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Abstract

Standard approaches for analysing Byzantine Agreement and Consensus Pro-
tocols typically just consider two types of players, honest and corrupted ones.
These approaches are also used to provide security guarantees for Bitcoin, by
assuming an upper bound on the fraction of corrupted players. This assump-
tion doesn’t reflect the reality, since it implies that every honest player is online
during the whole protocol execution.

We provide a way to relax this assumption. By dividing the honest parties
into alert (online) and sleepy (offline) parties, we can prove the security of Bitcoin
under the relaxed assumption that we only require the expected number of alert
parties to be larger than the corrupted players (by some factor). This setting
allows even temporary dishonest majorities during the protocol execution. We
will prove the security of the Bitcoin protocol by proving the three fundamental
blockchain properties Chain-Growth, Common-Prefix and Chain-Quality. In the
first part of this thesis, we are going to prove the three properties for a syn-
chronous model. We then extend these results to the bounded-delay model and
to a synchronous model, where we allow message losses. We provide remarkable
results for the security of Bitcoin in all three models, especially in the one, where
we allow message losses.
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Chapter 1

Introduction

Bitcoin is the most popular cryptocurrency today. Since the introduction in
2008 [1], it did not just get the attention from the public, but also became a new
research topic. By maintaining a public transaction ledger, called blockchain,
Bitcoin provides a decentralized payment system. Bitcoin owners can execute
transactions, which are broadcasted to all protocol participants via the Bitcoin
peer-to-peer network. The protocol participants, known as miners, try to solve
a Proof-of-Work in order to extend the blockchain with new blocks, containing
a certain amount of transactions. For creating a block, a miner is rewarded with
Bitcoins. These block rewards consist of transaction fees and new coins, which
are created in this way.

Bitcoins permissionless setting allows anyone participating the consensus pro-
tocol (as a miner) without the need to authenticate himself. We refer to these
anonymous protocol participants as players. Most of the existing approaches
proving the security of protocols like Bitcoin by assuming fixed number of n
players among at most t are corrupted. But this approach does not work well for
analyzing protocols in a permissionless and thus highly dynamic setting. This
follows from the fact that players can participate as they like and are not re-
stricted to stay online for a certain time. A study on the Bitcoin network from
[2] showed that from a set of players, online at some time, an expected fraction
of 20% will be offline after six hours. This is consistent with the study from [3],
observing only around 15% of the players still online after ten days. The model
of [4] captures this impact of offline players, thus is able to reflect the effect of
sporadic participation. We can show that Bitcoin (respectively the Backbone
protocol from [5]) is provably secure under such assumptions and going even
further by allowing temporary dishonest majorities, e.g. more corrupted than
online players. Of course, this should only happen with small probability, but we
will show that it is sufficient to have honest majority on expectation. Further, we
introduce a parameter c, which upper bounds the number of blocks, contributed
by the adversary. This is not needed to prove the security, but as [6] showed,
if the adversary follows a selfish mining strategy, he can gain a much higher
reward fraction compared to its fraction of the mining power. By choosing an
appropriate value for c, it is possible to upper bound this advantage.
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1. Introduction 2

Another problem of Bitcoin is that network delays significantly affect the
performance and security. By extending our synchronous model to the a semi-
synchronous model, we are going to show that the upper bound on offline parties
heavily depends on the maximum allowed message delay.

In the last section, we extend our analysis to a synchronous model, where we
allow message losses. This follows the idea described in [7], where the adversary
may perform an eclipse attack [8, 9] on some victim parties which enables him to
control the parties view of the blockchain. We are going to show security under
the assumption, that the adversary has the power to perform eclipse attacks to
a certain number of parties, depending on the number of corrupted players.



Chapter 2

The model

We adapt the model of Garay et al. [5], since we intent to prove the security of
the Backbone protocol, originally introduced in this work. We initially present
all the components of a general model and then we parametrize the model to
capture the three different models under which we later prove that the backbone
protocol is secure.

2.1 The execution

We assume a fixed set of n parties, executing the Bitcoin backbone protocol.
Each party can either be corrupted, sleepy or alert ; sleepy is an offline honest
node and alert an honest node that is actively participating in the protocol.

Involved programs

All programs are modeled as polynomially-bounded interactive Turing machines
(ITM) that have communication, input and output tapes. An ITM instance
(ITI) is an instance of an ITM running a certain program or protocol. Let
the ITM Z denote the environment program that leads the execution of the
Backbone protocol. Therefore Z can spawn multiple ITI’s running the protocol.
These instances are a fixed set of n parties, denoted by P1, . . . , Pn. The control
program C, which is also an ITM, controls the spawning of these new ITI’s
and the communication between them. Further, C forces the environment Z to
initially spawn an adversary A. The environment will then activate each party
in a round-robin way, starting with P1. This is done by writing to their input
tape. Each time, a corrupted party gets activated, A is activated instead. The
adversary may then send messages (Corrupt, Pi) to the control program and
C will register the party Pi as corrupted, as long as there are less than t < n
parties corrupted. Further, the adversary can set each party asleep by sending
a message (sleep, Pi) to the control program. The control program C will set
the party Pi asleep for the next round with probability s, without informing A

3



2. The model 4

if the instruction was successful or not.

Each party Pi has access to two ideal functionalities, the ”random oracle” and
the ”diffusion channel”, which are also modelled as ITM’s. These functionalities,
defined below, are used as subroutines in the Backbone protocol.

Rounds

A round of the protocol execution is a sequence of actions, performed by the
different ITI’s. In our setting, a round starts with the activation of the party
P1, which then performs the protocol-specific steps. By calling the below defined
diffuse functionality, P1 has finished it’s actions for the current round and Z will
activate P2. If the party Pi is corrupted, A will be activated and if Pi is asleep,
Pi+1 gets activated instead. The round ends after Pn has finished. Rounds are
ordered and therefore enumerated, starting from 1.

Views

Let us formally define the view of a party P . The only ”external” input to the
protocol is the security parameter κ. Therefore, we can consider κ to be constant
over all rounds of the execution and we can exclude it from the random variable
describing the view of a party. We denote by the random variable V IEWP,t,n

A,Z
the view of a party P after the execution of the Bitcoin backbone protocol in an
environment Z and with adversary A. The complete view over all n parties is
the concatenation of their views, denoted by the random variable V IEW t,n

A,Z .

Communication and ”hashing power”

The two ideal functionalities, which are accessible by the parties, model the
communication between them and the way of calculating values of a hash function
H(·) : {0, 1}∗ → {0, 1}κ concurrently.

The random oracle functionality

The random oracle (RO) provides two functions, a calculation and a verification
function. Each party is given a number of q calculation queries and unlimited
verification queries per round. Thus, an adversary with t corrupted parties may
query the random oracle for t · q calculation queries per round. Upon receiving
a calculation query with some value x by a party Pi, the random oracle checks,
whether x was already queried before. If not, the RO selects randomly y ∈ {0, 1}κ
and returns it. Further, the RO maintains a table and adds the pair (x, y) into
this table. If x was already queried before, the RO searches in the table for
the corresponding pair and returns the value y from it. It’s easy to see that a
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verification query now only returns true/valid, if such a pair exists in the table
of the RO. Note that the RO can maintain tables for different hash functions
and can be used for all hash functions we need.

The diffuse functionality

The diffuse functionality models the communication between the parties and
thus maintains a RECEIVE () string for each party Pi. Note that this is not the
same as the previously mentioned input tape. Each party can read the content
of its RECEIVE () string at any time. The message delay is denoted by ∆, where
∆ = 0 corresponds to a synchronous setting.

The diffuse functionality has a round variable, which is initially set to 1. Each
party Pi can send a message m, possibly empty, to the functionality, which then
marks Pi as complete for the current round. We allow A to read all the messages
that are sent by some Pi, without modifying, dropping or delaying it. When all
parties and the adversary are marked as complete, the functionality writes all
messages that are ∆ rounds old to the RECEIVE () strings of either only the alert
or all parties. We denote by B a Boolean function that indicates exactly that; if
B = 0 the diffuse functionality writes all messages to the RECEIVE () strings of
the alert parties, while if B = 1 the diffuse functionality writes all messages to
the RECEIVE () strings of all parties. Each party can read the received messages
in the next round being alert. At the end, round is incremented.

Note that in the case where B = 1, if a party is asleep at a round, it auto-
matically gets marked as complete for this round. Further, upon waking up, it
can read all the messages that were written to its RECEIVE () string while it
was asleep.

Successful queries

A query to the RO oracle is successful, if the returned value y < T , where
T is the difficulty parameter for the PoW function. The party, which have
issued the query will then create a new valid block and may distribute it by
the diffuse functionality. We denote the success probability of a single query by
p = Pr[y < T ] = T

2κ . Note that in Bitcoin, the difficulty parameter is adjusted
such that the block generation time is approximately ten minutes.

2.2 Sleepy, alert and corrupted

For each round i, we have at most t corrupted and nhonest,i = n−t honest parties.
Furthermore, the number of honest parties are divided to alert and sleepy parties,
nhonest,i = nalert,i + nsleepy,i. We assume without loss of generality that no
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corrupted party is asleep, since we only upper-bound the power of the adversary.
Since nalert,i and nsleepy,i are random variables, we can also use their expected
value. The expected value is constant over different rounds, thus we will refer
to them as E[nalert] and E[nsleepy]. Since each honest party is independently set
to sleep with probability s and thus the random variable nsleepy,i is binomially
distributed with parameters (n− t) and s. Accordingly, nalert,i is also binomially
distributed with parameters (n − t) and (1 − s). Hence, E[nsleepy] = s · (n − t)
and E[nalert] = (1− s) · (n− t).

2.3 Parametrized Model

Let M(q,∆, B) be the model, defined in this section. In the following sections,
we will look at three instantiations of this model. First of all, we are going
to analyze the model M(q, 0, 1), which corresponds to a synchronous setting,
in which each party has the ability to make q queries to the random oracle
and receives every message, even if the party is asleep. Then, we extend these
results to the bounded delay model, which corresponds to M(1,∆, 1). As before,
every party will always receive messages, but we restrict q to be 1. In the last
section, we analyze the model M(q, 0, 0), which corresponds to the synchronous
model, but we do not allow the diffuse functionality to write messages on the
RECEIV E() tapes of sleepy parties.

2.4 Properties

In order to prove the security of the Bitcoin backbone protocol, we are going to
analyze three different properties, following the analysis of [5]. These properties
are defined as predicates over V IEW t,n

A,Z , which will hold for all polynomially
bounded environments Z and adversaries A with high probability.

Definition 2.1. Given a predicate Q and a bound q, t, n ∈ N with t < n, we
say that the Bitcoin backbone protocol satisfies the property Q in the model
M(q,∆, B) for n parties, assuming the number of corruptions is bounded by t,
provided that for all polynomial-time Z,A, the probability that Q(V IEW t,n

A,Z)
is false is negligible in κ.

The following two Definitions concern the liveness and eventual consistency
properties of the Backbone protocol. Using the notation of [5], we denote a chain
C, where the last k blocks are removed, by Cdk. Further, C1 � C2 is denotes
that C1 is a prefix of C2.

Definition 2.2. The chain growth property Qcg with parameters τ ∈ R and
s ∈ N states that for any honest party P with chain C in V IEW t,n

A,Z , it holds
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that for any s+ 1 rounds, there are at least τ · s blocks added to the chain of P .
1

Definition 2.3. The common-prefix property Qcp with parameter k ∈ N states
that for any pair of honest players P1, P2 adopting the chains C1, C2 at rounds

r1 ≤ r2 in V IEW t,n
A,Z respectively, it holds that C

dk
1 � C2.

In order to argue about the number of adversarial blocks in a chain, we will
use the chain quality property, as defined below:

Definition 2.4. The chain quality property Qcq with parameters µ ∈ R and
l ∈ N states that for any honest party P with chain C in V IEW t,n

A,Z , it holds
that for any ` consecutive blocks of C the ratio of adversarial blocks is at most
µ.

1The Chain-Growth Property in [5] is defined slightly different: .., it holds that for any s
rounds, there are at least τ · s blocks added to the chain of P .. By considering the proof for
Theorem 3.8, one can see, why we use s+ 1 instead of s. It follows by the fact that the sum in
Lemma 3.7 only goes from i = r to s− 1 and not to s.



Chapter 3

The q-bounded Synchronous
Model without Message Loss

In this section, we analyze the Bitcoin backbone protocol in the previously de-
fined model, instantiated as M(q, 0, 1). This corresponds to the q-bounded syn-
chronous setting from [5]. First, we define the success probabilities for the alert
and corrupted parties, which will be used to prove the relations between them.
At the end, we use these results to prove the chain growth, common prefix and
chain quality properties.

Following the Definition of [5], let a successful round be a round in which at
least one honest party solves a PoW. The random variable Xi is used to indicate
successful rounds i by setting Xi = 1 and Xi = 0 otherwise. Further, we denote
for a set of rounds S: X(S) =

∑
i∈S Xi. We note that if no party is asleep, we

have E[Xi] = Pr[Xi = 1] = 1− (1− p)q(n−t), as in [5].

Lemma 3.1. It holds that pqE[nalert]
1+pqE[nalert]

≤ E[Xi] ≤ pqE[nalert].

Proof. By the definition of Xi, we know that E[Xi] = E[1 − (1 − p)qnalert,i ].
Thus, the second inequality can easily be derived using Bernoulli. And for the
first inequality holds:

8



3. The q-bounded Synchronous Model without Message Loss 9

E[Xi] =
n−t∑
k=0

E[Xi|nalert,i = k] · Pr[nalert,i = k] Law of total probability

=
n−t∑
k=0

(
1− (1− p)qk

)
·
(
n− t
k

)
(1− s)ksn−t−k nalert ∼ Bin(n− t, 1− s)

=

n−t∑
k=0

(
n− t
k

)
(1− s)ksn−t−k

−
n−t∑
k=0

(1− p)qk
(
n− t
k

)
(1− s)ksn−t−k

= 1−
(
s− (s− 1)(1− p)q

)n−t
Binomial Theorem (twice)

≥ 1−
(
s− (s− 1)(1− pq)

)n−t
By Bernoulli

≥ 1− e−(1−s)(n−t)pq 1− x ≤ e−x

= 1− 1

epqE[nalert]

≥ 1− 1

1 + pqE[nalert]
1 + x ≤ ex

=
pqE[nalert]

1 + pqE[nalert]

Further, we adapt the notation of a unique successful round from [5]. A
round is called a unique successful round, if exactly one honest party obtains a
PoW. Accordingly to the successful rounds, let the random variable Yi indicate
a unique successful round i with Yi = 1 and Yi = 0 otherwise. And for a set of
rounds S, let Y (S) =

∑
i∈S Yi.

Lemma 3.2. It holds E[Yi] = E[pqnalert,i(1−p)q(nalert,i−1)] ≥ E[Xi](1−E[Xi]).

Proof. To prove the required bounds, we need a few intermediary steps. Using
Bernoulli, we can derive the following:

E[Yi] = E[pqnalert,i(1− p)q(nalert,i−1)] ≥ E[pqnalert,i(1− pq(nalert,i − 1))]

Then, we have to prove that pqE[nalert](1− pqE[nalert]) ≥ E[Xi](1−E[Xi]).
From the upper bound on E[Xi], we can derive E[Xi] = pqE[nalert]−b, for b ≥ 0.
Therefore:
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E[Xi](1− E[Xi]) = (pqE[nalert]− b)(1− pqE[nalert] + b)

= pqE[nalert](1− pqE[nalert])− b2 − b+ 2pqE[nalert]b

In order to prove the required bound, it must hold that 0 ≥ −b2 − b +
2pqE[nalert]b, which is equivalent to 1 ≥ E[Xi] + pqE[nalert] and holds by the
fact that 2E[Xi] ≤ 1. This is also required by the proof in [5], but not stated
explicitly. Since in Bitcoin, E[Xi] is between 2% − 3%, the inequality can be
justified.

To conclude the proof, we just have to prove the following:

E[pqnalert,i(1− pq(nalert,i − 1))] ≥ pqE[nalert]− (pq)2E[nalert]
2

⇐E[nalert
2]− E[nalert] ≤ E[nalert]

2

Which is equivalent to V ar[nalert] ≤ E[nalert] and holds for the binomial
distribution.

Following the Definition of [5], let the random variable Zijk = 1 if the ad-
versary obtains a PoW at round i by the jth query of the kth corrupted party.
Otherwise, we set Zijk = 0. Summing up, gives us Zi =

∑t
k=1

∑q
j=1 Zijk and

Z(S) =
∑

i∈S Zi. Then, the expected number of blocks that the adversary can
mine in one round i is:

E[Zi] = qpt =
t

E[nalert]
pqE[nalert] ≤

t

E[nalert]
· E[Xi]

1− E[Xi]

3.1 Temporary dishonest majority assumption

We assume the honest majority assumption holds on expectation. Specifically,
for each round the following holds: t ≤ c ·(1−δ) ·E[nalert], where δ ≥ 2E[Xi]+2ε
and c ∈ [0, 1] is a constant. As in [5], δ refers to the advantage of the honest
parties and ε will be defined in Definition 3.4.

From the expected honest majority assumption, we can derive a possible
upper bound for s, depending on t, δ and c. Formally,

s ≤
n− t− t

c(1−δ)

n− t
= 1− 1

c(1− δ)
t

n− t
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3.2 Security analysis

The following two Definitions formalize typical executions of the Backbone pro-
tocol. Both of them are related to the hash functions, used for implementing the
Backbone Protocol. Further, the parameters ε and η are introduced. According
to [5], ε ∈ (0, 1) refers to the quality of concentration of random variables in typ-
ical executions and η corresponds to the parameter, determining block to round
translation.

Definition 3.3 ([5], Definition 8). An insertion occurs when, given a chain C
with two consecutive blocks B and B′, a block B∗ is such that B,B∗, B′ form
three consecutive blocks of a valid chain. A copy occurs if the same block exists
in two different positions. A prediction occurs when a block extends one which
was computed at a later round.

Definition 3.4 ([5], Definition 9). (Typical execution). An execution is (ε, η)−
typical if, for any set S of consecutive rounds with |S| ≥ ηκ, the following holds:

a) (1− ε)E[X(S)] < X(S) < (1 + ε)E[X(S)]

b) (1− ε)E[Y (S)] < Y (S)

c) Z(S) < (1 + ε)E[Z(S)]

d) No insertions, no copies and no predictions occurred.

Theorem 3.5. An execution is typical with probability 1− e−Ω(κ).

Proof. To prove a), b) and c), we can simply use a Chernoff bound by arguing
that E[X(S)], E[Y (S)] and E[Z(S)] are in Ω(|S|). The proof for the property
d) is equivalent to [5], by reducing these events to a collision in one of the hash
functions of the Bitcoin backbone protocol. Such collisions only happen with
probability e−Ω(κ).

The following Lemma shows the relations between the different expected
values. The bounds are required in all proofs of the three properties and therefore
essential. 1

Lemma 3.6. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[Xi]|S| < X(S) < (1 + ε)E[Xi]|S|
1The statement d) uses different factors as [5]. The problem is, that it’s even not possible

to prove the bounds from [5] with their Theorems, Lemmas and assumptions.
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b) (1− ε)E[Xi](1− E[Xi])|S| < Y (S)

c) Z(S) < (1 + ε) t
E[nalert]

E[Xi]
1−E[Xi]

|S| ≤ c(1 + ε)(1− δ) E[Xi]
1−E[Xi]

|S|

d) For σ = (1− ε)(1− E[Xi]):

Z(S) <
(

1 +
δ

σ

) t

E[nalert]
X(S) ≤ c

(
1− δ2

2σ

)
X(S)

e) Z(S) < Y (S)

Proof.

a) Follows directly from Definition 3.4.

b) By E[Yi] ≥ E[Xi](1− E[Xi]) and Definition 3.4.

c) The first inequality follows from Definition 3.4 and the second inequality
follows from the honest majority assumption.

d) Let us first prove the first inequality:

Z(S) < (1 + ε)E[Z(S)] By Definition 3.4

= (1 + ε)E[Zi]|S| Linearity of E[Z(S)]

≤ (1 + ε)
t

E[nalert]

E[Xi]

1− E[Xi]
|S| upper-bound for E[Zi]

< (1 + ε)
t

E[nalert]

1

1− E[Xi]

1

1− ε
X(S) By a)

So, the only thing left to prove is that 1+ε
1−ε

1
1−E[Xi]

≤ 1 + δ
σ :

1 + ε

1− ε
1

1− E[Xi]
− 1 =

1 + ε− σ
σ

=
2ε+ E[Xi]− εE[Xi]

σ
≤ δ

σ

For the second inequality, we can use the honest majority assumption,
which gives us:

(
1 +

δ

σ

) t

E[nalert]
≤ c ·

(
1 +

δ

σ

)
(1− δ)

= c
(

1 +
δ(1− σ − δ)

σ

)
≤ c
(

1 +
δ( δ2 − δ)

σ

)
Using 1− σ ≤ δ

2

≤ c
(

1− δ2

2σ

)
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e) To prove Z(S) < Y (S), we apply Lemma 3.6 b) and c) and then prove
that

(1 + ε)
t

E[nalert]

E[Xi]

1− E[Xi]
|S| < (1− ε)E[Xi](1− E[Xi])|S|

Dividing both sides with E[Xi]|S| and multiplying with (1 − E[Xi]) gives
us:

(1 + ε)
t

E[nalert]
< (1− ε)(1− E[Xi])

2

By the honest majority assumption, we get (1+ε) t
E[nalert]

≤ c(1+ε)(1−δ).
And since c ∈ [0, 1], we get c(1 + ε)(1− δ) ≤ (1 + ε)(1− δ). Thus, we only
need to prove that:

(1 + ε)(1− δ) ≤ (1− ε)(1− E[Xi])
2

⇔1 + ε− δ − δε ≤ 1− 2E[Xi] + E[Xi]
2 − ε+ 2εE[Xi]− εE[Xi]

2

⇔2ε+ 2E[Xi] + εE[Xi]
2 ≤ δ + E[Xi]

2 + 2εE[Xi] + δε

⇔εE[Xi]
2 ≤ E[Xi]

2 + 2εE[Xi] + δε

Where the last step was just applying 2E[Xi]+2ε ≤ δ. And since ε ∈ (0, 1):
εE[Xi]

2 ≤ E[Xi]
2.

Next, we prove Bitcoin is secure under temporary dishonest majority in the
q-bounded synchronous setting by proving the three properties defined in [5]:
chain growth, common prefix and chain quality.

3.3 Chain-Growth

In the following, we provide and prove a lower bound for the chain growth of the
backbone protocol. This property is generally known as liveness property. The
following Lemma holds since it only depends on the random variable Xi.

Lemma 3.7 ([5], Lemma 7). Suppose that at round r, an honest party has a
chain of length l. Then, by round s ≥ r, every alert party has adopted a chain of
length at least l +

∑s−1
i=r Xi.

Below, we prove Theorem 13 of [5] in this model.
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Theorem 3.8. In a typical execution, the chain-growth property holds with pa-
rameters τ = (1− ε)E[Xi] and s ≥ ηκ.

Proof. Note that it’s sufficient to lower-bound the chain growth by only consid-
ering the random variable Xi, because if the adversary obtains a PoW, he either
tries to ”replace” some block from a honest node or he just adds the block to
the chain. In both cases, the chain doesn’t get smaller.

Then, for any set of rounds S = {r1, . . . , rs} with |S| ≥ ηκ + 1 holds by
Lemma 3.7:

The chains of every honest player grows by at least
∑|S|−1

i=1 Xri = X(S \ rs).
Using Lemma 3.6, we can derive

X(S \ rs) > (1− ε)E[Xi](|S| − 1) ≥ (1− ε)E[Xi]ηκ

Now, we prove an upper bound for the chain growth of the backbone protocol.
The main difference to the lower bound is that we now also have to consider
blocks, contributed by the adversary.

Lemma 3.9. In ηκ consecutive rounds of a typical execution, less than (1 +
c)(1 + ε)ηκE[Xi] blocks are computed.

Proof. We know that for any set S of consecutive rounds, X(S)+Z(S) blocks can
be added in expectation. This is already an upper bound, since X(S) + Z(S)
blocks implies that the adversary does not replace any block from an honest
party. We can upper bound X(S) + Z(S) in the following way:

X(S) + Z(S) < X(S)
(

1 + c(1− δ2

2σ
)
)

By Lemma 3.6 d)

≤ X(S)(1 + c)

< (1 + c)(1 + ε)E[Xi]|S| By Lemma 3.6 a)

= (1 + c)(1 + ε)ηκE[Xi]

3.4 Common Prefix

In the following, we prove that the common prefix property holds for a lower
bounded parameter k. This proof provides the eventual consistency guarantees of
the Bitcoin backbone protocol. The following Lemma holds, since the adversary
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can try to replace blocks, computed by the honest parties. If he cannot or will
not, the new block gets diffused and adapted by every other party in the next
round.

Lemma 3.10 ([5], Lemma 6). Suppose the kth block B of a chain C was computed
by an honest party in a uniquely successful round. Then the kth block in a chain
C ′ is either B or has been computed by the adversary.

Using this fact, we are able to prove the following Lemma and the common
prefix Theorem, which are adapted from [5].

Lemma 3.11. Assume a typical execution and consider two chains C1 and C2

such that len(C2) ≥ len(C1). If C1 is adopted by an honest party at round r and

C2 is either adopted by an honest party or diffused at round r, then C
dk
1 � C2

and C
dk
2 � C1, for k ≥ (1 + c)(1 + ε)ηκE[Xi].

Proof. Equivalent to the proof in [5]. The Lemma can be shown by creating a set
of rounds S, in which at least k blocks were created. Then, using Lemma 3.10, we
can pair uniquely successful rounds in S with an adversarial block computed in

S. In order to violate C
dk
1 � C2 and C

dk
2 � C1, it must hold that Z(S) ≥ Y (S).

By Lemma 3.9, the properties of a typical execution have to apply for S, but
then Z(S) ≥ Y (S) contradicts Lemma 3.6 e).

Theorem 3.12. In a typical execution, the common-prefix property holds with
parameter k ≥ (1 + c)(1 + ε)ηκE[Xi].

Proof. Equivalent to the proof in [5]. By two considering chains C1 and C2,
violating the common-prefix property, we can derive a contradiction. Therefore,
let C1 and C2 be adopted by parties P1 and P2 at rounds r1 and r2. Let r1 ≤ r ≤
r2 be the round, in which some party Pi adopts a chain C ′2 such that C

dk
1 � C ′2.

For the case r = r1, the contradiction can be obtained by Lemma 3.11. And for
r1 > r, let C ′1 be the chain, which Pi adopted at round r−1. Using Lemma 3.11,
the Definition of r and that len(C ′2) ≥ len(C1) holds, because C ′2 was preferred
over C1 by some party, we can derive the following:

(
C
′dk
2 � C ′1

)
∧
(
C
dk
1 � C

′
1

)
∧
(
len(C

′dk
2 ) ≥ len(C

dk
1 )
)

=⇒ C
dk
1 � C

′dk
2

This contradicts the Definition of r.

3.5 Chain Quality

In this part, we are going to prove an upper bound on the adversarial blocks
in a chain. Intuitively, this upper bound is approximately equal to t

E[nalert]
, but

differs by some small factor, as we show in the following.
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Theorem 3.13. In a typical execution the chain-quality property holds with
parameters µ = (1 + δ

σ ) t
E[nalert]

< c · (1− δ2

2σ ) and ` ≥ (1 + c)(1 + ε)ηκE[Xi].

Proof. Follows the same logic as the proof from [5]. We first define L ≥ ` as the
minimal number of consecutive blocks, where the first block was created by an
honest party and some honest party tried to extend the chain ending at the last
block. Then, we define the set of rounds S as the rounds, where the L blocks
were created.

Then, let x denote the number of blocks, created by honest parties and
included in the ` blocks. To get a contradiction, assume that:

x ≤
(

1−
(

1 +
δ

σ

) t

E[nalert]

)
· ` ≤

(
1−

(
1 +

δ

σ

) t

E[nalert]

)
· L

.

Assuming a typical execution, we know that all L blocks are created during
rounds in S. Further, L ≥ X(S) can be shown, using Lemma 3.7. Thus:

Z(S) ≥ L− x ≥
(

1 +
δ

σ

) t

E[nalert]
· L ≥

(
1 +

δ

σ

) t

E[nalert]
X(S)

Where Z(S) ≥
(

1 + δ
σ

)
t

E[nalert]
X(S) contradicts Lemma 3.6 d), since by

Lemma 3.9, the rules of a typical execution apply for the set S.

As a result of Theorem 3.13, we can finally make use of the constant c. As
we just proved, the fraction of adversarial blocks is upper bounded by c ·(1− δ2

2σ ).
This means that we can adjust the desired fraction, by changing c. Of course,
since 1 − δ2

2σ is a bit lower than one and the ratio will be higher than c. But
the difference will be very small and it’s possible to adjust c until we have the
desired bound. In order to restrict the advantage of selfish mining, it’s possible
to analyze the Bitcoin backbone protocol, by selecting the wished upper bound
by setting c accordingly.



Chapter 4

The semi-Synchronous Model
without Message Loss

In this section, we extend the previously seen results to the semi-synchronous
(bounded delay) model. This means, that we allow ∆1 delays for the messages,
as described in the Definition of our model. In order to realize the proofs, we
have to restrict q to be 1. And as in the last section, we do not assume message
losses. Therefore, we refer in this section to the model M(1,∆, 1).

Due the introduced network delays, we need to redefine unique successful
rounds, because they do not provide the same guarantees in the this model.
Especially, Lemma 3.10 will not hold in the new model. Therefore, we will intro-
duce two new random variables, one for successful and one for unique successful
rounds in the bounded delay model. Note, that the chances for the adversary do
not change and we can use the bounds from the synchronous model.

Following the work of [5], let the random variable X ′i be defined such that for
each round i, X ′i = 1, if Xi = 1 and Xj = 0, ∀j ∈ {i−∆ + 1, . . . , i− 1}. A round
i is called ∆-isolated successful round, if X ′i = 1. Further, let X ′(S) =

∑
i∈S X

′
i.

Using Bernoulli, we can derive the following bound on E[X ′i]:

E[X ′i] = E[Xi](1− E[Xi])
∆−1 ≥ E[Xi](1− (∆− 1)E[Xi])

In order to prove eventual consistency, we have to rely on a stronger events
than just uniquely successful rounds. In [5], this is achieved by defining the
random variable Y ′i such that for each round i, Y ′i = 1, if Yi = 1 and Xj = 0,
∀j ∈ {i−∆+1, . . . , i−1, i+1, . . . , i+∆−1}. Then, a round i is called ∆-isolated
unique successful round, if Y ′i = 1. Further, let Y ′(S) =

∑
i∈S Y

′
i . As before, we

can lower bound E[Y ′i ] using Bernoulli:

E[Y ′i ] = E[Xi](1− E[Xi])
2∆−1 ≥ E[Xi](1− (2∆− 1)E[Xi])

1According to Theorem 11 of [4], the parameter ∆ has to be known by the honest parties
to achieve state machine replication, e.g. achieving consensus.

17
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4.1 Temporary dishonest majority assumption

We assume again honest majority on expectation, such that for each round t ≤
c · (1 − δ) · E[nalert], where δ ≥ 2∆E[Xi] + 4ε + 4∆

ηκ and c ∈ [0, 1] is a constant.
2 The reason for the higher value of δ (compared to the synchronous model) is
that E[Y ′i ] ≤ E[Yi] and we need a way to compensate this difference.

4.2 Security analysis

To prove chain growth, common prefix and chain quality, we first define typical
executions for this model.

Definition 4.1 ([5], Definition 27). An execution is (ε, η,∆)-typical if, for any
set S of consecutive rounds with |S| ≥ ηκ, the following hold.

a) (1− ε)E[X ′(S)] < X ′(S) and X(S) < (1 + ε)E[X(S)]

b) (1− ε)E[Y ′(S)] < Y ′(S)

c) Z(S) < (1 + ε)E[Z(S)]

d) No insertions, no copies and no predictions occurred.

Theorem 4.2. An execution is typical with probability 1− e−Ω(κ).

Proof. Equivalent to the proof of Theorem 3.5.

The following Lemma corresponds to the semi-synchronous version of Lemma
3.6. Most of the relations follow the same structure and are similar to prove as
in the synchronous model.

Lemma 4.3. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[Xi](1− E[Xi])
∆−1|S| < X ′(S)

b) (1− ε)E[Xi](1− E[Xi])
2∆−1|S| < Y ′(S)

c) Z(S) < (1 + ε) t
E[nalert]

E[Xi]
1−E[Xi]

|S| ≤ c(1 + ε)(1− δ) E[Xi]
1−E[Xi]

|S|

2One might notice that our lower bound of δ differs from the lower bound from [5]. First of
all, they provided two different values for δ, where both of them are wrong in the sense that
they are too small in order to prove the needed bounds.
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d) Let S′ = {r, . . . , r′} with |S′| ≥ ηκ. For S = {r, . . . , r′ + ∆} and σ′ =
(1− ε)(1− E[Xi])

∆:

Z(S) <
(

1 +
δ

2σ′

) t

E[nalert]
X ′(S′)

e) Let S′ = {r, . . . , r′} with |S′| ≥ ηκ. For S = {r −∆, . . . , r′ + ∆}:

Z(S) < Y ′(S′)

Proof.

a)

(1− ε)E[Xi](1− E[Xi])
∆−1|S| ≤ (1− ε)E[X ′i]|S| Definition of E[X ′i]

= (1− ε)E[X ′(S)]

< X ′(s) Definition 4.1 a)

b)

(1− ε)E[Xi](1− E[Xi])
2∆−1|S| ≤ (1− ε)E[Y ′i ]|S] Definition of E[Y ′i ]

= (1− ε)E[Y ′(S)]

< Y ′(S) Definition 4.1 b)

c) Equivalent to Lemma 3.6 c).

d) By applying a) and c), we only have to prove that the following holds:

(1 + ε)|S| ≤ (1− ε)(1− E[Xi])
∆|S′|

(
1 +

δ

2σ′

)
⇔(1 + ε)

|S|
|S′|

≤ σ′
(

1 +
δ

2σ′

)
⇐

1 + ε+ 2∆
ηκ

σ′
− 1 ≤ δ

2σ′

⇔
1 + ε+ 2∆

ηκ − (1− ε)(1− E[Xi])
∆

σ′
≤ δ

2σ′

⇐2ε+
2∆

ηκ
+ ∆E[Xi] ≤ δ

2

Where we applied Bernoulli to (1 − E[Xi])
∆. The proof is concluded by

the Definition of δ.
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e) By applying b) and c), we only have to prove that the following holds:

(1 + ε)
t

E[nalert]
|S| ≤ (1− ε)(1− E[Xi])

2∆|S′|

⇐(1 + ε)c(1− δ) |S|
|S′|

≤ (1− ε)(1− E[Xi])
2∆

⇔1− δ ≤ (1− ε)(1− E[Xi])
2∆

c(1 + ε)
(

1 + 2∆
ηκ

)
Therefore:

1− (1− ε)(1− E[Xi])
2∆

c(1 + ε)
(

1 + 2∆
ηκ

) ≤
(1 + ε)

(
1 + 2∆

ηκ

)
− (1− ε)(1−∆E[Xi])

2

(1 + ε)
(

1 + 2∆
ηκ

)
=

2ε+ 2∆E[Xi] + (1 + ε)2∆
ηκ −O(∆2)

(1 + ε)
(

1 + 2∆
ηκ

)
≤ 2ε+ 2∆E[Xi] +

4∆

ηκ

≤ δ

Which again follows from the Definition of δ. Note that O(∆2) isn’t as big
as it seems to be. In fact, its equal to ∆2E[Xi]

2 − 2∆εE[Xi]− ε∆2E[Xi]
2,

which will be relatively small.

4.3 Chain growth

Note, that the chain growth upper bound holds, as it is, since it only depends
on X(S) and Z(S).

Lemma 4.4 ([5], Lemma 26). Suppose that at round r an honest party has a
chain of length l. Then, by round s ≥ r+ ∆− 1, every honest party has adopted
a chain of length at least l +

∑s−∆
i=r X ′i.

Proof. Equivalent to [5], by induction on s− r −∆ + 1 ≥ 0.

Theorem 4.5. In a typical execution, the chain-growth property holds with pa-
rameters τ = (1− ε)E[Xi](1− E[Xi])

∆−1 and s ≥ ηκ.

Proof. Equivalent to the proof from the synchronous case, but using Lemma 4.4
instead.
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4.4 Common prefix

The following Lemma is the adopted version of Lemma 3.11.

Lemma 4.6. Assume a typical execution and consider two chains C1 and C2 at
round r, such that len(C2) ≥ len(C1). For the same conditions of Lemma 3.11,

it holds C
dk
1 � C2 and C

dk
2 � C1, for k ≥ (1 + c)(1 + ε)ηκE[Xi] + 2∆.

Proof. The proof is the same as in Lemma 3.11, but considering a set S′ = {i :
r∗ + ∆ < i < r −∆} to contradict Z(S) < Y ′(S′) from Lemma 4.3.

Theorem 4.7. In a typical execution, the common-prefix property holds with
parameter k ≥ (1 + c)(1 + ε)ηκE[Xi] + 2∆.

Proof. Equivalent to the proof from Theorem 3.12.

4.5 Chain quality

Theorem 4.8. In a typical execution, the chain-quality property holds with pa-

rameters µ =
(

1 + δ
2σ′

)
t

E[nalert]
and ` ≥ (1 + c)(1 + ε)ηκE[Xi] + ∆.

Proof. As in Theorem 3.13, we can argue that for S′ = {r : r1 ≤ r ≤ r2 −∆}:

Z(S) ≥ L− x ≥
(

1 +
δ

2σ′

) t

E[nalert]
L ≥

(
1 +

δ

2σ′

) t

E[nalert]
X ′(S′)

which is contradicting Lemma 4.3 d).



Chapter 5

The q-bounded Synchronous
Model with Message Loss

As in the synchronous case, we do not restrict the number of queries and assume
no message delays. In the previous sections, we assumed that messages, sent
from the diffusion functionality, will be written on the RECEIVE () string of
each party. However, in this section, we assume that the messages only get
written to the RECEIVE () strings of alert parties, i.e. sleepy parties do not
receive messages. We therefore refer to the model instantiated as M(q, 0, 0).
This models the worst possible event of the reality, because in Bitcoin itself,
parties that were offline will check on the currently longest chain, once they get
back online. This model captures the effects if none of them receives one of the
currently longest chains, thus are eventually a victim of an eclipse attack. This
implies that it’s not necessarily true that all parties’ local chains have the same
length.

This change to the model leads to major differences compared to the results
from the previous sections. In this case, unique successful rounds doesn’t provide
the same guarantees as before, especially Lemma 3.10 doesn’t hold any more.

In the following, we denote by Ci the set of chains containing all longest
chains that exist at round i. Further, we refer to the local chain of player Pj at

round i by Lji .

The following Lemma shows the expected number of honest players, which
have adopted one of the longest chains existing at the current round.

Lemma 5.1. At every round i, there are expected E[nalert] = (1 − s)(n − t)
parties j, such that Lji ∈ Ci.

Proof. We will prove the Lemma by induction over all rounds of an execution.
The base case is trivial, because at round 1, every party starts with the genesis
block. Now for the step case, assume that the Lemma holds at round i. Then
we show that it holds at round i + 1 too. In order to prove this, we perform a
case distinction:

22
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• Case Xi = 0: No new chains will be diffused, therefore no new chains can
be adopted and we can apply the induction hypothesis.

• Case Zi = 0: Analogue to the previous case.

• Case Xi = 1: (But Yi = 0) Now we have to differentiate, if the new blocks
extend some chain in Ci not:

a) Some longest chain is extended:

Every party, which is not asleep at round i will adopt one of the pos-
sibly multiple resulting new longest chains. Thus, there are expected
E[nalert] alert parties which will have adopted one of the longest chains
at round i+ 1.

b) No longest chain is extended:

No honest party, whose local chain is already one of the currently
longest chain will adopt a new chain, since it’s length will not be
larger than the length of its local chain. Thus, we can apply the
induction hypothesis.

• Case Yi = 1: As in the case before, every party, which was alert at round
i, will adopt the resulting chain, if its length is larger than the length of
its local chain. As before, there are E[nalert] alert parties which will have
adopted one of the longest chains at round i+ 1.

• Case Zi = 1: Analogue to the previous case. But if the adversary withholds
the found block, the case Zi = 0 applies and at the round, where it diffuses
this block, this case applies.

By the Lemma above, at every round i only expected (1 − s)(n − t) parties
j have a local chain Lji ∈ Ci. And a fraction of (1 − s) of them will again be
sleepy in the following rounds. Therefore, let n∗alert,i denote the number of alert

parties j at round i, where Lji ∈ Ci.
It’s easy to see that n∗alert,i is binomially distributed with parameters (n− t)

and (1− s)2. Let E[n∗alert] = (1− s)2(n− t) denote the expected value of n∗alert,i,
omitting the round index i, since the expected value is equal for all rounds.
We define the random variable X∗i which indicates, if at least one of the n∗alert,i
parties solves a PoW at round i. Thus, we set X∗i = 1, if some honest party j

with Lji ∈ Ci solves a PoW at round i and X∗i = 0 otherwise. Further, we define
for a set of rounds S: X∗(S) =

∑
i∈S X

∗
i . The following Lemma can be proven,

using the same argumentation as in the proof for the Lemma 3.1:

Lemma 5.2. It holds that
pqE[n∗alert]

1+pqE[n∗alert]
≤ E[X∗i ] ≤ pqE[n∗alert].
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Accordingly, let Y ∗i denote the random variable with Y ∗i = 1, if exactly one

honest party j solves a PoW at round i and Lji ∈ Ci. Note that the resulting
chain, will be the only longest chain. Further, for a set of rounds S let Y ∗(S) =∑

i∈S Y
∗
i .

Lemma 5.3. It holds E[Y ∗i ] = E[pqn∗alert,i(1−p)
q(n∗alert,i−1)] ≥ E[X∗i ](1−E[X∗i ]).

Proof. The proof follows the exactly same steps as the proof for Lemma 3.2.

5.1 Temporary dishonest majority assumption

In this setting, the honest majority assumption changes slightly. We cannot
simply assume that t is smaller than some fraction of E[n∗alert], because we have

also to consider parties j with Lji /∈ Ci. We assume that for each round holds
t + (1 − s)E[nsleepy] ≤ c · (1 − δ) · E[n∗alert], where δ ≥ 3ε + 2E[X∗i ] and some
constant c ∈ [0, 1]. Note that (1 − s)E[nsleepy] is the fraction of alert parties,
working on shorter chains.

In order to compute the upper bound for s, we reformulate the honest ma-
jority assumption. Using the quadratic formula, this results in the following:

s ≤
2c(1− δ)−

√
1 + 4(1 + c(1− δ) t

n−t)

2(1 + c(1− δ))

In the model description, we specified that the adversary is not informed if
a party Pi is set to sleep, after sending an instruction (sleep, Pi) to the control
program C. This assumption is realistic since the adversary can not be certain
about the success of his attempt to create a crash-failure. Further, allowing the
adversary to know when he successfully set to sleep a node makes him quite
powerful. Specifically, in our model we have a fraction of 1 − s alert parties.
Subtracting the parties, which are working on a longest chain, from the (1−s)(n−
t) parties, leaves us an expected fraction of s(1− s) parties, which can be found
on the left hand side of the honest majority assumption. If we would assume that
the adversary knows, which parties are asleep at each round, we would have to
change the temporary dishonest majority assumption to t+E[nsleepy] ≤ c · (1−
δ) ·E[n∗alert]. Then, the adversary could exploit this knowledge to his advantage
and send sleep instructions to the parties working on the longest chains. To
capture this adversarial behaviour a different model would be necessary (since s
cannot be considered constant).
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5.2 Security analysis

Lemma 5.4. Suppose that at round r, the chains in Ci have size l. Then by
round s ≥ r, an expected number of E[nalert] = (1 − s)(n − t) parties will have
adapted a chain of length at least l +

∑s−1
i=r X

∗
i .

Proof. By Lemma 5.1, for every round i, the expected number of parties j with
Lji ∈ Ci is E[nalert]. Therefore, we only have to count the number of times, when
one of these longest chains gets extended.

In the following, we define a new variable φ and provide an upper bound for
it. This is required for the proof of the common prefix property. Although the
proven bound is not tight, it is sufficient for proving the desired properties.

Lemma 5.5. The probability that the honest parties j with Lji /∈ Ci can create a
new chain C ′ ∈ Cr for some round r ≥ i, before any chain from Ci gets extended
is denoted by φ. It holds that:

φ ≤ s

1− s

Proof. Without loss of generality, we may assume that all parties j with Lji /∈ Ci
have the same local chain. Further, we can assume that this chain is just one
block shorter than the currently longest chain. Thus, we search an upper bound
for the probability that the parties {Pj}Lji /∈Ci are faster in solving two PoW’s

than the parties {Pj}Lji∈Ci solving one PoW.

In order to prove that, we have to introduce a new random variable X̃i,
with X̃i = 1 if some honest party j with Lji /∈ Ci solves a PoW. By the same

argumentation as in Lemma 3.1, we can argue that
pq(1−s)E[nsleepy ]

1+pq(1−s)E[nsleepy ] ≤ E[X̃i] ≤
pq(1− s)E[nsleepy]. Therefore, the upper bound on the required probability is:

∞∑
k=2

(k − 1)E[X̃i]
2(1− E[X̃i])

k−2(1− E[X∗i ])k

=
E[X̃i]

2

(1− E[X̃i])2
·
∞∑
k=2

(k − 1)
(
(1− E[X̃i])(1− E[X∗i ])

)k
=

E[X̃i]
2(1− E[X∗i ])2

(E[X̃i] + E[X∗i ]− E[X̃i]E[X∗i ])2

Now, let a := pq(1 − s)2(n − t) = pqE[n∗alert] and b := pqs(1 − s)(n − t) =
pq(1− s)E[nsleepy]. Then by the Definition of E[X̃i] and E[X∗i ] holds:
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E[X̃i]
2(1− E[X∗i ])2

(E[X̃i] + E[X∗i ]− E[X̃i]E[X∗i ])2
=

b2
(

1
1+a

)2(
a

1+a + b
1+b − ab

)2
=

b2

(1 + a)2(1− ab)2(a+ ab+ b)2

Thus, φ ≤ s
1−s is equivalent to:

b2

(1 + a)2(1− ab)2(a+ ab+ b)2
≤ s

1− s
⇔b2(1− s) ≤ s(1 + a)2(1− ab)2(a+ ab+ b)2

⇔ab ≤ (1 + a)2(1− ab)2(a+ ab+ b)2

The inequality holds, since (1 + a)2(1− ab)2 ≥ 1 and ab ≤ (a+ ab+ b)2.

The following Lemma replaces Lemma 3.10. The possibility to have chains
of different length at the same round offers various ways to replace a block from
a round i, where Y ∗i = 1. Therefore, we cannot use the same arguments as in
Lemma 3.10.

Lemma 5.6. Suppose the kth block B of a chain C was computed at round i,
where Y ∗i = 1. Then with probability at least 1 − φ, the kth block in a chain C ′

will be B or requires at least one adversarial block to replace B.

Proof. There are several ways to replace a block from a round i, where Y ∗i = 1:

1) The adversary has a precomputed block B′, replacing B directly. Thus, in
the same round, A diffuses the chain C ′, where the last added block is B′.

2) The parties j, with Lji /∈ Ci and thus with Lji 6= C solve a PoW at some
round r ≥ i, leading to a new block on some chain C ′, which has the
same length as C. Then, A extends and diffuses C ′ before C gets further
extended.

3) The adversary solves a PoW and creates some chain C ′. As in the second
case, we may assume that the length of C and C ′ is equal. Then at some
round r ≥ i, either A or at least one party j with Ljr = C ′ solve a PoW,
resulting in the creation of the set Cr.

4) The parties j with Lji /∈ Ci are faster in solving two PoW’s, before C gets
extended.
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The cases 1) - 3) involve at least one adversarial block, as required. And by
Lemma 5.5, we know that the case 4) only happens with probability φ.

As in the previous sections, we are going to define typical executions and
then prove that executions are typical with high probability.

Definition 5.7. An execution is (ε, η)-typical if, for any set S of consecutive
rounds with |S| ≥ ηκ, the following hold.

a) (1− ε)E[X∗(S)] < X∗(S) and X(S) < (1 + ε)E[X(S)]

b) (1− ε)E[Y ∗(S)] < Y ∗(S)

c) Z(S) < (1 + ε)E[Z(S)]

d) No insertions, no copies and no predictions occurred.

Theorem 5.8 ([5], Theorem 28). An execution is typical with probability 1 −
e−Ω(κ).

Proof. Equivalent to the proof of Theorem 3.5.

Since we allow message losses in this model, we require more unique successful
rounds than in other models. This leads to a different bound in part e) of the
following Lemma.

Lemma 5.9. The following hold for any set S of at least ηκ consecutive rounds
in a typical execution.

a) (1− ε)E[X∗i ]|S| < X∗(S)

b) (1− ε)E[X∗i ](1− E[X∗i ])|S| < Y ∗(S)

c) Z(S) < (1 + ε) t
E[n∗alert]

E[X∗i ]
1−E[X∗i ] |S| < (1 + ε)

(
c(1− δ)− s

1−s
) E[X∗i ]

1−E[X∗i ] |S|

d) For σ∗ = (1− ε)(1− E[X∗i ]):

Z(S) <
(

1 +
δ

σ∗

) t

E[n∗alert]
X∗(S) ≤ c

(
1− δ2

2σ∗

)
X∗(S)

e)
Z(S) < Y ∗(S)(1− ε)(1− φ)
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Proof.

a) Follows directly from Definition 5.7.

b) By E[Y ∗i ] ≥ E[X∗i ](1− E[X∗i ]) and Definition 5.7.

c) The first inequality follows from Definition 5.7 and the second inequality
follows from the honest majority assumption.

d) Let us first prove the first inequality:

Z(S) < (1 + ε)E[Z(S)] By Definition 5.7 c)

= (1 + ε)E[Zi]|S| Linearity of E[Z(S)]

≤ (1 + ε)
t

E[n∗alert]

E[X∗i ]

1− E[X∗i ]
|S| upper-bound for E[Zi]

< (1 + ε)
t

E[n∗alert]

1

1− E[X∗i ]

1

1− ε
X∗(S) By a)

So, the only thing left to prove is that 1+ε
1−ε

1
1−E[X∗i ] ≤ 1 + δ

σ∗ :

1 + ε

1− ε
1

1− E[X∗i ]
− 1 =

1 + ε

σ∗
− 1 =

1 + ε− σ∗

σ∗
≤ 2ε+ E[X∗i ]

σ∗
≤ δ

σ∗

For the second inequality, we can apply the honest majority assumption
and just need to prove:

c
(

1 +
δ

σ∗

)(
(1− δ)− s

1− s

)
≤ c
(

1− δ2

2σ∗

)
⇐
(

1 +
δ

σ∗

)
(1− δ) ≤ 1− δ2

2σ∗

⇔1 +
δ

σ∗
− δ − δ2

σ∗
≤ 1− δ2

2σ∗

⇔ δ

σ∗
− δ ≤ δ2

2σ∗

⇐1− σ∗ ≤ δ

2

which follows from the Definition of σ∗ and δ.

e) The proof goes straight forward, using parts b) and c):
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Z(S) < Y ∗(S)(1− ε)(1− φ)

⇐(1 + ε)E[Zi]|S| ≤ (1− ε)2E[Y ∗i ]|S|(1− φ)

⇐(1 + ε)
t

E[n∗alert]
≤ (1− ε)2(1− E[X∗i ])2(1− φ)

⇐(1 + ε)
(
c(1− δ)− s

1− s
)
≤ (1− ε)2(1− φ)(1− 2E[X∗i ] + E[X∗i ]2)

⇐1− δ − s

1− s
+ ε ≤ 1− 2ε− φ+ εφ− 2E[X∗i ](1− ε)2(1− φ)

⇐3ε+ 2E[X∗i ] + φ− s

1− s
≤ δ

⇐3ε+ 2E[X∗i ] ≤ δ

where the last step follows from Lemma 5.5 and the inequality holds ac-
cording to the Definition of δ.

5.3 Chain-growth

Note that the chain growth upper bound holds with the parameters from the
synchronous model without message losses and we just have to prove the new
lower bound. Intuitively, if we set s = 0, the upper bound is equal to the upper
bound from the synchronous model without message losses.

Theorem 5.10. In a typical execution, the chain-growth property holds with
parameters τ = (1− ε)E[X∗i ] and s ≥ ηκ.

Proof. Equivalent to the proof from the synchronous case, but using Lemma 4.4
instead.

5.4 Common-prefix

Only the proof for the common prefix Lemma changes, since we have several
possibilities to replace a block in this new model. This is formalized in the proof
of the Lemma below.

Lemma 5.11. The Lemma 3.11 holds in this model with the same parameters
as in the synchronous model without message losses.

Proof. The proof follows the same logic as in the synchronous model without
message losses. We create a set of round S, in which at least k blocks were
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created. In order to violate C
dk
1 � C2 and C

dk
2 � C1, each block created in a

round i ∈ S, where Y ∗i = 1 has to be replaced. Using Lemma 5.6, it holds that
an expected fraction of 1− φ block replacements involve at least one adversarial
block. Using Chernoff, we can argue that for |S| rounds, the fraction of such block
replacements is lower bounded by (1− ε)(1−φ) with probability 1−eΩ(κ). Thus,

C
dk
1 � C2 and C

dk
2 � C1 is violated if and only if Z(S) > Y ∗(S)(1 − ε)(1 − φ).

And by Lemma 3.9, the properties of a typical execution have to apply for S,
but then Z(S) > Y ∗(S)(1− ε)(1− φ) contradicts Lemma 5.9 e).

Theorem 5.12. In a typical execution, the common-prefix property holds with
parameter k > (1 + c)(1+ε)ηκE[Xi].

Proof. Equivalent to the proof from the synchronous model without message
losses, but using Lemma 5.11 instead.

5.5 Chain-Quality

Theorem 5.13. In a typical execution, the chain-quality property holds with
parameters µ = (1 + δ

σ∗ )
t

E[n∗alert]
≤ c · (1− δ2

2σ∗ ) and ` ≥ (1 + c)(1 + ε)ηκE[Xi].

Proof. We can use the same arguments as in the proof from the synchronous
model without message losses. Assume that x ≤ (1 − (1 + δ

σ∗ )
t

E[n∗alert]
) · ` ≤

(1− (1 + δ
σ∗ )

t
E[n∗alert]

) · L. Then, by Lemma 5.4, it holds that L ≥ X∗(S), which

implies that Z(S) ≥ L− x ≥ (1 + δ
σ∗ )

t
E[n∗alert]

· L ≥ (1 + δ
σ∗ )

t
E[n∗alert]

X∗(S). The

contradiction is obtained by Lemma 5.9 d).



Chapter 6

Main results

As a result of the temporary dishonest majority assumptions, we have derived
upper bounds for the probability s as shown in Figure 6. Therefore, we fixed
c = 0.5 to limit the advantage of an adversary, following a Selfish Mining strategy.
Further, we have chosen for all three models ε = 0.005. For the synchronous
model without message losses, we set E[Xi] = 0.03, which results in δ = 0.07.1

For the Semi-Synchronous model, we set also E[Xi] = 0.03, resulting in E[X ′i] =
0.022. For ∆ = 10, we then get δ = 0.46. And for the synchronous model with
message losses, we have chosen E[X∗i ] = 0.03, which results in δ = 0.075.

One might be wondering how we could allow such high values for s. We have
fixed E[Xi], respectively E[X∗i ], for our calculations. We can do this without
loss of generality, since these expected values are dependent on p, which depends
on the difficulty parameter T . The adjustment of T , used to regulate the block
generation rate, depends on the fraction of sleepy parties, because they do not
provide computational power (e.g. new blocks) to the blockchain.

These results are also consistent with the results from [10], where the upper

1Note that δ is dependent on E[Xi], which is again dependent on s. If we would remove this
dependency, the results would be at most 2% better than the actual results shown in Figure 6.

Figure 6.1: This figure shows the upper bound on the fraction of sleepy parties,
depending on the fraction of corrupted parties.
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bound on the adversarial fraction is stated at 49.1%. If we set c = 1 and s = 0,
due the value of δ, we get an maximal possible adversarial fraction of 48.5%.



Chapter 7

Related Work

This work is built upon the ideas and results of two papers. The Backbone
protocol and the framework for the security proofs can be found in [5]. Further,
a large part of the model is adapted from [5], which is founded on the work of Ran
Canetti in [11, 12, 13]. The sleepy model was introduced in [4], in which Rafael
Pass and Elaine Shi present a provably secure protocol when parties can go offline
for a certain amount of time. But the proofs are based on the assumption that
the fraction of corrupted over the alert parties is always less than some constant.
As we showed, we can even relax this assumption for Bitcoin by just assuming
honest majority on expectation.

Ouroboros, described in [14], is also proven in a sleepy model. The parties,
called stakeholders, can be offline for some time, but are required to be online
at important events such as during the slot, where they are elected slot leaders.
Since in Ouroboros, the parties receive their block reward when they are elected
slot leader, they have a much higher interest in being online at this certain time
slot, where in Bitcoin the overall online time (combined with the hashing power)
determines the rewards. This is then captured in our model, where each player
is round independent set to sleep with some probability.

33



Chapter 8

Conclusion

In this thesis we combined and extended the work of [5] and [4]. We were able to
prove the security of Bitcoin, respectively the security of the Backbone protocol
in the sleepy model, by just assuming honest majority on expectation. This
shows the resistance of the Bitcoin protocol, which is able to recover from peaks
of adversarial power above 50%. The q-bounded synchronous model, where we
allow message losses provide one of the most realistic abstractions of the reality
and shows nevertheless the security of Bitcoin. The results imply that Bitcoin
can withstand very powerful adversaries who can perform eclipse attacks on a
number of honest parties.

However, we did not consider a more powerful adversary, who is informed
about the success of introduced crash-failures. This would be very interesting to
study, since this involves a non-constant probability s and new strategy for the
adversary.
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