
Distributed
 Computing

Robot Composer Framework

Semester Thesis

Noah Studach

studachn@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

January 12, 2018

Abstract

As a successor to the project Robot Composer, this project provides a framework
for knowledge-based algorithmic music generation. The knowledge-base is set
by western music theory. The framework is implemented in Python and uses
the MIDIUtil and mido library extensions. The generated music is saved as
standard MIDI file to make it independent of audio samples, small in size and
easy to modify. The framework also generates a simple musical piece as a proof
of concept but the idea is that in the future the framework can be extended with
additional functionality.

i

Contents

Abstract i

1 Introduction 1

2 Theory 3

2.1 Notes . 3

2.2 The MIDI Standard . 3

2.2.1 MIDI Events . 5

2.2.2 Meta Events . 5

2.2.3 System Exclusive Events 6

2.2.4 General MIDI Standard 6

2.3 Chords . 6

2.3.1 Chord Inversion . 6

2.4 Musical Scale . 7

2.5 Scale Degree . 7

2.6 Meter . 8

2.7 Metric Structure . 9

2.8 Tempo . 9

2.9 Song Structure . 10

2.10 Melodies . 10

2.11 Theme, Form and Variation . 13

3 Implementation 14

3.1 Programming Language and Libraries 14

3.2 Program Structure . 15

3.3 Program Flow . 15

3.4 Python Files . 17

3.5 Time . 17

ii

Contents iii

4 Results 18

5 Discussion 19

5.1 Personal Insights . 19

5.2 Future Work . 20

Bibliography 21

A Appendix Chapter A-1

A.1 List of Chords . A-1

A.2 Variations . A-3

A.2.1 Melody . A-3

A.2.2 Harmony & Accompaniment A-3

A.2.3 Rhythm . A-3

A.2.4 Tonality . A-3

A.2.5 Others . A-4

A.3 Core Classes . A-4

A.3.1 Note Class . A-4

A.3.2 Chord Class . A-4

A.3.3 Key Class . A-5

A.3.4 Meter Class . A-5

A.3.5 Scale Class . A-5

A.3.6 Melody Class . A-5

Chapter 1

Introduction

The overall goal of this project is to create music using only rules derived from
music theory and discard machine learning techniques. This semester thesis
is not the first one in the distributed computing group tackling this problem.
Previously a robot composer semester thesis was written by Roland Schmid
[1]. The scope of the thesis was to create a program that is able to act either
as a backing group for a practicing soloist or to play full pieces of the Jazz
and Blues genre. The approach was to solve the problem with help of Sonic
Pi, a freeware music coding program implemented in Ruby [2]. Sonic Pi is
built upon the principle of playing music in a loop and modifying this loop live,
conveniently called a live-loop. The program can generate audio via a synthesizer
or via replaying audio samples. A raspberry pi was used to run the program
and there were some difficulties with installing Sonic Pi as well as performance
restrictions caused by the hardware. In addition writing complex programs in
the development environment of Sonic Pi proved to be rather difficult as it was
designed for newcomers to playfully learn programming. Instead, ruby gem was
used to send code fragments directly via command line. One needs to face these
problems only once so they are not very impactful, but since Sonic Pi generates
music by replaying sample, new samples must be provided when adding any
new instrument. This is rather work intensive as every note ideally has its own
sample. If not the samples have to be pitch bent. This impacts their audio
quality and duration. Given previously faced challenges with audio samples
and the unpredictable character of randomized music generation the benefits of
outputting the music as a Standard MIDI file (SMF) was recognized. SMFs
are smaller in size and easier to manipulate than audio files since the only store
instructions but no audio. For this reason, the task of providing usable samples
is passed on to the audio player. MIDI files are widely adopted and there are
plenty of MIDI-capable players and digital audio workstation available. Sonic Pi
is not capable of writing a SMF, thus we need a new framework to do the job.
To keep the scope of this semester thesis reasonable the main task is providing
this framework on which extensions can be added over time. As proof of concept
of the framework, some extensions are created to the point that pieces of one
music genre can be generated. To achieve our goals the framework should have

1

1. Introduction 2

the following characteristics:

• Readability: The code must be readable for others, so they can continue the
project.

• Extendability: The code must be structured with future extensions in mind
to prevent future restructuring

The framework is written in Python, which provides good library extensions for
MIDI capability and is overall a good language for rapid prototyping.

Chapter 2

Theory

2.1 Notes

In western music theory, any note is represented in a musical notation defining
its pitch and duration. A rest is represented as a note with no pitch and only a
duration. The pitch connects the note to the frequency it produces when played
as shown in figure 1a. Each pitch is represented by an uppercase letter and
optionally a number and a # or b. The number defines the octave the note is
played in and the letter defines which exact note in this octave is meant. The #
represents an increase by a semitone while a b signals a decrease. The duration
depends on the symbol and in western music theory it is quantized to either
multiple or fraction by the power of two of the length of a measure as shown in
figure 1b. [3]

2.2 The MIDI Standard

Most electronic instruments and digital audio workstations (DAW) work or at
least support the MIDI protocol and Standard MIDI Files (SMF). MIDI is an
alternative source of music compared to audio files. Instead of representing
music as a sum of signals with different frequency and amplitude, a SMF saves
the instructions on how to produce this audio signals on any instrument that
supports MIDI. Therefore a MIDI file is much smaller than its counterpart, but
it loses information about the actual sound envisioned by the composer because
the instructions can be played on any compatible instrument. A SMF is at its
core just a set of MIDI events. An event is a MIDI message together with a
timestamp. The timestamp, also called Delta Time is the time difference from
the occurring event to the time the latest event occurred [6].

The file consists of chunks starting with the header chunk followed by one
or more Track chunks. Each chunk starts with literal string identifier, either
MThd or MTrk, followed by the length of the rest of the chunk. This is always 6
bytes for the header and for the track it depends on the number of MIDI events

3

2. Theory 4

(a) Frequency relation of notes [4]
(b) Note rhythm symbols [5]

Figure 1: A note is defined by frequency and timing

Figure 2: SMF file structure [7].

2. Theory 5

associated with it. The format field in the header identifies the file format and
there are three different formats. Usually referred to as Type 0, 1 or 2. Type 0
writes all track events in one single track, while Type 1 has multiple tracks and
Type 2 is a series of Type 0 files, but rarely used. The next two bytes of the
Header define the number of Tracks, while the last two bytes give information
about the time division. The file structure of a SMF can bee seen in Figure
2. Time in MIDI can either be encoded in metrical timing or timecode. When
using metrical timing a value pulse per quarter note or ppqn is set. This value
represents how many discrete steps there are between each quarter note, while
the time between two quarter notes is given by the tempo of the track. While
metrical timing is dependent on the tempo timecode is not. Here the first byte
of the field specifies the number of frames per second (24, 25, 29 or 30) and the
second byte the number of subframes per frame [8, 9].

There are three types of track events, a MIDI, Meta or System exclusive
event. The type of event is identifiable by the first byte of the data.

2.2.1 MIDI Events

MIDI messages that are responsible for playing notes and shaping the sound
are called MIDI events. They are Note Off, Note On, Polyphonic Pressure,
Controller, Program Change, Channel Pressure and Pitch Bend. Any of these
messages can be sent over one of 16 available channels. The messages are sum-
marized in Table A.2 and a table relating MIDI notes to the classical notation
is found in Appendix A.1.

2.2.2 Meta Events

Meta events are only of importance for MIDI files since they contain additional
information about the song. Examples of these events are copyright information,
lyrics as well as track and instrument names. Also under this category are tempo,
time signature and key signature events, which can be useful when analyzing or
manipulating a SMF as they provide additional information. Every Meta event
has the following general form:

FF type length data

FF is a prefix, marking this as a Meta message. The type field gives the type of
the message, the length field the length of the data field in bytes and the data
field contains the effectively written information. Some events have restrictions
on their appearance for example tempo, key signature and cue point. The end of
track event deserves a special mentioning as it is mandatory after the last event
of each track chunk.

2. Theory 6

2.2.3 System Exclusive Events

System Exclusive or SysEx events are specific to certain hardware. They exist
to give hardware manufacturer more freedom when working with MIDI but are
not important for this work.

2.2.4 General MIDI Standard

The MIDI standard only provides an instruction set on how a song is to be played,
but never specifies which instrument plays it. To ensure the sound produced by
a MIDI file is as close to the sound intended by the composer as possible the
General MIDI Standard (GM) was invented. Electronic instruments compatible
with the GM standard provide an instrument bank with 128 different instruments
and a drum set. A control message can be sent to the instrument to select an
instrument. The channel 9 is reserved for drums.[10]

2.3 Chords

A chord is an arrangement of three or more notes that together build a har-
monic unit. Usually when mentioning a chord it is refers to a triton, meaning a
three-note-chord. A chord’s name is defined by the root note and the intervals
(difference of two pitches) between each note it contains. An A# minor chord,
for example, has the root A#, the next note is the minor 3rd (3 half steps higher),
so C#, followed by F as the perfect 5th (7 half step higher). Other than the
minor 3rd, also a diminished (2 semitones), major (4 semitones) and augmented
(5 semitones) 3rd. One can combine the intervals and change the number of
notes to create a huge variety of chords. The most common chords are listed in
Appendix A.1.

2.3.1 Chord Inversion

A chord inversion is a shift from a specific note in the chord by an octave. There
are two directions a chord can be inverted, upwards and downwards. When
inverting a chord upwards, the note with the lowest pitch is increased by one
octave and if inverting downwards the highest pitch is decreased by one octave.
If a chord is inverted as many times in one direction as there are notes in the
chord, the whole chord has been shifted by one octave.[11]

2. Theory 7

Figure 3: Function of notes [21].

2.4 Musical Scale

A musical scale is a set of notes that are in some musical relation to each other.
A scale can be characterized by how many notes are in the set per octave and
interval between each note. Notations for the size of the set are Octatonic [12]
(8 notes), Heptatonic [13] (7 notes), and Hexatonic [14] (6 notes). Notations
relating to the steps are diatonic [15] (7 notes per octave, 5 whole steps, and 2
half steps), chromatic [16] (12 steps per octave and equivalent to a normal piano
keyboard), and whole tone [17] (6 notes per octave each interval is a whole step).
There are many different scales but the most common scales are the two modes
of the diatonic scale, called Major [18] and Minor [19].

2.5 Scale Degree

Each note in a diatonic scale has a name relating it to a melodic function [20]
it provides. If the leading tone is a whole step below the tonic instead of a half
step it changes its function to subtonic. The C Major scale with its notes and
their function is shown in figure 3.

The same principle is applicable if we use the scale notes as root notes for
tritone chords. However, now the functions are broken down to three essential
functions: Tonic, Dominant, Predominant. A tonic chord, in particular the I, is
a tonal center or the final resolution tone, a predominant chord normally resolves
to a dominant chord, while a predominant chord creates instability that needs
resolution provided by a tonic chord. These chords only contain notes that are
also in the scale and are denoted with roman numbers. Figure 4 shows which
chord provides each function. The value of the number refers to the position of
the root note in the scale and a upper or lower case indicate if it is a major or
minor chord respectively [21].

2. Theory 8

Figure 4: Chords grouped by function.

Figure 5: Metric levels of 4/4 meter.

2.6 Meter

The meter defines how much time passes in a measure and how it is supposed
to be played rhythmically. A meter is represented as a fraction and has two
components, the numerator, and denominator. The denominator defines the note
length of the beat level. The beat level can be seen as the base of the rhythm.
When subdividing the notes from the base rhythm one enters the division level
and when combining base notes it is referred to as multiple level. The figure 5
shows division and multiple levels of the 4/4 meter. The numerator indicates
how many of the base notes are played per measure.

2. Theory 9

2.7 Metric Structure

The metric structure is important when looking at a song measure per measure.
Not every beat in a measure serves the same musical functions. The more the
listener expects a note at a position the higher is its metric strength measured in
a metric weight. Each beat can either be an on- or offbeat. Onbeat notes mark a
strong accent, while offbeat notes are weaker. All the notes in the multiple level
are Onbeats, the others are Offbeats. So in figure 5 the first and third Beat are
onbeat and the second and fourth are offbeat. The notes in the highest multiple
level have the strongest metric position. The strength decreases the more notes
are in the level. So the metric weights for the meters displayed in figure 5 are:

1/1 : [0],
2/2 : [0,−1],
4/4 : [0,−2,−1,−2],
8/8 : [0,−3,−2,−3,−1,−3,−2,−3],
16/16 : [0,−4,−3,−4,−2,−4,−3,−4,−1,−4,−3,−4,−2,−4,−3,−4]

The first beat in a measure is called the Downbeat and is stronger than any
other Onbeat, the last beat is called Upbeat and anticipates the Downbeat. Eric
Thul presents an algorithm to calculate this metric structure from the meter [22].
Numerator is the numerator of the meter and primefactors are the primes from
the prime factorization of the numerator.

Listing 2.1: Longuet-Higgins and Lee algorithm

metric_weight(numerator, primefactors):

#weights vector w length n,level parameter k

w = [0]*numerator

k = 1

for prime in primefactors:

for i in range(1,numerator):

if (i % (numerator/k) != 0):

#decrease weight vector

w[i]-=1

k=k*prime

return w

2.8 Tempo

The tempo defines how the metric time domain is mapped to the real-time and
is usually defined as beats per measure bpm with one beat representing a one-
quarter note. For example in a 60 bpm song each quarter note lasts for 1 second.

2. Theory 10

Figure 6: Song in hierarchical tree structure.

If we double the bpm to 120 the length of each quarter note is therefore halved
to 0.5 seconds.

2.9 Song Structure

An article about the generation of tonal melodies based on music theoretical
insights proposes to structure a melody in a hierarchical fashion as a tree [23].
Each part can be generated with different parameters. They handle the piece
the same way as a part. So in practice, their melody consists of multiple pieces
that each contain subparts. Each part is structured in bars and each bar consists
of beats that can have multiple different notes playing. Such a tree is displayed
in figure 6. This structure is also applicable to a whole song. A traditional song
format is a selection from a few building blocks like an introduction, a verse, a
pre-chorus, a chorus or refrain, a bridge, a conclusion or outro, an elision or an
instrumental solo. The rules for which block to select and how to order them
depends on the preferred genre. The most common format is: introduction,
verse, pre-chorus, chorus, verse, pre-chorus, chorus, bridge, verse, chorus, outro.
Each of these blocks can be seen as a piece of the song and can, therefore, be
brought into the structure described above.

2.10 Melodies

Put simply, a melody is the combination of a rhythm with a succession of pitches.
So a melody can be generated in at least two parts, pitch, and rhythm. Looking

2. Theory 11

at characteristics of a song such as instrument range, tempo, meter and scale, one
can impose some restrictions on the choice of pitch and rhythm. On one hand,
the range sets a minimal and maximal value for the pitch while the scale elects
the harmonic notes. Those are a stable component of the melody and preferably
appear at metrically strong positions. On the other hand, the meter and tempo
presume a certain rhythm. As it is most common in music, there is no correct
way of shaping a melody, but some techniques are taught more often than others.
Although sometimes presented as algorithms, those techniques are far from it as
they act more as a guideline and are generally vague with their instructions. One
guideline [24] for pitch assignment is to first select a chord progression. In pop
and rock, for example, I - V - vi - IV is one of the most common progressions
and there are plenty of lists available online [25, 26]. When choosing or creating
a chord progression the number of chords may vary depending on the meter,
and the complexity of the rhythm. After the chord progression is selected, one
has to come up with a contour curve, a mix of pitch increase, decrease and no
change over time. This will set all melodies using the same chord progression
apart. Then one searches for the nearest chord note to the contour curve for
each onbeat note and assigns the pitch. Finally, it fills the space between each
onbeat. Instead of choosing a chord progression as the base of the melody another
guideline [27] first selects a scale, but then continues the same way as previously
mentioned except that it selects the nearest note to the contour curve for each
place in the rhythm and not only for onbeat notes. The pseudo code algorithm 1
is a mix of both guidelines, where the parameters α, β, γ, ζ, η are boolean values
and range is the range of notes of the melody,

Not every instrument voice or track can play the same melody. The require-
ments for a suitable melody heavily depend on the purpose the track has in the
assembly. In most cases, the lead track plays a more complex melody than the
others do. To achieve the desired melody there are again different techniques
. Bass and ambient melodies, for example, can also be derived from the same
chord progression as the lead melody did. This gives the melodies a common
ground and leads to a more interconnected sound. One possible recipe for a bass
and ambient melodies is shown in algorithm 2. The first step is to use the root
notes of the chord progression as a simple melody to build upon. In the second
step, all perfect 4ths and 5ths are eliminated as their pitch sound very similar
and are therefore rather uninteresting in a musical sense. Next, a musical motif,
a short musical idea or recurring figure, has to be established to give a sense of
familiarity when listening. Single notes can be brought to the listener’s attention
if they are placed in the offbeat position. Also during longer notes, switching it
out for another note in the chord connects the melody with the chord progres-
sion. If the melody should get even more complex, some note or parts of it can
be shifted by an octave. The last step is adding rests to accents notes in the
melody or notes from a simultaneously playing melody [28].

2. Theory 12

Data: range, α, β, γ, ζ, η
Result: Melody
choose a rhythm
choose a scale
if α :

if β :
choose predefined chord progression
chord = True

else:
generate chord progression

if γ :
start note = root note of scale

else:
start note = random note

if ζ :
end note = root note of scale

else:
end note = random note

generate a contour curve from start note, end note, range
for note in rhythm :

if chord :
assign the nearest pitch to the contour curve that is in the chord

else:
assign the nearest pitch to the contour curve that is in the scale

for each pair of consecutive notes :
if η :

fill in adequate notes
add rests

Algorithm 1: Melody generation algorithm from Section 2.10. α, β, γ, ζ, η
represent a boolean value that enables a certain property

Data: Chord progression
Result: Bass/ambient melody
1. Use root notes of chord progression
2. Eliminate perfect 4th and 5ths (5/7 semitones intervals)
3. Create motif or reuse an existing motive
4. Accent offbeat (ex. split long note in 2 small ones)
5. Switch out the root note to another in-chord note
6. Move notes an octave (when nothing else is going on)
7. Add rests

Algorithm 2: Bass and Ambient melody algorithm [28]

2. Theory 13

2.11 Theme, Form and Variation

A theme is a concept where a musical idea, normally a melody and some ac-
companiment, is presented at the beginning of a piece and followed up by either
variations or copies of it. A variation is a modified version of the original, that
still shares recognizable features. A form acts in similar fashion, but with a
distinct difference. While a theme focuses on the connection between two parts
the form aims for contrast but keeping both parts still cohesive. Those parts are
called A, the main focus of the track, and B, the contrast to A, and they can be
built up from a theme and variations. A is typically 8 to 16 bars long and B is
often shorter or longer with an uneven length to accentuate its weaker role. In
its simplest form, A and B are arranged as ABA or better known as the simple
ternary form with the key element of a return from B to A. The sequence, how-
ever, can be extended as desired. Variations are crucial when creating forms and
themes and can be applied to different components such as the melody, rhythm
or tempo. A list is provided in Appendix A.2. [29, 30, 31, 32]

Chapter 3

Implementation

3.1 Programming Language and Libraries

MIDI is the technology that allows us to write and modify music on computers
and most electronic instruments. Automated music generation is not easy and
any bad sounding part can ruin a whole song. Being able to change those sec-
tions in the output with relative ease is an integral part of this project. The
output is not regarded as the final product but more as a source of inspiration or
automation of tedious task such as extracting the root notes from each chord or
arpeggiate a melody. The making of this project also spanned over a relatively
short time period. With these properties in mind, python [33] was selected as the
programming language of choice as it is simple to use and allows for rapid proto-
typing. In addition, there are several public libraries available that can interact
with MIDI. Two of those were selected, MIDIUtil [34] and mido [35]. While
MIDIUtil is good for writing standard MIDI files (SMF) it does not support
reading these. On the other hand, mido is good for reading MIDI commands
but when writing MIDI files it does not provide the same level of abstraction as
MIDIUtil does. For example, playing a note in a SMF requires two messages. A
Note On message followed by a Note Off message. In MIDIUtil this is executed
with a single function call

addNote(track, channel, pitch, start, duration, volume)

while with mido the same function is invoked twice with different parameters.

track.append(Message(′note on′, note = 64, velocity = 64, time = 32))

track.append(Message(′note off ′, note = 64, velocity = 127, time = 32))

This perfectly showcases the tradeoff that is made when using MIDIUtil over
mido. The single function call is better to read and understand, but it gives less
control over the actual messages. For emaple, using MIDIUtil the release velocity
of a MIDI note cannot be set. This trend continues throughout the libraries. In
the beginning of this project MIDIUtil was selected but in retrospect, a complete

14

3. Implementation 15

switch to mido will be beneficial and the lost abstraction can be provided by the
framework.

3.2 Program Structure

The next step was to find a suitable structure to enable future code extensions.
Since the program logic of future extensions will very likely be oriented towards
the concepts of music theory the same approach was taken for the framework.
The core of the framework are a few classes (Appendix A.3) that represent the
building blocks of classical music theory : Note, Chord, Scale, Meter, and Key.
All the classes are initialized with enough information to clearly define the object
as predetermined by the theory. The purpose of those classes is to represent the
music-theoretical construct and provide functions to manipulate themself. A
song or piece of music is structured in the same hierarchical fashion as presented
in Section 2.9. The piece is defined as a Piece that holds objects of the Block
as subparts which in return can also hold subparts. If a Block has no subparts
it must hold Melody and Instrument objects that will eventually be played.
With this framework, music is generated by the means of variation. For this
reason, the generation process is split into two kinds of functions. Generation
and variation functions. As seen in Section 2.11, a variation modifies a given
melody. So, a variation function modifies the melody object given as input
depending on some parameter values. Whereas a generation function creates a
new melody object from a set of input parameters. A generation function might
call variation functions to modify the generated melody as desired.

3.3 Program Flow

The first task the program executes is tp read the m config.ini file and write
all the parameters in a dictionary. From those parameters a simple melody is
generated. This melody is a simple chord progression either selected from pre-
defined progression or generated according to Section 2.5. This melody is saved
in the Piece object as the piece’s main melody from which new ones are derived
when needed. This is followed up by creating the song’s format from Section
2.11. As for now only the genre Electronica is supported and the deterministic
finite automata from figure 7 selects the format. For each track, an instrument
is selected. Then each block in the song format is generated with its own gener-
ation function from the main melody by applying variation. Every Block object
has a list of tuples and each tuple holds a Instrument and Melody object. Next,
all blocks are appended to the subparts list in the Piece object. To finally create
the SMF the play function of the Piece class is invoked, which writes the SMF.
The program flow chart is shown in figure 8.

3. Implementation 16

S ⇒ ABC

A⇒ α | ε
B ⇒ BB |βD | ε
C ⇒ ζ

D ⇒ γ | δ | ε

Figure 7: Electronica DFA in Chomsky Normal Form

Form Element intro verse chorus groove outro

Variable α β γ δ ζ

Table 3.1: Variables for DFA in figure 7

Figure 8: Program flow chart.

3. Implementation 17

Figure 9: File dependencies.

3.4 Python Files

Readability is the second most important goal the program has. To make the pro-
gram as readable as possible the code is split into six files according to the func-
tionality it provides. Figure 9 shows the dependencies for each file. Lookup.py
serves as a storage and holds all the definitions found in music theory, the instru-
ments and their parameters as well as the definitions of the music genres, thus
depends on no other file. All the class definitions can be found in structure.py.
Therefore, it provides the basic operations in the framework and only depends on
lookup.py for music theoretical information such as intervals in a specific chord
or MIDI instrument bank numbers. All the variation functions are grouped in
the mutations.py file. As these modify the object of the core classes, it only de-
pends on structure.py. Generator.py on the other hand, stores all the generation
functions and relies on the functions provided by structure.py and mutations.py
as well as chord progressions stored in lookup.py. The io.py handles reading and
writing any external files and needs information from lookup.py to save objects
from structure.py in a dictionary. All those files are tied together by the main.py
file, which is responsible to call each subpart of the program. It relies on gener-
ator.py for crating the melodies, structure.py for providing the Piece, and io.py
for reading config.ini.

3.5 Time

In the framework, time is always defined in beats and therefore only dependent
on the chosen tempo. The bpm is defined in quarter notes per minute as it is
most common. So a time of 2.5 at 60 bpm is equal to 2.5 seconds.

Chapter 4

Results

Using the framework, it is possible to generate MIDI files that work and play
music when opened in a MIDI capable player. The biggest drawback with the
generated files is their lack of diversity as they all have a similar format and
all use the same small set of variation functions. As for now all parameters to
influence the generation are listed in Table A.3, but not all of them are accessible
through the configuration file. The program rarely crashes due to programming
mistakes. One of those crashes was caused by invoking a function returning an
object but never assigning the object to a variable.

In my opinion, the code with its hierarchical structure and the segments
grouped by function is easy to understand. It also makes it clear where any func-
tion should be added in the future. My opinion is deduced from the experience
of implementing new generation and variation functions. The more framework
progressed and the amount of functionality provided by the framework increased,
the less new code was required.

18

Chapter 5

Discussion

The results show that the framework is not only capable of generating music,
but also provides a useful set of components for future extensions. In its current
state, the task of generating music perceived as good has clearly failed. However,
the generated pieces can be a source of inspiration and improved manually, using
a digital audio workstation. The implementation of the framework took longer
than expected, leading to less music generation logic than planned. Every new
addition to the framework had first to be researched and then, with possible
extensions in mind, implemented and tested. Even though the testing was done
in all conscience, the program occasionally did not work as intended and had
to be fixed. At an early stage of the framework, the play along mode from the
Robot Composer project [1] was implemented to test writing midi files and also
to compare the outputs. It was further planned to reimplement the play along
mode once the framework is finished and then compare the codes in regards to
size and complexity, but there was not enough time left to do so.

5.1 Personal Insights

There are a few decisions that could have been made differently to save time
and ultimately deliver a better framework. At first, an integrated development
environment (IDE) should have been used instead of notepad++ [36]. An IDE
helps the programmer by providing Docstrings [37] and pointing out obvious
programming mistakes. Secondly, too much time was spent in understanding
the previous program on a very detailed level, even though a rough understand-
ing would have been sufficient. Lastly, the knowledge about music theory was
lacking, which resulted in restructuring the code twice. Then again it is equally
probable that learning more about music theory would have been a waste of time
as even for basic concepts it was hard to distinguish important and often used
concepts and rules from those only used occasionally. Overall I am confident
that with additional variation functions and more complex generation functions
the output will improve immensely. To give one example, in the current state
rests are completely ignored, although they are an important part of any song.

19

5. Discussion 20

5.2 Future Work

The options for future extensions to this work are limitless. Apart from adding
new variation and generation functions there are ways to improve the framework.
To name one, more MIDI events from Appendix A.2 must be supported such as
Polyphonic Pressure and Controller events. This unlocks the full potential of
instruments that are able to play a continuous change in pitch such as guitar
or a trombone. Other than that the option to play a note not perfectly on
time will be a valuable addition. This imperfection gives the impression of a
manually composed piece. Another idea that was never fully utilized, is that one
or more SMFs can be selected as input, are then read by the program and finally
incorporated into the output. It exists a function that reads a SMF and returns
a Melody object consisting of Note objects, but it was never integrated into the
generation logic. Apart from that, many comments suggesting improvements
can be found in the source code.

Bibliography

[1] Schmid, R.: Robot Composer.
https://git.ee.ethz.ch/manuelei/robot_composer_roland_schmid

(2017)

[2] Website: Ruby.
http://ruby-lang.org/en/

Accessed: 12.01.2017.

[3] Wikipedia entry: Musical Note.
http://en.wikipedia.org/wiki/Musical_note

Accessed: 09.01.2017.

[4] Image: Note frequencies.
http://en.wikipedia.org/wiki/Musical_note#/media/File:

Frequency_vs_name.svg

[5] Image: Note values.
http://musicreadingsavant.com/wp-content/uploads/2011/07/

notevalues.gif

[6] Website: About MIDI Part 4: MIDI Files.
http://midi.org/articles/about-midi-part-4-midi-files/

Accessed: 09.01.2017.

[7] Image: SMF Structure.
http://digitalsoundandmusic.com/wp-content/uploads/2014/05/

Figure-6.47-SMF-file-structure.png

[8] Website: MIDI Files Specification.
http://somascape.org/midi/tech/mfile.html

Accessed: 09.01.2017.

[9] Website: Outline of the Standard MIDI File Structure.
http://ccarh.org/courses/253/handout/smf

Accessed: 09.01.2017.

21

https://git.ee.ethz.ch/manuelei/robot_composer_roland_schmid
http://ruby-lang.org/en/
http://en.wikipedia.org/wiki/Musical_note
http://en.wikipedia.org/wiki/Musical_note#/media/File:Frequency_vs_name.svg
http://en.wikipedia.org/wiki/Musical_note#/media/File:Frequency_vs_name.svg
http://musicreadingsavant.com/wp-content/uploads/2011/07/notevalues.gif
http://musicreadingsavant.com/wp-content/uploads/2011/07/notevalues.gif
http://midi.org/articles/about-midi-part-4-midi-files/
http://digitalsoundandmusic.com/wp-content/uploads/2014/05/Figure-6.47-SMF-file-structure.png
http://digitalsoundandmusic.com/wp-content/uploads/2014/05/Figure-6.47-SMF-file-structure.png
http://somascape.org/midi/tech/mfile.html
http://ccarh.org/courses/253/handout/smf

Bibliography 22

[10] Wikipedia entry: General MIDI.
http://en.wikipedia.org/wiki/General_MIDI

Accessed: 09.01.2017.

[11] Wikipedia entry: Inversion.
http://en.wikipedia.org/wiki/Inversion_(music)

Accessed: 12.01.2017.

[12] Wikipedia entry: Octatonic scale.
http://en.wikipedia.org/wiki/Octatonic_scale

Accessed: 09.01.2017.

[13] Wikipedia entry: Heptatonic scale.
http://en.wikipedia.org/wiki/Heptatonic_scale

Accessed: 09.01.2017.

[14] Wikipedia entry: Hexatonic scale.
http://en.wikipedia.org/wiki/Hexatonic_scale

Accessed: 09.01.2017.

[15] Wikipedia entry: Diatonic scale.
http://en.wikipedia.org/wiki/Diatonic_scale

Accessed: 09.01.2017.

[16] Wikipedia entry: Chromatic scale.
http://en.wikipedia.org/wiki/Chromatic_scale

Accessed: 09.01.2017.

[17] Wikipedia entry: Wholw tone scale.
http://en.wikipedia.org/wiki/Whole_tone_scale

Accessed: 09.01.2017.

[18] Wikipedia entry: Major scale.
http://en.wikipedia.org/wiki/Major_scale

Accessed: 09.01.2017.

[19] Wikipedia entry: Minor scale.
http://en.wikipedia.org/wiki/Minor_scale

Accessed: 09.01.2017.

[20] Wikipedia entry: Diatonic function.
http://en.wikipedia.org/wiki/Diatonic_function

Accessed: 09.01.2017.

[21] Website: Music Theory Lesson 23.
http://musictheory.net/lessons/23

Accessed: 09.01.2017.

http://en.wikipedia.org/wiki/General_MIDI
http://en.wikipedia.org/wiki/Inversion_(music)
http://en.wikipedia.org/wiki/Octatonic_scale
http://en.wikipedia.org/wiki/Heptatonic_scale
http://en.wikipedia.org/wiki/Hexatonic_scale
http://en.wikipedia.org/wiki/Diatonic_scale
http://en.wikipedia.org/wiki/Chromatic_scale
http://en.wikipedia.org/wiki/Whole_tone_scale
http://en.wikipedia.org/wiki/Major_scale
http://en.wikipedia.org/wiki/Minor_scale
http://en.wikipedia.org/wiki/Diatonic_function
http://musictheory.net/lessons/23

Bibliography 23

[22] Thul, E.: Measuring the Complexity of Musical Rhythm. Master’s thesis,
McGill University, Montreal (2008)

[23] Povel, D.J., et al.: Melody generator: A device for algorithmic music con-
struction. Journal of Software Engineering and Applications 3(07) (2010)

[24] Website: An Algorithm to Compose Melody Lines.
http://lenmus.org/en/paginas/composer-algorithm-pitch#contour

Accessed: 09.01.2017.

[25] Website: The 10 most used chord progressions in pop and rock.
http://thornepalmer.wordpress.com/2011/12/29/

the-10-most-used-chord-progressions-in-pop-and-rock-and-roll/

Accessed: 09.01.2017.

[26] Wikipedia entry: List of chord progressions.
http://en.wikipedia.org/wiki/List_of_chord_progressions

Accessed: 09.01.2017.

[27] Website: The Ultimate Guide to Writing Better and More Memorable
Melodies.
http://edmprod.com/ultimate-melody-guide

Accessed: 09.01.2017.

[28] Video: 6 Hacks for Better Bass Lines — Hack Music Theory.
https://www.youtube.com/watch?v=ujS0Viuv5kg

[29] Website: An Introduction to Form in Instrumental Music.
http://music.tutsplus.com/tutorials/an-introduction-to-form-in-instrumental-music--audio-23381

Accessed: 10.01.2017.

[30] Website: How to Write a Theme.
http://music.tutsplus.com/tutorials/how-to-write-a-theme--audio-22412

Accessed: 10.01.2017.

[31] Website: How to Write Theme & Variations.
http://music.tutsplus.com/tutorials/how-to-write-theme-variations--cms-20558

Accessed: 10.01.2017.

[32] Website: Variation Techniques for Composers and Improvisors.
http://solomonsmusic.net/vartech.htm

Accessed: 10.01.2017.

[33] Website: Python.
https://www.python.org/

Accessed: 11.01.2017.

http://lenmus.org/en/paginas/composer-algorithm-pitch#contour
http://thornepalmer.wordpress.com/2011/12/29/the-10-most-used-chord-progressions-in-pop-and-rock-and-roll/
http://thornepalmer.wordpress.com/2011/12/29/the-10-most-used-chord-progressions-in-pop-and-rock-and-roll/
http://en.wikipedia.org/wiki/List_of_chord_progressions
http://edmprod.com/ultimate-melody-guide
https://www.youtube.com/watch?v=ujS0Viuv5kg
http://music.tutsplus.com/tutorials/an-introduction-to-form-in-instrumental-music--audio-23381
http://music.tutsplus.com/tutorials/how-to-write-a-theme--audio-22412
http://music.tutsplus.com/tutorials/how-to-write-theme-variations--cms-20558
http://solomonsmusic.net/vartech.htm
https://www.python.org/

Bibliography 24

[34] Library documentation: MIDIUtil documentation.
http://midiutil.readthedocs.io/en/1.1.3//

Accessed: 09.01.2017.

[35] Library documentation: mido documentation.
http://mido.readthedocs.io/en/latest//

Accessed: 09.01.2017.

[36] Website: Notepad++.
http://notepad-plus-plus.org

Accessed: 12.01.2017.

[37] Website: Python Docstring Conventions.
http://python.org/dev/peps/pep-0257/

Accessed: 12.01.2017.

[38] Sam Aaron: Sonic Pi – The Live Coding Synth for Everyone.
https://github.com/samaaron/sonic-pi/

Accessed: 10.01.2017.

[39] Website: MIDI Note Numbers for Different Octaves.
http://electronics.dit.ie/staff/tscarff/Music_technology/midi/

midi_note_numbers_for_octaves.htm

Accessed: 09.01.2017.

http://midiutil.readthedocs.io/en/1.1.3//
http://mido.readthedocs.io/en/latest//
http://notepad-plus-plus.org
http://python.org/dev/peps/pep-0257/
https://github.com/samaaron/sonic-pi/
http://electronics.dit.ie/staff/tscarff/Music_technology/midi/midi_note_numbers_for_octaves.htm
http://electronics.dit.ie/staff/tscarff/Music_technology/midi/midi_note_numbers_for_octaves.htm

Appendix A

Appendix Chapter

A.1 List of Chords

A list of all chords supported by the framework. The values are the number
of half tone steps from the root note [38].

• M:[0,4,7]

• m:[0,3,7]

• aug:[0,4,8]

• dim:[0,3,6]

• m+5:[0,3,8]

• sus2:[0,2,7]

• sus4:[0,5,7]

• 9+5:[0,10,13]

• m9+5:[0,10,14]

• M7:[0,4,7,11]

• dom7:[0,4,7,10]

• m7:[0,3,7,10]

• dim7:[0,3,6,9]

• halfdim:[0,3,6,10]

• 6:[0,4,7,9]

• m6:[0,3,7,9]

• 7sus2:[0,2,7,10]

• 7sus4:[0,5,7,10]

• 7-5:[0,4,6,10]

• 7+5:[0,4,8,10]

• m7+5:[0,3,8,10]

• add2:[0,2,4,7]

• add4:[0,4,5,7]

• add9:[0,4,7,14]

• add11:[0,4,7,17]

• add13:[0,4,7,21]

• madd2:[0,2,3,7]

• madd4:[0,3,5,7]

• madd9:[0,3,7,14]

• madd11:[0,3,7,17]

• 9:[0,4,7,10,14]

• m9:[0,3,7,10,14]

• M9:[0,4,7,11,14]

• 9sus4:[0,5,7,10,14]

• 6*9:[0,4,7,9,14]

• m6*9:[0,3,7,9,14]

• 7-9:[0,4,7,10,13]

• m7-9:[0,3,7,10,13]

• 7-10:[0,4,7,10,15]

• 7-11:[0,4,7,10,16]

• 7-13:[0,4,7,10,20]

• 7+5-9:[0,4,8,10,13]

• m7+5-9:[0,3,8,10,13]

• 11:[0,4,7,10,14,17]

• m11:[0,3,7,10,14,17]

• M11:[0,4,7,11,14,17]

• 11+:[0,4,7,10,14,18]

• m11+:[0,3,7,10,14,18]

• 13:[0,4,7,10,14,17,21]

• m13:[0,3,7,10,14,17,21]

A-1

Appendix Chapter A-2

Octave
Note Numbers

C C# D D# E F F# G G# A A# B

0 0 1 2 3 4 5 6 7 8 9 10 11

1 12 13 14 15 16 17 18 19 20 21 22 23

2 24 25 26 27 28 29 30 31 32 33 34 35

3 36 37 38 39 40 41 42 43 44 45 46 47

4 48 49 50 51 52 53 54 55 56 57 58 59

5 60 61 62 63 64 65 66 67 68 69 70 71

6 72 73 74 75 76 77 78 79 80 81 82 83

7 84 85 86 87 88 89 90 91 92 93 94 95

8 96 97 98 99 100 101 102 103 104 105 106 107

9 108 109 110 111 112 113 114 115 116 117 118 119

10 120 121 122 123 124 125 126 127

Table A.1: Table with MIDI notes [39]

Name Size Nr Structure Parameters Function

Note Off 3B 8 Nr+ch+n+val val = velocity
of note press
(def. 64)

Turns note n on
channel ch off

Note On 3B 9 Nr+ch+n+val val = velocity
of note release
(def. 64)

Turns note n on
channel ch on

Polyphonic
Pressure

3B A Nr+ch+n+val val = after-
touch pressure

Applies After-
touch to note n
on channel ch

Controller 3B B Nr+ch+c+val c = controller
nr, val = value

Activates a con-
troller or channel
mode c with given
value

Program
Change

2B C Nr+ch+val val = program
nr

Switches channel
instrument to val

Channel
Pressure

2B D Nr+ch+val val = pressure Applies Nr A to
all active notes on
channel ch

Pitch
Bend

3B E Nr+ch+lsb+msb lsb+msb =
amount of
bend (00 40 =
no bend)

Applies pitch
bend to all active
notes on channel
ch

Table A.2: Table with MIDI messages: ch ∈ [0, 15] and n, c, val, lsb,msb ∈
[0, 127]

Appendix Chapter A-3

A.2 Variations

A.2.1 Melody

Contour Curve

Generating a melody according to Section 2.10 requires a variation function that
can fit any existing melody along a given contour curve. Set to contour and
follow contour provide this function. While set to contour set the pitch of each
note exactly to the MIDI note closest to the contour curve, follow contour finds
the closest MIDI note that is in the scale for notes or the inversion with the
smallest interval from any chord note to the MIDI note closest to the contour
curve.

A.2.2 Harmony & Accompaniment

Arpeggio

The arpeggio function plays each not of a chord consecutively instead of simul-
taneously. Optionally a rate argument can be given and each of the consecutive
notes will have duration rate. The sequence derived from a chord will repeat for
the chords duration.

Floating Chords

The idea being floating chords is that the transition between chords is smoother
when each note that is part of both chords is in the same place. For example
two tritones have a C and in the first chord the C is the second highest pitch,
then in the second chord C must also be the second highest pitch.

A.2.3 Rhythm

The variation function syncopation emphasizes offbeat notes by placing a strong
harmonic note on a weak beat. The function applies this by starting a onbeat
note one division level note duration earlier than expected e.g. in a 4/4 meter
stop playing the second note one eighth note earlier, so from 1 to 1.5 time units,
and starting the third note one eighth note earlier so from 1.5 to 3 time units.

A.2.4 Tonality

The program has a variation function named switch scale, that changes the
melody from scale A to scale B. This is done in two steps. First each note

Appendix Chapter A-4

is shifted by the interval of the two root notes with the subfunction switch key.
In the second step the subfunction switch quality switches the mode of the scale
by checking for each note it membership to the new scale mode. If any note is
not in the scale the corresponding note is calculated from the values stored in
lookup.py. For example a change from C minor to C major mode will change all
the E’s to D#’s, all A’s to G#’s and all B’s to A#’s.

A.2.5 Others

Fading

Fading is when the volume of the melody is continuously changing over time.
The function fade fades the melody from a time start to stop from the value high
to low.

Muting

The mute out and mute in functions mute respectively unmute certain pitches
each bar by deleting resp. not deleting them until all pitches are muted resp.
unmuted.

A.3 Core Classes

A.3.1 Note Class

The Note class is the most basic object and very closely related to the MIDIUtil
function addNote. It is generated with a starting time, a pitch representing its
MIDI note value, a duration, and a volume representing the velocity of the MIDI
note press e.g. the force a piano key struck. This class provides functions to read
and change its parameters and to split the note into two separate notes.

A.3.2 Chord Class

The Chord class holds a list of notes, the quality of the chord (Appendix A.1),
and information about the inversion state of the chord. It provides the same
functions as the Note class, but in addition can also invert the chord, find out if
the notes form a chord and which, and fit a chord as close as possible to a given
note.

Appendix Chapter A-5

A.3.3 Key Class

The name of this class is derived from the piano key and not to be mistaken
with scales often also called keys. The Key class is very simple and its purpose
is to easily access information about a pitch. It not only holds the MIDI note
but also in which octave it is and the interval to the next lower C.

A.3.4 Meter Class

The Meter class holds the numerator, denominator and the metric structure
(Section 2.6). This is important since the metric structure need to be preserved
during the run time. The reason is that the output of the algorithm for gen-
erating the weights is dependent on the order of the prime numbers. 2 ∗ 3 will
produce different weights than 3 ∗ 2 and if both are simultaneously used, timing
mismatches are inevitable. The Meter class additionally provides the timings of
the on- and offbeat notes.

A.3.5 Scale Class

The Scale class provides information about the notes in a scale and is able to
return chord with any scale degree as root note.

A.3.6 Melody Class

A melody is saved as a object of the Melody class. A melody object consist of a
mix of Note and Chord objects, but also includes a scale and meter used. The
class provides the same functions as the Note class does or rather provides access
to them indirectly.

Appendix Chapter A-6

Parameter Purpose

seed random seed for random variables

channel the MIDI channel the instruments play
on

length number of format blocks of the piece

nominator numerator of the meter

denominator denominator of the meter

m range musical range of lead melody

*progression
length

length of the main melody in bars

bpm tempo of track in bpm

key root note of the scale of main melody

quality mode of the scale of main melody

*bar per chord duration the same chord is played in
measures

*tempo modifies the meter for the drum rhythm

start from root if set True the first chord of the chord
progression will be the I

end at root if set True the last chord of the chord
progression will be the I

predefined
progression

probability to choose a predefined chord
progression, instead of generating one

*prob probability of switching the key of the
backing track

Table A.3: Table with program parameters. Parameters with a * are not acces-
sible trough m config.ini.

	Abstract
	1 Introduction
	2 Theory
	2.1 Notes
	2.2 The MIDI Standard
	2.2.1 MIDI Events
	2.2.2 Meta Events
	2.2.3 System Exclusive Events
	2.2.4 General MIDI Standard

	2.3 Chords
	2.3.1 Chord Inversion

	2.4 Musical Scale
	2.5 Scale Degree
	2.6 Meter
	2.7 Metric Structure
	2.8 Tempo
	2.9 Song Structure
	2.10 Melodies
	2.11 Theme, Form and Variation

	3 Implementation
	3.1 Programming Language and Libraries
	3.2 Program Structure
	3.3 Program Flow
	3.4 Python Files
	3.5 Time

	4 Results
	5 Discussion
	5.1 Personal Insights
	5.2 Future Work

	Bibliography
	A Appendix Chapter
	A.1 List of Chords
	A.2 Variations
	A.2.1 Melody
	A.2.2 Harmony & Accompaniment
	A.2.3 Rhythm
	A.2.4 Tonality
	A.2.5 Others

	A.3 Core Classes
	A.3.1 Note Class
	A.3.2 Chord Class
	A.3.3 Key Class
	A.3.4 Meter Class
	A.3.5 Scale Class
	A.3.6 Melody Class

