e
ETH y.

.
. g ’
Distri f9gun®
Eidgendssische Technische Hochschule Ziirich st bUte‘_j ’:“““
Swiss Federal Institute of Technology Zurich Computing 3%

Learning Crowd Behaviour with
Neuroevolution

Master’s thesis

Pascal Widmer

pawidmer@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory
ETH Zirich

Supervisors:
Manuel Eichelberger, Michael Konig
Prof. Dr. Roger Wattenhofer

May 19, 2017

Abstract

Many different techniques are used to mimic human behaviour in order to cre-
ate realistic crowd simulations. Agent-based approaches, while having the most
potential for realism, traditionally required carefully hand-crafted rules. In re-
cent years the focus has shifted from hand-crafting decision rules to learning
them through methods such as reinforcement learning. In this work a closer
look is taken on the suitability of a prominent neuroevolution method called
NeuroEvolution of Augmenting Topologies (NEAT). Agents are controlled using
an artificial neural network, which is evolved over generations in typical crowd
simulation scenarios. The evolved control logic is then replicated to many agents
and the emergent crowd behaviour is empirically evaluated.

Abstract

1 Introduction

1.1 Related Work

2 Background

2.1 Artificial Neural Network (ANN)

Contents

2.2 Evolutionary Algorithms (EA) and Neuroevolution (NE)

2.3 NeuroEvolution of Augmenting Topologies (NEAT)

2.3.1 Genetic Encoding
2.3.2 Mutations and Crossover

2.3.3 Speciation

3 Implementation

3.1 Evolving Agent Behaviour
3.2 Crowd Simulation

3.3 Visualization in Maya

4 Scenarios

4.1 Road Crossing
4.2 Collaborative Food Gathering
4.3 School Domain

5 Evaluation
5.1 Performance

5.2 Extensibility

5.3 Comparison to Reinforcement Learning

6 Conclusion

ii

S Ot Ot e R W W \]

©

10
11

13
13
14
16

18
18
18
18

20

CONTENTS

Bibliography

iii

21

CHAPTER 1

Introduction

Large-scale crowd simulations have become an integral part of many recent films
and computer games. Traditionally, each agent required to be animated by hand,
increasing the cost of production. Crowd simulation tools aim to alleviate this
problem. They provide ways for artists to control the movement of groups of
agents, as well as letting them specify behavioural rules for specific agents [1].
However, group-based techniques often lead to homogeneous crowds with little
diversity. Agent-based rules, on the other hand, need to be carefully hand-coded
so as to both create realistic local behaviour and to satisfy the desired group
dynamics on a larger scale. Machine learning can serve as a means to learn
agent-based behavioural rules automatically while satisfying global constraints.

Neuroevolution has been shown to outperform Q-learning on tasks such as
single pole balancing and similar control tasks [2]. Neuroevolution of Augmenting
Topologies (NEAT) and similar neuroevolution techniques have the advantage
of searching directly in the behavioural space for good solutions as opposed to
iterating over value functions. Because neuroevolution keeps a population of
candidate solutions which potentially solve the same problem in unique ways,
it has the additional benefit of adding diversity for free. NEAT seems to be a
natural contender for tasks that have continuous high-dimensional state spaces
and where interesting but imperfect solutions are not undesirable.

In neuroevolution, agents are controlled through artificial neural networks
which are iteratively improved. This is done by specifying how agents may in-
teract with the environment and what their global goal is. Agents are evaluated
after each episode of interactions and their performance is measured using a fit-
ness function. Typically, the more successful agents are mutated by randomly
tweaking the artificial neural network connection weights, while worse perfor-
ming individuals are discarded. This naturally leads to an improvement of the
population. Fully evolved agents react locally to the environment and as a re-
sult of being trained on a global fitness function they satisfy the global dynamic
constraints.

1. INTRODUCTION 2
1.1 Related Work

Similar work has been done by Sunrise Wang et al [3]. They compare how Con-
ventional Neuro-Evolution (CNE), Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES), Neuro-Evolution of Augmenting Topologies (NEAT), and
Enforced Sub Populations (ESP) perform on various multi-agent learning tasks.
A lot of research, on the other hand, implements some form of single-, or multi-
agent reinforcement learning instead. Francisco Martinez-Gil et al [4] use vector
quantization (VQ) to generalize the continuous state space and apply multi-
agent reinforcement learning to a pedestrian navigation scenario. Similarly, L.
Casadiego and N. Pelechano [5] use reinforcement learning on a single agent in
an obstacle avoidance scenario. Later, the learned table is shared among many
agents to create a crowd.

CHAPTER 2

Background

2.1 Artificial Neural Network (ANN)

An artificial neural network (ANN) is a network of neurons loosely mimicking
natural neurons found in a brain. Figure 2.1a shows the structure of a simple
ANN. The network can be subdivided into three layers of neurons. The input
layer, which receives sensory input from the environment, the output layer, whose
neuron’s output can represent classifications or actions, and the hidden layer
or layers in between. Input values are propagated through the network over
the edges and each neuron applies an activation function to its input. More
concretely, the input to each neuron j is the weighted sum of its in-edges, i.e.,
the so called transfer function

0; =B+ wi-w,

=1

where x; represents the value travelling over edge i, w; the weight associated
with the edge and 3; the bias associated with neuron j. The activation function
is typically a logistic sigmoid given by

1

10 =15

and illustrated in Figure 2.1b, in this case with slope parameter § equal to 4.9. It
maps 6 to values in the interval (0,1). Many non-linear activation functions can
be used instead, however sigmoids are most common. ANNs which contain cycles
are called recurrent and give rise to recurrent neural networks (RNNs). They
have the capability to exhibit dynamic temporal behaviour and are particularly
suited for tasks which require some form of memory. ANNs serve as the control
logic of agents in NEAT. Often times, neurons do not have an associated bias
value but instead the bias is modelled as an additional input to the network with
a constant value of 1. This way, whenever a neuron needs a bias value an edge is
simply added between the constant input neuron and the edge weight is used to
scale it appropriately. Although it is mathematically equivalent it helps reduce

3

2. BACKGROUND 4

Recurrent network

0.5

— output layer
input layer (class/target)
hidden layers: “deep” if > 1 - 0.5 0 0.5 1

(b) Sigmoid activation function

(a) Artificial Neural Network (ANN) [6] 1
f0) = e=row

Figure 2.1

the computational cost in NEAT, as having a bias value for every node would
increase the search space unnecessarily.

2.2 Evolutionary Algorithms (EA) and Neuroevolu-
tion (NE)

Evolutionary algorithms (EA) aim to find solutions or good approximations to
optimization and search problems by mimicking the way natural evolution works.
Randomly generated candidate solutions (not necessarily ANNs) represent indi-
viduals in a population. Similarly to natural evolution, a selection pressure is
applied to these individuals based on their fitness, i.e., a measure of how well
they solve the given problem. Better performing individuals having achieved a
higher fitness are then recombined (a process called crossover) or randomly mu-
tated, while worse performing individuals are removed from the population. The
population’s mean fitness thus improves in each generation. There is generally no
guarantee that a global optimum is found, however there exist techniques such
as speciation to ensure that the population stays diverse enough to explore a
large part of the problem space. When individuals in an evolutionary algorithm
are represented as an ANN, the algorithm is called neuroevolution.

2.3 NeuroEvolution of Augmenting Topologies (NEAT)

When neuroevolution is used to evolve both weights and topology of an ANN
it is referred to as TWEANN (Topology and Weight Evolving Artificial Neu-
ral Network). One of the most popular such algorithms is Neuroevolution of
Augmenting Topologies (NEAT), introduced by Kenneth O. Stanley and Risto
Miikkulainen in 2002 [7].

2. BACKGROUND 5

Genome (Genotype)

Node [yode 1 |node 2 [node 3 [node 4 [wode s
Genes Sensor |Sensor |Sensor |Qutput |Hidden

Connect. | In 1 In 2 In 3 In 2 In 5 In 1 In 4

Genes Out 4 Out 4 out 4 Out 5 Out 4 out 5 out 5
Weight 0.7 |Weight-0.5 |Weight 0.5 |Weight 0.2 |Weight 0.4 | Weight 0.6| Weight 0.6
Enabled DISABLED Enabled Enabled Enabled Enabled Enabled
Innov 1 Innov 2 Innov 3 Innov 4 Innov 5 Innov 6 Innov 11

A

Network (Phenotype) 4

5
1 2 3

Figure 2.2: Genetic encoding of an ANN in NEAT [7]

2.3.1 Genetic Encoding

In NEAT ANNSs are encoded genetically, i.e., as a sequence of genes an example
of which is shown in Figure 2.2. Node genes specify whether nodes are of type
sensor (input), output or hidden. Connection genes specify which neurons are
connected and the respective edge weight. Connection genes can be disabled
and re-enabled in later generations, akin to how natural DNA segments can be
recessive and only expressed in later generations. Connection genes also carry
a global innovation number or history marker. When a new connection gene
is introduced by a structural mutation it is assigned a new and globally unique
innovation number. If the connection gene is inherited from a parent it keeps
the parent’s innovation number. Innovation numbers can thus be used to tell
whether connection genes have the same ancestor (are homologous) or whether
they were introduced through a structural mutation.

2.3.2 Mutations and Crossover

Mutations The evolution of individuals happens through either mutations or
crossover. Mutations include structural mutations as depicted in Figure 2.3,
namely adding a new connection to the network and adding a new node to the
network. Adding a new connection involves inserting a new connection gene
(3 — 5) and assigning it a new innovation number (7). When a new node is
introduced a new node gene is inserted. If a direct connection between the nodes
has already been present (3 — 4) the according connection gene is disabled
(DIS) and two new connection genes are introduced (3 — 6) and (6 — 4), each
of which is assigned a new innovation number (8 and 9). The third and most

2. BACKGROUND 6

typical mutation is a simple edge weight mutation. Each edge weight has a
chance to be assigned a new random value or be slightly perturbed (sampled
from a Gaussian distribution).

Crossover In a process called crossover two individuals of the population are
recombined inheriting genes from both parents. Figure 2.4 shows a possible
crossover scenario. The list of connection genes of both parents are compared
using their innovation numbers. When innovation numbers match genes are
inherited randomly from either parent, whereas disjoint and excess genes are
inherited from the fitter parent. Disjoint and excess genes are genes not present
in both parents, excess genes are mismatches in the end of the genome while
all other mismatches are disjoint genes. In the special case, where parents have
equal fitness, as is the case in the given example, genes are inherited from both
parents. Genes 6,7,9,10 are inherited from parent 2 whereas gene 8 is inherited
from parent 1. All inherited genes also have a slight chance of becoming disabled
and disabled genes have a chance to become re-enabled.

Offspring born through crossover often have the potential to increase the
fitness of their parents by a large amount, as they might have inherited topologies
which solve two different sub-problems. Initially the offspring’s fitness might be
lower because evolution needs to first optimize the network to combine the two
inherited topologies. In general, larger networks take a longer time to optimize
as more parameters have to be mutated. To prevent new offspring from being
prematurely removed from the population the concept of species is introduced.

2.3.3 Speciation

In NEAT individuals of a population are distributed into separate species on the
basis of their similarity. Individuals of species compete among each other for
survival as opposed to the population at large. Innovation numbers can again be
used to measure topological similarity between two individuals. The similarity
or distance § between individuals is a linear combination of the number of excess
genes F, the number of disjoint genes D, and the average weight difference for
matching genes W given by

o= % + % + csW.
c1, 2, and cg are used to define the importance of the three factors. NEAT uses
a concept called explicit fitness sharing to ensure that no species can take over
the whole population. In explicit fitness sharing an individual’s fitness is divided

by the number of individuals inside the same species.

On one hand speciation allows offspring generated through crossover to have
a chance to optimize. On the other hand it allows simpler networks to stay in
the evolutionary race without being replaced by larger networks.

2. BACKGROUND

112 (3 4 516 112 |3 4 516 7
|—>4 P—>4 |3—>4|2—>5]5—>4|1—=>5| [[—4 P—>4|3—>4|2—>5/5—>4|1—>5[3—>5
DIS DIS
4 Mutate Add Connection A
1 20 3 1 2@ 3
112 |3 4 516 112 (3 4 5]16|8 9
1—>4 P—>4|3—>4(2—>5|5—>4|1—>5| [|—>4 p—>4 |3—>4|2—>55—>4 || —>5[3—=>6[6—>4
DIS DIS | DIS
4 Mutate Add Node 4
1 2 3 1 2 3:

Figure 2.3: Structural mutations in NEAT [7]

2. BACKGROUND

Parent] Parent2
1 2 |3 4 5 8 1 2 3|4 5 6 7 9 10
1->4 | 224 | 3->4 | 2->5 | 54| 1—=5| | 14 |24 | 3->4| 225 | 524 | 5->6| 6->4| 3->5| 1->6
DISA
1
disjoint
1| 2 3 4 5 8
Parentl | oy | 2-24 | 3->4 | 2->5 | 5—=4 1->5
ISAB]
1 2 3 |4 5 6 7 9 10
Parent2| |, |32y | 5554 | 255 54 | 56| 6->4 3->5 | 1->6
DISAB DISA
disjointdisjoint EXCESSENCEsS
e 7 8 9 10
Offspring 6->4 | 1->5| 3->5| 1->6

Figure 2.4: Crossover in NEAT [7]

CHAPTER 3

Implementation

For NEAT to succeed in evolving an artificial neural network that solves a gi-
ven problem it requires many evaluations of each individual in the population.
Box2DX [8] is a C# port of Box2D (C++) and is used as a fast 2-dimensional
physics simulator. A population is trained in the Box2D environment and rende-
red using OpenGL when needed. SharpNEAT [9] implements NEAT and Maya
2017 [10] is used to render the final crowd simulation.

3.1 Evolving Agent Behaviour

Agents are trained alone or in a small groups. When a small group of agents is
trained their ANN is identical, however their environment now consists of other
agents which enables them to interact with each other. Interaction is needed
for tasks with collaborative goals, but comes with the downside of much slower
Box2D evaluations and thus slower evolution.

Agent Model Depending on the scenario agents receive different inputs from
the environment. Inputs include vision sensors, hearing sensors, communication
channels and proximity sensors. All inputs are scaled to the interval [0,1] or
[-1,1], as required by NEAT, and fed to agents on a per-frame basis. Likewise,
the ANN or ANNSs are evaluated every frame and the output is applied to agents
every frame. Usually output from the ANN consists of a torque value [-1,1] and
a linear force [-1,1], which is applied in the direction the agent is facing. Both
values are up-scaled for realistic movements and the linear force is halved for
backwards movement. The Box2D environment applies linear and angular dam-
ping to agents to limit their maximum angular and linear velocities, increasing
realism. In some scenarios more sophisticated agent models were implemented,
especially in regards to motion. For example, in one attempt agents were able
to turn their head in addition to moving their body. Because NEAT did not
properly learn to make use of them they are not part of the final work.

3. IMPLEMENTATION 10

NEAT Parameters Throughout most scenarios the following settings were
used for NEAT, as they proved to be most successful.

Population size (300) The fixed number of individuals in the population.

Number of species (30) The maximum number of species, which are allowed
to exist at any given point in time.

Neuron activation function (Steepened sigmoid) The activation function

applied by the artificial neurons. More concretely, f(0) = He,ﬁ.

Activation scheme (Cyclic fixzed iterations 1) The activation scheme des-
cribes how the neural network is structured and evaluated. Cyclic means
the network is a RNN and can contain cycles. Each ANN connection is
traversed exactly once in the fized iterations 1 setting. It means that input
values might not immediately affect the agents behaviour as there might
not be an edge connecting an input neuron directly to an output neuron.
This configuration fits the per frame continuous feed from the environment
well. Because 30 frames per second are used to simulate the environment,
an agent’s input barely changes between frames.

Complexity Threshold (100) The maximum number of edges in the evolved
ANN. ANNs are pruned when they reach the complexity threshold.

Weight range ([-5, 5]) Edge weights can only take on values in this range.

Mutation (0.5) The offspring are generated through mutations with probabi-
lity 0.5 and through crossover with probability 0.5.

Connection weight mutation probability (0.988)
Add neuron mutation probability (0.001)
Add connection mutation probability (0.01)

Delete connection mutation probability (0.001)

3.2 Crowd Simulation

When a single agent or a group of agents achieves the desired fitness the ANN is
extracted and saved in a text file. A new and potentially larger Box2D environ-
ment is created, which reads the file, loads the ANN description and duplicates
it to any number of agents. Alternatively, the entire population of ANNs or the
better performing ones can be exported and loaded again. This leads to addi-
tional diversity in the crowd. Diversity also arises naturally from the agent’s
local view of the environment. Different experiments can be combined to create

3. IMPLEMENTATION 11

persp

Figure 3.1: Motion paths define the path for each agent, including position
markers (numbered) and orientation markers every 30th frame.

more sophisticated scenarios where agents are controlled by different ANNs. In
a final scenario, which is rendered in Maya, three scenarios are combined and
each agent’s behaviour is determined by his location by seamlessly exchanging
the ANNs.

3.3 Visualization in Maya

In a final step the Box2D crowd simulation trace is exported to a text file.
Fach object’s and agent’s position, orientation and velocity is saved periodically.
A script written in Maya Embedded Language (MEL) parses the text file and
recreates the environment in Maya 2017. Agents are represented using a model
of Agent Smith [11] from the movie The Matrix. A number of motion capture
clips are applied to Agent Smith using Maya’s Quick Rig tool and converted to
in-place animation clips. They include walk cycles, slow and fast run cycles and
a transition from standing to running. The agent’s motion trace is represented
using a motion path and the agent’s pivot point is attached to it. Position
markers as well as orientation markers on the motion path are used for fine-
grained control over the agent’s velocity and orientation as seen in Figure 3.1.
The agent itself is animated using a blend of the animation clips. They are
dynamically cycled and aligned to roughly fit the agent’s speed. See Figure 3.2 for
an example. Static objects are created, translated, rotated and scaled while cars
from the Road Crossing Scenario are animated using keyframes and interpolated
linearly. A model of the AC Cobra MKII [12] is used for cars. A scene of the
final rendering is depicted in Figure 3.3.

3. IMPLEMENTATION 12

namespacelmutiCh

Soundtrack

Figure 3.2: Animation clips are blended dynamically to create believable mo-
vement.

- 1

Figure 3.3: A scene from the final Maya rendering.

CHAPTER 4

Scenarios

Several crowd simulation scenarios have been identified and implemented. They
include tasks such as avoiding obstacles, pathfinding, learning right-hand traf-
fic (or left-hand) to efficiently pass through tight choke points, evading aggres-
sive clowns, avoiding getting hit by a rotating bar, finding objects by moving
randomly, crossing a road while avoiding cars, finding food collaboratively and
learning social behaviour in a school setup. Some of them have been inspired
by previous work done as part of a bachelor thesis on crowd simulations by C.
Maurer [13].

4.1 Road Crossing

Setup In the road crossing environment shown in Figure 4.1 agents need to
cross a sequence of perpendicular roads without hitting any car. While roads
have spaces between them, cars can travel in both directions with different velo-
cities. Each agent knows the distance to the edge of the next road, the distance
to the next oncoming car on this road (as if they heard it) and whether their
target location is on their left or right. Agents spawn randomly in the area below
all roads and cars spawn in random locations on roads initially. When cars reach
the edge of the simulated environment they reappear on the opposite side again.
The fitness of each agent depends on how far they get to the target location and
whether they have collided with a car.

Result How often agents reach their target location generally depends on how
fast agents can run away in relation to the car’s speed. Agents learn to avoid
oncoming cars by either backing off or by travelling in parallel to the roads until
the traffic has cleared. The learned behaviour is not perfect and some agents
still collide or touch cars on their way to the target location.

13

4. SCENARIOS 14

Figure 4.1: Road Crossing Scenario - The green circle on top represents the target
location. Teal colored agents have collided with or touched cars (rectangles).

4.2 Collaborative Food Gathering

Setup To investigate whether more complex social behaviour can automati-
cally be learned, a scenario which requires some form of collaboration is imple-
mented. The goal of agents is to gather as much food as possible before the time
runs out. Food can only be consumed when some fixed number of agents are close
by, hence they need to move in groups or call each other upon finding food. In
the Collaborative Food Gathering Scenario ten agents are trained together while
five are needed to consume food. Consuming food increases each agent’s energy,
which in turn determines how long they live. Every second that passes decreases
an agent’s energy. Agents have a vision sensor which tells them whether there is
food in front of them, depicted in Figure 4.2 as a grey sector of a circle. Apart
from acceleration and steering, each agent has an additional output which can
be used to communicate by sending 0 or 1. Agents hear the closest agent that
sent 1 and receive the distance and angle to this agent as input. A proximity
sensor tells them the number of nearby agents in a fixed radius around them and
a random number input can be used to create random walks.

Result The resulting learned behaviour consists of a first phase in which all
agents periodically send 0 or 1. Because agents learn to head towards the closest

4. SCENARIOS 15

Figure 4.2: Food Gathering Scenario - Green circles represent food. Agents
have an attached vision sensor represented as a sector of a circle. When food is
detected the sensor turns purple, otherwise it is blue. When an agent sends 1
the agent’s body turns blue, otherwise it is red.

4. SCENARIOS 16

calling agent they naturally converge to the center of mass and a group is formed.
The agents then slowly wobble around the group’s center and occasionally find
food nearby. This behaviour is far from optimal, as the group only travels very
slowly, if at all. A more efficient solution would be to simply follow a leader on
his random walk.

In a similar set-up, agents are given the distance and angle to the closest
food and their food sensor is removed, effectively getting rid of the searching
phase. In this scenario, agents still form a group but the group can gather
food fairly efficiently. Initially, agents alternate between heading to nearby food
and heading to the closest calling agent and as a result the group travels. In
later generations a leader begins to emerge which guides the agents. Initially,
the leader is frequently exchanged by another agent from the group. Further
evolution increases the time between those transitions and as a result the group
gathers food quicker.

4.3 School Domain

Setup The school domain has been inspired by Lisa Torrey’s work [14], which
investigates the use of multi-agent reinforcement for crowd simulations. In the
school domain, students are spawned randomly in the hallways of a school and
need to reach their assigned classroom when the bell rings. On their way to their
classroom they may socialize with other students. Five students are spawned
randomly in the hallways. All students have preassigned rooms where they need
to be when the bell rings. They have a limited cone of vision which tells them
the number of students in front of them. In addition, they know the time left to
reach their classroom, the distance to the classroom and where it is located as
an angle relative to their current direction. The fitness function is defined to be
zero if students do not reach their classroom on time and if they do it is equal
to the time spent socializing plus a fixed reward for reaching the classroom.

Result Students learn to change their behaviour according to the time left.
Initially, they start moving straight to their classroom but as soon as they see
students nearby, they stop and wait or continue very slowly. When the time rea-
ches a certain threshold, they stop socializing and run to their assigned classroom
as intended. Students could in theory achieve a higher fitness had they learned
the time-distance dependency. This never happened however, partly because the
few additional seconds of socializing has little effect on the fitness and because
spawning in random locations in the hallway results in high fitness fluctuations
which obscure the potential fitness gains.

4. SCENARIOS 17

Figure 4.3: School Scenario - The green circles represent target locations. An
agent’s sensor turns red when it detects other agents. An agent’s body turns
from red to teal when it collided, however, this is not part of the fitness function
in this scenario.

CHAPTER 5

Evaluation

5.1 Performance

Box2D evaluations are done using multiple threads in parallel without rendering
the scene. Every second, the physics engine can calculate around one million
physics steps containing a single agent. Scaling up the number of agents drasti-
cally decreases performance as both the number of collisions increase and because
a force is applied to each agent every frame (in a 30 FPS setting). Each fitness
evaluation consist of roughly 3000 frames (100 seconds) leading to around 100
fitness evaluations per second. For NEAT to learn rudimentary behaviour a few
minutes suffice while learning more complex behaviour generally takes hours.
Recreating a scene with 100 agents in Maya takes a minute, while rendering a 2
minute video sequence takes many hours.

5.2 Extensibility

Adding new experiments involves adding an entry to the list of experiments for
NEAT. Among other things, it describes the number of inputs and outputs to
the ANN and where to find the appropriate class which handles the evaluation
logic. The Box2D environment is completely described in an external text file.
Upon starting a new experiment and before each evaluation the Box2D world is
loaded and created dynamically. The description consists of all the position of
objects, their behaviour, including the number of agents and their input sensors.
Some minimal coding is required to map the agent’s output and input to the
ANN’s input and output and to specify the fitness function.

5.3 Comparison to Reinforcement Learning

A natural question to ask is whether NEAT can compete with state of the art
reinforcement learning (RL) approaches on the presented crowd simulation tasks.

18

5. EVALUATION 19

In the obstacle avoidance scenario both NEAT and an actor critic method reinfor-
cement method are applied. The implemented RL method is part of the library
dotRL written by RLBartosz Papis et al [15]. The scenario involves guiding an
agent around multiple static objects to the target. In the case of reinforcement
learning, the state of the environment is described by the input of the five vision
sensor, the agent’s distance from the target and angle to the target, his angular
velocity, and the linear velocity vector. Whereas NEAT learns after every com-
plete agent evaluation, RL learns from each sample every frame. Because of this,
it is natural to alter the fitness function for RL. In RL, the fitness for a single
action is given by the covered distance to the target. Similar to NEAT, a few
hundred evaluations are enough to learn to move towards the target location.
However, the RL method quickly teaches an agent to spin around himself wit-
hout moving towards the target location soon after. Because of time constraints
and poor documentation of dotRL the reason for this behaviour could not be
determined.

CHAPTER 6

Conclusion

NEAT solves the devised tasks fairly fast and to a degree which suffices for many
crowd simulation applications. Nevertheless, the population’s average fitness
barely improves at some point even though better solutions exist. Part of the
reason is most likely that NEAT needs to find a solution which is generalizable.
Experiments include randomly placed objects and random starting locations,
which are designed to change between each fitness evaluation. The reason being,
that in the final crowd simulations agents need to be adaptable, they might find
themselves in similar but not identical situations. Adding randomness makes it
less clear whether a given network solves a task better or not. Additionally, it
proved hard to evolve an ANN that could properly store long term memories.
Fortunately, most crowd simulation tasks do not require extensive use of memory.

The model used for agents, in terms of environment sensors and the possible
movements, is deliberately chosen to be simple. Increasing the number of inputs
from the environment would in theory encourage the evolution of a more intel-
ligent decision logic but in practice it simply leads to slower evolution in NEAT
where the additional inputs are never utilized. This becomes evident when thin-
king of the number of potential ANN topologies in relation to the number of
input nodes. Often, a more complex decision logic has only a small effect on the
achievable fitness and as such, the behaviour is hard to distinguish from noise
caused by random environments. On the other hand, it makes sense striving for
a simple model of an agent that can be reused in different set-ups.

One of the advantages of NEAT is its ability to evolve sometimes unpredic-
table and interesting behaviour. In the Road Crossing Scenario, for example,
agents learn to employ different evasion strategies. While most agents patiently
wait for the passing car some decide to run along the road and others simply back
off. In some cases, minuscule differences in the ANN’s inputs lead to completely
different decisions. In large scale crowd simulations this stochastic behaviour
seems to create a believable and diverse crowd.

20

[1]

Bibliography

Thalmann, D., Grillon, H., Maim, J., Yersin, B.: Challenges in crowd
simulation. In: CW. (2009)

Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through
symbiotic evolution. Machine Learning (A194-224) (1996) 11-32

Wang, S., Gain, J.E., Nistchke, G.S.: Controlling crowd simulations using
neuro-evolution. In: Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation. GECCO ’15, New York, NY, USA, ACM
(2015) 353-360

Martinez-Gil, F., Lozano, M., Fernandez, F. In: Multi-agent Reinforcement
Learning for Simulating Pedestrian Navigation. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012) 54-69

Casadiego, L., Pelechano, N.: From one to many: Simulating groups of
agents with reinforcement learning controllers. In: Intelligent Virtual Agents
- 15th International Conference, IVA, 2015, Delft, The Netherlands, August
26-28, 2015, Proceedings. (2015) 119-123

dos Santos, L.A.: Artificial intelligence. https://leonardoaraujosantos.
gitbooks.io/artificial-inteligence/content/recurrent_neural_
networks.html Accessed: 2017-04-20.

Stanley, K.O., Miikkulainen, R.: Evolving neural networks through aug-
menting topologies. Evolutionary Computation 10(2) (2002) 99-127

Ihar Kalasouski, E.C.: Box2dx. https://code.google.com/archive/p/
box2dx/

Green, C.: Sharpneat. http://sharpneat.sourceforge.net (2003-2017)

Autodesk, Inc.: Maya. https://www.autodesk.com/education/
free-software/maya

3dregenerator: Agent smith model. https://free3d.com/3d-model/
agent-smith-12422.html

SD, V. Ac cobra mkii model. https://www.turbosquid.com/
FullPreview/Index.cfm/ID/1017130

21

https://code.google.com/archive/p/box2dx/
https://free3d.com/3d-model/agent-smith-12422.html
http://sharpneat.sourceforge.net
https://www.autodesk.com/education/free-software/maya
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/recurrent_neural_networks.html
https://free3d.com/3d-model/agent-smith-12422.html
https://www.turbosquid.com/FullPreview/Index.cfm/ID/1017130
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/recurrent_neural_networks.html
https://www.autodesk.com/education/free-software/maya
https://www.turbosquid.com/FullPreview/Index.cfm/ID/1017130
https://code.google.com/archive/p/box2dx/
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/recurrent_neural_networks.html

BIBLIOGRAPHY 22

[13] Maurhofer, C.: Crowd Simulation - A Python Framework for the Simulation
of Human Actors in Miarmy (2016)

[14] Torrey, L.: Crowd simulation via multi-agent reinforcement learning (2010)

[15] Papis, B.: dotrl: A platform for rapid reinforcement learning methods
development and validation

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Artificial Neural Network (ANN)
	2.2 Evolutionary Algorithms (EA) and Neuroevolution (NE)
	2.3 NeuroEvolution of Augmenting Topologies (NEAT)
	2.3.1 Genetic Encoding
	2.3.2 Mutations and Crossover
	2.3.3 Speciation

	3 Implementation
	3.1 Evolving Agent Behaviour
	3.2 Crowd Simulation
	3.3 Visualization in Maya

	4 Scenarios
	4.1 Road Crossing
	4.2 Collaborative Food Gathering
	4.3 School Domain

	5 Evaluation
	5.1 Performance
	5.2 Extensibility
	5.3 Comparison to Reinforcement Learning

	6 Conclusion
	Bibliography

