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Abstract

In this semester thesis, the goal was to fully understand the RAFT algorithm
and then to examine its functionality and robustness in a critical point of view.
With our own implementation of RAFT in Python we tried to get more familiar
with the algorithm and also got a tool to test the algorithm under many different
conditions. Especially we tried to measure how well it works in the following two
configurations:

e An isolated server: It is assumed that one server still can send messages
but does not receive messages from others anymore

e Partition: Here the servers are divided into two subgroups where between
these two parts no communication is possible at all.

For the isolated server there were some severe problems which were efficiently
solved by some small adjustments in the algorithm.

For the partition there were some limitations visible concerning the scalability in
the leader election. We could improve the performance and loosen the limitations
by dynamically adapting the election timeouts. Additionally, we proposed a
multi-level RAFT and argued why it might be a better solution than trying to
improve the leader election further.
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CHAPTER 1

Introduction

1.1 Introduction to RAFT

Since 1989 there exists a non-byzantine, asynchronous consensus algorithm for
managing a replicated log which is called Paxos [1]. The author, Leslie Lamport,
submitted a paper which explained an algorithm with the aid of an analogy to
an old fictional Greek tribe on an island Paxos. Although the analogy makes
sense, the readers seemed to miss the essential meaning of the colourful story
and rejected the paper first. At 1998 Lamport handed in the paper again and
it finally got accepted with great success. However, it still looked like the nice
Paxos story confused some of the readers and he published a simplied version [2]
three years later.

RAFT[3], which claims to be an equivalent but simpler algorithm, was devel-
oped on the basis of the Paxos algorithm with the goal to significantly improve
its understandability. It divides the consensus problem into three sub-problems
Leader election, Log replication and Safety.

e Leader election: First, from all the servers a leader has to be elected that
will be responsible for the replication of all the so called log entries across
the server cluster. The servers have to know the total number of servers in
the cluster in advance. Otherwise, the servers cannot recognize how many
votes they need for a successful election.

e Log replication: The leader will receive commands from a client and
replicate them to all the other servers. Whenever the leader distributes
such a log entry to a majority of servers, the command in the entry is
called committed and it is made sure that it will not be removed anymore.

e Safety: To ensure the safety and consistency of the consensus algorithm
there must hold some properties in the leader election and the log repli-
cation so that committed commands eventually will be executed at all the
servers and will not be manipulated anymore.
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Leader election

A server can be in one of the three states, namely Follower, Candidate and
Leader. At the very beginning each server starts as Follower. Each server waits
until it either receives a ’heartbeat’ message from a Leader, or too much time
since it received the last heartbeat elapsed; in the latter case, we speak of a
"timeout’.

As there are only Followers at the beginning, some servers eventually will reach
a timeout, which is set uniformly at random within certain boundaries. A server
that has reached its timeout tries to become the Leader and therefore transforms
to the Candidate state.

A leader election starts with such a Candidate asking each server for its vote
and all servers give their vote to the first valid Candidate which requests it. A
Candidate becomes a Leader as soon as it gets a quorum of the votes, which
must be more than half of all the possible votes, and the election ends. To
update every server about the end of the election and to prevent new timeouts,
the Leader starts to repeatedly send a heartbeat to all other servers. Some other
potential Candidate will then return to the Follower state when it receives such
a heartbeat from a current Leader.

However, several servers might timeout at the same time and none of them gets
the quorum of votes (e.g. two Candidates could get each exactly half of the
votes). This so called split vote ends up in a new election round where each
Candidate starts to request for votes again after a randomly set timeout.

Each server divides time into terms. As the whole environment is asynchronous,
two server do not have to have an equal term number at the same global time.
To maintain a certain synchronisation, every message contains the current term
number of the sending server. Whenever a server receives a message with a newer
term, it will update its own term to the newer one and become a Follower, if
it was not already a Follower. On the other hand, a server replies to a stale
message with a negative answer and its current term to update the stale server.
In the case of a timeout, a Candidate will always first increment its term number
and claim to be the Leader of this new term (I.e. there is a Leader in term 1
and one of its Followers reaches a timeout. Then the new Candidate will start
a leader election in term 2 and when receiving the VoteRequest, all the other
servers update their terms to 2 as well. This also includes the previous Leader
which moves to Follower state for term 2). This way there will be only one
Leader possible in a given term and every node can be sure about the Leader for
the rest of the term.

Log replication

After a Leader is elected for a given term, the log replication can begin. When-
ever a client sends a command to a server, this server will redirect it to the
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current Leader, if such is known. The Leader will append the command to its
own log and try to replicate this log entry to all its Followers. As soon as half of
the servers have appended this command and answered positively to the Leader,
the command will be called committed. Now the Leader will apply the com-
mand to its state machine and tell the client that this command eventually will
be executed on all servers.

Without crashes this already works fine but each of the servers, the Leader and
its Followers, could crash at any time. In this way it can happen that some
servers have missed some committed log entries or that they have an arbitrary
number of uncommitted log entries and these logs have to be restored somehow.
This problem is solved by comparing the Leader’s log with the Follower’s one. If
there are differences, then always the Leader’s log is right - it will never manip-
ulate its existing log entries - and the Follower has to adapt its log. Accordingly,
the Follower always has to check first if its previous log entries coincide with the
Leader before it appends a new entry from the Leader. If this is not the case,
the Follower will delete all entries up to the most recent coinciding one and then
stepwise ask for the missing messages and append them. Continuing like this,
the Followers will eventually have the same log entries as the Leader. Every log
entry contains the term number at which it was appended to the Leader’s log
and an increasing index number to identify its positions.

However, with these rules the Leader could still have missed a committed com-
mand (i.e. by being down for some time while another Leader committed a new
command) and could remove it from all the servers. Therefore another restric-
tion is given in the next Subsection, to ensure that a potential Leader already
contains all previously committed commands.

Safety

To maintain consistency of the committed commands among the servers and
clients there has to be one more elementary rule in the leader election. A server
which does not contain all the committed log entries, has to be prevented from
winning an election, otherwise this server can delete some of the committed
entries again. For that the Followers only vote for Candidates which are at least
as up to date as themselves. At least up to date in this case means, that the
last log entry of the Candidate has a higher term as the one of the Follower or
the last log entry of the Candidate has the same term and an index at least as
high as the last log entry of the Follower. This way only the Candidates with all
committed log entries have a chance to win an election since committed entries
are already present in the majority of the servers and therefore are required in
the Candidate’s log for a quorum of the votes.

With these restrictions it can be shown that none of the committed entries will
be deleted again and eventually all the committed entries will be executed on
every server. In addition the following properties from the RAFT paper [3] hold:
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e If two entries in different logs have the same index and term, then they
store the same command.

e If two entries in different logs have the same index and term, then the logs
are identical in all preceding entries.

Messages

For the RAFT implementation only two kinds of messages are required. These
are:

e RequestVote: This is the message sent by a Candidate to start an election
and to ask every server for its vote. The reply, which contains a positive
or negative vote for the Candidate, will be the RequestVoteReply.

e AppendEntry: This message is responsible for the log replication between
the Leader and its Followers. Whenever some log entry has to be added at
the Follower, the Leader sends an AppendEntry message which contains
one log entry. The Follower will then use an AppendEntriesReply message
to give a feedback to the Leader. When there is no more log entry to be
added at a Follower, the Leader sends an empty AppendEntry message
which is used for the previously mentioned heartbeat.

For further details the interested reader is referred to the following website!.

"https://raft.github.io/#implementations


https://raft.github.io/#implementations

CHAPTER 2

Implementation

To simulate and really understand the RAFT algorithm we implemented it by
ourselves. Therefore we needed a suitable programming language and a useful
IDE (Integrated Development Environment). Another important requirement
was that the message passing between servers and clients is fast and reliable
enough. For this we had to choose a powerful asynchronous messaging library
and a threading library for a fair scheduling among the server processes. Having
the communication working, we could start to structure the code and implement
the logic for the algorithm with all the additional features for the simulation.
For this semester thesis we did run the whole simulation on one machine. There-
fore we created all server processes as independent threads and let them com-
municate via sockets.

2.1 Programming environment

As programming language we chose Python 3.6!. The available threading li-
brary? with a fairly distributed scheduling seemed to be quite promising, what
we need for a realistic distributed simulation like with RAFT.

As IDE we selected Pycharm® which makes possible a good handling of the code.
Additionally, the Anaconda 4.3.1 package* makes it convenient to run Python
and Pycharm on Windows.

The library for the asynchronous messaging is ZeroMQ® which was suggested to
us because of its handiness and large, strong functionality.

"https://www.python.org
*https://docs.python.org/3/library/threading.html
Shttps://www.jetbrains.com/pycharm/
‘https://docs.continuum.io/

*http://zeromq.org/
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2.2 Message passing

The first important thing for a fast and realistic implementation was the message
passing. It had to be made sure that the messages were sent and received in
a fairly distributed way and in as little time as possible. Therefore, we first
implemented a naive function that repeatedly tried to asynchronously receive
messages in a round robin fashion. After realising that this first approach did
not scale for larger numbers of servers, it came to an essential second approach
where we used socket listeners to receive the messages.

2.2.1 Asynchronous read with Round Robin

In RAFT every server has a direct link to each other server and to each client.
Accordingly, each server has to listen for messages from each other server and
client. A normal blocking socket-read would have caused that a server (as one
thread) could only listen to one other server at a time. In this case it could have
happened that it waited a long time for one message of a server while the other
servers may already have sent many other messages. This would not have been a
good model for concurrency indeed. As a consequence we made the socket-read
non-blocking. This way the server asks a socket for a message and immediately
returns if there is no message available. Every server now continuously checks all
its sockets in a round robin fashion for new messages and handles it accordingly.
This approach guarantees fairness from the socket requests in round robin and
a roughly realistic concurrency from the thread scheduling.

However, it turned out that those non-blocking reads still took too much time
and the simulation could not keep up with the message handling of a larger
amount of servers. Therefore the messages were received more and more delayed
and the simulation was not really representative anymore.

2.2.2 Socket listener

As the previous procedure did not scale nicely, we tried to get rid of the time con-
suming non-blocking reads and placed a socket listener in front of each socket.
This way for each socket listener has to be a new thread generated that con-
stantly performs a blocking socket-read. Whenever it receives some message it
restarts the reading process and places the received message in a queue. The
only thing left for the server is to listen for messages in the queue in a FIFO
(First In First Out) way.

To test the performance of those two approaches, we set up a simple message
passing test. In the setup a message is sent from one server to another in a
round robin fashion, i.e. server 0 sends a message to server 1, then server 1 the
same message to server 2 and so on until the last server sends it again to server
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0. Then we measured the time for several rounds and took the average time to
send a message from one server to another.

This test should roughly imitate the communication part of the RAFT simula-
tion where only a few sockets receive a message and most of the sockets hear
nothing at some time instance. This way we hope to get a good estimation of
the communication effort for the two approaches.

0.16 ——- socket listener

asynchronous read in round robin
0.14

0.12
0.10
0.08 +
0.06

0.04 +

average time [s] for one link message

0.02

000 =Smmmmmmme e

T T
5 10 15 20 25 30 35
number of servers

Figure 2.1: Comparison between the two approaches with the message passing
test

We ran the test with a different number of servers for the two communication
approaches. In Figure 2.1 we see that the asynchronous read is much slower while
the socket listener is much faster and scales better. It seems to be preferable
to have more threads than having a lot of non-blocking reads. As a result, we
used the second approach. Still, there is a linear increase for the socket listener
from 0.165 ms with 2 servers to 0.5 ms with 30 servers which is not visible from
Figure 2.1.

2.2.3 Threading

For the threading, we used the standard library Threading. To provide concur-
rency in this distributed system, threads are essential. For every server there
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is one main thread which reads from the message queue and reacts according
to the messages, i.e. it sends a reply to the Leader server. Additionally, there
is one thread for each socket and a thread for each timeout that is needed to
tell when the timeout happens, i.e. the election timeout. For the clients it
works equivalently. The threading scheduling should then provide some pseudo
concurrency.

2.3 Code structure

i Analysis i
Setting
Servers
I Clients
State

Figure 2.2: The code structure for the RAFT implementation with its main
objects

Figure 2.2 shows the hierarchy of the code implementation. On the top is
Analysis which builds the interface to the user. From there different simulations
with the according parameters can be run. As the user starts such a simulation
from Analysis, an object Setting is created. Setting however creates the right
number of server and client objects. It is responsible for starting the whole
simulation and also for closing it correctly again. Server and Client both do the
timeout handling and the socket communication for RAFT which is indicated
by the blue arrows. For the RAFT logic of the servers there is an additional
object created from Server, called State, which handles every received message
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of a server.

To provide some order, changes in the singular objects are generally done along
the black arrows. L.e Analysis should not change a link failure in Server directly,
it tells Setting to do this manipulation in Server.



CHAPTER 3

Interpretation

In this chapter we analyse the implementation of RAFT on different configura-
tions. Therefore some kind of measurement is essential. This is done by two
features:

e Global time: Every server and client takes the global start time as soon
as it starts running. Whenever one of them has a termination condition
fulfilled, it will take the global end time and the difference of end and start
time will be given as output.

e Term: Every server maintains its own term, starting from 1, which is either
increased by a timeout of the server or by a message with a newer term.
It can be used as indication of how stable a Leader is, i.e. if it sends
heartbeats to its Followers reliably enough, and of how effective the leader
election is. The output will be the term number of the corresponding server
at the end.

The termination condition is either a successful leader election where a server
becomes Leader or a predefined number of committed commands in the client,
depending on what we want to measure.

There are many cases where the time and the term strongly correlate and it does
not make sense to look at both. Therefore, most of the Figures only show the
global time.

In the following sections we will take some measurements, try to improve the
performance of RAFT and also add some new functionalities to the original
algorithm, such as sort of a sliding window or dynamically replicated messages
to deal with failures. We analyse the two special cases of an isolated server and
the partition of the servers where we spot some issues. Corresponding to these
problems, we propose and test some new mechanisms and finally, the results will
be further discussed and the idea of multi-level RAFT presented.

10
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3.1 General

First, the algorithm is analysed with non-negligible failures between the servers.
Therefore we compare the two policies Replica VoteRequest and Replica Appen-
dEntry with the original implementation.

Secondly, we extend the RAFT algorithm with a sliding window mechanism
which was already proposed in the paper as extension.

3.1.1 Replica VoteRequest

It might be that the links between some servers have a non-negligible failure
rate. In such an environment many leader elections fail due to the lack of re-
ceived VoteRequests and VoteRequestReplies until a Candidate gets lucky and
wins the election. The original algorithm has no mechanism to effectively re-
act to it and thereby the whole progress is significantly slowed down the higher
the failure rates get. As there are two successfully received messages needed
for one vote, these are a VoteRequest and the according VoteRequestRely, we
even expect a non-linear increase of the required terms for a leader election with
increasing failure rates.

To dynamically deal with failures we built a naive policy, called Replica VoteRequest.
It means that the VoteRequest (and its reply) messages are sent several times.
The number of times is equal to the number of terms that went by since the last
known Leader was active. lL.e. if the Candidate starts an election in term 4 and
its last known Leader was at term 1 active, then it sends each message 3 times.
In this way at the beginning some elections may still fail but after some terms
the messages should be sent so many times that at least one message reaches its
target with a high probability.

In Figure 3.1 we can see that without Replica VoteRequest the number of
required terms increases non-linearly the higher the general link failure gets.
However, with replica VoteRequest the number of terms remains considerably
low. As a consequence we can conclude that even a quite naive mechanism like
Replica VoteRequest improves the leader election a lot.

3.1.2 Replica AppendEntry and Sliding Window

After a server could successfully establish itself as Leader, the same problem
arises as before. To prevent timeouts, each Follower has to more or less reliably
receive heartbeats from the Leader. But the higher the link failure gets, the less
heartbeats will reach the Followers and eventually some timeout appears which
starts a new leader election and the whole progress gets stuck again.

Similar to the Replica VoteRequest we implemented a more adaptive Replica
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Figure 3.1: The impact of the Replica VoteRequest on an election with non-
neglicible link failures (timeouts: 0.1-0.15[s], servers: 10)

AppendEntry policy. The Leader sends, as normal, every heartbeat new Appen-
dEntry messages to each Follower. It then remembers at each time if it received
a reply in this heartbeat period from the specific Follower. If it receives a re-
ply, then it subtracts 0.1 from a factor, which corresponds to the number (the
floor rounding of it) of times the AppendEntry is sent to this Follower. If it
does not receive any reply in this period from this Follower, it doubles the factor
and therefore sends twice as many messages at the next heartbeat. We chose
this mechanism similar to TCP with a multiplicative increase and an additive

decrease.

Another important concept is the sliding window mechanism. In the original
algorithm the Leader can only send one command at a time with an AppendEn-
try and then has to wait for an AppendEntryReply or for the next heartbeat
timeout before it is able to send the next command. With the sliding window
the Leader can send several different AppendEntries at once, if there are more
commands left to be sent. It does not have to wait for an AppendEntryReply
which saves some time. However, it happens that a newer AppendEntry over-
takes an older one in the network or that some messages get lost. To preserve the
correctness of the algorithm, these non-consecutive commands cannot be added
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to the log until the missing commands in between are received as well. Therefore
we needed some buffers for the Followers, to store the commands that were not
expected yet.

We also implemented a sliding window mechanism between client and Leader
which is described in the Appendix A.1.

In Figure 3.2 we simulated 5 servers and measured the time and number of
terms until 100 commands were committed. Therefore we wanted to see what
impact these two mechanisms have.

n 15.0
£ ——- slidingWindow=1
£ 12.5 4 o B )
s slidingWindow=5 -
o 10.07 —-- slidingwindow=1, replicaAE L
= 7.5 4 ——- slidingWindow=5, replicaAE ="
E 5.0 d"r _,.—"‘"P.. -
@ O e
’f ﬂﬂﬂﬂﬂﬂﬂ m——
R
= T T T T T T T T T
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w - - -
E 50 4 === slidingWindow=1
E 40 | slidingWindow=5
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§ 30 1 ——- slidingwWindow=5, replicaAE
&
E 201 t’x
wi >
£ 10 ~ =7 - o
b - ___====—_-:_‘=——'
] 0l ===== EEE - ——- mm=======F
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0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48
link failure

Figure 3.2: The impact of the Replica AppendEntry and the sliding window size
on the RAFT progress (timeouts: 0.2-0.3[s], heartbeat: 0.1[s], servers: 5)

When looking at the number of required terms in the Figure, it becomes
clear that for higher link failures much less terms are needed with Replica Ap-
pendEntry. This mechanism prevents timeouts of the Followers, as intended,
and thereby less elections are needed and the progress becomes faster.

On the other hand the sliding window generally accelerates the progress which is
visible by comparing the red and green curve of the time plot, although it does
not really affect the number of terms. This comes from the fact that there are
more messages sent in the same amount of time which obviously does not have
an impact on the number of required terms. Additionally, the sliding window
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without Replica AppendEntry seems to prevent new leader elections in some
degree. This might be because of the higher amount of received messages with
a sliding window which also prevents some timeouts.

3.2 Isolated server

It could happen that a server suddenly has a problem and can not receive any
messages from the other servers anymore. Although, it is assumed that the
isolated server still can send messages to the other servers. We now consider
different cases and find weaknesses of the RAFT algorithm where i.e. delays
appear or even the whole progress of the other servers is stopped. To these
problems we represent some alternative mechanisms.

3.2.1 Isolated server is Leader

First we assume that the isolated server starts as Leader. The Leader still can
append new entries to the other server’s log but it will never know if its Followers
could successfully append it. Without feedback the Leader cannot commit any
new commands and thereby is unable to make any progress. Unfortunately,
a Leader will not give up its state voluntarily. Especially in conditions with
negligible link failures, it will be a serious problem as the Followers always receive
a heartbeat and therefore will never have a reason to start a new election. As a
result, the original RAFT algorithm will stay in this state forever.

To solve this problem we have added two new mechanisms:

e AppendEntryReply Timeout: The leader has a new timeout which will go
off as soon as it does not receive a AppendEntryReply for a certain time
period. If this happens, the Leader knows that something goes wrong as
it should receive some replies from its heartbeats. As a consequence it will
reset itself to the Candidate state and try to renew its leadership.

As this server is still isolated, it will not receive any VoteRequestReplies
and will not be able to become Leader again. Eventually, a new leader
will be elected and the non-isolated servers become able to make progress
again. While this mechanism suffices for this kind of configuration, there
could be two or more servers isolated which still get messages from each
other. In this case a potential isolated Leader will still receive a reply
from the other isolated servers, the AppendEntryReply Timeout will never
occur and RAFT stays blocked.

Therefore we needed another mechanism.

e Commit Timeout: We add an additional timeout to the Leader which
will go off after a certain time without a new commit elapsed (if there is
still some command to be committed). Whenever this timeout happens,
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it indicates that the Leader cannot access to a majority of the servers
anymore since for a committed command this is the requirement. This
Leader becomes useless and stops the whole progress. Therefore the Com-
mit Timeout will force the Leader to give up its leadership and to restart
as Candidate.

In the case of an isolated Leader, including a minority of other isolated
Followers, the Leader will always be reset to Candidate state after some
time and thereby enable the non-isolated servers to find a new Leader.
On the other hand a successful Leader will rarely be reset as it is able to
commit new entries with high probability. Therefore the Commit Timeout
does not interfere with normal configurations which make progress.

3.2.2 Isolated server is Candidate

With the two previously mentioned mechanisms the isolated server might be
prevented from being a Leader, however it still can interrupt the progress in
the Candidate state. As the isolated server does not receive any AppendEntry
messages from the others, it continues via timeout to increase its term and re-
peatedly starts new elections. Therefore it keeps on interrupting the progress of
the others because it forces them to update their term and the Leader has to
restart as Follower again. As a consequence the others have to find a new Leader
before the isolated server timeouts again. After they have found a new Leader,
they can only continue until the isolated server reaches a higher term again and
it goes on.

One solution to prevent interruptions by an isolated server is the so called
LastLeaderTerm Policy. To the already existing safety requirements in the
Leader election, that the last log entry of the Candidate has to be at least as up
to date, a new requirement is added and checked first. Each RequestVote has
to contain the LastLeaderTerm which is the last term the Candidate has seen a
Leader. The server that receives this RequestVote message first checks if its own
LastLeaderTerm is higher. If this is the case, the server will reject this message
by just sending a negative reply and it exceptionally will not update its term. If
the LastLeaderTerm of the Candidate is not higher, the Follower proceeds this
VoteRequest as normal.

Unfortunately, this change does not grant the safety of RAFT anymore which is
shown in the following example:

e There are 10 servers, 6 of them got A as the last log entry and 4 of them
got an additionally last log entry, after A, called B. It can happen that
one of the servers with last log entry A becomes Leader but is only able
to send a heartbeat to the servers with last log A before it crashes again.
Now the servers with last log A have a higher LastLeaderTerm then the
ones with B and will not vote for a server with B. On the other hand the
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servers with B will not vote for a A server either as the last log is less up
to date. From now on no server will be able to reach a quorum of votes
and it is shown that even one server could stop the whole progress.

Accordingly, we need to adjust the LastLeaderTerm Policy. Therefore the policy
is restricted to the current Leader as follows:

e When a Follower still receives heartbeats from a current Leader (current

term is equal LastLeaderTerm) then it only accepts VoteRequests of Can-
didates which have already seen this current Leader (they will have the
same LastLeaderTerm) else it just rejects the vote again and does not up-
date its term.
Additionally, the Candidate will reset itself to Follower state and its term
to the received LastLeaderTerm whenever it receives a VoteRequestReply
which contains a higher LastLeaderTerm. In this way we enable that this
Candidate can possibly listen to this newer Leader again, else it would be
lost since it will have a higher and higher term.

With this change there will not be any kind of deadlock anymore. With the
Commit Timeout the Leader already gives up its leadership by itself after not
having committed anything for a while, otherwise it still makes progress. When
there is no more Leader, then the LastLeaderTerm Policy has no effect on the
Leader election and it continues as normal where the safety properties are already
proofed in [3].

3.3 Partition

In a network it can also happen that some part of the servers get completely cut
off from the rest and cannot communicate with the other part at all. One simple
example is given in Figure 3.3.

As seen in the Figure 3.3, from now the servers 1 to 3 can only communi-
cate to each other and server 4 only to server 5. In this case there will run
two separate leader elections simultaneously. However, only on the side with the
majority of the servers it can be successful. Since the servers know the total
number of servers and positive votes from a majority of server are required to
become Leader, they need 3 out of 5 votes. As the smaller side only consists of
2 servers, it is impossible to get a Leader there.

In the following Subsections the behaviour of RAFT in partitions is analysed.
One important concept, namely the ’fake’ partition, is discussed to test the re-
liability of the simulation. The partitions are tested with different timeouts and
with the existence of fixed failures and delay which will be explained in more
detail.
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Figure 3.3: Example of a partition with 5 servers where 2 servers get cut off

3.3.1 Reliability of the simulation

When partitions are tested, one important feature is the time for a successful
election. We can fix a partition ratio, i.e. a third of the servers is cut off from the
other two thirds, and then analysed how the time for a successful leader election
evolves versus the total number of servers. On the other hand we can also fix
the total number of servers and inspect the election times for different partition
ratios. This sounds quite simple however it is not guaranteed that the simulation
works reliably, especially with a higher amount of servers. In example an increase
in the time curve could be caused by the partition configuration itself, what we
wish to analyse, or then by the more intense effort of the simulation caused by
more servers. Ergo, we have to interpret the results carefully and first need to
check if we can believe in our simulation.

To get a hint of how reliable this simulation is, we run a so called ’fake’ partition.
Here we ignore the minority that got cut off from the partition and only simulate
the part of the partition which can build a majority and therefore is able to find
a Leader. The other part of servers which is left out, should not have an effect
on the leader election time as it is redundant for the progress. For the example
in Figure 3.3 only the servers 1 to 3 would be simulated as they can still get
enough votes from each other. The servers 4 and 5 will be left out because their
leader elections will never be successful and only consume some calculation time
of the simulation.

In principle the results of the ’fake’ partition and the real partition, with all
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servers simulated, should coincide. If they do, we know that the performance of
the algorithm does not depend on the simulation effort and that we can rely on
these measurements.
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Figure 3.4: Comparison between the results of real partition and ’fake’ partition
with a half-half partition (such that there is still a majority - for 100 servers the
partition would be 49-51) and timeouts: 1.0-1.8]s]

In Figure 3.4 it is visible that for a higher number of servers, the effects of
the more involved simulation are not negligible anymore. The real partition even
gets stuck after 80 servers due to overloaded simulation while the ’fake’ partition
is able to continue until 150 servers. As a result, we concentrate on a smaller
amount of servers and hope to get a better reliability there.

In Figure 3.5 we see a much better correlation between the two kinds of
simulation. Here the total number of servers is fixed to 10 and the number
of servers, that were cut off, varies. The election times nearly coincide except
for the case where 4 servers are cut off. But even latter case only deviates by
a smaller factor. We therefore restrict our simulations to a smaller amount of
servers.

Additionally, we see from Figure 3.5 that the election time increases non-linearly
the more servers are cut off. This might come from the fact that for a larger
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Figure 3.5: Comparison between the results of real partition and ’fake’ partition
with a different number of servers cut off (timeouts: 0.1-0.15[s] and 10 servers)

partition a higher percentage of the other servers has to answer positively to the
VoteRequest. Therefore the cases where two or more servers timeout roughly at
the same get less successful as they steal each others votes.

3.3.2 Different timeouts and policies

As we are restricted to a smaller amount of servers, we cannot exactly predict
how the algorithm behaves with more servers which might be even the more
interesting part. Therefore we tried another way to imitate the conditions with
more servers. Instead of increasing the number of servers we can just make the
lower and upper timeout bounds tighter. I.e. if we halve the timeout interval
then the density of timeouts will be doubled; as if the timeout interval remains
like this and the number of servers gets doubled.

In Figure 3.6 we again simulated 10 servers with a varying number of servers
that were cut off for different upper timeout bounds. From these curves we see
that the election time continuously increases as the timeout interval gets halved.
At a certain time interval the election time seems to increase even more and the
algorithm will start to become unstable at a certain point. This can be explained
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Figure 3.6: Comparison between different timeout intervals (10 servers and ’fake’

partition)

by the increasing timeout density, when the timeout bounds get tighter.

As a consequence the number of servers seems to be limited for a fixed timeout
interval. When the number of servers gets too high, the upper timeout boundary
needs to be increased. RAFT has no dynamic timeout adjustment yet and
therefore most certainly will not work fluently for a drastically increased number

of servers.
To deal with this issue, we introduce two different approaches:

e increaseTimeout: Each server remembers the last leader term and counts

the consecutive terms without Leader. Every time there is a new term
without leader, it increases its upper bound of the timeout by the original
interval length of the timeout (upper bound minus lower bound). In this
way the interval increases linearly until there is a new leader found.

This can be done as well with an exponential increase of the boundary.

increaseCandidateTimeout: The Candidate counts the number of positive
and negative votes it got. Then it adapts its upper timeout boundary for
the next timeout according to the ratio between the positive and negative
replies. Therefore, Candidates with many negative votes get handicapped
in the next timeout by a larger timeout interval. On the other hand, the
Candidates with a lot of positive votes get a tighter timeout interval. In
this way we want to give the more promising Candidates an advantage.
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Figure 3.7: Comparison between the different timeout policies (timeouts: 0.1-
0.10625[s], 10 servers, 'fake’ partition)

In the Figure 3.7 our goal was to compare the performance of RAFT with the
newly introduced policies. We used 10 servers and a tight timeout boundary of
0.1-0.10625[s] where we varied the partition size. The curves show a significant
impact of the two policies. Both policies have a positive effect on the performance
whenever a larger percentage of the servers gets cut off. Even the two policies
together seem to improve the progress more which indicates that the policies are
not making the same improvements.

We also tested the so called increaseTimeoutExp with an exponential increase of
the upper timeout boundary but it is not that effective in this configuration as the
increaseTimeoutLinear. This might come from the fact that the timeout interval
is not tight enough and an exponential increase has a too rough adjustment and
is not necessary here. This might change for cases where the number of servers
is by magnitudes higher for this timeout interval which remains to others to test.

3.4 Further observations

In this Section we introduce the concepts of fixed failures and fixed delays which
imitate some problems that can appear in networks like the Internet. Then we
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add these two features to the RAFT implementation and shortly discuss their
impact based on some measurements.

In the Internet it happens that a direct link between two servers fails because
a router in between has crashed or a link is slower due to more traffic i.e. To
simulate such behaviours, we added two parameters to the implementation which
will be set right at the beginning of the run time:

e fixed failure: At the beginning, each directed link - a server has two links to
another server, one for sending and one for receiving - between two servers
will be disabled with a given probability for the rest of the simulation.
L.e. with the given fixed failure of 0.1, on average each tenth link will be
destroyed and will not work during the simulation.

o fixed delay: For all directed links a fixed delay will be chosen uniformly at
random in a certain delay interval. For the whole simulation the messages
through this link will have this fixed delay, additional to the actual receiving
time of the sockets.
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Figure 3.8: Comparison between the different fixed failures and partitions (10
servers, timeouts:0.1-0.15]s|, fake’ partition)

We wanted to see how much impact link failures have on a partition of servers.
In Figure 3.8 we simulated leader elections with 10 servers and varying partition
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sizes for different fixed failures. From the curves we see that a higher fixed failure
together with a large partition becomes very critical. This can be explained by
the fact that in large partitions a Candidate nearly needs all of the votes of the
servers in its partition. When now some links fail between this Candidate and
other servers, it needs an even higher fraction of the available votes or it might
happen that it cannot reach a majority of the servers anymore. l.e. from the
10 servers, the servers 7 to 10 are cut off. Additionally, there is a link failure
between server 1 and 2. Then servers 1 and 2 will never be able to become leader.
However, they will also timeout and interfere with other Candidates which makes
the election harder for the others as well.
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Figure 3.9: Comparison between the different fixed delays and partitions (10
servers, timeouts: 0.1-0.15[s], 'fake’ partition)

In Figure 3.9 wanted to analyse the same as before, but with fixed delays
instead of the fixed failures. We observe that fixed delays worsen the performance
the more servers are cut off and the higher the fixed delays get but not that
drastically as with fixed failures. We explain the increase of the curves with the
fact that higher fixed delays make it less likely that a server reaches all the other
servers before another server timeouts as well.

Le. if a server sends a message to another server with a delay of 0.1[s] and
an actual transmission time of 0.05[s|, then no other server should timeout in
0.15[s] instead of 0.05[s]. Therefore, the larger the fixed delays get, the larger the
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timeout interval should be to reduce the probability of the interfering Candidates
again.

3.5 Discussion

The sections 2.2 and 3.3.1 showed that it is quite complicated to get a reliable
simulation for a larger number of servers on one machine. This fact limited the
whole range of interpretations but still we could find some answers to the two
main issues:

e Isolated server: The original RAFT algorithm revealed some severe prob-
lems in such configurations. An isolated Follower continuously slows the
whole process down. When the isolated server is the Leader, the situation
is even worse. The Leader will not make any progress and does not give
up its leadership which ends up in sort of a deadlock. In an open network
without secured IP addresses one could put a malicious router near one of
these servers. The situation of an isolated server now appears when this
router discards all of the messages to this server close by.

However, the problem could be completely handled by these policies Ap-
pendEntryReply Timeout, Commit Timeout and LastLeaderTermPolicy.
The Commit Timeout prevents that a isolated server remains in the Leader
state by giving its leadership voluntarily up after some time without progress.
The LastLeaderTermPolicy makes sure that an isolated Candidate does
not interrupt the progress of the others anymore by adding an additional
VoteRequest restriction.

e Partition: Even if the policies IncreaseTimeout and IncreaseCandidate-
Timeout seem to improve the progress quite a bit, it remains the most
involved issue. It is still not very clear how well the algorithm works with
a larger number of servers as the simulation does not really give a reliable
answer to that.

One obvious solution is to directly increase the upper timeout boundary
linearly as the number of servers increase. In this way the timeout density
stays the same and we assume that it remains likely to find a leader, even
for a large number of servers. The election time will not increase either as
the change of having an early timeout remains roughly the same. However,
there will be servers with huge timeouts and this will make the algorithm
slower and less adaptable to failures. I.e. a link failure may not be recog-
nized until the time of the upper timeout boundary elapsed.

Additionally, with the same probability of sudden server and link failures
there will happen linearly many more elections which consumes time and
in the worst case could end up in a constant leader election without any
progress. As well it can happen that a Leader only has access to half of
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the Followers and still remains Leader forever. As a consequence it is ques-
tionable if the guarantee of having only half of the servers up to date is
effective enough.

After these observations it seems to us that RAFT has still some problems in
some edge cases and it remains the question of how well the algorithm scales.
However, it looks like a good theoretical approach which also leaves some free-
dom for further practical improvements, as we have already proposed some.

One interesting proposal is left for further analysis. Similar to the principle
of ’divide and conquer’ the RAFT process could be divided into different hier-
archical sub-processes where the Leader of each sub-process represents a server
node for the next upper process. To enable multiple levels, the servers have to
be put in different predefined groups of different levels.

I.e. for 125 servers there could be 3 layers. The layer 1 group consists of all
servers. The layer 2 group of 25 servers each and the layer 3 group of 5 servers
each. Then every server belongs to a group in each layer (i.e. server 6 could then
be in the first group of layer 1 and 2 and in the second group of layer 3). The
servers in each layer 3 group will try to find a Leader. Then the Leaders of layer
3 try to find a Leader in their group in layer 2 and so on.

In this way RAFT potentially becomes more resilient to sudden failures as only
one sub-process has to deal with it while the other processes will not be affected at
all. The cluster membership changes, which are explained in the paper [3], would
not need to be done globally anymore but only in the specific sub-processes. Ad-
ditionally, the work of one global Leader of distributing the commands to every
single server could be assigned by many other servers.

@

) ) @

Figure 3.10: One idea of multi-RAFT. Each rectangle contains servers of a group
of layer 2 with the according elected Leaders. The Leaders of layer 2 then find
a Leader for layer 1 which then will be Leader for two layers.
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APPENDIX A

Appendix Chapter

A.1 Sliding Window between client and server

The sliding window between client and server we implemented as follows:

On one hand there is a sliding window for all the commands which the client
wants to append to the Leader. Every so called AppendCommand gets buffered
on the client side and the client stops sending new commands as soon as the size
of this buffer AppendBuffer is equal to the maximal size of the sliding window.
When commands are left over to be sent to the Leader, they will be buffered in
another buffer WaitingBuffer which stores all waiting commands. As soon as
there is some more space in AppendCommand, the next command from Wait-
ingBuffer will be sent to the Leader and transferred to the AppendBuffer.

On the Leader side there is a buffer called WindowClient which has the size of
the maximum size of the sliding window minus one. This minus one comes from
the fact that the first element (the one that actually is expected from the Leader)
of the sliding window does not have to be stored as it can be appended to the
log directly. So, whenever there is another than this expected element received,
it will be stored at the right place in this buffer. As the expected element is
received, the buffer has to be updated where every consecutive element after the
received one can be applied as well. The other commands in WindowClient have
to be moved that according amount of places forward in the buffer.

The Leader will send a feedback to the client which tells it the last applied com-
mand. This is also the case if the Leader receives a stale command which was
already applied. Additionally, it sends a feedback whenever a new command
got committed. The client on the other side can use this feedback to update
AppendBuffer. The elements which are removed from this buffer are stored in
another third buffer, named CommitBuffer. This is necessary as the Leader
could crash and the appended commands might not be committed. In this case
the commands would be lost. The client can use the second feedback about
the committed commands from the Leader to remove the committed commands
from CommitBuffer. Then it can be sure that it does not have to send these
commands again.

A-1
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Between client and Leader there could also drop some messages or a Leader
could fail. In such cases it is important that the client sends its commands
again. Therefore we introduce two timeouts. The first timeout LastAppend will
go off whenever a certain time elapsed since the last positive AppendCommand
reply from a Leader. When this timeout is issued, it forces the client to send
all its AppendCommands again. There is a second timeout LastCommit which
checks the last commit feedback from the Leader. When this timeout goes off, it
will force the client to put all commands from CommitBuffer and AppendBuffer
back to WaitingBuffer (preserving the order). The client then starts to resend
commands and to refill the AppendBuffer again. These two timeouts make sure
that RAFT does not get stuck between client and Leader. Without the second
timeout it could happen that the client sends all its commands to an isolated
Leader and this one never commits anything. Additionally, the commands will
be sent to randomly chosen servers whenever the LastCommit timeout goes off
or there is no Leader known.

To accelerate the whole sending process, the Leader sends a special feedback
whenever it gets a message which needs to be buffered. It indicates that the
element, which it needs as next, got lost. The client will then send this element
again.
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