
Distributed
 Computing

Cops and Robbers

Bachelor Thesis

Joël Rickert

rickertj@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

G. Bachmeier, S. Brandt

Prof. Dr. Roger Wattenhofer

Thursday 15th June, 2017

Abstract

This paper studies the game of cops and robbers. We present an algorithm to
compute how long it takes the cops to capture the robber on a restricted graph
class, by using information of the graph class. This restricted graph class is
designed to allow the robber to evade capture for a long time. Then another
algorithm is introduced that computes the time it takes the cops to capture the
robber on any graph. Moreover it is shown how being able to compute the time
it takes cops to capture the robber can be used to determine how many cops it
takes to capture the robber. Both algorithms can be used to confirm results of a
recent theoretical paper[5] computationally. The second algorithm is then used
to calculate the number of cops it takes to capture a robber in a few interesting
graphs. Furthermore we present an other graph class that requires many cops
to capture the robber.

i

Contents

Abstract i

1 Introduction 1

2 The Game of Cops and Robbers 3

2.1 Definitions and Notations . 3

2.2 Related Work . 4

3 Maximal Capture Time Graphs 5

3.1 Construction . 5

3.1.1 List of Nodes . 6

3.1.2 List of Edges . 7

3.1.3 Strategies . 11

3.2 Algorithm . 13

4 The General Algorithm 17

4.1 The Algorithm in Detail . 20

4.2 Improvements to the Algorithm 23

5 Results 28

5.1 Restricted Algorithm . 28

5.2 General Algorithm . 33

5.3 Examples of Cop Numbers . 35

5.4 How Many Cops Are Needed . 35

Bibliography -1

ii

Chapter 1

Introduction

The game of cops and robbers is played on a connected graph. It is played by
two players, a robber player and a cop player. The cop player has k cops he can
move, whilst the robber player has only one robber. All the cops and the robber
are positioned on nodes of the graph. The goal of the game is for the cops to
reach the same node as the robber and capture him. The robber on the other
hand tries to no get captured. Both the cops and the robber are able to see all
the positions. The cop player coordinates the moves of all the cops.

The cops first choose their positions on the graph. When they have chosen all
their positions the robber can choose his position. They now take turns moving
starting with the cops. When a player moves he either stays on its node or moves
to a neighbour node. Both players move until a cop reaches the same position as
the robber, thus capturing the robber. If no cop ever reaches the same position
as the robber, the cops did not capture the robber. An example of the game of
cops and robbers is demonstrated in Figure 1.1, where the cops are coloured red
and the robber is coloured blue. The node that is coloured green is where a cop
captured the robber.

(a) Cops Positioning (b) Robber Positioning (c) First Cop Move

(d) First Robber Move (e) Cops Capture the Robber

Figure 1.1: First Cops and Robber Game

1

1. Introduction 2

We study the capture time of graphs, which is the smallest time the cops
can capture a robber that tries his best to not get captured. The capture time
depends on the number of cops and has to be finite. If with a certain number
of cops the robber can not be captured there is no capture time for this amount
of cops. On a graph with n nodes and k cops, there are nk+1 possible ways to
arrange all the cops and robbers. Therefore the capture time has to be in the
order of O(nk+1). A recent result [5] has shown a graph class that has also a
capture time in the order of Ω(nk+1). We present an algorithm that computes
how long it takes to capture the robber in this graph class, confirming this recent
result. To faster compute this, knowledge of strategies for the cops and robbers
is used. The runtime of the algorithm is O

(
∆(G)nk+1

)
, where ∆(G) is the

maximal amount of neighbours any node has in the graph G.

Then we develop a different algorithm that can be used for any graph. This al-
gorithm has a runtime of O

(
n
(
n
k

)
k log k((∆(G))k + (∆(G))2)

)
, making it slower

than the first algorithm, but more versatile. We show how this algorithm is
usable to determine, how many cops it takes to capture the robber on a graph.
Furthermore the number of cops it takes to capture the robber is computed for
some graphs along with the time it takes them to capture the robber.

Moreover a construction of another graph class is shown. These graphs re-
quire k cops to capture the robber in graphs with k2 + k nodes. Whilst this
construction is not given explicitly for all the edges, with the insight of smaller
constructed graphs, one might find a way to explicitly describe all the edges.

Chapter 2

The Game of Cops and
Robbers

2.1 Definitions and Notations

The game of cops and robbers is played on a connected, simple and undirected
graph G(V,E). We call the number of nodes n = |V | and denote the number of
cops k. The game is also played with perfect information, therefore both parties
know the positions of the other party. The goal of the cops is to capture the
robber, while the robber tries to not get captured. To describe the positions of
the cops and robber configurations are used.

Definition 2.1 (Configuration). A configuration conf is a tuple (r, c0, . . . , ck−1) ∈
V k+1 where r is the position of the robber, and c0, . . . , ck−1 ∈ V k a cop configu-
ration cop conf . In a cop configuration ci ∈ V for i ∈ {0, . . . , k−1} is a position
of a cop. When using configurations that change over time, then conf (t) is
(r(t), c0(t), . . . , ck−1(t)) and cop conf (t) its cop configuration.

Definition 2.2 (Neighbours). We defineN+(u) = {v ∈ V | v = u or {u, v} ∈ E}
for any node u ∈ V . The maximal number of neighbours a node has in the graph
G is denoted ∆(G), while the minimal number of neighbours is denoted δ(G).

Definition 2.3 (Cover). A node u ∈ V is called covered by the cops, if there
exists a i ∈ {1, . . . , k − 1}, such that u ∈ N+ (ci).

Now it is important what moves are allowed. If the robber makes a move
from conf (t − 1) to conf (t) it is called a robber move. To be a valid robber
move, firstly r(t) ∈ N+ (r(t− 1)) has to hold. The second thing that needs to
hold is that cop conf (t) = cop conf (t − 1). When the cops make a move from
conf (t−1) to conf (t) it is called a cop move. A valid cop move has to fulfill similar
conditions. The first condition that has to uphold is that ci(t) ∈ N+ (ci(t− 1))
for i ∈ {1, . . . , k − 1}. The second condition is that r(t) = r(t− 1). A sequence
of configurations is also called a path p. To be a valid path the first move has

3

2. The Game of Cops and Robbers 4

to be a cop move, and afterwards cop and robber moves alternate. The cops
capture the robber on a path if there exists a t < ∞ with r(t) = ci(t) with
i ∈ {1, . . . , k − 1}. The time it takes to capture the robber tcap(p) is first time
the robber is captured on the path.

Definition 2.4 (Optimal Play). The game of cops and robbers is played opti-
mally on a path, if it is not possible for the cops to force capture sooner. Also it
is not possible for the robber to evade capture for longer.

Definition 2.5 (Capture time). The capture time of a graph tcap(G) is defined
as tcap(G) = tcap(p) where p is a path on G, which the game is played optimally
on. Therefore the capture time has also to be finite.

Definition 2.6 (Cop number). The smallest amount of cops k needed to force
capture on a graph G is called the cop number c(G) of the graph.

When the game of cops and robbers is played on a graphG with with k < c(G)
cops, it is possible for the robber to evade capture infinitely long. The cop number
of a graph is always finite because when a graph has n nodes with n cops the
robber is easily captured by putting one cop in each node.

2.2 Related Work

the theorem presented here is useful when trying to construct graphs with specific
cop numbers, since when fulfilling all the criteria in the theorem, the constructed
graph has lower bound to its cop number.

Theorem 2.7 (Aigner and Fromme, 1984. [1]). Let G be a graph with minimum
degree δ(G) which contains no 3- or 4-cycles. Then c(G) ≥ δ(G).

Proof Scetch Let G be a graph and k = δ(G)− 1 the number of cops. Since
each node in G has at least δ(G) many neighbours, the number of nodes in G
has to be bigger than δ(G). Therefore for each cop configuration there exists at
least one node u where no cop is positioned in. Now the robber gets put on u.
Because there are no 3-cycles in G no two neighbours of u have an edge between
them, and because there are no 4-cycles in G there is no node v ∈ V , with v 6= u,
that has an edge to two neighbours of u. Therefore there is no node except for u
that has more than one edge to a neighbour of u, and since u has at least δ(G)
neighbours k cops can not cover all the neighbours of u. In conclusion δ(G)− 1
cops are not enough to capture the robber, therefore the c(G) ≥ δ(G).

Chapter 3

Maximal Capture Time
Graphs

The graph G(V,E) with k cops has nk+1 possible configurations the game of cops
and robber can be in. When both parties play optimally, it can not be possible
that the cops move into a configuration that was already played, and that the
cops are able to capture the robber. This means if there are two configurations
conf (t1) and conf (t2) with conf (t1) = conf (t2) and t1 < t2, the cops could at
time t1 move to conf (t2 + 1) instead of conf (t1 + 1) and capturing the robber
earlier. That shortcut is a contradiction to the optimality of the path to capture.
Therefore is an optimal path of length smaller or equal to 2nk+1. Furthermore
has the capture time of a graph to be smaller or equal to 2nk+1, hence being of
the order of nk+1. But how large could the capture time get? There is a recent
result for this, which is the following theorem:

Theorem 3.1 (A Tight Lower Bound for the Capture Time of the Cops and
Robbers Game[5]). There exists a universal positive constant α such that for
every k ≥ 2, there exists an infinite family G of k-cop-win graphs such that the
capture time of any n-vertex graph G ∈ G is at least (n/(αk))k+1. Moreover, the
smallest graph in G has n = O(k2) nodes.

If the number of cops is fixed, using this theorem, we get a family of graphs
that have a lower bound for the capture time of Ω(nk+1). The trivial upper
bound of O(nk+1) was also shown before. Putting the two bounds together
results in the capture time being of order Θ(nk+1).

3.1 Construction

Here we give an explicit construction of those graphs used in Theorem 3.1. Since
there are many nodes and edges, first a list of all the nodes is given and afterwards
the edges are listed. The construction can also be found, in more detail, in the
paper[5] that gives us the theorem.

5

3. Maximal Capture Time Graphs 6

3.1.1 List of Nodes

For the construction of the graph we need a value n̂, which scales linearly to
n. The value n̂ represents the size of all the components that grown for a fixed
amount of cops. It is required that n̂ is dividable by three. Then we take the
number of cops and get the family of graphs

{
Gk

n̂

}
n̂≥k,n̂≡0(mod 3)

. The vertices

of the Graph Gk
n̂ are:

V (Gk
n̂) = E ∪ L∗ ∪ S ∪ A ∪ T ∪R ∪ C ∪ D0 ∪ D1 ∪ . . . ∪ Dk−2 ∪ {P} ∪ X .

E , L∗ and X are taken out of a graph we call Gk
E,L. This bipartite graph is

designed in a way that k cops can’t capture the robber in it. To construct Gk
E,L

we need a prime number p. The number p is chosen such that 2k + 10 ≤ p and
p is minimal. With this we construct the following two components

E = {Ei,j | 0 ≤ i < p ∧ 0 ≤ j < p} and

L = {Li,j | 0 ≤ i < p− 1 ∧ 0 ≤ j < p} .

Using Gk
E,L we create the vertex sets E , L∗ and X . The set X we call the

exits of the graph, because these will be the nodes the robber will try to escape
to, which in turn the cops will have to prevent, since it leads to the component
they can’t catch him in. Also we define U = E ∪L∗ as this is the component the
robber in the strategy will mainly try to reach. Then we take the nodes E from
Gk
E,L as they are. But for the components L∗ and X we take the following nodes

out of Gk
E,L:

L∗ = {Li,j | 0 ≤ i < 2k ∧ 0 ≤ j < p} ,
X = X 0 ∪ X 1 ∪ X 2 where

X 0 =
{
X 0
0 , . . . ,X 0

6(k−1)−1

}
⊆ {Lh,j | 2k + j ∗ 3 ≤ h ≤ 2k + 2 + 3j ∧ 0 ≤ j < p} ,

X 1 =
{
X 1
0 , . . . ,X 1

6(k−1)−1

}
⊆ {Lh,j | 2k + 3 ≤ h ≤ 2k + 5 ∧ 0 ≤ j < p} and

X 2 =
{
X 2
0 , . . . ,X 2

6(k−1)−1

}
⊆ {Lh,j | 2k + 6 ≤ h ≤ 2k + 8 ∧ 0 ≤ j < p} .

The next nodes are S these are the nodes the cops can stand in to cover all the
nodes of E , L∗ and X . They are designed to be the only way to force the robber
out of that part of the graph. This is why in an optimal game the cops will start
in this component. S is just a node for every cop, hence S = {S0, . . . ,Sk−1}. The
two componentsA and T are designed to connect other components in a way that
the cops can’t abuse components to capture the robber earlier and to prevent
the robber from escaping in other ways than we want. The number of nodes they
each have is two times the number of cops. This leads to A = {A0, . . . ,A2k−1}

3. Maximal Capture Time Graphs 7

and T = {T0, . . . , T2k−1}. The component {P} serves a similar purpose but it is
just one node.

Furthermore is a list of the nodes that achieve the long capture time on this
graph. The first component to achieve that is the R component. This is the
component where the robber gets forced around. In an ideal game the robber
will start in this component. R will be connected with the exits, so the cops
will have to pay attention to cover all those at all times. The robber can be
caught at either end of the component. We have that R = {R−n̂, . . . ,Rn̂}. The
components C,D0,D1, . . . and Dk−2 are all cycles with the length n̂. In each one
of them there is a cop. They are connected with the exits in a way such that
if the i-th cop wants to move one forward in its component the cop i + 1 has
to move forward a third of his component. And since this holds true for all the
cops, the cop in the C component rarely moves, this is the component that is
connected to the one the robber walks in. This gives us:

C = {C0, . . . , Cn̂−1} and

Dj =
{
Dj

0, . . . ,D
j
n̂−1

}
for all 0 ≤ j < k − 1.

When we count together the number of edges we get:

p2 + 2kp+ k + 2k + 2k + 2n̂− 1 + n̂+ (k − 1)n̂+ 1 + 3 · 6(k − 1) =

p2 + 2kp+ 23k + (k + 2)n̂− 18.

When we consider the fact that between each number and twice that number
there is at least one prime number. We get that there are O(k2 + kn̂) many
nodes in the graph.

3.1.2 List of Edges

The edges in E , L∗ and X are taken from the graph Gk
E,L. The edges in the

graph Gk
E,L are constructed in the following way, Li,j is connected to all the

nodes in
{
Eh,h(i+1)+j (mod p) | 0 ≤ h < p

}
. But these nodes in our graph are also

connected to other components. For Ei,j those nodes are:

Si (mod k),

Aj (mod 2k) and

Tj (mod 2k) if i (mod k) = 1.

On the other hand a node Li,j is connected to the following nodes:

Si (mod k),

Aj (mod 2k) and

Ti (mod 2k).

3. Maximal Capture Time Graphs 8

The additional edges with which the X component is connected we only de-
scribe from the perspective of the other node connected to it, because there are
connections to many components and they are not easy to describe out of the
perspective of the component X .

The next component is the S component. This component has three cases,
the first are the edges to S0:

Ci for all i,

X j
i where j ∈ {0, 1, 2} and i ∈ {0, 1, 2},

every Ei,j with i (mod k) = 0 and

every Li,j with i (mod k) = 0.

And S1 is connected to the following edges:

Ti for all i,

X j
i where j ∈ {0, 1, 2} and i ∈ {3, 4, 5},
X j
i where j ∈ {0, 1, 2} and i ∈ {6, 7, 8} if k ≥ 3,

every Ei,j with i (mod k) = 1 and

every Li,j with i (mod k) = 1.

And at last the most general case for all the other nodes in S, namely the nodes
Si≥2 are connected to the following nodes:

Di
j for all j,

X j
h where j ∈ {0, 1, 2} and h ∈ {6(i− 1) + 3, 6(i− 1) + 4, 6(i− 1) + 5} ,
X j
h where j ∈ {0, 1, 2} and h ∈ {6i, 6i+ 1, 6i+ 2} for all i < k − 1,

every Eh,j with h (mod k) = i and

every Lh,j with h (mod k) = i.

Now we list the neighbours of the components A, T and {P}. So here are
the nodes Ai is connected to:

Tj for all j,

R0,

D0
j for all j,

Ej,h for all h (mod 2k) = i and

Lj,h for all j (mod 2k) = i.

3. Maximal Capture Time Graphs 9

Where as Ti is connected to:

S1,
P,
Aj for all j,

Tj for all j 6= i,

D0
j for all j,

X j
h where j ∈ {0, 1, 2} and h ∈ {3, 4, 5},
X j
h where j ∈ {0, 1, 2} and h ∈ {6, 7, 8} if k ≥ 3,

Ej,h for all j (mod k) = i ∧ h (mod 2k) = i and

Lj,h for all j (mod 2k) = i.

And finally node P is connected to:

Ti for all i,

Ri for all i,

D0
i for all i and

X j
i where j ∈ {0, 1, 2} and i = 3.

The next component we look at is the component the robber will move in.
This component is internally connected as a line and to C in a way that the cop
there can force him to move forward. More precisely the node Ri is connected
to the following nodes:

Aj for all j if i = 0,

Rj for j = i− 1 and j = i+ 1,

Cj for all 0 ≤ j ≤ n̂/3 if i (mod 3) = 0,

Cj for all n̂/3 ≤ j ≤ 2n̂/3 if i (mod 3) = 1,

C0 and Cj for all 2n̂/3 ≤ j < n̂ if i (mod 3) = 2,

P and

X j
h where j = i (mod 3) and h ∈ {0, . . . , 6(k − 1)− 1}.

3. Maximal Capture Time Graphs 10

In the component C the node Ci is connected to:

S0,
Rj for all j (mod 3) = 0 if 0 ≤ i ≤ n̂/3,
Rj for all j (mod 3) = 1 if n̂/3 ≤ i ≤ 2n̂/3,

Rj for all j (mod 3) = 2 if 2n̂/3 ≤ i < n̂ or i = 0,

Cj for j ≡ i− 1 (mod n̂) and j ≡ i+ 1 (mod n̂),

X j
h where j ∈ {0, 1, 2} and h ∈ {0, 1, 3} if i (mod 3) = 0,

X j
h where j ∈ {0, 1, 2} and h ∈ {0, 2, 3} if i (mod 3) = 1 and

X j
h where j ∈ {0, 1, 2} and h ∈ {1, 2, 3} if i (mod 3) = 2.

The last component is D and it split into two parts to describe its edges.
Firstly come the edges of D0

i to these nodes:

Aj for all j,

Tj for all j,

D0
j for j ≡ i− 1 (mod n̂) and j ≡ i+ 1 (mod n̂),

P,

X j
h where j ∈ {0, 1, 2} and h ∈ {2, 4, 5} if 0 ≤ i < n̂/3,

X j
h where j ∈ {0, 1, 2} and h ∈ {2, 4, 5} if n̂/3 ≤ i < 2n̂/3 and

X j
h where j ∈ {0, 1, 2} and h ∈ {0, 4, 5} if 2n̂/3 ≤ i < n̂.

Additionally, if k ≥ 3 :

X j
h where j ∈ {0, 1, 2} and h ∈ {6, 7, 9} if i (mod 3) = 0,

X j
h where j ∈ {0, 1, 2} and h ∈ {6, 8, 9} if i (mod 3) = 1 and

X j
h where j ∈ {0, 1, 2} and h ∈ {7, 8, 9} if i (mod 3) = 2.

Second are the edges from Dj
i to the following nodes:

Sj+1

Dj
h for h ≡ i− 1 (mod n̂) and h ≡ i+ 1 (mod n̂),

X q
h where q ∈ {0, 1, 2} and h ∈ {6j + 2, 6j + 4, 6j + 5} if 0 ≤ i < n̂/3,

X q
h where q ∈ {0, 1, 2} and h ∈ {6j + 1, 6j + 4, 6j + 5} if n̂/3 ≤ i < 2n̂/3 and

X q
h where q ∈ {0, 1, 2} and h ∈ {6j + 0, 6j + 4, 6j + 5} if 2n̂/3 ≤ i < n̂.

Additionally, if k ≥ 3 :

X q
h where q ∈ {0, 1, 2} and h ∈ {6j + 6, (j + 7, 6j + 9} if i (mod 3) = 0,

X q
h where q ∈ {0, 1, 2} and h ∈ {6j + 6, 6j + 8, 6j + 9} if i (mod 3) = 1 and

X q
h where q ∈ {0, 1, 2} and h ∈ {6j + 76j + 8, 6j + 9} if i (mod 3) = 2.

3. Maximal Capture Time Graphs 11

Figure 3.1: Components and Connections[5]

When looking at the connections of the components of the graph it will look
like Figure 3.1.

3.1.3 Strategies

To capture the robber as fast as possible, the cops try to prevent the robber
from getting to an exit node or into the U component of the graph. This means
while the robber is in R they need to make sure that all the exits the robber can
reach are covered, therefore the cops start in S0, . . . ,Sk−1. The robber on the
other hand tries to get to U , so if not all of it is covered he would choose some
uncovered node in U and start there. If the entire U is covered, then the robber
will start in R0. If the cops can capture the robber, in one move, they will do
so, otherwise they will move according to the Table 3.1. Meanwhile the robber
will move according to Table 3.2.

These strategies are not the optimal way both players can play. How good
they are can be seen in [5]. They are only a linear factor worse than the optimal
strategy. One example how to make the cops strategy better is instead of pushing
the robber only to one end ofR, they could push him onto the end that the robber
is nearer to.

3. Maximal Capture Time Graphs 12

Robber Position Cop Configuration Next Cop Configuration

Ai (S0, . . . ,Sk−1) (S0, Ti,S2, . . . ,Sk−1)
6= Ai for all i (S0, . . . ,Sk−1) (S0, Tj ,S2, . . . ,Sk−1) for some j

arbitrary (S0, Ti,S2, . . . ,Sk−1)
(
C0,D0

0, . . . ,D
k−2
0

)
6= Ch for all h

(
Cj0 ,D0

j1
, . . . ,Dk−2

jk−1

)
the first of the following cop

configurations that covers all exits:(
Cj0+1,D0

j1+1, . . . ,D
k−2
jk−1+1

)(
Cj0 ,D0

j1+1, . . . ,D
k−2
jk−1+1

)(
Cj0 ,D0

j1
,D0

j2+1, . . . ,D
k−2
jk−1+1

)
...(

Cj0 ,D0
j1
, . . . ,Dk−2

jk−1+1

)
where all the indices are (mod n̂)

Ch
(
Cj0 ,D0

j1
, . . . ,Dk−2

jk−1

)
(S0,P, arbitrary, . . . , arbitrary)

Table 3.1: Cop Strategy

Robber Position Cop Configuration Next Robber Position

some node in U 6= (S0, . . . ,Sk−1) some uncovered node in U
some node in U (S0, . . . ,Sk−1) some node in A

Ai (S0, . . . ,Sk−1) or R0

(S0, Ti,S2, . . . ,Sk−1)
Ai 6= (S0, . . . ,Sk−1) and some uncovered node in U

6= (S0, Ti,S2, . . . ,Sk−1)
Ri not covering all exits of Ri some uncovered exit of Ri

Ri covering all exits of Ri the uncovered node from
{Ri−1,Ri,Ri+1} with the
smallest absolute index;

if all are covered, stay in Ri

X j
i 6= (S0, . . . ,Sk−1) some uncovered node in U
X j
i (S0, . . . ,Sk−1) some uncovered node

from {R−1,R0,R1}

Table 3.2: Robber Strategy

3. Maximal Capture Time Graphs 13

3.2 Algorithm

To test what the robbers could improve in their strategy, we try to figure out
what moves the robber could make instead of his strategy to improve his play.
To do this we use Algorithm 3.1 and Algorithm 3.2. Where the latter is based
on a depth first search of a graph. The basic idea is that when the algorithm is
at a configuration, it first does a cop moved based on the strategy of the cops.
Furthermore the algorithm will try out all possible moves the robber can make,
and pick the best one.

There are two maps used in these algorithms. The map visited is mapping
configurations to booleans. If a configuration is not inserted into the map, it
is equal to having the value false. This map is used to store all the config-
urations that the recursive algorithm has visited on its path. The other map
dist to capture is mapping configurations to integers. It will represent the
number of moves from the configurations until the robber is captured. The value
maximum is the length of the longest path we have found for the robber to get
captured. To figure out this value we run the recursive algorithm Algorithm
3.2 for every position the robber can choose to start in. To get the starting
configurations, we always take the same cop configuration. The cops will start
in (S0, . . . ,Sk−1) according to their strategy. And to this we add every possible
node on the graph as the starting position of the robber, and figure out for each
one how long it takes the cops to capture him. If the algorithm returns ∞ it is
not possible for the cops to capture the robber.

Algorithm 3.1 Algorithm to Compute Capture Time on Graph Family

1: function Restricted Algorithm(Graph from family: G)
2: init global: visited . map: configuration → boolean
3: init global: dist to capture . map: configuration → integer
4: init: maximum ← 0 . integer
5: for all nodes u 6= a position of a cop do
6: init: conf = (conf.robber, conf.cops) . configuration
7: conf.cops ← (S0, . . . ,Sk−1)
8: conf.robber ← u

9: local value ← Rec Algorithm(conf) . Algorithm 3.2
10: maximum ← max{maximum, local value}
11: end for
12: return maximum

13: end function

The goal of Algorithm 3.2 is to recursively determine how long it takes the
cops to capture the robber, starting from the configuration conf. First we check
if on the path to conf we already passed conf because if this is the case the
robber has the possibility to force an infinite loop, and can therefore not be

3. Maximal Capture Time Graphs 14

caught. To represent this we return the value ∞. After we have done this we
check if we already know how long it takes to get captured. If we know, we return
that value. Then we set the visited to true at conf. Then we set conf’ to
be the configuration after the cops make their move according to their strategy
Table 3.1. If they capture the robber we update the dist to capture map with
the values we figured out. Furthermore the algorithm returns one, since one turn
after conf the robber gets captured. The last thing that needs to be done before
the loop gets started is to prepare a value where we can save the best result of
all the configurations the robber could chose for a next move.

The loop iterates over all the configurations next conf, the robber could
move to from conf’. For each configuration we call the recursive function again.
Take the maximal value and add two to it, since there is a cop and a robber
move more than in the configuration the recursive algorithm was called with. If
there is a next conf where the robber can avoid capture, we will just return ∞
since this is the optimal choice of the next step for the robber. The value that
we calculated to be the most amount of moves the robber can escape capture
will be stored in dist to capture and after that returned. But anywhere before
there is a value returned, the value in visited gets set to false again at conf.

We can use the results of previous calls of the recursive function in the map
dist to capture because the cops will always make the same move, and if there
was a possibility of a loop on the path to capture, the algorithm would have
figured that out before and would not have saved a finite value. This is the case
because we go through the graph like a depth first search algorithm and therefore
would reach any possible loop.

Runtime For a particular configuration the recursion can be called at most
the number of possible ways a robber can reach said configuration. The number
of configurations the loop runs through, is equal to the number of neighbours
the node with the robber has plus one. And for each node the loop is run at
most once, because if it is run once, the value dist to capture gets for said
configuration in Algorithm 3.2 Line 25. Furthermore if the recursive algorithm
is called with for a configuration that has a value in dist to capture, it will not
go through the loop, but return a value earlier. Therefore the loop is at most run
once for each configuration. If one takes into account, and that there are nk+1

configurations, the statements in the loop get executed at most (∆(G) + 1)nk+1

times. And because the recursion can be called at most once for each neighbour
of a node, the recursion is called at most (∆(G)+1)nk+1 times. This all together
gets us an upper bound of the run time at O(∆(G)nk+1). This makes it difficult
to make computations of graphs with many cops. But since many configurations
will never be reached, for example the cops will never go into the component U .
Hence the constant to this bound will at least be small, making it possible to
compute the result for a good amount of different graphs in this family.

3. Maximal Capture Time Graphs 15

Algorithm 3.2 Recursive Algorithm

1: function Rec Algorithm(Configuration: conf)
2: if visited[conf] then
3: return ∞
4: end if
5: if dist to capture[conf] is mapped then
6: return dist to capture[conf]

7: end if
8: conf’ ← next configuration according to cop strategy
9: if captured then

10: dist to capture[conf’] ← 0
11: dist to capture[conf] ← 1
12: return 1
13: end if
14: init: max dist ← 0 . integer
15: for all configurations next conf the robber can move to from conf’ do
16: visited[next conf] ← true

17: local dist ← Rec Algorithm(next conf)
18: visited[next conf] ← false

19: if local dist =∞ then
20: dist to capture[conf] ←∞
21: return ∞
22: end if
23: max dist ← max{max dist, local dist + 2}
24: end for
25: dist to capture[conf] ← max dist

26: return max dist

27: end function

3. Maximal Capture Time Graphs 16

Space The space the maps could occupy in the worst case is in both cases nk+1,
with the same definitions of n and k as when calculating the run time. Since a
value could be stored for each configuration. But the same as stated in consid-
erations on the run time is true for the space, in that for many configurations
the algorithm will never store any values. This is important when choosing data
structures to implement this algorithm.

On the Implementation The algorithm was implemented in C++. But
rather than using recursion, it was implemented iteratively. This is done, be-
cause for bigger inputs, the call stack would overflow and crash the algorithm.
To omit the recursion, one must implement his own stack, to replace the call
stack and loop over the manually implemented stack. Therefore the algorithm
gets much more confusing, hence the algorithm is presented here in recursive
form.

Chapter 4

The General Algorithm

In the previous chapter Algorithm 3.1 describes a way to compute the time it
takes to capture the robber for a set cop strategy on a specific family of graphs.
In this chapter we want to develop another algorithm that can figure out the
capture time of any graph. One to compute the capture time, would be with a
minimax algorithm. Then one would start in a configuration and build a tree
with the next possible reachable configurations. Each new layer is either reached
via a cop or a robber move. But even if α-β pruning [6] is used, it is very slow.
So the idea that is used here computes how long it takes to get captured from
all configurations at the same time, assuming both the cops and the robber play
optimally.

We start with a graph G we want to compute the capture time of. To
illustrate how the algorithm works, the algorithm is used on an example graph.
The graph (Figure 4.1) used for the example are three nodes in a line with one
cop. To compute the time it takes to get captured from each configuration, we
build a meta graph G′. The nodes of G′ are all the configurations of G. The
nodes u and v in G′ are connected with an edge, if there is either a cop or a
robber move from u to v. For each configuration we want to compute how long
it takes until the robber is captured, but since it makes a difference whether it
is the cops or the robbers turn, the algorithm will calculate two values for each
configuration. The time it takes to capture the robber if it is the cops turn to
move is called the cop depth. Similarly the robber depth of a configuration is the
time it takes for the robber to get captured if it is his turn. Initially we set all
these depth values to∞. Furthermore we set the values of the only configurations
we initially know the value of, the configurations where the robber is captured.
The configurations where the robber is captured have a robber and cop depth
of zero. Figure 4.2 shows this initialisation done one the example graph. In the
example representation of G′ edges that correspond to cop moves are coloured
red, while ones representing robber moves are coloured blue.

After all the nodes of G′ are assigned to their initial cop and robber depth
values, the goal of the algorithm is to assign depth values to all configurations

17

4. The General Algorithm 18

0 1 2

Figure 4.1: The graph

←
R
o
b
b
er

P
o
si
ti
o
n
→

← Cop Position →

0/0

∞/∞

∞/∞

∞/∞

0/0

∞/∞

∞/∞

∞/∞

0/0

0 1 2

0

1

2

Figure 4.2: Initialization

that are finite. A new cop depth is possible to compute if there is a node u with
an infinite cop depth but a neighbour v that is reachable with a cop move that
has a robber depth that is finite. The cop depth of u is then simply the robber
depth of v plus one, if there are multiple way to chose v, the one chosen is the
one with the smallest robber depth. To figure out the robber depth of a node u,
all the neighbours v of u need to have a finite cop depth. Because if one has no
finite cop depth, the best next move of the robber would be to move into that
configuration. When all v have a finite cop depth, the robber depth of u will be
the maximum of the cop depth values plus one. The algorithm will computed all
the cop depth values it can, then it will compute all the robber depth values it
can. This process is repeated until one of two things happen. Either the depth
values of all the configuration are finite or there are no more depth values that
are computable. In the example this is represented in Figure 4.3, and it takes
four steps to fill in all the values.

With all assignable depth values assigned, it is time to determine what the
actual capture time is. To do this it helps to remember how the game of cops
and robbers begins. The game start by first the cops choosing their positions,
afterwards the robber chooses his position. When all the positions are chosen
it is the cops turn to make the first move. Therefore when choosing an optimal
starting position, one must consider the cop depth. Furthermore for any cop
configuration the cops start with, the robber will choose the position that creates
the configuration with the highest cop depth. Therefore the cops chose their
starting cop configuration such that this is minimized. With this in mind the
algorithm will compute mu to be the maximal cop depth, the robber could choose

4. The General Algorithm 19

←
R
o
b
b
er

P
o
si
ti
o
n
→

← Cop Position →

0/0

1/∞

∞/∞

1/∞

0/0

1/∞

∞/∞

1/∞

0/0

(a) First cop depth step

←
R
o
b
b
er

P
o
si
ti
o
n
→

← Cop Position →

0/0

1/∞

∞/∞

1/2

0/0

1/2

∞/∞

1/∞

0/0

(b) First robber depth step

←
R
o
b
b
er

P
o
si
ti
o
n
→

← Cop Position →

0/0

1/∞

3/∞

1/2

0/0

1/2

3/∞

1/∞

0/0

(c) Second cop depth step

←
R
o
b
b
er

P
o
si
ti
o
n
→

← Cop Position →

0/0

1/4

3/4

1/2

0/0

1/2

3/4

1/4

0/0

(d) Second robber depth step

Figure 4.3: All the steps

4. The General Algorithm 20

←
R
o
b
b
er

P
o
si
ti
o
n
→

← Cop Position →

0/0

1/4

3/4

1/2

0/0

1/2

3/4

1/4

0/0

max: 3 max: 1 max: 3 min: 1

Figure 4.4: Finding the capture time

if the cops start in cop configuration u. Then the capture time the algorithm
calculates is minmu for all cop configurations u. Figure 4.4 illustrates this for
the example. It is possible that the capture time the algorithm computes is
infinite. When the computed capture time is infinite then the robber can avoid
being captured.

4.1 The Algorithm in Detail

Data Structures Algorithm 4.1 is the algorithm that will hold all the sub-
routines that are described later. To store the cop and robber depth for each
configuration two maps are used. The operations needed on maps is accessing
them for an element, and a option to figure out whether an element is mapped
or not. To keep track of the configuration the algorithm is calculating on, queues
are used. The queues will need to support the multiple functions, the first one
is push, which puts an element into the queue, where it is inserted is of no rel-
evance. The second one is empty, which is true when there are no elements in
the queue. The last operations are pop, which removes the first element in the
queue, and front, which accesses the first element in the queue. The integer i is
used to keep track on how many times the subroutines are called.

Initialization In Algorithm 4.2 all the values in robber depth and cop depth

are set to ∞. Afterwards at all configurations conf where a cop has the same
position as the robber, we set cop depth[conf = robber depth[conf] = 0. We
also push all configurarions conf onto the queue cop queue, because in Algo-
rithm 4.3 we only need to look at the configurations where the robber depth has
changed.

4. The General Algorithm 21

Algorithm 4.1 General basic algorithm

1: function General Algorithm(Graph G)
2: init global: robber depth . map: configuration → integer
3: init global: cop depth . map: configuration → integer
4: init global: cop queue . queue: configuration
5: init global: robber queue . queue: configuration
6: init global: i ← 0 . integer
7: Initialisation . Algorithm 4.2
8: while not cop queue.empty() do
9: i ← i +1

10: Cop Loop . Algorithm 4.3
11: i ← i +1
12: Robber Loop . Algorithm 4.4
13: end while
14: return Compute Capture Time . Algorithm 4.5
15: end function

Algorithm 4.2 General basic algorithm; Initialization

1: function Initialisation
2: for all Configurations conf ∈ V k+1 do
3: cop depth[conf] ←∞
4: robber depth[conf] ←∞
5: end for
6: for all Configurations conf ∈ V k+1 where the Robber is caught do
7: cop depth[conf] ← 0
8: robber depth[conf] ← 0
9: cop queue.push(conf)

10: end for
11: end function

4. The General Algorithm 22

Cop Loop In Algorithm 4.3 we look at all the configurations conf on cop queue.
A configuration is on cop queue if in the last subroutine a new value was assigned
to its robber depth. For all configurations next conf that can be reached by mov-
ing a cop move from conf, Algorithm 4.3 checks if the cop depth is finite. If
cop depth[next conf] = ∞, a new value gets assigned. The value that gets
assigned is robber depth[conf] plus one. Then next conf gets pushed onto
the robber queue.

Algorithm 4.3 General basic algorithm; Cop loop

1: function Cop Loop
2: while not cop queue.empty() do
3: conf ← cop queue.front()

4: cop queue.pop()

5: depth ← robber depth[conf] +1
6: for all configurations next conf that the Cops can move to from

conf do
7: if cop depth[next conf] =∞ then
8: cop depth[next conf] ← depth

9: robber queue.push(next conf)

10: end if
11: end for
12: end while
13: end function

Robber Loop Contrary to Algorithm 4.3 we cannot just set the robber depth

for every configuration reachable via a robber move from a configuration on the
queue. The robber depth gets only assigned a new values if all the configura-
tion that are reachable via a robber move have a cop depth value that is finite.
Therefore Algorithm 4.4 will go through all configurations next conf that the
Robber can move to from conf. Furthermore it will look at all configurations
local conf that the Robber can move to from next conf. Moreover Algorithm
4.4 will take these configurations local conf and look at their cop depth. If
for a configuration next conf all values cop depth[local conf] are finite, we
assign the maximum of those values plus one to robber depth[next conf]. All
next conf that got assigned a new robber depth get pushed onto cop queue.

On the Values Stored in the Maps Every time a finite value gets stored
into a depth map the value inserted is equal to i. In Algorithm 4.2 this is trivially
true because all the values inserted are zero. Algorithm 4.3 and Algorithm 4.4
need to be looked at together, because to set their values they need values set in
the other algorithm. While in Algorithm 4.3 we always insert values that are one
larger than values inserted in the previous call of Algorithm 4.4. On the other

4. The General Algorithm 23

Algorithm 4.4 General basic algorithm; Robber loop

1: function Robber Loop
2: while not robber queue.empty() do
3: conf ← robber queue.front()

4: robber queue.pop()

5: for all configurations next conf that the Robber can move to from
conf do

6: depth ← −∞
7: for all configurations local conf that the Robber can move to

from next conf do
8: depth ← max{depth, cop depth[local conf]}
9: end for

10: if depth <∞ then
11: robber depth[next conf] ← depth +1
12: cop queue.push(next conf)

13: end if
14: end for
15: end while
16: end function

hand Algorithm 4.4 will insert values that are one larger than one value from
the last time Algorithm 4.3 was called, or the any other value inserted in a cop
map plus one. Therefore in each call of either Algorithm 4.3 or Algorithm 4.4
the value inserted into the depth maps will always be i. This could be proven
in more detail with an induction. But that proof would be needlessly complex
for this little statement, so it gets omitted here.

Capture Time Algorithm 4.5 is where all the depth values get evaluated and
the capture time calculated. To compute the capture time first the algorithm
iterates through all the cop configurations. For each cop configuration a local
maximum will be computed, it is stored in local capture time. To get this
local maximum for a cop configuration we maximize the value cop depth[conf],
from every configuration that is the copfiguration and any position for the robber.
Then we take the minimum of all local capture time values. This minimum
is the capture time and will be returned by Algorithm 4.5.

4.2 Improvements to the Algorithm

There are some things that can be done to significantly improve the runtime and
space used of this algorithm, resulting in Algorithm 4.6. The first thing that can
be done is that instead of inserting the values ∞ at every configuration of this

4. The General Algorithm 24

Algorithm 4.5 General basic algorithm; Capture time computation

1: function Compute Capture Time
2: capture time ←∞
3: for all Cop configurations cop conf do
4: init: conf = (robber, cops) . Configuration
5: conf.cops ← cop conf

6: local capture time ← 0
7: for all nodes u do
8: conf.robber ← u

9: local capture time ← max{ local capture time,
cop depth[conf]}

10: end for
11: capture time ← min{catching depth, local capture time}
12: end for
13: return capture time

14: end function

map, we only insert values, if it is a finite one. Therefore anywhere we would
check if the value of a map was infinite, we now check if the value is mapped. This
helps us by saving some space. An other small improvement that can be made is
that we use the value i declared in Algorithm 4.1. This makes the assigning of
new depth values a little bit easier. This change also makes it obvious that the
values inserted assigned to the cop and robber depths are only getting larger.

Because the values inserted into the cop maps are only getting larger, the
capture time is possible to compute without computing the cop depth values of
every single configuration. When a cop configuration is found, for that all config-
urations, which are achieved by choosing any robber position, have a determined
cop depth. The first time this happens for a cop configuration, we already know
the capture time. Therefore we use a counter map from cop configurations to
integers. And each time a configuration get a cop depth value, the corresponding
cop configuration gets its corresponding counter increased by one. And if one of
these counters reaches the number of nodes in the graph, we know the capture
time and can just return it. If this never happens, the robber is able to evade
getting captured for ever.

An other modification that can be done is if we look at the cop configurations.
It is straightforward to see that if in a configuration one cop is in node u and
an other in node v that if the cops are switched, it has the same capture time
as the other configuration. This we can use in the mapping, if we regard two
configurations as the same if the cop configurations of the two only varies by a
permutation. What still needs to be allowed is that multiple cops are at the same
node of the graph, because there are examples of graphs where this is needed for
the best cop strategy, one is given in the result section. To implement this we

4. The General Algorithm 25

don’t need to change the algorithm itself, but rather the mapping, the easiest
solution is to sort the cop configuration before looking up where to access the
map. Sorting takes time, but because many configurations will be the same, so
the overall runtime will still improve. Furthermore less space will be needed.

Algorithm 4.6 General improved algorithm

1: function General Algorithm(Graph G)
2: init global: robber depth . map using symmetry: configuration → int
3: init global: cop depth . map using symmetry: configuration → int
4: init global: counter . map using symmetry: cop configuration → int
5: init global: cop queue . queue: configuration
6: init global: robber queue . queue: configuration
7: init: depth ← 0 . int
8: init: local result . int
9: Initialisation . Algorithm 4.7

10: while not cop queue.empty() do
11: depth ← depth +1
12: local result ← Cop Loop(depth) . Algorithm 4.8
13: if local result 6=∞ then
14: return local result

15: end if
16: depth ← depth +1
17: Robber Loop(depth) . Algorithm 4.9
18: end while
19: return ∞
20: end function

Algorithm 4.7 General improved algorithm; Initialization

1: function Initialisation
2: for all Cop configurations cop conf ∈ V k do
3: counter[cop conf] ← 0
4: end for
5: depth ← 0
6: for all Configurations conf ∈ V k+1 where the Robber is caught do
7: cop depth[conf] ← depth

8: robber depth[conf] ← depth

9: cop queue.push(conf)

10: end for
11: end function

Determing the Cop Number Algorithm 4.6 can be used to not only calcu-
late the capture time, but the cop number of a graph (Definition 2.6). This is

4. The General Algorithm 26

Algorithm 4.8 General improved algorithm; Cop loop

1: function Cop Loop(depth)
2: while not cop queue.empty() do
3: conf ← cop queue.front()

4: cop queue.pop()

5: for all configurations next conf that the Cops can move to from
conf do

6: if next conf 6∈ cop depth then
7: counter[next conf.cops] ← counter[next conf.cops] +1
8: cop depth[next conf] ← depth

9: robber queue.push(next conf)

10: if counter[next conf.cops]= V then
11: return depth

12: end if
13: end if
14: end for
15: end while
16: end function

Algorithm 4.9 General improved algorithm; Robber loop

1: function Robber Loop(depth)
2: while not robber queue.empty() do
3: conf ← robber queue.front()

4: robber queue.pop()

5: for all configurations next conf that the Robber can move to from
conf do

6: all in map ← true

7: for all configurations local conf that the Robber can move to
from next conf do

8: if local conf 6∈ robber depth then
9: all in map ← true

10: break loop
11: end if
12: end for
13: if all in map then
14: robber depth[next conf] ← depth

15: cop queue.push(next conf)

16: end if
17: end for
18: end while
19: end function

4. The General Algorithm 27

done by not just computing the capture time for a a single number of cops, but
for different amounts of cops. One starts by calculating the capture time with
k ∈ {1, 2, . . .} cops. The first k for which Algorithm 4.6 returns a finite value, is
the cop number of the graph.

Run time We have the graph G = (V,E) with k cops, where we define n = |V |.
The graph is connected, and the maximal number of neighbours a node has is
∆(G). There are n

(
n
k

)
distinct configurations for this graph and

(
n
k

)
distinct

cop configurations. Therefore in the initialisation, where we need to add each
cop configuration with up to ke positions of the robber. Resulting in at most
2k
(
n
k

)
mappings that need to be done, because the values get added to both

maps. Since the mapping can be done in O(k log k) time (because we sort the
cop configuration), the time needed to initialize is

((
n
k

)
k2 log k

)
.

Each configuration can land once in the cop queue and once in the robber
queue. For an element of the cop queue we go through all the possible configura-
tions the cops could reach, and since every cop can either stay still or move to an
neighbour, this are (∆(G) + 1)k configurations. The mapping and the adding to
the counter can be done in O(k log k) time, therefore the time it takes at most for
all elements ever to be in the cop queue is O

(
n
(
n
k

)
(∆(G))kk log k

)
. On the other

hand there is the robber queue, into which the same amount of configurations
could be possibly inserted. But for a configuration inserted we need to look at
all the configurations the robber could reach twice, therefore for each configura-
tion on the robber queue the insertion into the maps is done at most O(∆(G))2

times. Concluding that robber queue interactions take O
(
n
(
n
k

)
(∆(G))2k log k

)
time to perform. Furthermore the total time needed to run Algorithm 4.6 is
O
(
n
(
n
k

)
k log k((∆(G))k + (∆(G))2)

)
. The runtime is exponential in the number

of cops, therefore limiting the usability of the algorithm for bigger numbers of
cops.

Space We take the same graph we described in the run time calculation of
Algorithm 4.6. To save a configuration we need all the positions of all the players
this takes O(k) space. In all the queues each configuration could be saved leading
to O

(
km
(
n
k

))
space. The counter map maps every cop configuration to a value

this needs O
(
kn
(
n
k

))
space. Finally the depth maps need O

(
knk+1

k!

)
space. So

in total this algorithm needs O
(
knk+1

k!

)
space to save all the information.

Chapter 5

Results

5.1 Restricted Algorithm

With Algorithm 3.1 we wanted to show it is always possible for the cops to
capture the robber, on the graphs constructed in Section 3.1, if the cops stick to
their strategy. This is reinforced with the data we get from the computations
that can be done with Algorithm 3.1. In Table 5.1 there is a listing of outputs
we get from the algorithm, along with the time it took to compute them. The
data from this table is also used to make two plots. In the first one the output
is plotted with respect to n. Then there is made a cubic fitting of the output,
which results in Figure 5.1. Theorem 3.1 claims that in the graph family with
two cops, the capture time is O(n3). The results of the computation support
that theorem, by delivering an upper bound that has is also growing with O(n3).

The other plot is showing the time it took to compute the output. The run
time that was calculated was O(∆(G)n3). When we increase the component size
n̂ we do not increase the number of neighbours most nodes have, therefore the
computation time should grow cubic in the number of nodes in the graph. This
claim is also reinforced by the data in Figure 5.2. Furthermore we can see from
this basic fitting that the constant is small.

The same thing for three cops is represented in Table 5.2, Figure 5.3 and
Figure 5.4. But instead of a cubic fitting, they were fitted with a polynomial of
degree four.

The last plot for Algorithm 3.1 shows the output for different amounts of cops.
The output is not shown relative to the graph size, but rather to the component
size n̂. This is done to better compare the outputs of different number of cops,
since the size of the graph differs strongly with different amounts of cops. And
as can be seen in Figure 5.5 the time it takes for the cops to capture a robber
greatly increases with the number of cops, this is only because of how the graphs
in the family get adjusted to more cops. When more cops are added on the same
graph it is straight forward to see that the capture time is smaller or equal to
the old one. All the values used in this plot are listed in Table 5.3.

28

5. Results 29

n̂ n capture time comp time n̂ n capture time comp time

3 399 17 0.010947 s 78 699 210919 127.935 s

6 411 103 0.029023 s 81 711 236203 151.474 s

9 423 331 0.0567 s 84 723 263431 173.665 s

12 435 775 0.137684 s 87 735 292675 216.557 s

15 447 1507 0.266877 s 90 747 324007 258.253 s

18 459 2599 0.497294 s 93 759 357499 258.42 s

21 471 4123 0.849087 s 96 771 393223 293.061 s

24 483 6151 1.36235 s 99 783 431251 333.151 s

27 495 8755 2.12666 s 102 795 471655 378.416 s

30 507 12007 3.36106 s 105 807 514507 426.114 s

33 519 15979 4.71625 s 108 819 559879 479.676 s

36 531 20743 6.31138 s 111 831 607843 538.573 s

39 543 26371 8.33522 s 114 843 658471 601.969 s

42 555 32935 11.1916 s 117 855 711835 671.422 s

45 567 40507 14.9008 s 120 867 768007 746.586 s

48 579 49159 18.5962 s 123 879 827059 866.226 s

51 591 58963 23.3386 s 126 891 889063 992.073 s

54 603 69991 29.1229 s 129 903 954091 1161.64 s

57 615 82315 36.0223 s 132 915 1022215 1289.87 s

60 627 96007 44.0484 s 135 927 1093507 1368.15 s

63 639 111139 53.5215 s 138 939 1168039 1408.84 s

66 651 127783 64.8244 s 141 951 1245883 1491.65 s

69 663 146011 76.3598 s 144 963 1327111 1602.22 s

72 675 165895 91.686 s 147 975 1411795 1748.22 s

75 687 187507 108.184 s 150 987 1500007 1936.39 s

Table 5.1: Results of the algorithm, run on graphs from the family with 2 cops

n̂ n capture time comp time n̂ n capture time comp time

3 459 17 0.013704 s 33 609 175699 67.8899 s

6 474 199 0.053816 s 36 624 248839 103.322 s

9 489 979 0.226422 s 39 639 342739 151.036 s

12 504 3079 0.712995 s 42 654 460999 215.364 s

15 519 7507 2.01237 s 45 669 607507 299.362 s

18 534 15559 4.40898 s 48 684 786439 405.962 s

21 549 28819 8.87236 s 51 699 1002259 547.792 s

24 564 49159 16.1577 s 54 714 1259719 726.715 s

27 579 78739 27.7676 s 57 729 1563859 936.544 s

30 594 120007 44.4556 s 60 744 1920007 1218.48 s

Table 5.2: Results of the algorithm, run on graphs from the family with 3 cops

5. Results 30

Figure 5.1: Computed capture time with cubic fitting, on graphs with 2 cops;
Exact values found in Table 5.1

Figure 5.2: Computation time with cubic fitting, on graphs with 2 cops;
Exact values found in Table 5.1

5. Results 31

Figure 5.3: Computed capture time with polynomial fitting, on graphs with 3
cops;
Exact values found in Table 5.2

Figure 5.4: Computation time with polynomial fitting, on graphs with 3 cops;
Exact values found in Table 5.2

5. Results 32

n̂ k n output comp time n̂ k n output comp time

3 2 399 17 0.006772 s 3 4 607 17 0.016935 s

6 2 411 103 0.015173 s 6 4 625 391 0.110034 s

9 2 423 331 0.040383 s 9 4 643 2923 0.805018 s

12 2 435 775 0.101146 s 12 4 661 12295 4.06905 s

15 2 447 1507 0.235818 s 15 4 679 37507 11.178 s

18 2 459 2599 0.401265 s 18 4 697 93319 30.1597 s

21 2 471 4123 0.669972 s 21 4 715 201691 70.0834 s

24 2 483 6151 1.14168 s 24 4 733 393223 145.858 s

27 2 495 8755 1.70783 s 27 4 751 708595 287.077 s

30 2 507 12007 2.42001 s 30 4 769 1200007 523.385 s

3 3 459 17 0.009987 s 3 5 879 17 0.023656 s

6 3 474 199 0.048311 s 6 5 900 775 0.259447 s

9 3 489 979 0.183818 s 9 5 921 8755 2.83049 s

12 3 504 3079 0.604732 s 12 5 942 49159 17.695 s

15 3 519 7507 1.47623 s 15 5 963 187507 74.6015 s

18 3 534 15559 3.33862 s 18 5 984 559879 241.917 s

21 3 549 28819 6.71791 s 21 5 1005 1411795 651.378 s

24 3 564 49159 15.1171 s 24 5 1026 3145735 1734.89 s

27 3 579 78739 22.9673 s 27 5 1047 6377299 3392.86 s

30 3 594 120007 37.071 s 30 5 1068 12000007 6397.39 s

Table 5.3: Results of the algorithm, run on graphs from the family with different
amount of cops; The output is the capture time

Figure 5.5: Computed capture time on graphs with different cops;
The component size is n̂; The capture time is scaled logarithmically
Exact values found in Table 5.3

5. Results 33

n̂ n capture time computation time

3 399 11 727.686 s

6 411 51 944.851 s

9 423 159 1316.14 s

12 435 351 1866.51 s

15 447 673 2699.42 s

18 459 1161 3582.87 s

21 471 1851 4899.48 s

24 483 2779 6774.52 s

27 495 3981 9716.61 s

Table 5.4: Results of the algorithm, run on graphs from the family with 2 cops

When we analyse the numbers of the outputs, we get that the following:

x = 12

(
n̂

3

)k+1

+ 7 for n̂ > 3

where x is the output of our algorithm. But for n̂ = 3 we always get that x = 17.
This is nice, since this corresponds to the numbers that were assumed.

5.2 General Algorithm

Algorithm 4.6 computes the capture time of any graph. But since the algorithm
performs much slower, we can not get results from graphs of the same size.
The performance gets so bad that for the smallest instance with three cops,
the computation would take approximately a month. The computation would
also need approximately 128 Gb of RAM. Because of these reasons it does not
make much sense to try an instance with three cops. With only two cops there
at least some instances that can be calculated exactly. The results of those
calculations are listed in Table 5.4. Furthermore this is illustrated in Figure 5.6
and Figure 5.7.

And since the values are all roughly half what the values for a fixed cop
strategy are, we assume that at least for two cops this would continue for larger
graphs. With this information not only the upper bound is O(n3) but also the
actual capture time is in O(n3). And thus we calculated some more evidence of
the correctness of Theorem 3.1.

A small example of such an optimal path is illustrated in Figure 5.8. In those
pictures the edges of the graph are left out for simplicity. Instead of drawing
all the edges, all the neighbours of cops are circled red, and the neighbours of
robbers are lightly blue filled. The nodes, the cops are on, are coloured red and
those the robbers are on blue. For each configuration on the path to capturing

5. Results 34

Figure 5.6: Computed capture time with cubic fitting, on graphs with 2 cops;
Computed with the general algorithm; Exact values found in Table 5.4

Figure 5.7: Computation time with cubic fitting, on graphs with 2 cops;
Computed with the general algorithm; Exact values found in Table 5.4

5. Results 35

the robber, one figure is made showing the positions of each figure and the nodes
they could move to.

5.3 Examples of Cop Numbers

The general algorithm can also be used to compute the cop number of any graph.
The first example is the cyclic graph, which has cop number two if it has at least
four nodes. For 30 nodes the cyclic graph is shown in Figure 5.9.

The Petersen graph [3] is the smallest graph with cop number three. This is
also confirmed by the computation with the algorithm. The Petersen graph is
shown in Figure 5.10.

In Figure 5.11 an example of a graph, which requires multiple cops to have
the same position to capture the robber as fast as possible, is shown. This graph
has cop number two.

The Robertson-Wenger graph [7] is shown in Figure 5.12. With Algorithm
4.6 it is possible to compute that the cop number of the Robertson-Wenger
graph is five. But computing this result took approximately 14 hours. Because
the Robertson-Wenger graph is one of the smallest graphs with cop number five,
it takes too long to compute the capture time for most other graphs with cop
number five. Furthermore more it would even take considerably longer for a
graph with cop number six, since the computation time is exponential in the
number of cops.

The last graph that is presented here is a two dimensional torus. This graph
requires three cops to capture the robber. The torus is drawn in Figure 5.13.

5.4 How Many Cops Are Needed

There is an unproven conjunction of Meyniel [4] that the cop number of a graph is
in O(

√
n). With the help of Theorem 2.7 we can construct such graphs that need

roughly
√
n cops to capture the robber. Such a construction might be useful to

construct other graph families, similar to the one in Section 3.1 the component
G(E ,L). But there an other construction was used. The construction used
in G(E ,L) is based on projective planes [2]. So why would we need another
construction? The answer to that lies in the number of nodes used to create
a graph. Our new approach need roughly k2 nodes to create a graph with cop
number k. On the other hand projective planes need around 2k2. Also this new
construction might give us insights on the conjunction of Meyniel.

The construction describes a graph that k cops are needed to capture the
robber, the number of nodes need is k2 + k. Theorem 2.7 states that we have a
graph, where there are no cycles of length smaller than five and if all the nodes

5. Results 36

(a) Initialisation (b) First cop move

(c) First robber move (d) Second cop move

(e) Second robber move (f) Third cop move

Figure 5.8: An Optimal Path, Part 1

5. Results 37

(g) Third robber move (h) Fourth cop move

(i) Fourth robber move (j) Fifth cop move

(k) Fifth robber move (l) Cops capture the robber

Figure 5.8: An Optimal Path, Part 2

5. Results 38

Figure 5.9: Cyclic graph C30 with cop number 2 and capture time 13

Figure 5.10: Petersen graph with cop number 3 and capture time 1

5. Results 39

Figure 5.11: Graph where both optimal playing cops start in the middle node,
it has cop number 2 and capture time 7

Figure 5.12: Robertson-Wenger Graph with cop number 5 and capture time 3

5. Results 40

Figure 5.13: Torus with 36 nodes, cop number 3 and capture time 7

k Number of Possibilities

2 1

3 2

4 24

5 9’953’280

Table 5.5: Number of Ways to Connect V

have at least k neighbours, at least k are needed to capture the robber on the
graph. The construction, it is represented in Figure 5.14 , starts with the node O.
It is connected to k nodes. The nodes O is connected to, are called L0, . . . , Lk.
For each i from 0 to k Li is connected to v0i , . . . , v

k−1
i . Furthermore the node Rj ,

for j from 0 to k − 1, is connected to the nodes vj0, . . . , v
j
k. The set V is the set

of all the nodes vji , for i ∈ {0, . . . , k} and j ∈ {0, . . . , k − 1}. The nodes O,Li

and Rj , for i ∈ {0, . . . , k} and j ∈ {0, . . . , k − 1}, have k neighbours. But the
nodes vji not yet. But to use Theorem 2.7 it is required for them to also have k
neighbours.

The rest of those edges could for example be chosen by brute force. Each of
the nodes in V need k − 2 more nodes. When choosing these edges one has to
follow two rules. The first rule states that in the component V there is no cycle
of length smaller than five. The second rule states that when vji is connected to

vj1i1 and vj2i2 with vj1i1 6= vj2i2 then neither i1 = i2 nor j1 = j2 is allowed. The second

rule assures that no cycle too short is made either over a node Li or Rj . With this
the number of ways these edges could be arranged is shown in Table 5.5. Since
these numbers are growing fast, it is reasonable to assume that this construction
can be done for any number of cops. It even might be possible to figure out an
explicit way to choose those edges, making the construction much easier.

Figure 5.15 shows a graph constructed in that way, but it was rearranged
onto a cycle. It was rearranged to improve the visibility of the individual edges.
To create to create a graph with k = 4 a possibility of arranging the additional

5. Results 41

O

L0

L1

L2

...

Lk

R0

R1

...

Rk−1

v00

v10

...

vk−1
0

v01

v11

...

vk−1
1

v02

v12

...

vk−1
2

...

v0k

v1k
...

vk−1
k

Figure 5.14: Construction of a graph with high cop number

5. Results 42

node edges to

i00 i11 and i22
i10 i21 and i02
i20 i01 and i12
i01 i20 and i13
i11 i00 and i23
i21 i10 and i03
i02 i10 and i23
i12 i20 and i03
i22 i00 and i13
i03 i21 and i12
i13 i01 and i22
i23 i11 and i02

Table 5.6: List of the brute forced edges, for k = 4

edges is shown in Table 5.6.

5. Results 43

Figure 5.15: Graph with Cop Number 4

Bibliography

[1] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied
Mathematics, Volume 8, 1984. https://doi.org/10.1016/0166-218X(84)

90073-8.

[2] Anthony Bonato. What is cop number, 2012. http://www.ams.org/

notices/201208/rtx120801100p.pdf.

[3] Andries E. Brouwer. The petersen graph. http://www.win.tue.nl/~aeb/

drg/graphs/Petersen.html.

[4] Meyniel. Meyniels conjuncture. https://arxiv.org/abs/1308.3385.

[5] S. Brandt, Y. Emek, J. Uitto and R. Wattenhofer. A tight lower bound for the
capture time of the cops and robbers game, 2017. https://ie.technion.

ac.il/~yemek/Publications/tlbctcrg.pdf.

[6] George T. Heineman; Gary Pollice; Stanley Selkow. The Elements of Typo-
graphic Style. Oreilly Media, 2008. ISBN 978-0-596-51624-6.

[7] Eric W. Weisstein. Robertson-wegner graph. From MathWorld–A Wolfram
Web Resource.http://mathworld.wolfram.com/Robertson-WegnerGraph.
html.

-1

https://doi.org/10.1016/0166-218X(84)90073-8
https://doi.org/10.1016/0166-218X(84)90073-8
http://www.ams.org/notices/201208/rtx120801100p.pdf
http://www.ams.org/notices/201208/rtx120801100p.pdf
http://www.win.tue.nl/~aeb/drg/graphs/Petersen.html
http://www.win.tue.nl/~aeb/drg/graphs/Petersen.html
https://arxiv.org/abs/1308.3385
https://ie.technion.ac.il/~yemek/Publications/tlbctcrg.pdf
https://ie.technion.ac.il/~yemek/Publications/tlbctcrg.pdf
http://mathworld.wolfram.com/Robertson-WegnerGraph.html
http://mathworld.wolfram.com/Robertson-WegnerGraph.html

	Abstract
	1 Introduction
	2 The Game of Cops and Robbers
	2.1 Definitions and Notations
	2.2 Related Work

	3 Maximal Capture Time Graphs
	3.1 Construction
	3.1.1 List of Nodes
	3.1.2 List of Edges
	3.1.3 Strategies

	3.2 Algorithm

	4 The General Algorithm
	4.1 The Algorithm in Detail
	4.2 Improvements to the Algorithm

	5 Results
	5.1 Restricted Algorithm
	5.2 General Algorithm
	5.3 Examples of Cop Numbers
	5.4 How Many Cops Are Needed

	Bibliography

