
Distributed
 Computing

Hat Hunters

Bachelor Thesis

Nicholas Ingulfsen

ingulfsn@student.ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Manuel Eichelberger

Prof. Dr. Roger Wattenhofer

July 29, 2018

Acknowledgements

I want to thank my supervisor Manuel for his support in the weekly discussions
and the testing of the game, that lead to many ideas for the enhancement and
the further development of the project. I also appreciate the testing with my
friends and family and their constructive feedback, which kept my motivation
high for working on more improvements and features for the game.

i

Abstract

This work describes the concept and the creation of the local multiplayer action
game Hat Hunters. Hat Hunters is a multiplayer game with a shared screen for
two to four players with asymmetric information. Hidden input using gamepads
or the keyboard are used to achieve this asymmetry.
The game features self-made assets, including a trailer, and is available from the
Steam store [1].

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . 1

2 Game Concept 2

2.1 Goal . 2

2.2 Game Elements . 3

2.2.1 Character . 3

2.2.2 Obstacles . 3

2.2.3 Stars . 3

2.2.4 Items . 4

2.3 Modes . 5

2.4 Maps . 6

3 Implementation 7

3.1 Unity3D . 7

3.2 Game Elements . 7

3.2.1 Field . 7

3.2.2 Hat Hunter . 8

3.2.3 Items . 8

3.3 Physics . 9

3.4 AI . 10

3.5 Menu . 11

3.5.1 Joining . 11

3.5.2 Modes . 12

iii

Contents iv

3.5.3 Map . 12

3.5.4 Settings . 12

3.5.5 Game Menus . 12

3.6 Game Assets . 13

3.6.1 3D Models . 13

3.6.2 Texturing . 13

3.6.3 Rigging . 14

3.6.4 Animation . 14

3.6.5 Particle Effects . 15

3.6.6 Audio . 15

4 Conclusion And Outlook 16

4.1 Publishing . 16

4.2 Analytics . 16

4.3 Feedback . 17

4.4 Future Work . 17

Bibliography 18

Chapter 1

Introduction

Sitting lonely in front of the computer and gaming is fun. But sitting with
some friends around a screen, playing a local multiplayer game and interacting
directly with each other in the game as well as in real life is even more fun. Local
multiplayer games however often have some restricted possibilities of showing
information because everyone can see what is happening on the whole screen.
Nevertheless, it is possible to provide some information only to individual players
using their hidden input for example with a gamepad. Giving no response at
all to an input of the player however can also lead to confusion for the player
itself, being not sure whether a certain action was actually performed. Further,
it makes is hard for the players to remember all those actions. However, even
by giving visual feedback to the player’s inputs, it can be hard for others to
identify who performed that action if there are a lot of those actions performed
by computer controlled characters to disguise the real player’s actions.
This work tries to integrate some of those ideas into a local multiplayer action
game.

1.1 Related Work

The idea for using asymmetric information on a shared screen originates from
the game Hidden in Plain Sight by Adam Spragg [2], which consists of a set of
mini games for up to four players. The goal in each of those games is to reach
certain objectives while hiding amongst computer controlled characters.
In this project, these core ideas of asymmetric information and hiding within a
group of equally looking characters are put into a new setting.

1

Chapter 2

Game Concept

Figure 2.1: FieldTopdown

Hat Hunters is a party game for 2 to 4 players. Each player controls one
Hat Hunter within a group of identically looking characters which are either
controlled by an Artificial Intelligence (AI) or by a real player. The players
move on a floating platform and try to achieve their goals without attracting too
much attention.

2.1 Goal

The goal of the game is to collect a certain amount of stars. This can be done
by either moving towards the randomly spawning stars on the playing field or by
stealing them from other characters. The exact amount of stars needed to win

2

2. Game Concept 3

the game depends on the game mode. In the classic mode 8 stars are required.

2.2 Game Elements

2.2.1 Character

Figure 2.2:
left: personal hat, right: “Stealth Hat”

The character (Hat Hunter) is a
blue creature, which can wear a
variety of hats. At the begin-
ning of the game, each charac-
ter wears the most common hat,
the green “Stealth Hat”. After
a while, when a player gets close
to winning, his character changes
the hat to the personal one, which
reveals his identity to the other
players (see Figure 2.2). This rule
allows players that are behind to
gain an advantage by hiding between identically looking characters.
The Hat Hunter can move freely on the map but cannot cross obstacles or walk
through other characters. He can collect stars and items by walking through
them. The character can only hold one item at a given time. Any additional
item disappears when collected. The Hat Hunter can also place boxes, which can
act as an obstacle for others or as a shield for incoming projectiles. Every few
seconds, the player gets a new box. The amount of boxes a player can maximally
store before placing and the refill rate are determined by the game mode.

2.2.2 Obstacles

There are two types of obstacles in the game: boxes and stumps.
Boxes are placed by players or can be present at the beginning of the match on
certain maps. When a player places a box, it spawns at the closest map grid
position to the player and stays inactive until no characters occupy that place.
Players cannot pass through boxes but can destroy them using various items.
Stumps are obstacles distributed over the field. Their position is defined by the
map and can neither be created nor destroyed by players.

2.2.3 Stars

Stars are the key element to winning in the game. The possession of a spe-
cific number of stars triggers certain events. When reaching the first event, the

2. Game Concept 4

player’s hat changes to its personal one. On the second step, the player addi-
tionally gets a spotlight around itself and on the final one, the player wins the
game.
Stars spawn randomly all over the map in a certain spawn interval. Further,
they drop from players who have collected some stars when they get hit by a
projectile or an explosion. The lost star then moves away from that player and
bounces off obstacles until it gets collected by a Hat Hunter or a certain amount
of time has elapsed.

2.2.4 Items

Like stars, items spawn randomly with a given frequency all over the map. When
collected, they instantiate to a certain item type, which the Hat Hunter then
holds in his hands. The different item types can be seen in Figure 2.3.

Figure 2.3: Item types from left to right: Green, Red and Blue Projectile,
Time Bomb, Catapult Bomb, Apple, Teleport

Green Projectile

This is a simple projectile, which is shot in looking direction and bounces up
to 10 times off walls or boxes until it disappears. It can destroy boxes and hit
players.

Red Projectile

Unlike the green projectile, the red one does not bounce off walls and can only
destroy up to two boxes. This projectile targets the closest Hat Hunter it can
find in shooting direction and follows it until it reaches the target or hits a wall.

Blue Projectile

This projectile is the fastest and largest one of the three projectile types in the
game. It has about double the hit radius and destroys all boxes along the straight
line in which it moves over the field. It hits every player on its path and only

2. Game Concept 5

gets destroyed when colliding with a stump or when reaching the border of the
map.

Time Bomb

The time bomb can be placed on any free grid-point on the map. After a short
delay it detonates and destroys all boxes and hits all players within its radius of
impact, which has the size of three units. One unit is the length of a grid tile.

Catapult Bomb

The catapult bomb can be shot over the whole map, which makes it one of the
most versatile items in the game, but also one of the most difficult to aim. The
longer the player holds the shoot button, the further the bomb will fly. As soon
as the bomb lands on the floor it detonates and has the same effect as the time
bomb.

Apple

When using this item, the Hat Hunter eats the Apple and as a consequence
becomes a giant for a few seconds. When being a giant, the player can walk
through boxes and destroy them. The giant is also faster and cannot be blocked
by smaller players. However, when walking over smaller players the giant does
not hit them.

Teleport

The teleport item allows the player to switch its position with another Hat
Hunter. For that, he has to look at a specific character with which he wants to
switch places when using the item. The teleportation happens instantaneously
and makes it difficult for other players to keep track on who switched places with
whom. This adds another hiding mechanism to the game.

2.3 Modes

Previous to starting a game, the players can choose a certain game mode. A
game mode consists of a set of rules and parameters for the game, such as how
many stars are needed to win the game or how many AI characters are present.
It can also be specified which items are allowed in that mode. Additionally, the
mode defines if the game is played using the daytime theme (Figure 2.4) or the
midnight theme (Figure 2.5). The midnight theme has some dark spots on the

2. Game Concept 6

map, which allow players to hide.
There are some predefined modes, but it is possible to create custom modes and
import them into the game.

Figure 2.4: Daytime Figure 2.5: Midnight

2.4 Maps

In the menu, it can be chosen on which map the match takes place. The map
defines where stumps or boxes are placed on the field. It can also be configured
where items and stars can appear or where players spawn at the beginning of
the match. Additionally to the predefined maps, it is again possible to create
and import self-made ones.

Chapter 3

Implementation

3.1 Unity3D

For the implementation of Hat Hunters, one of the most popular game engines,
Unity3D [3], was used. The game engine contains a large set of tools, which help
reduce development time a lot. This set of tools can be extended by making use
of the assets available on the Unity Asset Store [4]. Some of the free assets are
also used for this project.
Unity3D has a visual editor, which allows to position static game elements easily
in the game world, without having to adjust all positions in code. The main
concept in Unity is that of a so called GameObject, around which everything in
the game evolves. The behaviors or the appearance of GameObjects are defined
by components, which can be attached to them. By far the most common com-
ponent is a script, which is written in C# and determines the behavior of that
GameObject. For visualization there are many predefined components within
Unity, such as the Renderer, ParticleEmitter, Animator, Light and many more.
Those which are frequently used throughout the project are highlighted in the
following.

3.2 Game Elements

Most of the elements in the game are created using a construct called Prefab.
Those are simply GameObjects which were created in the visual editor with
all their components attached and then stored as an asset, which can then be
instantiated at runtime, such as boxes placed by the player.

3.2.1 Field

The game field consists basically of a datastructure that holds information on
which elements are currently active on the field. It is divided into a grid, which
is used for the placement of objects on the field. For the static elements such as

7

3. Implementation 8

boxes, stumps or stationary stars there is a two dimensional array of the size of
the field representing the grid. Each array element either contains one of those
static elements or nothing if that field is free. This array allows for fast access,
insertion and deletion of those objects, which are common operations, especially
for the physics engine.
All the moving objects, such as players or projectiles, are placed in lists to which
objects can be added or removed during gameplay.
The field object is also responsible for populating the field at the beginning of
a game with the elements defined by the map and for regularly spawning stars
and items.

3.2.2 Hat Hunter

The Hat Hunter is one of the most complex elements in the game. There are
basically two kinds of Hat Hunters. The one that is controlled by a player,
which has an attached input system and the AI controlled Hat Hunter, which
has some custom logic defining its behavior instead. Along with the differences
in the control of the Hat Hunter there are slightly different rules for AI controlled
characters (bots). Bots cannot win the game, no matter how many stars they
collect. Neither do they get a personal hat, but always keep the green ”Stealth
Hat”.

3.2.3 Items

Figure 3.1: Item Distribution

Items can appear in three different
forms, spawned, collected and de-
ployed in the game and are treated
in each form as a completely different
object. When spawned on the field,
they are represented by green bounc-
ing question marks, which can be col-
lected by the Hat Hunters.
After being collected, the item turns
into a visual representation of that
specific item type and is held in the
character’s hands until he releases it
using the shoot button. Which item
the player gets depends on his current
score compared to the score of the other players. This score is normalized to a
value between 0 and 1. The items are arranged in a table (Figure 3.1) from bad
to good, into which this score indexes. The lower the score, the better the item.
The actual item obtained is then determined randomly by a normal distribution
around the player’s current score. If only a selection of items is available in a

3. Implementation 9

certain game mode, a uniformly random distribution is used over those items.
When being deployed, the item representation is removed from the character and
the actual item is instantiated on the map and performs its custom logic. The
character that releases the item is immune to being hit by that item for a short
time period, which prevents the item from immediately hitting its source player.

3.3 Physics

Instead of using the integrated physics engine of Unity, in this project a simple
custom physics system was created that fits the needs of the game. One of the
main reasons for that decision was to have full control over how the physics ob-
jects behave.

Figure 3.2: Collision Grid

Each of the objects in the game, which
should collide with others or trigger
certain actions when touching another
one, has a PhysicsBody attached. The
PhysicsBody defines the shape of the
object and whether it should act as a
trigger or actually collide with other
PhysicsBodies.
A moving object, for example a player,
checks after every moving step for a
collision with all other objects that
are nearby. The set of nearby ob-
jects contains all moving objects and
all stationary objects in the surround-
ing, which are retrieved from the field
array. The surrounding of a player is
highlighted in Figure 3.2.

Figure 3.3: Resolving a collision

For each of those nearby objects, a col-
lision object is created, which checks if
the PhysicsBodies actually collide. If
a collision takes place, all properties of
that collision are calculated, which are
necessary for the resolution. For that,
the collision depth of the two objects
is calculated in the x and y directions
as depicted in Figure 3.3. The smaller
of the two determines the direction in
which the collision should be resolved
and the distance that the object needs to be shifted away from the other object.

3. Implementation 10

The relative position of the center points decides whether the resolution direction
is up, down, left or right. In the collision, the object that moved into the other
one takes the role of the colliding object and the passive one takes the role of the
collided object. It does not matter if the passive object is also a moving object,
as only one object performs a move step at a time.
After the creation of that collision object, it is handed to the colliding object,
which can then decide what to do with it. This decision depends on the types of
the two objects participating in the collision and on the current state that the
objects are in.
For example, if a player collides with a stump, the player always resolves the
collision by moving itself out of the stump. On the other hand, when a projectile
collides with a player, it does not resolve the collision but either destroys the
projectile and removes a star from the player or simply ignores the collision if
the player is immune to that projectile just after it got shot. A detailed collision
matrix is shown in Figure 3.4.

Figure 3.4: Collision Matrix

3.4 AI

The AI describes the non-player characters (NPCs) in the game, which look
identically to the real players. The goal of the AI in Hat Hunters is mainly to
confuse the players about which character is a real player and therefore allows
the players to hide among the NPCs by behaving similarly.
The behavior of the AI is defined as follows:
The AI regularly updates its state, which basically consists of a current target
position and a set of possible target positions which have a certain priority as-
signed. The AI gets notified of each possible target as it appears or disappears.
Those targets include items, stationary stars and moving stars, which were lost
by a character. Other Hat Hunters are also treated as possible targets. In each
update the AI filters the targets in the following way: If the AI already holds an
item, it drops all items from the set of possible targets. On the other hand, if
the AI currently has no item, it drops the other characters as possible targets.
The remaining target positions get filtered by which are reachable on a straight
line and if none are left after this, some random target positions around the Hat

3. Implementation 11

Hunter are generated. As the current target position, the position of the closest
remaining target is picked.
The movement of the NPCs then simply is steering towards the current target
position.
The AI uses the item it holds depending on its type in different situations. For
example, projectiles are used when another character is ahead or a bomb is
placed if another Hat Hunter is within a small radius around the AI.

3.5 Menu

The menu consists of a Main Menu, which is shown prior to the game and
allows for player connection (Join Menu), mode (ModeSelection Menu) and map
(MapSelection Menu) selection and adjusting game settings (Settings Menu).
Further, there are some menus in the game, such as the Pause Menu or the
GameOver Menu.

3.5.1 Joining

Figure 3.5: Join Menu

The Join Menu shows four
panels, of which each can rep-
resent a connected player. Af-
ter connecting, a player needs
to choose its unique personal
hat from the seven available
ones. This hat is then used
to identify the player during
the game when he gets close to
winning and to visually repre-
sent the winner after a match.
When at least two players joined, it is possible to move on to the ModeSelection
Menu. By pressing the Start Button within the Join Menu, the Settings Menu
can be reached.

3. Implementation 12

3.5.2 Modes

Figure 3.6: Mode Menu

In the ModeSelection Menu
the players are presented a list
of game modes. It contains
the predefined ones, as well as
the custom modes appended
at the bottom. For the ac-
tively selected mode, a de-
scription is shown on the right
hand side of the menu.

3.5.3 Map

Figure 3.7: Map Menu

The MapSelection Menu is
structured similarly to the
ModeSelection Menu with a
list of predefined and custom
maps to the left and a pre-
view to the right. The pre-
view is generated from the
map data and displays icons
for all the game elements and
spawn places.

3.5.4 Settings

Figure 3.8: Settings Menu

The Settings Menu allows to
adjust the game’s graphics
quality, resolution, fullscreen
mode, whether audio is en-
abled and it allows to choose
folders from where custom
modes and maps are loaded.
This menu also shows the con-
trols for the gamepad, as well
as for the keyboard inputs.

3.5.5 Game Menus

From within the game, a Pause Menu is accessible which also allows to return
to the Main Menu at any time.

3. Implementation 13

After a completed match, a GameOver Screen shows a list of the players ordered
by how many stars they reached. This screen has the options to start another
round or to return to the Main Menu.

3.6 Game Assets

The assets for Hat Hunters are represented by a variety of components attached
to the GameObjects. In the following sections a brief overview and examples of
their creation is given.

3.6.1 3D Models

Figure 3.9: Character mesh

The 3D Models are all built using the
modeling software Blender [5]. The
models created in Hat Hunters include
the player, hats, items, stars and all
the other game elements which have
a 3-dimensional appearance. Blender
includes a collection of tools that help
to generate and position the vertices of
a mesh and therefore allows to create
such models like the Hat Hunter easily. In Figure 3.9, the mesh of the character
is shown. The meshes created in Blender are stored in a format that can be
read directly by Unity. This simplifies the modeling and testing workflow a lot,
because it is possible to modify the models while running the game.

3.6.2 Texturing

Figure 3.10: Texturing

For most of the 3D elements in the game, textures
are not needed, because they only have a few plain
colors assigned to their surface. Some exceptions
are the playing ground, which has a grass texture,
the plants around the hedge and the stumps. The
meshes for these objects are unwrapped and over-
lain by a texture. The tuft of grass for example
is simply an arced plane with a partly transparent
texture as shown in Figure 3.10.

3. Implementation 14

3.6.3 Rigging

Figure 3.11: Character poses

The only element in the game that has
a skeleton (rig) is the player. It is used
to deform the player’s mesh for anima-
tions such as walking, holding an item
and throwing a bomb. It is common
to model the character in the T-Pose
as shown in Figure 3.9, which simpli-
fies the rigging. The player skeleton
has a hierarchical structure and consists of some bones in the head, which have
the bones for the arms and the fingers attached. Using these bones, Blender can
add automatic weights for the vertices in the mesh, which define how strongly
they are influenced by the movement of those bones. Most of the time however,
it is necessary to adjust those weights using the weight painting tool, that allows
to paint directly on the mesh to specify how strongly it is influenced by each
bone.
The rig allows then to set up some poses for the character. A few of them are
presented in Figure 3.11.

3.6.4 Animation

Figure 3.12: Animation state machine

During the game, charac-
ters perform some animations
when certain events occur,
such as picking up an item or
throwing a bomb. These are
also created within Blender
by interpolating the poses de-
scribed above. Unity allows to
import them as well and offers
a built-in editor for anima-
tion state machines, which de-
scribe when objects perform
certain animations. Transi-
tions in the state machine can be triggered from a script. This enables for a
precise timing of the animations. The state machine in Figure 3.12 shows the
player state machine with the Walk state being a sub state machine, that blends
between walking and standing depending on the player’s velocity.

3. Implementation 15

3.6.5 Particle Effects

Particle effects bring a bit more liveliness into the characters and the game
as a whole. Unity has a built-in particle editor that allows to create highly
customizable effects.
The most dominant particle effects in the game are the clouds, which are floating
around or over the field. Further, there are some smaller particle effects when
collecting a star or when having the teleport item as shown in Figure 2.3 on the
right side.

3.6.6 Audio

The game contains some sound effects for most of the actions and events, as
well as an ambient sound for the daytime and the midnight theme. The sound
effects come from a website offering free sounds called freesound.org [6], from the
Steam Asset Store [4] or are self-made using a microphone and the audio editing
software ocenaudio [7].

Chapter 4

Conclusion And Outlook

4.1 Publishing

To publish the game on the Steam store [8], a number of preparations are nec-
essary.
To support the game for the three platforms macOS, Linux and Windows, es-
pecially the gamepad inputs need some extra configuration. To support all
these platforms and a variety of different game controllers, where most of them
have different mappings, an input management tool, which is freely available on
GitHub [9], is integrated into the existing one.
For the store page on Steam, some screenshots and a game trailer are necessary.
The trailer clips can be created directly inside of Unity, which supports the cre-
ation of cutscenes with a tool called Timeline. On this Timeline, the precise
timing of camera flights and game events can be defined. The trailer can be
found on the Steam store page of Hat Hunters [1].

4.2 Analytics

Figure 4.1: Hat popularity

Steam provides some basic stats of the
game to the developer, like the down-
load numbers or on what operating
system the users play. Four weeks af-
ter the release on Steam, the download
count was at about 2’800.
To get some insight on how the game
is played, some basic analytics are im-
plemented. For example, it gets re-
ported which modes, maps and hats
are played most often and how many
players participate in a match. The
hat statistics for the first four weeks is
shown in Figure 4.1.

16

4. Conclusion And Outlook 17

4.3 Feedback

During the development, the game was tested by some friends and after the
release, I also got some feedback from players on Steam. Most of the players
found the idea nice of keeping the identity of the characters secret. Some even
thought, that it should be kept secret a little longer before revealing the hat to
keep the excitement level high. According to some Steam players, when using
the keyboard, the controls were hard to figure out. To address this issue, a small
update was released to clarify these controls by showing keyboard controls in the
menus.
The hiding in the crowd of the AI characters turned out to work quite well, as it
is, according to user feedback and also from my own experience, often difficult
to distinguish the behavior of the AI from the one of the players. However, one
issue is, that the consequences are not strong enough of revealing the identity to
others. Although the revealed players are a target for others, it is still difficult
to hit them with the items or gain an advantage through that in some other way.

4.4 Future Work

Even though the game is already released on Steam it is far from being a closed
book. There are lots of opportunities to enhance or extend the game.
The modes and maps currently in the game need more testing and fine-tuning,
which is a time consuming task.
There is also a lot of room to extend the game with new modes or new items.
A new sort of collectibles could be added, which improves the players’ abilities
such as the movement speed or the box placing cooldown.
One could define spots on the map where the player needs to bring its collected
stars into safety. This would probably enable more strategies by blocking those
spots or waiting around them for other players to pass by, to steal their stars.
There are also ideas to strengthen the punishment of revealing the identity to
others by conspicuous behavior. For example, players could mark others as a
target for random events such as a lightning strike. This would allow to hit
other players only using hidden input and without revealing itself by explicitly
throwing a projectile. Another idea is to add an item, which allows to target
a player with some kind of cross-hair. If the targeted player is actually a real
player, he looses some of his stars and otherwise, the player controlling that
cross-hair gets hit by his own item.

Bibliography

[1] : Hat hunters. https://store.steampowered.com/app/874880/Hat_

Hunters/

[2] Spragg, A.: Hidden in plain sight. https://store.steampowered.com/app/
303590/Hidden_in_Plain_Sight/

[3] : Unity technologies: Unity 3d game engine. http://unity3d.com

[4] : Unity asset store. https://assetstore.unity.com/

[5] : Blender: Free and open source 3d creation suite. http://blender.org

[6] : Free sounds. https://freesound.org

[7] : Ocenaudio: Audio editor. http://www.ocenaudio.com

[8] : Steam: store page. https://store.steampowered.com

[9] : Incontrol on github. https://github.com/pbhogan/InControl

18

https://store.steampowered.com/app/874880/Hat_Hunters/
https://store.steampowered.com/app/874880/Hat_Hunters/
https://store.steampowered.com/app/303590/Hidden_in_Plain_Sight/
https://store.steampowered.com/app/303590/Hidden_in_Plain_Sight/
http://unity3d.com
https://assetstore.unity.com/
http://blender.org
https://freesound.org
http://www.ocenaudio.com
https://store.steampowered.com
https://github.com/pbhogan/InControl

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work

	2 Game Concept
	2.1 Goal
	2.2 Game Elements
	2.2.1 Character
	2.2.2 Obstacles
	2.2.3 Stars
	2.2.4 Items

	2.3 Modes
	2.4 Maps

	3 Implementation
	3.1 Unity3D
	3.2 Game Elements
	3.2.1 Field
	3.2.2 Hat Hunter
	3.2.3 Items

	3.3 Physics
	3.4 AI
	3.5 Menu
	3.5.1 Joining
	3.5.2 Modes
	3.5.3 Map
	3.5.4 Settings
	3.5.5 Game Menus

	3.6 Game Assets
	3.6.1 3D Models
	3.6.2 Texturing
	3.6.3 Rigging
	3.6.4 Animation
	3.6.5 Particle Effects
	3.6.6 Audio

	4 Conclusion And Outlook
	4.1 Publishing
	4.2 Analytics
	4.3 Feedback
	4.4 Future Work

	Bibliography

