. The higher resolution image is then scaled down, such that one
dimension matches the dimension of the other one. This rescaling is not strictly
necessary for the algorithm to work, but experiments showed that it performed
better when both images had similar dimensions. Afterwards, both images are
scaled down, mainly to reduce the processing time. This rescaling barely affected
the results, as long as the resolution was not lowered below a certain level.
A good trade-off appeared to be at around 1000 by 1000 pixels, as at that
resolution, we still got nearly identical results as with the full resolution, but at a
much lower processing time. Even though a rotation invariant feature matching
algorithm was used, the base image was rotated such that both images were
oriented roughly the same way. This made one of the later filtering steps easier.

Both images were converted to a grayscale image, as the used algorithm
for feature matching only works with grayscale images. Different image filters
were tried hoping they would improve the result. Histogram equalisation[41] did
improve the results significantly, so this filter was applied to both images.

Feature Detection and Description

In the next step, we had to identify potential features in both images and compute
a description for them such that they could be compared later.
To identify good features, we had to find places in the image that were unique
enough, such that we could easily find the same place in another image. Examples
of good features are street corners, buildings, bridges, etc. These are generally
referred to as corners. Contrast these to some point on a lake or the middle of
a crop field; these points are incredibly hard to retrieve in another image, even
for humans, as illustrated in the figure below.

The descriptors work by computing a vector based on the surroundings of a
feature. An important property of a descriptor algorithm is whether they are

2. Automatic Georeferencing 12

(a) In this example, good features
would be E and F. For the others,
it is very hard to find where they
are from.

(b) FAST corner detector

Figure 2.6: A visual description of good features. (From [24], [25])

scale and/or rotation invariant.

There are various algorithms that can be used for both feature detection and
feature description. The most popular ones are SIFT[34], SURF[3], ORB[50] and
BRISK[31]. All of these come with both a feature detector as well as a feature
descriptor. However, there are other approaches such as FAST [47][48] that can
only be used to detect features, not to compute descriptors. It is still useful, as
a description for the features found by FAST can be computed later with some
of the above mentioned algorithms. In fact, ORB uses FAST to find features.

I chose ORB for both feature detection and feature description. The reason
for choosing ORB over SIFT or SURF was that SIFT and SURF are patented,
while ORB is not. I gave all above mentioned algorithms a try to compare their
performance on our task. With our pictures, they all performed about equal.
When ORB performed bad, all the others did too and when ORB performed
good, all the others did as well. The only big difference was the execution time,
where ORB and SURF were clear winners, as shown in table 2.1.

2. Automatic Georeferencing 13

Method Run time (seconds) Features Good matches

ORB 6.636647 10000 15

ORB 22.574342 20000 17

SURF 50.757283 19026 10

SIFT 27.395539 10000 12

SIFT 97.436219 21315 20

BRISK 601.118143 82195 54

Table 2.1: Comparison of execution times and number of matches for different
feature detection algorithms. Note: This is no fair comparison, as different
amounts of features are detected. The number of good matches can serve as an
indicator of the quality of an algorithm.

Feature Matching

Features from one image can then be compared to those of the other one. To get
a measurement of the similarity between two features, we computed the distance
of their descriptor vectors.

By simply taking the best matches, we unfortunately get many false results.
To better filter the matches later, we need to compute for each match both the
best and the second best match. This additional information about the second
best match is needed in the next step to filter out the more unique features, that
is the ones where we are pretty sure they are correct.

Filtering

After using a brute-force matcher to match all the features, we need to filter out
the worst matches. To this end, I used three filtering stages. The order of the
first two methods does not matter, but the third step has to come last.

2. Automatic Georeferencing 14

Figure 2.7: All matches, what a mess! (Images from [1])

In the first step, a ratio test of the best and second best match is performed to
filter out all matches that are not unique enough to be accurately matched. For
further information on why this works well, I recommend the paper by Lowe[34],
where this method was proposed.

Figure 2.8: Filtered matches after performing the ratio test. We are only left
with a few hundreds of potentially good matches. (Images from [1])

As a second step, we can discard all matches that could never ever be valid,
given our initial guess at the position, rotation, scale, flying height and focal
length. Using these quantities we can make a prediction where a point should
lie. Then we can simply use the distance from the predicted point to the matched
one and filter out all points that are too far off.

2. Automatic Georeferencing 15

Figure 2.9: Filtering out all matches that are too far off the predicted point.
(Images from [1])

Now, we are still left with many wrong matches plus a few correct ones, as
can be seen in Figure 2.9. To get only the correct ones, we need to fit our matches
to some model, and filter out all the outliers. This model is a description of a
perspective projection. To filter out the outliers, I used the RANSAC algorithm
[10] which is an iterative method to estimate the parameters of a model from a
set of data points containing many outliers. Therefore, it can also be used as an
inlier detector. This leaves us with a small set of matches, which approximately
form a perspective projection and are hopefully correct. An example of the result
is shown in Figure 2.10.

Figure 2.10: Only correct matches are left after performing RANSAC. (Images
from [1])

2. Automatic Georeferencing 16

Postprocessing

Now that we have our probably correct matches, we need to get the initial
coordinates back since we skewed them in the preprocessing phase by scaling
and rotating. Luckily, this a simple matter of performing the transformations in
reverse. With our initial coordinates back, we can finally georeference our image.
With the correctly georeferenced base image, we can assign ground control points
to our floating image. Then, we can warp the image using the same method as
with the manual georeferencing, described in section 2.4.2.

2.4.4 Tile Image Generation

To display maps in a web browser, we cannot simply display the whole image, as
the resolution of these images is way too big for rendering, let alone for serving
them. One single image has an uncompressed size of roughly 600MB (compressed
with JPEG ca. 60MB), at a resolution of approximately 16000 by 16000 pixels.
When all the images from one date are merged into a single layer, the merged
picture is even larger.
For this reason, map applications for the web usually use tiled images to only
download and render what is really needed. An additional benefit of doing this
is caching. This way, the client does not have to download the same image over
and over again and thus puts less load on the server.
These tiled images are pre-generated on the server, such that they cover the
whole area of the picture at various zoom levels. This obviously trades access
speed for disc space, as we now need all our images more than once at different
resolutions.
The Open Geospatial Consortium has defined a standard for these Web Map Tile
Servers (WMTS) [37], where it is clearly specified how these tiles are organized
into zoom levels and coordinates. Following that specification, the whole world
fits into a 256 by 256 pixel tile at zoom level zero.

To produce tiled images, I could again make use of the versatile GDAL tool
set [11] for both merging multiple images into one and generating tiled images
from the merged files.

To merge all images belonging to a specific layer (containing all images of a
given date), I used the .vrt file format [12], specifically made for such applications.
This format is a text based XML specification of the merged file. Thanks to the
virtual file format, we can work with many images at the same time as if they
were merged into a single image. The format also allows to define transformations
and filters on the images, which will later be applied while processing. To merge
all my files, I made use of its capabilities to map nodata3 values to transparency

3These are special pixel values such as pure black, which are marked this way to specify that
they do not contain any information

2. Automatic Georeferencing 17

Figure 2.11: Tile pyramid. (From [26])

to merge the images without any black borders.

Finally, using gdal2tiles.py [13] I was able to render the tiles from the pre-
viously created merged .vrt file. gdal2tiles.py is even able to produce a simple
skeleton for a web application to display the produced map. However, since my
needs were more complex and I was not using any of the supported map libraries,
I did not make use of this capability.

2.5 Putting It All Together

Every step of the pipeline has now been laid out. All that is left is some way to
hold it all together. Throughout the whole project, I developed various Python
[43] scripts for the individual parts of the whole process.
In the end, this evolved into a simple script that controls the whole process, from
downloading the images to generating tiles.
This script needs as input one or more bounding boxes in the Swiss coordinate
system plus optionally some image IDs directly taken from the Swisstopo LUBIS
viewer [28]. Given that, it will download all the images that are available within
these bounding boxes, join them together and perform a rough georeferencing
using the available metadata.
Then, features will be searched and hopefully matched between the converted
images and a base map. If the matching was successful4, it will warp the image
accordingly. In the end, the images of one date are merged into a single layer
and new tiles will be generated for them. At the same time, a file containing
metadata about all the available layers will be updated, since this file is needed by
the frontend. In the merging phase, pictures that were manually georeferenced

4See section 4.2.2. Whether the matching was successful or not is based on the number of
matches.

2. Automatic Georeferencing 18

take precedence over the automatically georeferenced one. This way, we can
correct mistakes or add some that failed completely. The script also provides
some statistics about how many pictures were warped successfully.
The diagram below provides a good overview of the whole process.

Figure 2.12: Diagram of the whole process

Chapter 3

The Frontend Application

To make our results easily accessible, we chose to create a web application to
view the finished map of the past and present. To do this, we need some way to
display maps in the browser and a nice interface to control the application.
To display our tile images, a number of map frameworks for the web were consid-
ered such as OpenLayers 3 [40], Mapbox [35], Leaflet [30] and Google Maps [19].
All of these could get the job done, so it was more a decision of taste and less a
technical one. I ended up using OpenLayers, as their API was well documented,
the framework widely used and it comes with a friendly license (BSD 2).

Since web developers have to invent everything a thousand times over, there
exist a plethora of solutions for the same problem, namely complex user inter-
faces and user interaction. Because of that, various frameworks, libraries and
even languages were considered such as React [45], AngularJS [2], Elm [8], etc.
However, since only a small fraction of what these solutions provide would have
been needed and since the requirements weren’t too complex, I choose the plain
old holy trinity of JavaScript, HTML and CSS to do the job, without any fancy
UI library.

Each merged picture, that is all pictures captured on the same day, were put
on a different layer. The oldest layers were put on top of the newer ones, up
to the newest one, the current orthophotos provided by Swisstopo. This way, a
date to be viewed can be selected by hiding all dates older than the one we are
interested in.

To control the date, three different ways were implemented. One is a slider
such that we can easily see the changes of two succeeding years. To complement
that, the left and right arrow keys were mapped to go to the next and previous
date. If we are looking for a specific date, a dropdown is provided for precise
navigation. Because we wanted to be able to compare not just two successive

19

3. The Frontend Application 20

dates, but any with any, a button for splitting the view was implemented. This
way, we can view the same location at two different times, side by side. These two
viewports are then synchronised, such that they always show the same location
at the same zoom level.

Figure 3.2: Some screenshots of the prototype

Figure 3.3: The final product

Chapter 4

Results

4.1 Frame Cropping

The presented method for automatically cropping a picture with a black frame
works very well with our data. Of all the processed sample data, I could not
spot any instance where the cropping would have failed. There might be some
examples where it failed, but to have any real statistics we would have to look
at each picture manually, which is not practical to do. So, instead of statistics,
here are some pictures of rectangles that the algorithm detected:

Figure 4.1: The best rectangle to crop away the frame, as found by the algorithm.
(Images from [1])

4.2 Feature Based Georeferencing

4.2.1 Manual vs. Automatic Georeferencing

The images generated by the automatic georeferencing process are usually less
accurate than the manually georeferenced one. However, most of them are good

21

4. Results 22

enough for our visual purpose. The main difference to the manually georef-
erenced images is the distribution of the ground control points. These points
should ideally be distributed roughly uniformly across the image, with a higher
density in areas with large terrain height differences. The points generated by
the algorithm are somewhat randomly distributed, with a higher density in the
middle of the picture. I suspect that this is because the middle of the picture
is least deformed by the perspective camera, making it easier to find matches in
the centre. This distribution is far from ideal and leads to pretty bad distortion
towards the edge of the image, but it was good enough for our purposes.

(a) Manual (b) Our algorithm

Figure 4.2: A sample of the distribution of matches. (Images from [1])

4.2.2 Did it Work?

Unfortunately, we cannot algorithmically determine whether our results are cor-
rect or not. For this, human interaction is still required. Fortunately, we can
take a pretty good guess whether it succeeded or not. This comes from the ob-
servation that if we do get a correct matching, we usually get at least 15 matches.
On the other hand, if our program got it wrong, we would typically only get less
than 9 matches. Based on that, a minimum threshold for the number of matches
was determined under which we reject the computed solution. Unfortunately,
there are still some false positives that are wrongly accepted as a good solution.
This can happen if we do get a lot of matches, but only in the very centre of the
image. Then, even though our matches are correct, we get a vary badly distorted
warped image.

4. Results 23

4.2.3 Effects of Flying Height and Time Taken on Success Rate

The algorithm was most successful with recent pictures. (See Figure 4.3). Only
a few pictures older than 1950 could be georeferenced using our algorithm. This
is caused by various reasons. First, the older images do often show completely
changed regions, where a matching is impossible. Even when a region has not
changed significantly, the overall picture still looks quite different when we look
closely. New trees have grown, others were cut down and river banks have
changed.

1933 1943 1953 1963 1973 1983 1993 2003
year

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

Figure 4.3: Success rate per year

Our algorithm also performs worse if the pictures were taken from close to
the ground. (See Figure 4.4). This is because from far above the perspective
distortion becomes negligible, while from close-up, it affects the feature descrip-
tors significantly. This makes georeferencing for older images even harder, since
many of those were not taken from high up.

4. Results 24

2000 4000 6000 8000 10000 12000 14000

flying height [m]

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

Figure 4.4: Success rate per flying height

There is a correlation between time taken and flying height, as seen in Figure
4.5, so it is not clear whether the time the picture was taken or the flying height
is more important to the success of our method. To answer that question with
statistical significance, we would need a larger sample.

1933 1943 1953 1963 1973 1983 1993 2003
year

0

2000

4000

6000

8000

10000

12000

14000

16000

fly
in

g
he

ig
ht

[m
]

Figure 4.5: Flying height per year

Chapter 5

Conclusion and Outlook

This project started with the goal of creating an interactive map of Switzerland
of the past. Accomplishing this goal involved various disciplines. From GIS to
computer vision and even frontend web development. We accomplished most of
our initial goals and laid down the fundamentals to expand our interactive map
even further. We created a script that can perform all necessary steps automat-
ically, from downloading to cropping to georeferencing and finally including the
newly produced images in the data used by the frontend such that it can be
displayed.

5.1 Outlook

The work that has been done in this project is far from complete. We are still
interested in having a system that would allow to grow to the point where the
whole earth would be covered in an interactive map of the past. In this chapter,
we look at ideas that could help expand the map further and might make the
automatic georeferencing process more accurate.

5.1.1 Similarities on the Same Layer

One addition to the algorithm that we used could be to not only try to find
matches between the current picture and the one we are trying to reference, but
also find similarities on the same layer and on others closer in time. This way,
we would have a network of points connected through time. If we now reference
one of those pictures, all the others can be updated to get better accuracy. Such
an interconnected system would need some way to mark how sure a certain
matching is, such that errors would not propagate too far.

25

5. Conclusion and Outlook 26

5.1.2 Lines and Intersections

A key observation when doing the georeferencing process manually, is that the
most stable features over time tend to be roads. An algorithm that would focus
on identifying roads and intersections might perform much better than one that
tries to find matches between edge features. Such an algorithm might even take
the newest vector data of road maps into account. Something similar has already
been tried, for instance in papers by Li[32], [33], Zhongliang [55] or Cléri [7].

5.1.3 Layer Merging Using Voronoi Diagram

The way we merged our layers in this project was basically arbitrary. It is entirely
possible that a badly matched image will be placed on top of a better matched
one, partially hiding the better matched image. To improve this, we could take
into account the observation that our algorithm performs better in the centre of
the images. The closer we get to the centre, the more matches we get. Therefore,
the interpolation in between those matches is more accurate than towards the
edges.
So, instead of merging the images by stacking them in an arbitrary order on top
of each other, we could merge them in a way that would minimize the average
distance to the closest centre of a picture. To accomplish this, we could construct
a Voronoi diagram with the centre coordinates of our images. Then, we could
cut out our images along the resulting lines of the Voronoi diagram, as illustrated
below.

5.1.4 Layer Merging Using Image Stitching

To better merge the images from the same date, we could use image stitching
techniques, similar to those used in merging panorama images. This way, we
can get seamlessly merged images. For this, the efforts from last year’s thesis by
Müller [38] could be combined with our approach.

5.1.5 Orthorectification Using Digital Elevation Model

Even if we seamlessly stitch our images together, we would not get as good
looking results as the current orthophotos provided by Swisstopo. What is still
missing is known as orthorectification. This final step would correct out the
perspective distortion caused by the camera. To do this, we would need the
digital terrain model of Switzerland. Then, we can project our image onto that
3D model and render a perfectly orthogonal image. For this, we need to know the
intrinsic and extrinsic parameters of the camera, such as focal length, position,
rotation and zoom among others. These parameters can be approximated using

5. Conclusion and Outlook 27

Figure 5.1: A Voronoi diagram constructed from the centre points of our pictures.
(Background image from [1])

our mapping from pixel coordinates to geocoordinates. In fact, these parameters
are already produced by the employed RANSAC algorithm, but for this project
we did not make use of them.

5.1.6 Crowd Sourcing

Even if the automatic process could be improved significantly, there will remain
places where human interaction is necessary. This could be to correct mistakes
that the system made, add more points to pictures that have a bad distribution
of points or even completely georeference a picture that the system could not
do. Crowd sourcing would make that manual process practical. We could add
various controls to our website such as voting on georeferenced pictures, adding
new ground control points and so on. This way, we could create a platform that
would grow larger with its users.

References

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up ro-
bust features”. In: Computer vision–ECCV 2006. Springer, 2006, pp. 404–
417.

[4] F Bookstein. “Thin-Plate Splines and the decomposition of deformation”.
In: IEEE Trans. Patt. Anal. Mach. Intell 10 (1988).

[5] Matthew Brown and David G Lowe. “Automatic panoramic image stitch-
ing using invariant features”. In: International journal of computer vision
74.1 (2007).

[6] Peter Bunting, Frédéric Labrosse, and Richard Lucas. “A multi-resolution
area-based technique for automatic multi-modal image registration”. In:
Image and Vision Computing 28.8 (2010), pp. 1203–1219.

[7] I Cléri, M Pierrot-Deseilligny, and B Vallet. “Automatic Georeferencing
of a Heritage of old analog aerial Photographs”. In: ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 2.3
(2014), p. 33.

[10] Martin A Fischler and Robert C Bolles. “Random sample consensus: a
paradigm for model fitting with applications to image analysis and auto-
mated cartography”. In: Communications of the ACM 24.6 (1981), pp. 381–
395.

[16] Amanda Geniviva, Jason Faulring, and Carl Salvaggio. “Automatic geo-
referencing of imagery from high-resolution, low-altitude, low-cost aerial
platforms”. In: SPIE Defense+ Security. International Society for Optics
and Photonics. 2014, pp. 90890D–90890D.

[29] Jae Sung Kim, Christopher C Miller, and James Bethel. “Automated Geo-
referencing of Historic Aerial Photography”. In: Journal of Terrestrial Ob-
servation 2.1 (2010), p. 6.

[31] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. “BRISK: Bi-
nary robust invariant scalable keypoints”. In: Computer Vision (ICCV),
2011 IEEE International Conference on. IEEE. 2011, pp. 2548–2555.

[32] Yan Li and Ronald Briggs. “Automated georeferencing based on topolog-
ical point pattern matching”. In: The International Symposium on Auto-
mated Cartography (AutoCarto), Vancouver, WA. 2006.

[33] Yan Li and Ronald Briggs. “Automatic extraction of roads from high res-
olution aerial and satellite images with heavy noise”. In: World Academy
of Science, Engineering and Technology 54 (2009), pp. 416–422.

28

REFERENCES 29

[34] David G Lowe. “Object recognition from local scale-invariant features”. In:
Computer vision, 1999. The proceedings of the seventh IEEE international
conference on. Vol. 2. Ieee. 1999, pp. 1150–1157.

[36] Joan Maso, Keith Pomakis, and Nuria Julia. “OpenGIS web map tile
service implementation standard”. In: Open Geospatial Consortium Inc
(2010).

[37] Joan Maso, Keith Pomakis, and Nuria Julia. “OpenGIS web map tile
service implementation standard”. In: Open Geospatial Consortium Inc
(2010), pp. 04–06.

[38] Marc Müller. “Mapping the Past”. In: (2015).

[41] Stephen M Pizer et al. “Adaptive histogram equalization and its varia-
tions”. In: Computer vision, graphics, and image processing 39.3 (1987),
pp. 355–368.

[46] Niles Ritter et al. “GeoTIFF format specification GeoTIFF revision 1.0”.
In: URL: http://www. remotesensing. org/geotiff/spec/geotiffhome. html
(2000).

[47] Edward Rosten and Tom Drummond. “Fusing points and lines for high
performance tracking.” In: IEEE International Conference on Computer
Vision. Vol. 2. 2005, pp. 1508–1511. doi: 10.1109/ICCV.2005.104. url:
http://www.coxphysics.com/work/rosten_2005_tracking.pdf.

[48] Edward Rosten and Tom Drummond. “Machine learning for high-speed
corner detection”. In: European Conference on Computer Vision. Vol. 1.
2006, pp. 430–443. doi: 10 . 1007 / 11744023 _ 34. url: http : / / www .

coxphysics.com/work/rosten_2006_machine.pdf.

[50] Ethan Rublee et al. “ORB: an efficient alternative to SIFT or SURF”. In:
Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE.
2011, pp. 2564–2571.

[52] Sérgio Ricardo da Silva Santos. “Feature Extraction and Matching Meth-
ods and Software for UAV Aerial Photogrammetric Imagery”. In: (2013).

[55] Fu Zhongliang and Sun Zhiqun. “An algorithm of straight line features
matching on aerial imagery”. In: The Int. Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 37 (2008), pp. 97–102.

[56] Barbara Zitova and Jan Flusser. “Image registration methods: a survey”.
In: Image and vision computing 21.11 (2003), pp. 977–1000.

http://dx.doi.org/10.1109/ICCV.2005.104
http://www.coxphysics.com/work/rosten_2005_tracking.pdf
http://dx.doi.org/10.1007/11744023_34
http://www.coxphysics.com/work/rosten_2006_machine.pdf
http://www.coxphysics.com/work/rosten_2006_machine.pdf

Web Links

[1] All aerial images were taken from the Swisstopo LUBIS viewer. https://
map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-

luftbilder_schwarzweiss,ch.swisstopo.lubis-luftbilder_farbe&

lang=en&bgLayer=ch.swisstopo.pixelkarte-farbe. Accessed: June 13,
2016.

[2] AngularJS, HTML enhanced for web apps! https://angularjs.org/.
Accessed: June 13, 2016.

[8] Elm, a type inferred, functional reactive language that compiles to HTML,
CSS, and JavaScript. http://elm-lang.org/. Accessed: June 13, 2016.

[9] Example metadata. https://api3.geo.admin.ch/rest/services/

swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/

19320480121010/extendedHtmlPopup?lang=en. Accessed: June 13, 2016.

[11] GDAL - Geospatial Data Abstraction Library. http://www.gdal.org/.
Accessed: June 13, 2016.

[12] GDAL Virtual Format. http://www.gdal.org/gdal_vrttut.html.
Accessed: June 13, 2016.

[13] gdal2tiles.py, generates directory with TMS tiles, KMLs and simple web
viewers. http://www.gdal.org/gdal2tiles.html. Accessed: June 13,
2016.

[14] gdal translate, converts raster data between different formats. http://www.
gdal.org/gdal_translate.html. Accessed: June 13, 2016.

[15] gdalwarp, image reprojection and warping utility. http://www.gdal.org/
gdalwarp.html. Accessed: June 13, 2016.

[17] Georeferencing a raster automatically. http://desktop.arcgis.com/en/
arcmap/10.3/manage-data/raster-and-images/georeferencing-a-

raster-automatically.htm. Accessed: June 13, 2016.

[18] GIMP, GNU Image Manipulation Program, The Free & Open Source Image
Editor. https://www.gimp.org/. Accessed: June 13, 2016.

[19] Google Maps JavaScript API. https://developers.google.com/maps/
documentation/javascript/. Accessed: June 13, 2016.

[20] GRASS GIS, Geographic Resources Analysis Support System. https://
grass.osgeo.org/. Accessed: June 13, 2016.

30

https://map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-luftbilder_schwarzweiss,ch.swisstopo.lubis-luftbilder_farbe&lang=en&bgLayer=ch.swisstopo.pixelkarte-farbe
https://map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-luftbilder_schwarzweiss,ch.swisstopo.lubis-luftbilder_farbe&lang=en&bgLayer=ch.swisstopo.pixelkarte-farbe
https://map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-luftbilder_schwarzweiss,ch.swisstopo.lubis-luftbilder_farbe&lang=en&bgLayer=ch.swisstopo.pixelkarte-farbe
https://map.geo.admin.ch/?topic=swisstopo&layers=ch.swisstopo.lubis-luftbilder_schwarzweiss,ch.swisstopo.lubis-luftbilder_farbe&lang=en&bgLayer=ch.swisstopo.pixelkarte-farbe
https://angularjs.org/
http://elm-lang.org/
https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19320480121010/extendedHtmlPopup?lang=en
https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19320480121010/extendedHtmlPopup?lang=en
https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19320480121010/extendedHtmlPopup?lang=en
http://www.gdal.org/
http://www.gdal.org/gdal_vrttut.html
http://www.gdal.org/gdal2tiles.html
http://www.gdal.org/gdal_translate.html
http://www.gdal.org/gdal_translate.html
http://www.gdal.org/gdalwarp.html
http://www.gdal.org/gdalwarp.html
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm
http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/georeferencing-a-raster-automatically.htm
https://www.gimp.org/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/
https://grass.osgeo.org/
https://grass.osgeo.org/

WEB LINKS 31

[21] Historic Geodata, Key data and features. http://www.swisstopo.admin.
ch/internet/swisstopo/de/home/topics/geodata/historic_geodata/

im_coll/key_dat.html. Accessed: June 13, 2016.

[22] Image from. http://gis.depaul.edu/shwang/teaching/geog258/lec7_
files/image009.jpg. Accessed: June 13, 2016.

[23] Image from. http://elte.prompt.hu/sites/default/files/tananyagok/
MapGridsAndDatums/images/691cc4f0.jpg. Accessed: June 13, 2016.

[24] Image from. http://opencv-python-tutroals.readthedocs.io/en/
latest/_images/feature_building.jpg. Accessed: June 13, 2016.

[25] Image from. http://www.edwardrosten.com/work/fast.html. Accessed:
June 13, 2016.

[26] Image from. http : / / www . ra . ethz . ch / cdstore / www6 / technical /

paper130/paper130.html. Accessed: June 13, 2016.

[27] Imagemagick, montage tool. http://www.imagemagick.org/script/

montage.php. Accessed: June 13, 2016.

[28] Information system for aerial photographs / LUBIS-Viewer. http://map.
lubis.admin.ch/. Accessed: June 13, 2016.

[30] leaflet, an open-source JavaScript library for mobile-friendly interactive
maps. http://leafletjs.com/. Accessed: June 13, 2016.

[35] Mapbox, Maps for mobile & map. https://www.mapbox.com/. Accessed:
June 13, 2016.

[39] OpenCV, Open Source Computer Vision. http://opencv.org/. Accessed:
June 13, 2016.

[40] OpenLayers 3, A high-performance, feature-packed library for all your map-
ping needs. http://openlayers.org/. Accessed: June 13, 2016.

[42] Professional GIS Software. http://desktop.arcgis.com/en/. Accessed:
June 13, 2016.

[43] Python, official website. https://www.python.org/. Accessed: June 13,
2016.

[44] QGIS, A Free and Open Source Geographic Information System. http:

//www.qgis.org. Accessed: June 13, 2016.

[45] React, a JavaScript library for building user interfaces. https://facebook.
github.io/react/. Accessed: June 13, 2016.

[49] RSGISLib, The Remote Sensing and GIS Software Library. http://www.
rsgislib.org/. Accessed: June 13, 2016.

[51] Screenshot from. https://api3.geo.admin.ch/rest/services/swisstopo/
MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19512170080860/

extendedHtmlPopup?lang=en. Accessed: June 13, 2016.

http://www.swisstopo.admin.ch/internet/swisstopo/de/home/topics/geodata/historic_geodata/im_coll/key_dat.html
http://www.swisstopo.admin.ch/internet/swisstopo/de/home/topics/geodata/historic_geodata/im_coll/key_dat.html
http://www.swisstopo.admin.ch/internet/swisstopo/de/home/topics/geodata/historic_geodata/im_coll/key_dat.html
http://gis.depaul.edu/shwang/teaching/geog258/lec7_files/image009.jpg
http://gis.depaul.edu/shwang/teaching/geog258/lec7_files/image009.jpg
http://elte.prompt.hu/sites/default/files/tananyagok/MapGridsAndDatums/images/691cc4f0.jpg
http://elte.prompt.hu/sites/default/files/tananyagok/MapGridsAndDatums/images/691cc4f0.jpg
http://opencv-python-tutroals.readthedocs.io/en/latest/_images/feature_building.jpg
http://opencv-python-tutroals.readthedocs.io/en/latest/_images/feature_building.jpg
http://www.edwardrosten.com/work/fast.html
http://www.ra.ethz.ch/cdstore/www6/technical/paper130/paper130.html
http://www.ra.ethz.ch/cdstore/www6/technical/paper130/paper130.html
http://www.imagemagick.org/script/montage.php
http://www.imagemagick.org/script/montage.php
http://map.lubis.admin.ch/
http://map.lubis.admin.ch/
http://leafletjs.com/
https://www.mapbox.com/
http://opencv.org/
http://openlayers.org/
http://desktop.arcgis.com/en/
https://www.python.org/
http://www.qgis.org
http://www.qgis.org
https://facebook.github.io/react/
https://facebook.github.io/react/
http://www.rsgislib.org/
http://www.rsgislib.org/
https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19512170080860/extendedHtmlPopup?lang=en
https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19512170080860/extendedHtmlPopup?lang=en
https://api3.geo.admin.ch/rest/services/swisstopo/MapServer/ch.swisstopo.lubis-luftbilder_schwarzweiss/19512170080860/extendedHtmlPopup?lang=en

WEB LINKS 32

[53] Swisstopos REST API. https://api3.geo.admin.ch/services/sdiservices.
html. Accessed: June 13, 2016.

[54] uDig, User-friendly Desktop Internet GIS, A GIS Framework for Eclipse.
http://udig.refractions.net/. Accessed: June 13, 2016.

https://api3.geo.admin.ch/services/sdiservices.html
https://api3.geo.admin.ch/services/sdiservices.html
http://udig.refractions.net/

Appendix A

Code Example

Python Code for Frame Cropping

de f f i n d f r a m e r e c t a n g l e (image , width , he ight) :
i n n e r r e c t = [width /2 , he ight /2 , width /2+1, he ight /2+1]
o u t e r r e c t = [0 , 0 , width−1, height −1]

f o r i in range (maxIt) :
r e c t = g e t m i d d l e r e c t (i n n e r r e c t , o u t e r r e c t)
t e s t p r e c i s i o n = abs (o u t e r r e c t − i n n e r r e c t)

i f (t e s t p r e c i s i o n < 2) . a l l () :
r e turn r e c t

l e f t , r i ght , top , bottom = g e t p i x e l s o n s i d e s (image , r e c t)
r e c t a n g l e = [l e f t , top , r i ght , bottom]
f r a m e l i k e l i n e s s = [mean(i s f r a m e l i n e (x)) f o r x in r e c t a n g l e]
i s f r a m e r e c t = f r a m e l i k e l i n e s s > th r e sho ld

f o r j , i s f r a m e in enumerate (i s f r a m e r e c t) :
i f i s f r a m e :

o u t e r r e c t [j] = r e c t [j]
e l s e :

i n n e r r e c t [j] = r e c t [j]

r e turn r e c t

A-1

	Abstract
	1 Introduction
	1.1 Goals
	1.2 Related Work

	2 Automatic Georeferencing
	2.1 The Raw Data
	2.2 Obtaining the Data and Preprocessing
	2.2.1 Getting the Images
	2.2.2 Rough Georeferencing

	2.3 Removing the Frame
	2.4 Georeferencing
	2.4.1 Area Based Image Registration for Georeferencing
	2.4.2 Manual Georeferencing
	2.4.3 Georeferencing Using Feature Matching
	2.4.4 Tile Image Generation

	2.5 Putting It All Together

	3 The Frontend Application
	4 Results
	4.1 Frame Cropping
	4.2 Feature Based Georeferencing
	4.2.1 Manual vs. Automatic Georeferencing
	4.2.2 Did it Work?
	4.2.3 Effects of Flying Height and Time Taken on Success Rate

	5 Conclusion and Outlook
	5.1 Outlook
	5.1.1 Similarities on the Same Layer
	5.1.2 Lines and Intersections
	5.1.3 Layer Merging Using Voronoi Diagram
	5.1.4 Layer Merging Using Image Stitching
	5.1.5 Orthorectification Using Digital Elevation Model
	5.1.6 Crowd Sourcing

	A Code Example

