
Distributed
 Computing

Battle of the Smartphones

Bachelor Thesis

Romina Som

somr@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Gino Brunner, Pascal Bissig, Simon Tanner

Prof. Dr. Roger Wattenhofer

July 17, 2017

Abstract

A smartphone’s performance is about more than just processing power. Other
important factors include camera quality, WiFi performance and the accuracy
of its sensors.

This bachelor thesis describes an app which combines all of these factors into
a game that can be played between two friends. The game is a battle between
two smartphones and consists of six rounds which compare the two smartphones.
At the end of the battle, the users know which phone is better.

The six rounds test the WiFi antenna, the CPU, the gyroscope, the battery
capacity and the camera. There are two different camera rounds, one round tests
how nice the pictures of the camera are and the other round tests how fast the
camera can take a picture.

The app does not require any external equipment, and does not even need a
controlled environment. The only requirement it has is an Internet connection
and if possible a WiFi network nearby, but the users do not need to be logged
into that network.

i

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 1

2 Implementation 2

2.1 Main Pairing Screen . 2

2.2 Battle Rounds . 3

2.2.1 Best WiFi Signal . 4

2.2.2 Camera Test . 5

2.2.3 CPU Stress Test . 6

2.2.4 Fastest Camera . 7

2.2.5 Battery Capacity . 8

2.2.6 Gyroscope Test . 9

2.3 Final Overview Screen . 9

2.4 Server . 10

2.4.1 Database . 10

2.4.2 PHP Script . 12

3 Evaluation 14

3.1 CPU Stress Test . 14

3.2 Battery Capacity . 15

4 Conclusion and Future Work 18

4.1 Future Work . 19

Bibliography 20

ii

Contents iii

A Documentation of the MySQL Database A-1

A.1 Table USERS . A-1

A.2 Table BATTLES . A-2

Chapter 1

Introduction

1.1 Motivation

There are numerous benchmark apps in the Google Play Store, but most of
them only test one thing. This can be the CPU, the GPU, the GPS, the RAM,
OpenGL, or other things, but there is almost no benchmark that tests more than
two or three different aspects of the phone. There is especially no interactive
benchmark at all, meaning in every benchmark app you press a “Start” button
then wait some time and then you have your score. One goal of this thesis is to
create an app which is more interactive, and where you do not simply benchmark
your phone. The app should be a game which you can play against your friend
to find out which device is better.

Some companies do sophisticated analysis of camera performances (e.g. DxO-
Mark [1]), but this requires expensive specialized equipment. WiFi performance
can be tested, but it involves manual setup and requires careful controlling of
the test environment. The second goal of this thesis therefore was to develop
a method to measure the performance of these components without requiring
specialized equipment.

The last goal of this thesis was to create a real-world benchmark, meaning
that the scores represent the values you get in everyday use.

1.2 Related Work

As already mentioned above, there are numerous benchmark apps in the Play
Store. One of the most known is AnTuTu Benchmark [2]. AnTuTu tests the
CPU and GPU performance, the RAM speed and the user experience. Geek-
bench [3] has specialized in CPU performance. The most known app for testing
the Internet speed is Speedtest.net from Ookla [4]. It measures the throughput
for downloading and uploading data to a server. For measuring real-world per-
formance there is also the app DiscoMark [5] which measures the start times of
different apps.

1

Chapter 2

Implementation

The following chapter will show how the app is structured and explain the dif-
ferent parts of the app. It will also show how the server works, and how the
database on the server is used.

The Minimum SDK Version to use our app is 16, which corresponds to An-
droid 4.1 Jelly Bean [7]. This means that about 98% of users [8] can use the app.
To make the app available to an even wider audience, a German translation is
available.

While we wanted to be able to identify the users, the decision was made
against a login with the Google Account, so the user can stay more anonymous.
Instead, it is possible for the user to set a nickname. This nickname does not
need to be unique, and the user can change it anytime in the preferences. When
the app is opened for the very first time, it asks for a nickname, but it is possible
to leave that field empty. The nickname will then be the build name of the
phone, for example “Samsung Gt-i9100”.

To tell the user how to use the app, a tutorial is displayed while playing the
first battle. After the first battle is completed, the tutorial is turned off, but can
be turned on again by the user in the settings.

2.1 Main Pairing Screen

As you can see in Figure 2.1a, a connection code is displayed to the user. This
are the last 6 letters of the internal identity which gets set the first time the user
opens the app. This identity is sent to the server to identify the device, but is
never visible to the user. When the user clicks the button, his identity and the
connection code of the opponent is sent to the server, and a battle ID is received
from the server if the pairing worked. For the pairing to work, both users need
to click the “PAIR” button within ten seconds. If the user does not input a valid
connection code (e.g. only three letters) or there is no one registered with that
connection code, a button is displayed which tells them to try again.

2

2. Implementation 3

(a) Screen when you open the app (b) Successfully paired

Figure 2.1: Screenshots - Main Pairing Screen

Below that, the user can see a history of the last ten completed battles.
When the user clicks on an old battle, the Final Overview screen of that battle
is displayed.

If the pairing was successful, a button is displayed to start the battle (Fig-
ure 2.1b).

2.2 Battle Rounds

The user can play a battle against a friend. Each battle consists of six different
rounds. In the current version of the app the user cannot choose which rounds
to do, but has to do all six.

When the user is in a battle and presses the back button, an alert dialog
pops up and asks the user if he would really like to exit this battle (Figure 2.2a),
because once the user left it is impossible to resume the battle.

To save the result of a battle, the class Battle is used. The results of all
rounds are stored there and then written to the internal memory of the phone
to save the result for later use, e.g., for the history.

2. Implementation 4

(a) Back Button Overwrite (b) No Connection

Figure 2.2: Screenshots

If the two opponents do not send results within some time, a button is dis-
played for the user to try again (Figure 2.2b).

It is always possible that both users win or both users lose a round, for
example when their scores are equal, or when both run into an error.

In the following subsections, each round is explained in the order the user
does them. The order is chosen such that similar rounds (e.g., the two Camera
rounds) are not directly after each other, and that the non-interactive rounds
are between interactive ones.

2.2.1 Best WiFi Signal

In this test, the users have 15 seconds and need to find the WiFi signal with
the highest signal strength. The countdown, as well as the current and maximal
signal strength found, are displayed to the user (Figure 2.3). To read the signal
strength of surrounding WiFis the users need to have WiFi enabled, and on
Android 6+ also activated the location services. If they have disabled either of
them, they are prompted to enable them.

This test also checks if the phone supports 5GHz WiFi. If this is the case,

2. Implementation 5

Figure 2.3: Screenshot - Best WiFi Signal Test

the user gets credited with 5dBm, i.e.,1 if the phone supports 5GHz WiFi and
finds a signal with a strength of -50dBm, the score of this user for this round
will be -45.

The user with the higher score wins this round.

2.2.2 Camera Test

In this test both players have to agree on a target, and then take a picture of this
target. There is a cross-hair in the middle of the screen, to simplify this process.
The camera takes the highest resolution picture the phone supports, and then
sends this picture to the server. The server saves the picture at a randomly
generated address and writes this address into the database. The address also
gets sent to the opponent’s phone. Both pictures are then displayed side-by-side
and you can zoom and scroll them. You then have to tap on the better picture
and your choice gets sent to the server (Figure 2.4b). The server then decides
who wins (for more detailed information see Section 2.4.2) and sends the result
back to both devices. Because the pictures are sent with not much compression,
some non-negligible data usage can arise, and the user is warned of that with an
alert dialog each time he starts a camera test round.

2. Implementation 6

(a) Check that phone is vertical (b) Screen to select better picture

Figure 2.4: Screenshots - Camera Test

The camera also checks if the phone is vertical, so the photos both users take
are even more similar. If the phone is not vertical, a message is displayed which
only disappears once the phone is upright (Figure 2.4a). The button to take a
picture is only displayed when the phone is vertical.

2.2.3 CPU Stress Test

The CPU Stress Test is the usual CPU test: in this test the user just has to click a
start button, then the CPU calculates iterations of a “useless Algorithm” during
five seconds, and outputs how many iterations it was able to calculate in this
five seconds. The useless Algorithm calculates a number iteratively, similarly to
the Gauss-Legendre Pi calculation algorithm. The problem with this algorithm
was that the algorithm got too precise too fast and the variable containing pi
did not change anymore. Java noticed that and optimized away the rest of
the calculations. Because of that the algorithm was altered to not calculate pi
anymore, but some other, “useless” number.

This whole test is done twice, once on a single core and once on multiple
scores, i.e., in as many threads as the CPU has cores (Figure 2.5a). To see how

2. Implementation 7

(a) After the single core test (b) Progress bar while calculating

Figure 2.5: Screenshots - CPU Test

much time has already passed, a progress bar is shown (Figure 2.5b).

To calculate who wins this round, the score from the single core and from
the multi-core test are added to each other.

2.2.4 Fastest Camera

This round works a bit like an old, western-style duel. One user starts a count-
down, and on “GO” (Figure 2.6a) the opponent has to take his phone, click a
button to open the camera and take a picture of the screen of the user as fast as
possible. Then the roles are reversed and the other person has to take a photo as
fast as possible. The user who is faster wins the duel and therefore this round.

As the countdown is not only visual but has also sound, an audio-test is
performed at the start of the battle. This is a mock countdown, to show the
user how the countdown works and also to test that their music volume is high
enough. After you tested the sound, you can either start the real test, or retest
the sound if it did not work the first time.

To determine how long the opponent had to take the picture, two numbers are
shown on the screen of the user. The two numbers are a “seed” and a “time”.

2. Implementation 8

(a) Countdown (b) Blur effect of time visible

Figure 2.6: Screenshots - Fastest Camera Test

The seed always stays the same, but the time gets updated every 250ms. To
know how much time has passed, one can just take the remainder of the division
of the time by the seed. This remainder is the number of 250ms intervals that
have passed since starting the countdown.

The refresh rate is only 250ms and not faster because otherwise you often
have two numbers simultaneously in the photo because the exposure time of the
camera is too long. You can already see this effect in Figure 2.6b. After you
took the picture, you have to write down the two numbers and then your time
is displayed.

2.2.5 Battery Capacity

Like the CPU test, the Battery Capacity round is a non-interactive one, where
you just have to click the “START” button, and then your battery capacity is
read programmatically and displayed (Figure 2.7). The user with the higher
capacity wins this round.

2. Implementation 9

Figure 2.7: Screenshot - Battery Capacity Test

2.2.6 Gyroscope Test

At the beginning of this round, both phones should be placed on an even surface.
After clicking the START button each player takes the phone of his opponent,
rotates the device as much as he pleases, puts the phone back into the initial
position and clicks STOP. It is then calculated how much the initial orientation
differs from the current orientation (Figure 2.8a). The user with the smaller
difference wins this round.

If a phone does not have a gyro sensor, his user automatically loses the round
(as it is always better to have a sensor than not to have one, Figure 2.8b). If
both phones do not have a gyroscope, both lose this round.

2.3 Final Overview Screen

In the final overview, you see who won each round (Figure 2.9). The results are
read from and written to the internal memory of the phone, so you can look at
them again later (in the history).

2. Implementation 10

(a) Usual screen (b) No gyroscope available

Figure 2.8: Screenshots - Gyroscope Test

2.4 Server

The server consists of three different parts. There is a database, in which the
results of the battles are saved, then there is a PHP script which mainly exists
to communicate between the app and the database and finally there is also a
privacy policy, which consists of an English and a German html file and a CSS
file for style.

The privacy policy is required by Google because the app uses the camera
permission. This permission is needed to take a photo in the camera test round.
The photos are stored indefinitely on the server to make further evaluations
possible. The app also needs the location permission to be able to scan the
surrounding WiFi networks for the WiFi test. The Privacy Policy is linked in
the Play Store and also in the preferences of the app.

2.4.1 Database

The MySQL database smartphone battle consists of two tables: USERS and
BATTLES.

2. Implementation 11

Figure 2.9: Screenshot - Final Overview

The USERS table saves everything concerning a single user (see Table A.1).
This includes his ID, when he registered for the first time, when he was last seen,
his nickname if he set one and information about his phone. During the user’s
first battle, information about his camera and gyroscope is gathered and also
saved here.

The Android version of the device is not saved in the table USERS, but in
the BATTLES table, as it is possible for the user to update the phone without
losing his battle data, meaning that information could change between different
battles.

In the BATTLES table everything about a battle is saved (see Table A.2).
For each battle there are two entries in the database, one for each player. There
is a BATTLE ID which uniquely identifies the entry. The columns MY ID,
OTHER ID and OTHER BATTLE ID define who plays the battle against whom.
Then there is information about when the battle started, if it is finished and of
course the results and information gathered of each round.

2. Implementation 12

2.4.2 PHP Script

The PHP script communicates between the app and the database. It fills the
database with the results sent by the app, reads the result of the opponent from
the database, calculates who wins this round and sends this back to the app. The
script is always accessed with GET requests, except for the photo uploading.

Every time the app is opened, a connection to the server is established by
sending the own ID and information about the device, which the script writes
into the USERS database if they do not yet exist there.

When the user sets the nickname, or changes it in the preferences, the nick-
name is sent to the script which then updates this user’s database entry.

When the user wants to start a new battle, he sends his ID, the connection
code and information about his operating system to the script. The script makes
a new entry in the BATTLES database with this information. The connection
code is used to search for the opponent’s entry in the USERS database as it cor-
responds to the last 6 letters of the opponent’s ID. The script then pairs the two
opponents, writes information about each other into the two BATTLES entries
and finally returns the own BATTLE ID and the nickname of the opponent. The
pairing only works if both users want to pair to each other and they press the
pairing button within five seconds of each other.

After each round of a battle, the app sends his current BATTLE ID and
the results of this round to the server, which updates the BATTLES entry and
sends back if this phone won the round and if the other phone won the round.
It is necessary to send both because it is possible that both players win or lose
a round, e.g., when both have the same score they both win, or when both had
an error they both lose.

The only part where a POST request is used, is when the app sends the photo
of the camera test to the server. The server generates a random name of 80 letters
length where it saves the picture. It writes this name into the database, looks
for the name of the picture of the opponent in the database and sends this name
back to the app. The server uses a cryptographically secure random function for
generating the name to prevent attackers from guessing the name of the next
picture if they have one picture’s name. The photo is only accessible by direct
link and the folder it is placed in is not accessible.

The calculation of who won the Camera Test is a bit more complicated, which
is why it is shortly explained here. Each score starts at 1. If a out of memory
error occurred, 1 is subtracted. This can happen when loading the two pictures
into memory to display them, as the pictures are displayed in the highest quality
possible, but this is sometimes repairable and does not always lead to a failure
of the round. If you said your own picture is better, 1 is added. If the opponent
said your picture is better, 1 is added as well. The player with the higher score

2. Implementation 13

wins, but if a fatal error occurred with one phone, this one loses anyways.

If any error occurs while executing the script, the server responds with the
corresponding HTTP status code. As there was no status code appropriate for
an SQL error [9] and the use of “HTTP/1.1 500 Internal Server Error” seemed
too generic, the code “HTTP/1.1 418 I’m a Teapot” was used for this specific
error. Even though 4xx codes are typically used for client-side errors, we used
the 418 code as it has the advantage that the SQL error will never get confused
with something else because 418 is usually not used.

Chapter 3

Evaluation

Because all test were designed by ourselves, we need to make sure that they are
fair and it is possible to reproduce results. We especially tested the “CPU Stress
Test” to make sure it is balanced. We also tested the “Battery Capacity” test
to verify that we read correct information from the phone.

3.1 CPU Stress Test

As the content of the iterations of the CPU test were defined more or less ran-
domly, we needed to make sure the deviation over a few different executions was
not too big. To test this, we run the CPU test five times on each of the six
different test devices and measured the number of iterations the device was able
to calculate (see Figures 3.1 and 3.2).

Figure 3.1: Number of iterations on a single core in five seconds, measured five
times. On most of the six devices, a clear increase of the number of iterations
between the first and the second time can be seen. This is probably because the
CPU is already warm when doing it the second time and can optimize better.

14

3. Evaluation 15

Figure 3.2: Number of iterations on multiple cores in five seconds, measured five
times. The number of threads corresponds to the number of cores the device
has, but is at least two.

If you calculate the relative standard deviation from the average number of
iterations for each device and take the mean of those six numbers you get 3.47%
deviation for single core execution and 3.63% deviation for multi core execution.
This means that the test is quite consistent and it is possible to reproduce the
results.

3.2 Battery Capacity

As the battery capacity can only be read programmatically, we wanted to make
sure that the number we get is the correct capacity. This was checked because we
noticed that the capacity our app displays is not always the same as the capacity
one can read in the official specifications of the phone. To make sure our app
gets the correct value we compared this value to the capacity displayed in the
system and the battery capacity found in the official specifications of the phone.

As it is apparent in Table 3.1, the battery capacity we find is always equal to
the capacity found in the system (if we found it) but this value is not necessarily
equal to the capacity in the official specifications of the phone. However, this
method of getting the battery capacity programmatically is the best we can do
without contacting an external database which has information of the official
specifications of all the phones. We did not want to do this because we want the
app to work on all devices, not only the ones in the database and we did not
find a database which contains this information on all test devices.

In all of the cases except one (discussed in the next paragraph), the battery

3. Evaluation 16

capacity our app finds is equal to the one displayed in the system. Even though
the capacity given by the manufacturer sometimes slightly differs from the ca-
pacity displayed in the system, we are as good as the system itself, which is the
best we can do without an external database.

In one case (see Table 3.1, “Lenovo A806” entry) the system and the GO
Battery Saver did not display any results. It is noticeable that in this case,
our app displays a result which is completely different from the manufacturer’s
data. This is probably due to lacking information, as programmatically accessed
attributes of the phone get saved in a file by the manufacturer when producing
the smartphone.

Phone Android
Version

Official
Battery
Capacity

Battery
Capacity in
System

Battery
Capacity
we found

Samsung Galaxy S2 4.1.2 1650mAh (1650mAh) 1650mAh
Thl 2015 4.4.4 2700mAh (2500mAh) 2500mAh
Xiaomi Redmi 3 Pro 5.1.1 4100mAh 4000mAh 4000mAh
Lenovo A806 4.4.2 2500mAh - 1000mAh
Samsung Galaxy S7 6.0.1 3000mAh 3000mAh 3000mAh
Xiaomi Mi 4s 5.1.1 3260mAh 3210mAh 3210mAh

Table 3.1: Comparison of different measurements of the battery capacity. You
can see the capacity according to the official specifications of the manufacturer,
the battery capacity displayed in the system and the capacity displayed in our
app. Because the battery capacity is not always displayed in the system, we used
the app “GO Battery Saver” [10] in these cases, which are identified with braces
around the value.

Even though we now have the battery capacity of the phone, it is hard to
tell what that really means for real world performance, i.e., how long the battery
lasts. Expertreviews [6] did a comprehensive test of a lot of different smart-
phones. They measured the SOT (Screen-on-time) of the phones in airplane
mode and on a screen brightness set to 170cd/m2. Then they continuously
played some endlessly looped scenes and measured how long the battery lasts.
As you can see in Figure 3.3 and 3.4, there is no apparent dependency between
the SOT and the battery capacity. The SOT depends more on the type of phone
you have and the operating system it runs. Even though we know that, we still
decided to leave the battery capacity round in the battle, because in general
one can still say that the bigger the battery capacity, the better as the phone
probably still lasts longer when not using it.

3. Evaluation 17

Figure 3.3: SOT (in hours) versus battery capacity (in mAh) of different Android
phones. There is no apparent dependency between the SOT and the battery
capacity. SOT value is from [6], battery capacity from official specification.

Figure 3.4: Box-plot of the SOT divided by the battery capacity (same data as
in Figure 3.3). This plot suggests that there is a difference between AMOLED
and LCD displays, but if this is due to the different power consumption of the
two display types, or due to the fact that most AMOLED displays have Touch
Wiz as they are mostly Samsung devices we do not know.

Chapter 4

Conclusion and Future Work

The app we implemented during this thesis implements the three points men-
tioned in the introduction: the app does not need any external equipment, two
thirds of the rounds are interactive so the user gets the feeling of playing a game
and the app is mostly a real-world benchmark. This is achieved especially with
the two camera tests. According to the test users, the battle is interesting and
fun to play, which hopefully leads to a bigger user base in the future, so more
data about different phones can be gathered.

An interesting result we found was that the camera of a CHF150 phone
(Xiaomi Redmi 3 Pro) was better than the camera of the four times as expensive
Samsung Galaxy S7 (see Figure 4.1). As we could at first not believe this, we
took some other picture with the pre-installed camera app, but the result was the
same. The camera of the Xiaomi phone is apparently better than the camera of
the Samsung Galaxy S7. Of course there could be a problem with this particular
Samsung device, or it could just have a dirty camera lens. We would need more
data to detect this type of possibly incorrect result.

Figure 4.1: Part of a picture taken with the Samsung Galaxy S7 (left) and with
the Xiaomi Redmi 3 Pro (right), zoomed by the same amount. It is clearly visible
that the camera of the Xiaomi phone has more detail.

18

4. Conclusion and Future Work 19

A problem with the WiFi test is, that to look if a phone supports 5 GHz WiFi,
a method called is5GHzBandSupported() [11] is used. Firstly, this method was
only introduced in API 21, which equals Android 5.0 Lollipop. Second, as this
method is programmatically, it means that if the method returns false, this does
not mean that this phone does not support 5 GHz WiFi. So there are some
phones which would have 5 GHz WiFi, but do not get the bonus points because
they fall into one of those two cases.

While designing the Battery Capacity test, the idea came up to measure
the percentage of battery used during the battle. Unfortunately this does not
work, as the battery level can only be read in whole percents and this was too
imprecise, as the battle should not use more than one percent of the battery.
Another problem with such a test would be to know how much of the energy
consumption comes from the battle and how much from the background apps.
Therefore we decided to use just the battery capacity as the score, even though
this does not necessarily mean that the phone can stay awake longer (as discussed
in Section 3.2).

4.1 Future Work

There are a lot of ways how one could extend the existing app. For example it
is easily possible to add new rounds. If a lot more rounds are added, it would
be nice to let the users choose which of those battles they would like to do.

Some rounds that could be added are for example a test on how fast the RAM
is, how fast the access to the main memory is, or a test about screen brightness.
For the screen brightness test you make the screen as bright as possible and then
hold the two phones together in a way that the light sensor of one phone is on
the screen of the other phone. This should then be done twice.

It would also be nice, if the users could actually see their scores of each round
in the final overview. At the moment the users only see who won which round,
but no scores from the rounds itself.

If one would like to make more evaluations about the past battles, this is also
easily possible, as the whole data is saved in the database. Even the pictures
are saved, so they could be used for further analysis, for example to find out
why people think a certain picture is better. If there is enough data, it may also
be possible to find out how different phone manufacturers calibrate their signal
strength and if there are differences between different manufacturers.

Bibliography

[1] DxOMark Mobile
https://www.dxomark.com/Mobiles

Accessed 13-February-2017.

[2] AnTuTu Benchmark
https://play.google.com/store/apps/details?id=com.antutu.

ABenchMark

Accessed 13-February-2017.

[3] Geekbench 4 by Primate Labs Inc.
https://play.google.com/store/apps/details?id=com.primatelabs.

geekbench

Accessed 13-February-2017.

[4] Speedtest.net by Ookla
https://play.google.com/store/apps/details?id=org.zwanoo.

android.speedtest

Accessed 13-February-2017.

[5] DiscoMark Benchmark by disco.ethz
https://play.google.com/store/apps/details?id=ch.ethz.disco.

gino.androidbenchmarkaccessibilityrecorder

Accessed 13-February-2017.

[6] Best phone battery life 2017: The BEST smartphones tested
http://www.expertreviews.co.uk/mobile-phones/1402071/

best-phone-battery-life-2017-the-best-smartphones-tested

Accessed 23-February-2017.

[7] Android Codenames, Tags, and Build Numbers
https://source.android.com/source/build-numbers

Accessed 01-July-2017.

[8] Android Platform Versions
https://developer.android.com/about/dashboards/index.html

Accessed 01-July-2017.

[9] List of HTTP status codes by Wikipedia
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Accessed 01-July-2017.

20

https://www.dxomark.com/Mobiles
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.primatelabs.geekbench
https://play.google.com/store/apps/details?id=com.primatelabs.geekbench
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
https://play.google.com/store/apps/details?id=ch.ethz.disco.gino.androidbenchmarkaccessibilityrecorder
https://play.google.com/store/apps/details?id=ch.ethz.disco.gino.androidbenchmarkaccessibilityrecorder
http://www.expertreviews.co.uk/mobile-phones/1402071/best-phone-battery-life-2017-the-best-smartphones-tested
http://www.expertreviews.co.uk/mobile-phones/1402071/best-phone-battery-life-2017-the-best-smartphones-tested
https://source.android.com/source/build-numbers
https://developer.android.com/about/dashboards/index.html
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Bibliography 21

[10] GO Battery Saver and Power Widget by GOMO Go
https://play.google.com/store/apps/details?id=com.gau.go.

launcherex.gowidget.gopowermaster

Accessed 18-February-2017.

[11] Android WifiManager
https://developer.android.com/reference/android/net/wifi/

WifiManager.html#is5GHzBandSupported()

Accessed 01-March-2017.

https://play.google.com/store/apps/details?id=com.gau.go.launcherex.gowidget.gopowermaster
https://play.google.com/store/apps/details?id=com.gau.go.launcherex.gowidget.gopowermaster
https://developer.android.com/reference/android/net/wifi/WifiManager.html#is5GHzBandSupported()
https://developer.android.com/reference/android/net/wifi/WifiManager.html#is5GHzBandSupported()

Appendix A

Documentation of the MySQL
Database

This appendix is the more precise documentation of the MySQL database which
saves all the user and battle information.

A.1 Table USERS

Name Type Use

ID varchar(36) Key of this table, user ID
REGISTERED SINCE datetime Time this entry was made
LAST SEEN datetime Last time the user opened the

app
NICKNAME varchar(20) Nickname of the user if he set

one
DEVICE NAME varchar(50) Name of the device, is read pro-

grammatically by the app
DEVICE BRAND varchar(50) Brand of the device, is read pro-

grammatically by the app
HARDWARE varchar(50) Hardware name of the device,

is read programmatically by the
app

RAM bigint(20) Size of the RAM in bytes
CAMERA MAX WIDTH int(11) Width of the largest photo

(area-wise) the Camera
CAMERA MAX HEIGHT int(11) Height of the largest photo

(area-wise) the Camera
CAMERA FOCAL LENGTH float Focal length of the Camera
HAS GYROSCOPE tinyint(1) If this device has a gyroscope

Table A.1: Overview of the USERS table.

A-1

Documentation of the MySQL Database A-2

A.2 Table BATTLES

Name Type Use

BATTLE ID bigint(20) Key of this table, is auto-
incremented

MY ID varchar(36) User ID of the user playing this
battle

OTHER ID varchar(36) User ID of the opponent. This
column is actually redundant,
but was left in here as it makes
the pairing much easier.

OTHER BATTLE ID bigint(20) Battle ID of the opponent’s bat-
tle entry

APP VERSION varchar(50) Version of the app of this user
ANDROID SDK VERSION varchar(50) Android version of the phone of

this user
START TIME datetime Time this entry was made
FINISHED tinyint(1) If this battle is already finished
CANCELED tinyint(1) If this battle was canceled or fin-

ished correctly
FIRST tinyint(1) If this user goes first in the

Fastest Camera round in this
battle

BATT ERROR OCCURRED tinyint(1) If there occurred an error during
the Battery Capacity round

BATT CAPACITY int(11) Battery Capacity of this device
in mAh

BATT WIN tinyint(1) If this user wins the Battery Ca-
pacity round

WIFI MAX SIGNAL int(11) Maximal signal strength
recorded during the Best
WiFi Signal round

WIFI 5GHZ tinyint(1) If this device supports 5GHz
WIFI SCORE int(11) Calculated score of the Best

WiFi Signal round
WIFI WIN tinyint(1) If this user wins the Best WiFi

Signal round
CAME ERROR OCCURRED tinyint(1) If a fatal error occurred during

the Camera Test
CAME OUT OF MEM tinyint(1) If a Out Of Memory error oc-

curred during the Camera Test
CAME MY WIN tinyint(1) If the user chose his own picture

as being the better one
...

Documentation of the MySQL Database A-3

Name Type Use

CAME SCORE int(11) Calculated score of this round
CAME PHOTO PATH varchar(100) Path to the photo taken of this

user
CAME WIN tinyint(1) If this user wins this round
CPUT ERROR OCCURRED tinyint(1) If an error occurred during the

CPU Test
CPUT SINGLE tinyint(1) Number of iterations calculated

during the Single Core phase
CPUT MULTI tinyint(1) Number of iterations calculated

during the Multi Core phase
CPUT SCORE int(11) Calculated score of this round
CPUT WIN tinyint(1) If this user wins this round
FAST ERROR OCCURRED tinyint(1) If an error occurred during the

Fastest Camera Test
FAST TIME bigint(20) Time the user had to open the

camera and take the picture
FAST WIN tinyint(1) If this user wins this round
GYRO ERROR OCCURRED tinyint(1) If an error occurred during the

Gyroscope round
GYRO DIFFERENCE float Difference between the initial

and final position of the device
GYRO WIN tinyint(1) If this user wins this round
SCORE int(11) Calculated score of the whole

battle
WIN tinyint(1) If this user wins this battle

Table A.2: Overview of the BATTLES table.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Implementation
	2.1 Main Pairing Screen
	2.2 Battle Rounds
	2.2.1 Best WiFi Signal
	2.2.2 Camera Test
	2.2.3 CPU Stress Test
	2.2.4 Fastest Camera
	2.2.5 Battery Capacity
	2.2.6 Gyroscope Test

	2.3 Final Overview Screen
	2.4 Server
	2.4.1 Database
	2.4.2 PHP Script

	3 Evaluation
	3.1 CPU Stress Test
	3.2 Battery Capacity

	4 Conclusion and Future Work
	4.1 Future Work

	Bibliography
	A Documentation of the MySQL Database
	A.1 Table USERS
	A.2 Table BATTLES

