
Distributed
 Computing

Implementing a Distributed Reliable
Database

Bachelor Thesis

Florian Morath

fmorath@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Conrad Burchert

Prof. Dr. Roger Wattenhofer

February 22, 2018

Acknowledgements

I want to thank Conrad Burchert, who guided me through this thesis, gave me
great advice on many questions and who was always passionate about the topics
of our meetings.

i

Abstract

In this thesis, we implement a fault-tolerant distributed state machine called
piChain and make it available to others as a library. piChain inherits features
of a blockchain, providing eventual consistency, and of Paxos, providing strong
consistency.
The library is compared with current implementations of a popular consensus
algorithm called Raft. A distributed database is built on top of the library.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

2 State Replication 4

2.1 Basics . 4

2.2 Paxos Theory . 4

2.3 piChain Theory . 6

3 Implementation 11

3.1 Interface Design . 11

3.2 Architecture . 12

3.3 Transactions and Blocks . 13

3.3.1 Transaction Reception . 13

3.3.2 Blocktree Module and Block Reception 14

3.3.3 Blockchain Forks . 15

3.3.4 Missing Blocks . 17

3.4 Node States . 18

3.5 Strong Consistency . 19

3.5.1 Crash Recovery . 21

3.6 Optimizations . 21

3.6.1 Reduction of Blockchain Size 21

3.6.2 Quick Proposing . 22

3.7 Networking . 23

iii

Contents iv

3.7.1 Twisted . 23

3.7.2 Peer-to-Peer Network . 24

4 Evaluation 26

4.1 Testing . 26

4.1.1 Unit Tests . 26

4.1.2 Integration Tests . 27

4.2 Application: Distributed Database 28

4.3 Performance . 29

5 Conclusion 31

5.1 Future Work . 31

Bibliography 32

Chapter 1

Introduction

1.1 Motivation

piChain [1] is a proposal of a new fault-tolerant distributed state machine. It in-
herits features of Paxos [2, 3], providing strong consistency, and of a blockchain [4],
providing eventual consistency. A blockchain is a fault-tolerant data structure
that is used as a core component in many cryptocurrencies where it has proven
itself for its scalability and simplicity. The underlying data structure of piChain
is a blockchain which organizes the transactions. Since the main disadvantage
of a blockchain is that it is only eventually consistent, piChain additionally uses
Paxos, a strongly consistent consensus algorithm.

The focus of the piChain design was put on the following properties:

• Fault-Tolerance: piChain can handle crashes, crash-recoveries, message
omissions and network partitions.

• Speed and Simplicity: piChain is a light protocol which should be simple
to understand. It has no heavy weight leader election subroutine. In a
healthy state, in which the system usually is, strong consistency is achieved
in one message round-trip time.

• Quietness: There is no heartbeat needed, meaning that if no new trans-
actions are created, no messages are sent.

• Scalability: The number of piChain nodes can be scaled up to hundreds of
nodes distributed around the globe. There is no subroutine that produces
a quadratic number of messages.

A distributed fault-tolerant state machine has many applications. It can be
used whenever a distributed synchronization mechanism is needed in an environ-
ment where nodes may crash. Use cases include the following:

• An electronic payment system where financial transactions are part of the
consistent state.

1

1. Introduction 2

• A distributed storage system where executable commands are part of the
consistent state.

• A distributed lock manager that organizes access to resources where the
locks on the resources are part of the consistent state, e.g., Chubby [5].

The goal of this thesis is to implement the proposed algorithm and make it
available to others as a library. Also a simple distributed database is implemented
as an application of the library to show how the library can be used and that it
works.

1.2 Related Work

There exists a number of implementations that try to solve the same problem.
To be able to make a meaningful comparison regarding their performance, I only
consider implementations that use the same programming language as is used
for this thesis, namely the Python programming language.

The most recent champion among consensus algorithms is probably Raft [6].
Raft’s core component is an explicit leader election strategy. The leader is re-
sponsible for the log replication and regularly informs other nodes about its
existence with so called heartbeat messages. If nodes do not receive heartbeat
messages, they timeout and start a new leader election.
Comparing this algorithm to piChain, one can clearly observe that simplicity is
an important part of the design of both algorithms. Where the algorithms differ
is the leader election. While in Raft leaders are elected explicitly, in piChain a
node can promote and demote itself without communication, which makes it a
light algorithm.

The most popular Python implementations of Raft are PySyncObj 1 and
raftos2. In the following, I look at how networking and data serialization are
approached in both implementations, which I consider the most important parts
of a replicated state machine.
PySyncObj uses TCP connections to establish a communication channel. It does
not use any high-level networking library, instead it builds the connection man-
agement from scratch using the Python socket3 module. While this gives you
more control, using a high-level networking library usually saves you time be-
cause you can rely on something that has been used and tested. In addition, it
decreases maintenance work. That is why for this thesis a popular networking
library called Twisted4 is used. For data serialization, PySyncObj mainly uses

1https://github.com/bakwc/PySyncObj
2https://github.com/zhebrak/raftos
3https://docs.python.org/3/library/socket.html
4https://twistedmatrix.com/trac/

https://github.com/bakwc/PySyncObj
https://github.com/zhebrak/raftos
https://docs.python.org/3/library/socket.html
https://twistedmatrix.com/trac/

1. Introduction 3

the Python pickle5 module. Pickling is the process whereby a Python object
hierarchy is converted into a byte stream such that it can be either sent over the
network or written to disk. The advantage of it is that it can serialize any Python
object without having to add any extra code. There are problems however with
interoperability, security and performance, which is the reason pickle is not used
in this thesis.
Raftos uses the asyncio6 module for its networking part. Data is sent using
the integrated UDP protocol. Asyncio was added to Python in version 3.4 and
was heavily inspired by Twisted. Twisted is probably one of the oldest libraries
that support asynchronous network programming in Python and has been used
by many people. Raftos uses MessagePack7 for data serialization, which is an
efficient binary serialization format. For this thesis a data serialization module
called CBOR8 is used since it performs slightly better than MessagePack.

5https://docs.python.org/3/library/pickle.html
6https://docs.python.org/3/library/asyncio.html
7https://msgpack.org/
8http://cbor.io/

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/asyncio.html
https://msgpack.org/
http://cbor.io/

Chapter 2

State Replication

In this chapter the theory of the piChain algorithm is illustrated. The necessary
background knowledge is given in the following two sections. Note that this
chapter is based on [1, 8].

2.1 Basics

piChain is a replicated state machine. Such a state machine has some internal
state and typically receives requests from clients, processes them and responds
back to the clients. An example of a state machine is a storage system that
receives SQL queries.
A replicated state machine [7] consists of multiple servers, each running an in-
stance of the state machine. It is important that each server executes the same
set of commands in the same order. Execution needs to happen deterministically,
else different servers may have inconsistent states. The consensus algorithm en-
sures that commands are executed in the same order on all servers. This leads
to state replication because of deterministic execution.

2.2 Paxos Theory

The Paxos algorithm is a core component of piChain. It was invented by Leslie
Lamport.
Each instance of the Paxos protocol reaches agreement on a single command.
Algorithms that implement a repeated version of Paxos, i.e., ones that combine
multiple Paxos instances to achieve state replication, are often called multi-
Paxos algorithms. piChain can be seen as a particular instance of a multi-Paxos
algorithm. The Paxos algorithm can be seen in Figure 2.1.

4

2. State Replication 5
10 CHAPTER 1. FAULT-TOLERANCE & PAXOS

Algorithm 1.13 Paxos

Client (Proposer)

Initialization .

c / command to execute
t = 0 / ticket number to try

Phase 1 .

1: t = t + 1
2: Ask all servers for ticket t

Phase 2 .

7: if a majority answers ok then
8: Pick (Tstore, C) with largest Tstore

9: if Tstore > 0 then
10: c = C
11: end if
12: Send propose(t, c) to same

majority
13: end if

Phase 3 .

19: if a majority answers success

then
20: Send execute(c) to every server
21: end if

Server (Acceptor)

Tmax = 0 / largest issued ticket

C = ? / stored command
Tstore = 0 / ticket used to store C

3: if t > Tmax then
4: Tmax = t
5: Answer with ok(Tstore, C)
6: end if

14: if t = Tmax then
15: C = c
16: Tstore = t
17: Answer success
18: end if

Remarks:

• Unlike previously mentioned algorithms, there is no step where a client
explicitly decides to start a new attempt and jumps back to Phase 1.
Note that this is not necessary, as a client can decide to abort the
current attempt and start a new one at any point in the algorithm.
This has the advantage that we do not need to be careful about se-
lecting “good” values for timeouts, as correctness is independent of

Figure 2.1: The Paxos algorithm. Figure taken from [8].

First, one needs to understand the concept of a ticket. The Paxos algorithm
uses tickets, which are a weaker form of a lock. A server can issue a ticket for
its resources even if previously issued tickets have not been returned. A server
accepts a proposal from a client only if the ticket is still valid. In the Paxos
algorithm, instead of the servers choosing the ticket numbers, the clients suggest
it. This ensures that proposals from clients are associated with a unique ticket
number.

2. State Replication 6

Paxos consists of three phases:

Phase 1: A client asks all servers for a ticket by suggesting a ticket number.
Each server stores its currently largest issued ticket number to keep track of valid
tickets. The servers accepting the suggestion now consider the ticket number as
valid and also provide the client with their currently accepted proposal if there
is any. A proposal consists of a command and a ticket number that is associated
with it.
Phase 2: The client can propose a command as soon as a majority of servers is-
sued a ticket. If any of the servers that replied has already accepted a proposal,
the client supports the proposed command with the largest associated ticket
number, instead of his own command. Because a ticket may get invalidated by
a client requesting a new ticket, on receiving a proposal the server first checks
if the associated ticket is still valid. If it is valid, the proposal is accepted and
stored. The server acknowledges this to the client.
Phase 3: If a majority of servers have accepted the proposal, the client tells
every server to execute the proposed command.

Claim 2.1. This protocol ensures that every proposal p2 that is made after an
already accepted proposal p1 that is stored by a majority of servers and that
proposed command c proposes the same command c.

Proof. Assume p1 has ticket number t1 and p2 has ticket number t2 such that
t1 < t2 and t2 is the smallest among all proposals with ticket number greater than
t1. Since a majority of servers stored p1, the client with proposal p2 is informed
about p1 during the request of ticket t2 since t2 > t1. Proposal p2 supports the
command proposed with the largest ticket number, which is c. Assume there
exists a proposal p3 with command c3 6= c and ticket number t3 > t1. This
would imply that t3 < t2, else a client proposing p2 would not know about c3.
This contradicts the assumption that t2 is the smallest among all proposals with
ticket number greater than t1.

2.3 piChain Theory

Assume there exists a system that consists of a collection of piChain nodes.
The goal of piChain is that every node executes transactions in the same order.
Transactions can for example be commands in a storage system or financial
transactions. A transaction consists of two fields:

• A content field which is set by the application using piChain.

• An ID which is a combination of the ID of the piChain node that created the
transaction (called creator ID) and a sequence number to make it unique.

2. State Replication 7

A transaction, once created, is broadcast to all other nodes.
The underlying data structure that stores the transactions is a tree of blocks. A
block consists of three fields:

• A list of transactions.

• An ID which is again a combination of the creator ID and a sequence
number.

• A pointer to a parent block.

Blocks are created by arbitrary nodes in the system. The parent of a newly
created block is the deepest block the creator has seen, where the depth of a
block is the sum of the depth of its parent and the number of transactions the
block contains. To break ties, the block ID is used. Blocks are also broadcast to
all other nodes once created. The root block (called Genesis block) is hard-coded
and thus known to every node.

If every node could simply create a block once it sees a new transaction, this
would lead to a lot of forks and reorderings of the blockchain. The blockchain,
the longest path from the root to a leaf, represents the consistent state among
all nodes. That’s why nodes are associated with states they can be in. Each
node is either quick, medium or slow.

piChain: When a Blockchain meets Paxos 0:3

If a node is quick, it will create blocks quickly: whenever a quick node sees a new transaction that
it has not yet seen included in a block, it will instantly create a block with this transaction.7

A slow node will only create a block if it has waited for a considerable time after seeing a new
transaction that is not yet in a block. The earliest time t for a slow node to consider creating a block
is when it should have received the block already by either a quick or a medium node. In addition to
this earliest time t, slow nodes will also randomly wait even longer, long enough that only one (the
fastest) slow node s will create a block in expectation, as other slow nodes will see that block by s

before they will create a block.
In contrast to quick and slow nodes, medium nodes only exist transiently. After learning about a

new transaction, a medium node waits until it should have received a block with this transaction by a
quick node.

Each node will upgrade its state as follows:

quick medium slow

Figure 1 The state transitions: A node promotes itself to the next faster state when it creates a block. A
node demotes itself to slow if it sees a block b by some other node, and either the creator of b is quick or b is the
new deepest block.

2.3 Strong Consistency

Whenever a quick node creates a block and is not already in the process of committing another block,
it may decide to commit this block. Committing a block commits all the transactions in that block,
and all the transactions in all the blocks on the path from the root to that block.8 Committed blocks
(transactions) are final and cannot be uncommitted again. A committable block must be a descendant
of all previously committed blocks, i.e., the committed blocks are totally ordered in tree of blocks.
The first committed block is the root block; the root block is the precursor of the second committed
block, which in turn is again the precursor of the third committed block. In other words, every
committed block except the root block have the previous committed block as their precursor.

In order to commit a block, a quick node must convince a majority of nodes twice. This works
trivially if there is no competition, i.e., if there is a single quick node. If no node is quick, blocks will
transiently not be committed, even though new blocks are still created. If there are multiple quick
nodes (e.g. after a network partition), our protocol still works, as it is a variant of Paxos, formally
described in Algorithm 1.

In Algorithm 1, each node stores a list of already committed blocks, initially only the root block
is committed. For every committed block b, each node stores three variables bmax (the deepest block
seen in round 1), bprop (a proposed block) and bsupp (a block supporting the proposed block). These
are initially ‹ for every block, including the root. In addition, a quick node q that initiates a the
commit protocol temporarily also stores bcom (a compromise block).

Every committed block (but the root block) has a precursor block. In order to commit a new block
bnew, a quick node needs to refer the last already committed block b, the precursor block of the block
to be committed. In order to avoid notational clutter in Algorithm 1, we omitted all the precursor

7 A quick node may also wait a bit to accumulate several transactions; however, other nodes must know about such an
intentional offset and adapt their timings accordingly.

8 Many of which may already be committed.

OPODIS 2017

Figure 2.2: The state transitions. Figure taken from [1].

• quick: If a quick node sees a transaction that it has not yet seen (either
from another node or itself), it immediately1 creates a block and includes
the transaction.

• medium: If a medium node sees a new transaction, it gives the quick node
enough time to send it inside a block. If after this time the transaction was
not received yet, the medium node assumes that there is no quick node
and it creates a block, including the transaction, itself. This promotes
the medium node to the quick state. The amount of time the medium
node waits is equal to (1 + ε) RTT’s, since if the medium node creates the
transaction, it has to be sent to the quick node and the block, including
the transaction, has to be sent back to the medium node.

1The quick node can also wait a predefined accumulation time to gather multiple transac-
tions.

2. State Replication 8

• slow: If a slow node sees a new transaction, it gives the quick and medium
nodes time to send it inside a block and if they do not, it creates a block
including the transaction. This promotes the node to the medium state.
A slow node has to wait (2 + ε) RTT’s, since it needs to wait 1 RRT longer
than the medium nodes to give them a chance to create a block.

During normal operation, the nodes are in a so called healthy state, meaning
that there exists exactly one quick node, the others being in a slow state. If a
quick node crashes, slow nodes compete to get promoted. A random duration
is added to their waiting time, such that only one slow node creates a block in
expectation. The medium state is only a transient state which is used to get to
the quick state. A node demotes itself to slow if either of two scenarios happen:

• Receiving a block that was created by a quick node. This means there
already exists a quick node but we want to avoid having multiple quick
nodes in the system.

• Receiving a block that is the new deepest block. If multiple slow nodes
compete and create a block, only one should win and stay medium. The
winner is the one with the deeper block.

A blockchain still only provides eventual consistency. We want to be able
to say that certain blocks remain in their place forever, i.e., that all predecessor
blocks up to the root do not change anymore. Such blocks are called committed.
How can we ensure that committed blocks are final and cannot be uncommitted
again?
This is where Paxos is used. Whenever a quick node creates a block and is
not in the process of committing another block, it tries to commit this block by
initiating the Paxos algorithm. A committable block must be a descendant of all
previously committed blocks. Committing a block commits all the transactions
in that block, and all its predecessor blocks2 up to the root. The Paxos algorithm
ensures that if there are multiple quick nodes3 trying to commit a block, that
then there is agreement among the nodes which block will be committed. The
Paxos algorithm adjusted to work with blocks can be seen in Figure 2.3.

2Many of those blocks may already be committed.
3Only quick nodes are allowed to initiate the Paxos algorithm.

2. State Replication 9

0:4 piChain: When a Blockchain meets Paxos

Algorithm 1 Committing: Paxos with Blocks

Quick Node

bprop = deepest block
bcom = ‹

Phase 1 .
1: Send try(bnew) to all nodes

Phase 2 .

7: Majority responded with ok(bprop, bsupp):
8: bcom = bnew
9: if some response included bprop ”=‹ then

10: bcom = bprop with deepest bsupp
11: end if
12: Send propose(bcom, bnew) to all nodes

Phase 3 .

19: Majority responded with ack(bcom):
20: Send commit(bcom) to all nodes

All Nodes

bmax = ‹
bprop = ‹
bsupp = ‹

2: On receiving a try(bnew) message:
3: if bnew deeper than bmax then
4: bmax = bnew
5: Answer with ok(bprop, bsupp)
6: end if

13: On receiving a propose(bcom, bnew) message:
14: if bnew = bmax then
15: bprop = bcom
16: bsupp = bnew
17: Answer with ack(bcom)
18: end if

information. When we write that a node sends bx, we mean that the node sends both the ID of its
precursor block b (for reference) and the value of bx.

Moreover, Algorithm 1 can be pipelined: A quick node that passed phase two can already start
committing the next block. This becomes even more powerful with an implicit phase 1. Every propose
for a block can implicitly be a try(‹) with an empty block of depth 0. This way a successful phase 2
for a block always includes a successful phase 1 for the next round and the quick node can directly
propose a successor block again. In the regular case the quick node is only sending one message type,
a pipelined/truncated combination of a phase 3 (line 20) and phase 2 (line 12) message: “commit(b)
and propose(bnew, ‹)”. If some other node intervenes with its own try message and reaches a majority
in the first phase, the quick node’s propose will fail in line 14 and the quick node has do to an explicit
new phase 1.

After a block b is committed, there might be blocks which are neither a descendant of b nor on
the path from the root block to b. These blocks are removed; the transactions inside these blocks

Figure 2.3: Committing: Paxos with Blocks. Figure taken from [8].

First, note that a node can be both a Paxos server and a Paxos client at the
same time. bnew is the block that the quick node wants to commit. Every node
associates each instance of Paxos with three variables:

• bmax: The deepest bnew that the node has seen in Phase 1. Since the depth
of bnew acts as the suggested ticket number of the quick node, the depth
of bmax corresponds to the largest issued ticket number Tmax in Paxos.

• bprop and bsupp: bprop is the proposed block to be committed and bsupp
is the block supporting bprop, i.e., the ticket associated with bprop. Once a
quick node is allowed to make its own proposal, it supports the bprop with
the deepest associated bsupp. (bprop, bsupp) is like the accepted proposal

2. State Replication 10

(Tstore, C)4 that may be sent back from the server after a successful ticket
request in Phase 1.

Apart from those three variables, the adjusted Paxos algorithm is exactly the
same as the original illustrated in Figure 2.1.

4see Figure 2.1.

Chapter 3

Implementation

This chapter is about the implementation of the piChain package1. We elaborate
on major challenges that arose.

3.1 Interface Design

The interface should basically consist of two methods:

• A method that creates a transaction. One must be able to pass the content
of the transaction as an argument.

• A method that can be implemented by the application using the API and
is called once a transaction has been committed.

An illustration of how the package can be used:

from piChain import Node

def tx committed (commands) :
”””
Args :

commands (l i s t o f s t r) : L i s t o f committed Transact ion
commands .

”””
for command in commands :

print (’command committed : ’ , command)

def main () :
node index = 0
peer s = {

’ 0 ’ : { ’ ip ’ : ’ 1 2 7 . 0 . 0 . 1 ’ , ’ port ’ : 7980} ,
’ 1 ’ : { ’ ip ’ : ’ 1 2 7 . 0 . 0 . 1 ’ , ’ port ’ : 7981} ,
’ 2 ’ : { ’ ip ’ : ’ 1 2 7 . 0 . 0 . 1 ’ , ’ port ’ : 7982}

}
node = Node (node index , pee r s)

1https://github.com/florianmorath/piChain

11

https://github.com/florianmorath/piChain

3. Implementation 12

node . tx committed = tx committed
node . s t a r t s e r v e r ()

node . make txn (’ s q l query ’)

First, one needs to setup the Node instance. A Node constructor takes two
arguments, a node index and a peers dictionary. The peers dictionary contains an
(IP, port) pair for each node. With the node index argument one can select which
node from the peers dictionary is running locally. The tx committed field of a
Node instance is a callback that is called once a transaction has been committed.
By calling start server() on a Node instance, the local node tries to connect to
its peers and listens for incoming messages. Transactions can be committed by
calling make txn() on the Node instance, passing the transactions content as an
argument.

3.2 Architecture

The piChain package consists of the following modules:

• Logic module: This module defines the logic of the piChain protocol. It
implements the Node class which represents a piChain node and specifies
how a piChain node should behave. Most importantly, this includes how
a piChain node should respond to a received Paxos message, a transaction
and a block. This module includes no networking functionality at all, which
instead is separated into the networking module.

• Networking module: This module implements the networking function-
ality between piChain nodes. This mainly includes establishing a peer-to-
peer network between nodes and sending and receiving byte streams to and
from other nodes. The networking library used is called Twisted. There is
a Connection class which represents a connection between two nodes and
implements a communication protocol, and a ConnectionManager class
which keeps track of Connection instances.

• Blocktree module: This module implements the Blocktree class which
manages a tree of blocks. It keeps track of special blocks, such as the last
committed block and the head block2 of the tree. The module provides
operations like adding blocks and checking for the validity of new blocks.

• Message module: This module defines the representation of all objects
that need to be sent over the network such as a block, a transaction and
a Paxos message. Each class provides functionality to serialize an instance

2That is the deepest block in the block tree respectively the head of the blockchain.

3. Implementation 13

of itself, i.e., converting the object to a sequence of bytes, and to revert
the process, i.e., to deserialize.

• Config module: This is the module where all the settings of the piChain
package can be adjusted such as the accumulation time of a quick node
and debugging settings.

The relation between the modules can be seen in Figure 3.1 below. The net-
working and logic modules are the main modules whereas the message, blocktree
and config modules are helper modules which are used by the two main modules.
The networking and logic modules are related through a subclass relation, namely
the Node class in the logic module is a subclass of the ConnectionManager class
in the networking module. This allows the Node class to directly call network-
ing methods like broadcast, implemented in the ConnectionManager, and also
allows it to override and implement the abstract receive-methods in the Connec-
tionManager, which the ConnectionManager calls based on the message type of
incoming messages. This setup admits a clear separation between networking
functionality and the piChain protocol which facilitates development and main-
tenance.
Also each Node instance contains a field that is an instance of the Blocktree class.

Network Logic

Message Blocktree Config

Figure 3.1: Relation between different modules.

3.3 Transactions and Blocks

3.3.1 Transaction Reception

A reception of a transaction is handled in the Node class. Once a node receives
a transaction, it first checks whether it already has seen this transaction or not.
This is done with a set called known txs that contains the transaction IDs of all
transactions seen so far (including the transactions that are contained in blocks).
The set data structure in Python has the advantage of a constant time complexity
on average for the lookup, insert and delete operations since it is implemented
as a hash table.
If the transaction has not yet been seen, the node must start a timeout and

3. Implementation 14

somehow remember the transaction. This is done as follows:
The transaction is appended to a list called new txs. This list contains all received
transactions that are not yet seen included in a block in the order in which they
are received. If a transaction is appended and it is the first element in the list,
a timeout, whose length depends on the node state, is started. We call this
transaction that initiated the timeout the oldest transaction (oldest txn). Once
the timeout is over, the node checks if the oldest transaction is still in the new txs
list. If yes, a block including all the transactions in the new txs list is created3,
then broadcast and tried to be committed if the node is a quick node.
There are two scenarios in which the new txs list may change:

• If a block is created: new txs is emptied because the new block contains
the transactions inside the new txs list.

• If a block is added to the block tree as the new head block: Transactions
included in a new block are removed from the new txs list.

In such a scenario where the new txs list changes, the oldest transaction which
initiated the timeout may be removed. If the list is empty after this, we are
good, but if there are still other elements in the list, a new timeout has to be
started with the first element in the list being the new oldest transaction.

new_txs list
oldest_txn

timeout

Figure 3.2: Timeout handling of new transactions. The dots in the new txs
list represent transactions where the oldest txn is the first item in the list. The
arrow on the bottom shows a possible duration of a timeout. Time flows from
left to right and the timeout starts on the reception of the oldest txn. Before the
timeout other transactions may be added to the new txs list.

3.3.2 Blocktree Module and Block Reception

The blocktree module consists of a hard-coded genesis block (the root of the
blockchain), which contains no transactions and has no parent block, and the
Blocktree class. The Blocktree class represents a tree of blocks and the most
important fields are:

• head block: The head block is the deepest block in the block tree and
thus the head of the blockchain.

3A creation of a block promotes a node.

3. Implementation 15

• committed block: The last committed block. It implicitly defines all
other committed blocks, namely its predecessors up to the root.

• nodes: This is a dictionary containing all the blocks in the block tree. It
maps from a block ID to a block.

The Blocktree class provides functionality to add blocks, check the validity of a
block and to find out the relationship between two blocks.
A reception of a block is handled in the Node class. Once a node receives a block,
it first checks if it has to demote itself to slow, which is the case if the creator of
that block is a quick node4 or if the block is the deepest block seen so far.
After that, the node checks if it is a valid block. A valid block must be a de-
scendant of the last committed block (committed block) and must be the deepest
block seen so far. An invalid block is rejected and a valid block becomes the new
head block.

3.3.3 Blockchain Forks

We call the situation where the new head block is not a descendant of the current
head block a fork. A fork happens if two different blocks are created that have
the same parent block as illustrated in Figure 3.3. This mainly happens in the
following two scenarios:

• The single quick node crashes and multiple slow nodes eventually timeout
and create a block more or less simultaneously. But since only one of the
slow nodes stays medium, the system could quickly converge to a healthy
state with a single quick node and resolve the fork. This scenario is rather
unlikely to happen, since only one slow node creates a block in expectation.

• A network partition: A partition divides the nodes into two subgroups that
cannot communicate anymore. An example of a partition can be seen in
Figure 3.4. Both sides of a partition eventually have a single quick node.
The two quick nodes create blocks independently from each other, i.e., at
one block the blockchain forks and both nodes extend a different side of
the fork as illustrated in Figure 3.3. The fork can be resolved as soon as
communication between the two sides is established again.

4A block includes a field that informs about the state of its creator (creator state).

3. Implementation 16

2

1

3 5

4 6

Figure 3.3: A blockchain fork. Block 1 is the genesis block where the blockchain
starts and at block 2 it forks, i.e., block 2 has two different children.

2 3

1

5

4

Figure 3.4: A network partition. Node 1, 2 and 3 are separated from node 4 and
5.

There is a method called move to block inside the Node class which sets the
argument block to be the new head block. The block reorganization functionality
is implemented as part of this method. The situation is illustrated in Figure 3.5.
There is the current head block, the target block, which is the block that will be
the new head block, and the common ancestor of those two blocks. We basically
need to broadcast the transactions that will not be on the path from the genesis
block to the target block anymore in order to not lose them. To do this we go
over all blocks on the path from the current head block to the common ancestor
and add the transactions included in those blocks to a set (called to broadcast).
Then we go over the blocks on the path from the common ancestor to the target

3. Implementation 17

block and remove the transactions included in those blocks from the to broadcast
set (if included) to avoid committing transactions twice. All transactions in the
to broadcast set are broadcast to the other nodes and the target block is set to
be the new head block.

2

1

3 5

4

2

1

3

4

Figure 3.5: A reorganization of the blockchain. On the left we see a blockchain
that forks at block 2. Block 5 is the current head block and block 4, called the
target block, will be the new head block. On the right we see the blockchain
after the reorganization, during which block 5 has been removed.

3.3.4 Missing Blocks

One possibility to miss a block is if a node crashes, since during the time the
node is offline it does not receive any messages, including blocks, from other
nodes. Another possibility is during a network partition, since there is no com-
munication possible between the two sides of a partition. A third possibility is
if messages including a block are lost.
After a node reestablished connection to other nodes, it may request missing
blocks from them by using the following two messages implemented by the mes-
sage module:

• RequestBlockMessage : This message contains the block ID of the miss-
ing block. A node broadcasts it if it detects a missing block.

• RespondBlockMessage : This message contains a list of blocks. If a
node receives a RequestBlockMessage, it checks if it has the missing block.
If yes, it sends it included in a RespondBlockMessage to the node missing

3. Implementation 18

the block. The node also includes a predefined number5 of ancestor blocks
to allow faster recovery in case multiple blocks are missing.

Whenever a node encounters a block, it calls a method named reach genesis block
(inside the Node class) with the encountered block as an argument. This method
checks whether by following the parent pointers starting from the given block,
the genesis block can be reached or not. The node has detected a missing block,
if the block tree does not contain a block before reaching the genesis block.

3.4 Node States

The waiting times of quick, medium and slow nodes until they create a block
are crucial to the performance of piChain. Quick nodes are very eager to create
blocks, while slow nodes are more patient. More specifically, as seen in sec-
tion 2.3, a quick node creates a block immediately if it sees a new transaction,
the medium nodes wait (1+ε) round-trip times (RTT’s) and the slow nodes wait
(2 + ε) RTT’s plus a random duration r. If r is chosen uniform at random in the
interval [0, n − 1], where n is the number of nodes, there is a good chance that
only a single slow node creates a block.6

The waiting time of a node is returned by the get patience method in the Node
class. The first time a slow node invokes this method, the random duration r
is computed and remains fixed. After calculating the waiting time of a node,
get patience adds the accumulation time to get the final return value.
The interesting part is the RTT computation. A node basically keeps estimating
the round-trip time to each of its peers and then takes the maximum among all
estimates to compute the patience of a node. The node acts on the assumption
that the delay to each of its peers is as long as the longest delay to any peer,
such that the node does not create a block too early. To estimate the round-trip
time to each peer, a ping-pong scheme is used. A node sends ping messages in
regular intervals to each peer. A ping message just contains a timestamp that
is taken at the moment the message is sent. If a node receives a ping message,
it copies the timestamp and sends it back in form of a pong message. Once a
node receives back a pong message, it can compute the difference of the current
time and the received timestamp to get the round-trip time. Round-trip times
are maintained in a dictionary that maps from a node ID to a RTT. Note that
overestimations of the round-trip times do not affect the correctness of piChain
but rather its performance.

5The number can be adjusted in the config module and depends on the application, namely
on how long nodes are down on average and the expected RPS (Requests per second) rate.

6This can be shown using the Chernoff bound.

3. Implementation 19

3.5 Strong Consistency

This subsection is about commits. The paragraphs are ordered in the chrono-
logical order of a commit and elaborate general challenges concerning the imple-
mentation.

After a node either has created a block and thus has been promoted to quick
or if it already is quick, it tries to commit this block. If a commit is already
running, it retries to commit the block after a certain timeout in hope that the
currently running commit will then be over. The duration of the timeout is set
to the expected time a node needs to commit a block, which can be computed
based on the round-trip time estimates. If during the timeout a new transaction
is received, the node creates a new block. Now the parent block does not have to
be committed anymore since committing the new block implicitly commits all its
ancestors. This can be implemented with a variable (current committable block)
that always contains the most recent block to be committed.

The Paxos algorithm itself can basically be implemented one-to-one as de-
scribed in Figure 2.3. There are some challenges however:

• A node not receiving a majority of try or propose acknowledgements:
This happens if the connection to a majority of nodes is lost, for example
because of a partition or node crashes. The node can deal with such a
situation by deferring a method call once it begins a Paxos instance. The
method call is invoked as soon as the expected time a node needs to commit
a block is over. It then checks if the commit is still running. If yes, it is
terminated to allow a new commit to happen and to not be blocked because
of an already running commit.

• Handling of outdated Paxos messages:
Outdated Paxos messages are messages that are received after a majority
of acknowledgements has already been received and thus are not relevant
anymore. One possibility to detect such messages involves sequence num-
bers: A node that wants to commit a block includes a unique request
sequence number (request seq) in its try and propose message. The peers
receiving the try and propose message copy and include the request se-
quence number in their acknowledgement message. The node detects an
outdated message if the request sequence number of an acknowledgement
does not match the number in the corresponding request message (that
is a try or propose message). Request sequence numbers are increased
before sending a try message i.e., once Paxos is instantiated, after a major-
ity of try-acknowledgements are received and after a majority of propose-
acknowledgements are received.

3. Implementation 20

• A node trying to commit a block that is not a descendant of the last com-
mitted block:
This scenario might happen because of a partition. Assume a partition
divides the network into a majority and a minority side. Both sides even-
tually have a quick node which continues to create blocks, but only the
majority side can commit its blocks. As described earlier, such a situation
leads to a fork of the blockchain. Once the partition is resolved, the quick
node of the minority side might create a block and might try to commit
this block, which is clearly not a descendant of the last committed block
of the majority side. This scenario is illustrated in Figure 3.6. A simple
solution would be to just reject blocks that are not descendants of the
last committed block. This can be done in the first Phase of the Paxos
algorithm.

• A node acting as a Paxos client and a Paxos server at the same time:
Each node keeps a client state and a server state. In addition, during
a broadcast all try, propose and commit messages are also ”sent” to the
sender itself.

2

1

3 5

4 6

Figure 3.6: A blockchain fork caused by a partition of the network. The minority
side creates block 3 and 4, while the majority side creates block 5 and 6. The
majority side however can commit its blocks (committed blocks are colored in
green). After the resolution of the partition, the quick node of the minority side
may want to commit block 4, which is not a descendant of block 6, the last
committed block.

3. Implementation 21

3.5.1 Crash Recovery

This subsection is about the recovery of a node after a crash. If no data was
written to disk, a node would lose everything, including its block tree.

LevelDB7 is chosen as a storage library because it is simple to use and pro-
vides enough functionality for our purpose.8 LevelDB is a fast key-value storage
library written by Google. Keys and values are arbitrary byte arrays.

The following things have to be written to disk whenever they are changed
and loaded from disk at initialization of a Node instance.

• The block tree: Whenever a block is added to the block tree (nodes dictio-
nary in Blocktree class), it is stored to disk. The key is the encoded block
ID and the value is the serialized block. If the blocks were not stored, the
node might be lucky and might receive the missing blocks from another
node. But this would be inefficient and if all nodes crashed, one after the
other, before any missing block can be requested, all blocks would be lost.
A reference to the head block (head block) and to the last committed block
(committed block) is also stored.

• The counter: A global counter is used to create unique block and transac-
tion IDs. The node has to store it, such that after a crash it knows where
to proceed the enumeration.

• The Paxos server state variables: This includes bmax, bsupp and bprop. They
have to be stored, such that a Paxos server knows where he left off after a
crash to still guarantee correctness during a Paxos instance.

3.6 Optimizations

This chapter elaborates on different strategies to optimize the algorithm regard-
ing disk storage and performance.

3.6.1 Reduction of Blockchain Size

The disadvantage of a blockchain as a data structure is that it keeps growing over
time. A monotonically growing data structure in the background of a consensus
algorithm is not favorable. A possible solution is to adjust the genesis block of
the blockchain over time and delete the ancestors of the new genesis block. But
when is it safe to perform a genesis block change?

7http://leveldb.org/
8There exists a Python implementation of LevelDB called Plyvel (https://github.com/

wbolster/plyvel).

http://leveldb.org/
https://github.com/wbolster/plyvel
https://github.com/wbolster/plyvel

3. Implementation 22

A block that is committed on all the nodes can be the new genesis block for the
following two reasons:

• Based on the strong consistency guarantee that Paxos provides for com-
mitted blocks, we know that a committed block is final and cannot be
discarded even in the case of a blockchain fork.

• A node can only move to the new genesis block if it knows that all other
nodes have committed the block. This is because a node that has not yet
committed a block may be a node that crashed and thus does not know
about the most recent blocks. If all other nodes then performed the genesis
block change and deleted the ancestors, the crashed node would not be able
to request the missing blocks anymore. Only if all nodes have committed
a block, its ancestors can safely be deleted.

A way to implement this is to acknowledge a commit of a block to all other nodes
and once a node received an acknowledgment from all other nodes that a certain
block has been committed, it chooses this block to be the new genesis block.
This is done with an AckCommitMessage (contained in the message module)
that contains the block ID of the block that has been committed and which is
broadcast to all other nodes. A node keeps a dictionary that maps from a block
ID to an integer that counts how many times that block has been committed.
Once a block has been committed by all nodes, it is set to the new genesis block
and all its ancestors are deleted both from the block tree and from the disk.
Note that since the genesis block is now adjusted over time, the Blocktree class
needs an additional field that contains the current genesis block.

3.6.2 Quick Proposing

If a quick node receives a majority of propose acknowledgments in Phase 2, it
may directly propose a new block in the next Paxos instance, i.e., it is allowed
to skip Phase 1. This can be implemented with a boolean that tells the node if
he is allowed to quick propose. It is set to true as soon as a majority of propose
acknowledgments has been received. Since quick proposing grants a node the
right to skip Phase 1, it is important to revoke it at any sign of deviation from
the healthy state, specifically in the following scenarios:

• A node demotes to slow since we then know that the system was or is in
an unhealthy state.

• A commit is terminated because the node did not receive enough acknowl-
edgments. This may happen because of a partition and thus there might
be another quick node.

• A node commits a block that was not created by the node itself, which
means that there might be another quick node.

3. Implementation 23

3.7 Networking

This chapter is about the networking module which includes establishing a peer-
to-peer network and sending and receiving byte streams, respectively.

3.7.1 Twisted

Twisted [9] is an event-driven networking engine and is used for this project. Its
core components are the following:

• The Reactor: The event loop of Twisted is part of the reactor. The reac-
tor9 waits for events and dispatches them to registered callback functions
(also called request handlers) which then handle the events. As an exam-
ple, events can be caused by an arriving network package or a method that
was scheduled to be called after a delay.

• Transports: A transport represents the connection between two endpoints
communicating over the network. This could for example be a TCP connec-
tion. Transports implement the ITransport interface that contains methods
to write data to the connection and to get information about the peer of
the connection.

• Protocols: Protocols describe how to process network events asynchronous-
ly. It consists of a Transport instance over which it receives data and can
send data to the peer. A Protocol has to implement the IProtocol interface
containing methods that define how to handle incoming data and what to
do if a connection to a peer has been made or is lost.

• Factories: A new instance of a protocol class must be created for every
connection. A factory is responsible for the creation and removal of those
instances. It is basically the manager of all connections that are made to
other peers. Information that must be persistent, i.e., kept across multiple
connections, can be stored in the factory.

The above mentioned Twisted components are used in the following way:
The networking module consists of two classes, the Connection class and the
ConnectionManager class. The Connection class is a subclass of IntNStringRe-
ceiver that is a predefined protocol of Twisted. It uses Length-Prefexing which
prepends each message with its length. This allows to send and receive arbitrary
strings of bytes. Each complete string that is received becomes a callback to
the method stringReceived. The ConnectionManager class represents a factory.
It creates Connection instances and keeps a consistent state among them. The

9It is called reactor because it reacts to things.

3. Implementation 24

Connection class has a field called connection manager which is set by the Con-
nectionManager to itself once it creates a Connection instance. This allows a
Connection instance to have access to shared data between Connection instances
and methods of the ConnectionManager. The ConnectionManager has an ab-
stract receive-method for each message type (e.g., receive block). Once a message
is received, stringReceived of the Connection class is called which will delegate
the call by invoking the corresponding receive-method of the ConnectionManager
based on the message type10. The receive-methods however are overridden and
implemented by the Node class, which is a subclass of the ConnectionManager,
i.e., each Node in the system is basically a factory managing connections. This
subclass relation allows a clean separation between the networking details and
the logic of piChain. The relation between the Node, Connection and Connec-
tionManager class is illustrated in Figure 3.7.

ConnectionManager

Node

Connection

Subclass

Aggregation

Figure 3.7: There is a subclass relation between ConnectionManager and Node.
ConnectionManager and Connection is related through an aggregation i.e., each
Connection instance has a reference to a ConnectionManager instance. For every
piChain node there is a single Node instance and multiple Connection instances
(one for each peer).

3.7.2 Peer-to-Peer Network

Establishing a peer-to-peer network is basically achieved by each node listening
on a predefined port and then trying to connect to all other nodes.
Each node of the network is associated with a unique ID, a port and an IP
address such that nodes can connect to each other: The ConnectionManager
class (representing a node) contains a field called peers, which is a dictionary
mapping from a node ID to an IP address and a port number. This dictionary
is given as an argument to the Node constructor by the client using the piChain
package.
There is a method start server (in the ConnectionManager) that is part of the
external interface and which can be called on a Node instance to start the whole
networking process. It does three things:

10Each message is prepended with three bytes defining its type.

3. Implementation 25

1. First it establishes a TCP server endpoint by listening on a TCP socket
with a specific port. The port the node has to listen on is given in the
peers dictionary associated with the ID of the node, which is also given
as an argument to the Node constructor. Now other nodes can connect to
this node.

2. Then the node tries to connect to other nodes by going over the peers
dictionary and trying to connect to the given (IP, port) pairs. Each suc-
cessful connection is represented by a Connection instance. To keep track
of already connected peers, a dictionary called peers connection stores all
those Connection instances by mapping from the node ID of the peer to
the Connection instance that represents the connection to the peer. The
Connection class contains a method connectionLost, which is called when-
ever the connection to the peer of this connection is lost. If this happens,
the node removes the peer from the peers connection dictionary. Since
some nodes may not be online at the time a node tries to connect to them,
it has to attempt to connect in regular intervals until there is a successful
connection to all the peers, which can be checked with the peers dictionary.
Also if a connection is lost, this looping call has to start again.

3. At last the reactor is started, which initiates the processes described above.

In a peer-to-peer network a node must be able to broadcast messages. The
broadcast method in the ConnectionManager can be implemented by iterating
over all the Connection instances in the peers connection dictionary and calling
sendString() on them.

Chapter 4

Evaluation

The implementation is evaluated based on unit and integration tests, on perfor-
mance tests and on an application that is build on top of the piChain package.

4.1 Testing

4.1.1 Unit Tests

For unit testing the unittest1 module in the Python standard library is used.
Creating a test case is accomplished by subclassing unittest.TestCase. The indi-
vidual tests can then be defined with methods whose names start with the letters
”test”. Each test can use the assert-methods provided by unittest.TestCase to
verify certain conditions. The setUp() method is called before each test method
and tearDown() is called after each test method. The following challenges were
encountered while unit testing:

• One challenge is how to isolate units that interact with other units. For
example if we want to test adding blocks to the block tree, we do not
want to store blocks on the disk during the test, since testing the storage
of blocks should be part of another unit test. We want to test units as
isolated as possible to quickly identify the problem causing a bug.
A possible solution to this problem is called mocking. Real objects or
methods can be replaced with mock objects which mimic their behavior in
a controlled way. The unittest module provides such mock objects.

• Testing the reception and broadcast of messages in the networking mod-
ule would require to setup real connections. But real connections may
breakdown, leading to nondeterministic results of the unit tests, which is
unfavorable.
A possible solution is to mock the connection, i.e., to not establish a

1https://docs.python.org/3/library/unittest.html

26

https://docs.python.org/3/library/unittest.html

4. Evaluation 27

real connection in the unit test. Twisted provides fake transport im-
plementations, for example the twisted.test.proto helpers.StringTransport
class which instead of sending bytes out over a network connection, writes
them to a string which can then be inspected.

• Another challenge are timeouts. We want a unit test to provide an instan-
taneous result instead of waiting for timeouts to finish. This saves time
because unit tests are executed many times to check that code changes did
not break anything.
Twisted provides a simple solution to this by faking the passage of time.
The reactor can be replaced by an instance of the twisted.internet.task.Clock
class, on which time can be advanced manually.

4.1.2 Integration Tests

The goal of integration tests is to test the system as a whole, i.e., to setup multi-
ple nodes which communicate with each other over real connections. The major
challenge is to fully automate those tests.
The idea to automate the integration tests is to use the Python subprocess2 mod-
ule to spawn multiple processes representing piChain nodes. After establishing
the peer-to-peer network, the nodes run predefined scenarios. Relevant infor-
mation like committed blocks is printed by nodes during execution such that it
can be retrieved from the standard output pipe (stdout) after termination of the
processes and can then be checked against test conditions. The standard error
pipe (stderr) can be used to detect errors during execution.

The test scenarios can be divided into three categories:

• Normal behavior: These test scenarios test the behavior of the nodes
while all nodes are online and connected to each other. To elaborately test
the behavior of the nodes, all relevant states of the system, regarding the
number of quick and medium nodes, are constructed.

• Crash behavior: These scenarios test what happens if certain nodes
crash. As an example the quick node may crash while other nodes keep
broadcasting transactions.

• Partition behavior: These scenarios test what happens if a partition
occurs. A partition can be created by modifying the broadcast method
of a node such that predefined nodes will not receive any messages from
it anymore. In Python this can be done with run-time method patching,
which modifies all instances of the modified class at run-time.

2https://docs.python.org/3/library/subprocess.html

https://docs.python.org/3/library/subprocess.html

4. Evaluation 28

4.2 Application: Distributed Database

This section is about the implementation of a distributed database on top of the
piChain package. The architecture is illustrated in Figure 4.1.

piChain
node

piChain
node

piChain
node

App

App

App

Client Client Client Client

Client

Figure 4.1: Each application instance has access to a piChain node and a local
database. A client can connect to an arbitrary app and can send an executable
database command. The app forwards the commands to the local piChain node.
The communication between the piChain nodes is hidden from the applications.
Once a command is committed, each piChain node informs the app instance it
is associated with, which can then execute the command on the local database.

The implemented database is a key-value storage which supports three basic
operations:

• put(key, value): Store the given (key, value) pair in the database. If the
key is already used, override the associated value with the new value.

• get(key): Return the value associated with the given key. If the key does
not exist, None is returned.

• delete(key): Delete the (key, value) pair if the given key exists.

For the networking part, i.e., the communication with the client, Twisted is
used. The app instance is represented by a Twisted factory which manages all
the connections and keeps a consistent state among them. Each factory owns
a Node instance and a levelDB instance representing the local database. At

4. Evaluation 29

initialization, a factory starts listening on a predefined port such that clients
can connect to it. Once a client is connected to a factory3, it can send an
executable database command. Read operations can be executed directly on the
local database and the result can then be returned to the client, while write
operations have to be committed first, such that their ordering is consistent
among all database instances. A factory can send a command that has to be
committed to its local Node instance by calling make txn() with the command as
an argument on it. Once the command has been committed, the Node instance
invokes the tx committed method with the committed commands. This method
is stored in a field of the Node instance such that it can be implemented and set
by the factory at creation of the Node instance. The factory can then execute
the committed command on the local database.

4.3 Performance

This section is about performance tests of the piChain package and how it com-
pares to PySyncObj, a popular Python implementation of Raft.
The performance plots were created as follows:
Each second a batch of transactions is sent to a running network of piChain
nodes. The number of transactions in the batch corresponds to the requests per
second (RPS) rate. The script sending the transactions increases the RPS rate in
regular intervals until the nodes cannot commit the transactions anymore before
a certain time has passed. With this information the maximum RPS rate can
be computed.
To automate this for different cluster sizes, the Python subprocess module is
used. For each node in the cluster and the script creating the transactions, a
process is spawned. This is done for a predefined range of possible cluster sizes.
The RPS limit computed for each cluster size can then be plotted.
Exactly the same performance test is implemented based on the PySyncObj
package.

3Can be done with Telnet for example.

4. Evaluation 30

Figure 4.2: piChain and PySyncObj performance comparison. The plot shows
the RPS limit of the piChain package and the PySyncObj package for different
cluster sizes. The transaction size is kept constant at 200 bytes.

The plot in Figure 4.2 was created on a MacBook Pro with 16 GB DDR3
RAM at 1600 MHz and a 2.5 GHz Quad-Core Intel Core i7 processor. Each RPS
value in the plot is an average over three independently computed RPS values.
As one can see, both packages perform similarly and the RPS rate decreases
with increasing cluster size because of a higher message load. Note that since
all nodes run locally, there is almost no networking delay. The networking delay
would in practice dominate the internal processing time of the algorithm, which
would lead to plots that do not really measure the performance of the algorithm
itself anymore.
To find out the bottleneck of the algorithm, profiling was done. The two main
bottlenecks of the piChain package are serializing the data (35%) and writing it
to disk (26.5%).

Chapter 5

Conclusion

In this thesis we implemented the proposed algorithm in the form of an easy-to-
use library. We went through the relevant background theory of the algorithm
and elaborated major challenges of the implementation. Also optimizations re-
garding storage usage and performance were made.
To show a real-world application of the library, a distributed fault-tolerant
database was developed on top of the library.
Performance plots have shown that in a healthy state of the system the library
can keep up with PySyncObj, a popular Python implementation of a state-of-
the-art consensus algorithm called Raft.
In addition, piChain has the advantage of being a light protocol which has no
heavy weight leader election subroutine and no heartbeat messages like in Raft.

5.1 Future Work

One might make the following improvements to the implementation:

• Overlay network: In the current peer-to-peer network, each node has
an open connection to every other node. This might not be favorable if
the number of nodes in the system is large, because the total number of
connections increases quadratically with the number of nodes. A possible
solution is to not connect every single pair of nodes, but rather relay mes-
sages until all nodes have received them. The network topology must make
sure that any two nodes are able to exchange messages.

• Byzantine fault tolerance: A byzantine node is a node with arbitrary
malicious behavior. piChain can be extended with byzantine tolerant ele-
ments, e.g., nodes could cryptographically sign their transactions in order
to provide authenticity for them. Note that this most likely decreases the
performance of the algorithm.

31

Bibliography

[1] Conrad Burchert and Roger Wattenhofer. piChain: When a Blockchain
meets Paxos. International Conference on Principles of Distributed Systems
(OPODIS), 2017.

[2] Leslie Lamport. The Part-Time Parliament. ACM Transactions on Computer
Systems (TOCS), 1998.

[3] Leslie Lamport. Paxos Made Simple. ACM Sigact News, 2001.

[4] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

[5] Mike Burrows. The Chubby Lock Service for Loosely-Coupled Distributed
Systems. Symposium on Operating System Design and Implementation
(OSDI), 2006.

[6] Diego Ongaro and John Ousterhout. In Search of an Understandable Con-
sensus Algorithm. USENIX Annual Technical Conference (USENIX ATC),
2014.

[7] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. ACM Computing Surveys (CSUR), 1990.

[8] Roger Wattenhofer. The Science of the Blockchain, 2016.

[9] Abe Fettig and Jessica McKellar. Twisted Network Programming Essentials:
Event-driven Network Programming with Python, 2013.

32

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 State Replication
	2.1 Basics
	2.2 Paxos Theory
	2.3 piChain Theory

	3 Implementation
	3.1 Interface Design
	3.2 Architecture
	3.3 Transactions and Blocks
	3.3.1 Transaction Reception
	3.3.2 Blocktree Module and Block Reception
	3.3.3 Blockchain Forks
	3.3.4 Missing Blocks

	3.4 Node States
	3.5 Strong Consistency
	3.5.1 Crash Recovery

	3.6 Optimizations
	3.6.1 Reduction of Blockchain Size
	3.6.2 Quick Proposing

	3.7 Networking
	3.7.1 Twisted
	3.7.2 Peer-to-Peer Network

	4 Evaluation
	4.1 Testing
	4.1.1 Unit Tests
	4.1.2 Integration Tests

	4.2 Application: Distributed Database
	4.3 Performance

	5 Conclusion
	5.1 Future Work

	Bibliography

