
Distributed
 Computing

High Dimensional Clustering

Bachelor Thesis

Alain Ryser

aryser@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Zeta Avarikioti, Yuyi Wang

Prof. Dr. Roger Wattenhofer

October 11, 2018

Acknowledgements

I thank my supervisors Zeta Avarikioti and Yuyi Wang for helping me working
out the thesis. Also many thanks to Professor Roger Wattenhofer for making it
possible to submit the paper High Dimensional Clustering with r-nets to AAAI-
19. Note that the aforementioned paper was submitted in the scope of this thesis,
therefore expect a major overlap with this thesis.
Special thank also goes to my friends and family, who supported me wherever
and whenever they could, to make the thesis and my Bachelors study a success.

i

Abstract

In this thesis, we study r-nets, a well known data structure in computational
geometry. Specifically, we focus on cases where the data points are high di-
mensional. In high dimensional datasets, constructing r-nets is considered to
be efficient when the runtime of the algorithm has a polynomial dependency on
the dimension and a sub-quadratic dependency on the cardinality of the dataset.
Towards this end, we relax the definition of r-nets and consider approximate
solutions. Many problems can be reduced to finding approximate r-nets, from
which a few are presented in this thesis. We devise algorithms that improve
the run-time of approximating r-nets in high-dimensional spaces with `1 and `2
metrics from Õ(dn2−Θ(

√
ε)) to Õ(dn+n2−α), where α = Ω(ε1/3/log(1/ε)). These

algorithms are also used to improve a framework that provides approximate solu-
tions to other high dimensional distance problems. Using this framework, several
important related problems can also be solved efficiently (with the same runtime
as the construction of the r-nets), e.g., (1 + ε)-approximate kth-nearest neighbor
distance, (4 + ε)-approximate Min-Max clustering, (4 + ε)-approximate k-center
clustering. In addition, we build an algorithm that (1 + ε)-approximates greedy
permutations in time Õ((dn + n2−α) · log Φ) where Φ is the spread of the in-
put. This algorithm is used to (2 + ε)-approximate k-center with the same time
complexity.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . 1

1.2 Our Contribution . 2

2 Approximate r-nets 4

2.1 Approximate r-net in Hamming Space 4

2.1.1 Sparsification . 5

2.1.2 Distance Matrix . 6

2.1.3 Building a Net . 8

2.2 Approximate r-nets in Euclidean Space 9

2.2.1 `1 case . 9

2.2.2 `2 case . 12

3 Applications 13

3.1 Net & Prune Framework . 13

3.1.1 kth-Smallest Nearest Neighbor Distance 14

3.2 Min-Max Clustering . 15

3.3 k-center . 18

3.3.1 (4 + ε) approximate k-center 19

3.3.2 (2+ε) approximate k-center with dependency on the spread 20

4 Conclusion & Future Work 23

Bibliography 24

iii

Chapter 1

Introduction

Clustering aims at grouping together similar objects, where each object is often
represented as a point in a high dimensional space. Clustering is considered
to be a cornerstone problem in data science and machine learning, and as a
consequence there exist multiple clustering variants. For instance, while each
cluster may just be represented as a set of points, it is often advantageous to
select one point of the data set as a prototype for each cluster.

The formal representation of such a prototype clustering is known as r-nets.
Given a large set of n data points in d-dimensional space, an r-net is a subset
(the prototypes) of these data points. This subset needs to fulfill two properties:
First, balls of radius r around each of the prototypes need to contain every point
of the whole data set (covering). Second, we must ensure that the prototypes
are well separated, i.e., no ball contains the center of any other ball (packing).
Approximate r-nets lift the covering constraint a tiny bit by allowing balls to
have a slightly larger radius than r, while preserving the packing property, i.e.,
any two prototypes still need to have at least distance r.

Throughout this thesis, we assume data sets to be large and high dimensional.
We therefore assume the number of features d of each object to be non-constant.
This leads to interesting and important problems, as this assumption forces us to
think about algorithms whose runtime is sub-exponential (preferably linear) in
the number of features d. In addition, we want our runtime to be sub-quadratic
in the size n of our data. In this thesis we lay theoretical groundwork, by showing
improved algorithms on the approximate r-net problem and applications thereof.

1.1 Related Work

There is not a unique best clustering criterion, hence many methods [1] are
proposed to solve the clustering problem for different applications (e.g., [2, 3, 4,
5]), which makes it difficult to systematically analyze clustering algorithms.

In our thesis we will make use of so-called polynomial threshold functions
(PTF), a powerful tool developed by [6]. PTFs are distributions of polynomi-

1

1. Introduction 2

als that can efficiently evaluate certain types of Boolean formulas with some
probability. They are mainly used to solve problems in circuit theory, but were
also used to develop new algorithms for other problems such as approximate all
nearest neighbors or approximate minimum spanning tree in Hamming, `1 and
`2 spaces. In the following, we employ this method to develop an algorithm that
computes approximate r-nets.

The algorithmic framework Net & Prune, was developed by [7]. It is able to
solve so called nice distance problems, when provided with a suitable data struc-
ture for the problem. These data structures are often constructed by exploiting
r-nets. A major drawback of the framework is its restriction to a constant num-
ber of features. Consequentially, this framework was later extended by [8] to
also solve higher dimensional cases. The algorithm, constructed in this thesis,
yields an immediate improvement on this framework, as the construction of the
framework is based around approximate r-nets. We also present various of the
previously mentioned data structures that we plug into the framework to solve
high dimensional distance optimization problems.

Recent work by [9] suggests a way of constructing approximate greedy per-
mutations with approximate r-nets. Greedy permutations imply an ordering of
the data, which provide a solution to 2-approximate k-center clustering as shown
by [10]. We present a similar construction, by applying approximate greedy per-
mutations.

An approach on hierarchical clustering was presented by [11]. They construct
an algorithm that is based around furthest first traversal, which is essentially
building a greedy permutation and then traversing the permutation in order.

In [12] they present how random projections, in practice, can be applied to
reduce the dimension of given data. We later employ a similar approach, namely
random projections to lines, to reduce the approximate r-net problem with `1
metrics to a low-dimensional subspace.

1.2 Our Contribution

The following thesis presents new theoretical results on the construction of (1+ε)-
approximate r-nets, improving the previous upper bound by [8]. We denote n as

the number of data points, d the dimension of the data and α = Ω(ε
1
3 / log(1

ε))
for an arbitrary error parameter ε. The algorithm builds approximate r-nets in
Hamming, `1 and `2 spaces, running in Õ(n2−α+n1.7+αd)1 time in the Hamming
space and Õ(dn+ n2−α) time in the Euclidean spaces.

We also modify our algorithm to yield an improvement on the Net & Prune

1The Õ notation throughout the thesis hides logarithmic factors in n and polynomial terms
in 1

ε

1. Introduction 3

framework of [8]. Supplying the framework with certain data structures, which
are created using approximate r-nets, we derive new algorithms with improved
runtime on (1 + ε)-approximate k-smallest nearest neighbor distance, (4 + ε)-
approximate Min-Max Clustering, introduced in [7], and (4 + ε)-approximate
k-center clustering. These algorithms run in Õ(dn + n2−α) for data sets in `1
or `2 spaces. With the exception of approximate k-smallest nearest neighbor,
this is, to our knowledge, the first time this framework is used to solve these
problems in high dimensional spaces. We later also design a new algorithm to
(2 + ε)-approximate k-center clustering, by deriving an improved version of the
algorithm for (1 + ε)-approximate greedy permutations in [9]. Both of these
algorithms have a runtime of Õ((dn+ n2−α) log Φ), where Φ denotes the spread
of the data. We define the spread of a dataset as the fraction of the diameter
over the shortest distance of the graph.

Chapter 2

Approximate r-nets

In this chapter, we present an algorithm that builds approximate r-nets in `1 and
`2 spaces. To that end, we first derive an algorithm, that constructs approximate
r-nets in Hamming space. We later show how to reduce the problem from `1 or
`2 to Hamming space.

2.1 Approximate r-net in Hamming Space

Building approximate r-nets in Euclidean space is computationally expensive.
Therefore, we initially restrict ourselves to datapoints on the vertices of a high
dimensional hypercube. The distance between any two datapoints is then mea-
sured by the Hamming distance. In the following, we define the notion of ap-
proximate r-nets in this metric space, where the error is additive instead of
multiplicative.

Definition 2.1. Given a point set X ⊂ {0, 1}d, a radius r ∈ R, an approximation
parameter ε > 0 and the Hamming distance denoted as ‖ · ‖1, an approximate
r-net of X with additive error ε is as subset C ⊂ X such that the following
properties hold:

1. (packing) For every p, q ∈ C, p 6= q, it holds that

‖p− q‖1 ≥ r

2. (covering) For every p ∈ X, there exists a q ∈ C, s. t.

‖p− q‖1 ≤ r + εd (additive error)

To construct approximate r-nets we employ Probabilistic Polynomial Thresh-
old Functions, a tool introduced in [6]. To effectively apply this technique, we
require a sparse dataset, meaning that we assume that most of the points are fur-
ther than r from each other. To that end, we present a technique that sparsifies
the data in advance without losing meaningful data for our problem.

4

2. Approximate r-nets 5

2.1.1 Sparsification

To sparsify our data, we apply brute force to build part of the approximate r-net.
Intuitively, we randomly pick a center point from our dataset and then remove
every point that is closer then r + εd from the center, by checking every point
of the dataset. This technique was originally introduced in [8]. The prove of
Theorem 2.2 closely follows this work.

Theorem 2.2. Given X ⊂ {0, 1}d, |X| = n, ε > 0, the Hamming distance which
we denote as ‖ · ‖1 and some distance r ∈ R, we can compute a set X ′ ⊂ X with

Pr[Y ≤ n1.7] ≥ 1− n−0.2

and a partial r-net C of X \X ′, where
Y := |{{i, j}|xi, xj ∈ X ′, ‖xi − xj‖1 ≤ r + εd}| the number of points with close
distance to each other, in time O(dn1.5).

Proof. We create a copy of X and call it X ′. After that, we repeat the following√
n times: Choose a point xi ∈ X ′ uniformly at random, delete it from X ′ and

add it to C. Then check for each x ∈ X ′, if ‖x − xi‖1 ≤ r + εd. If so, delete x
from X ′ as well. We do this in O(dn1.5) time.
Let Y := |{{i, j}|xi, xj ∈ X ′, ‖xi−xj‖1 ≤ r+εd}|. By doing a case distinction we
now prove Pr[Y ≤ n1.7] ≥ 1− n−0.2. Let Ai be the number of points with small
distance to a randomly chosen point p in the i-th iteration. Now first assume
that E[Ai] > 2n0.5;∀i ∈ {1, ...,

√
n}. Thus the number of points to be deleted

in each iteration is at least 2n0.5 + 1 in expectation which results in more then
n deleted points after

√
n iterations. Therefor, if our assumption holds, we get

|X ′| = 0 after at most
√
n iterations. Pr[Y ≤ n1.7] ≥ 1 − n−0.2 then holds as

Y = 0.
Next assume that ∃i ∈ {1, ...,

√
n},E[Xi] ≤ 2n0.5. If we reach such an i, we have

at most 2n0.5 small distances left between a random point of X ′ and all the points
within X ′ in expectation. After all iterations, the number of ”small” distances
is therefor no more then 2n1.5 in expectation. Thus, by Markov’s inequality:

Pr[Y ≤ n1.7] = 1− Pr[Y ≥ n1.7] ≥ 1−O(n−0.2). (2.1)

We now prove correctness of the partial approximate r-net C. For every point
p ∈ X \X ′ there will be a net point in C that has distance at most r + εd from
p, as we only removed points from X’ which satisfy this property. For every two
points p, q ∈ C we have ‖p− q‖1 > r, because if the distance was less or equal to
r, either p would have been deleted in the iteration of q or vice versa (whatever
point came first). This concludes the proof.

2. Approximate r-nets 6

2.1.2 Distance Matrix

Next we introduce a tool, called distance matrix, to approximate r-nets. To con-
struct a distance matrix, we partition the dataset into disjoint sets of equal size.
The rows of the matrix correspond to partitions and the columns to points of
the dataset. Each entry holds a value which indicates if any of the points in a
partition (row) is at most r + εd close to a data point (column). We use Proba-
bilistic Polynomial Threshold Functions, formally defined below, to construct a
matrix with such indicator values.

Definition 2.3 ([6]). If f is a Boolean function on n variables, and R is a ring,
a probabilistic polynomial for f with error 1

s and degree d is a distribution D of
degree-d polynomials over R such that {0, 1}n, P rp∼D[p(x) = f(x)] ≥ 1− 1

s .

The main building block to construct the distance matrix is Theorem 2.4,
which uses the fact that each entry of the distance matrix can be expressed as a
Boolean formula.

Theorem 2.4 ([6]). Given d, s, t, ε, we can construct a probabilistic polynomial

P̃ : {0, 1}ns → R of degree at most ∆ := O((1
ε)

1
3 log(s)) with at most s ·

(
n
∆

)
,

such that:

1. If
s∨
i=1

[
n∑
j=1

xij ≥ t] is false, then |P̃ (x11, ..., x1n, ..., xs1, ..., xsn)| ≤ s with

probability at least 2
3

2. If
s∨
i=1

[
n∑
j=1

xij ≥ t+ εn] is true, then P̃ (x11, ..., x1n, ..., xs1, ..., xsn) > 2s with

probability at least 2
3

Before we show how to construct the distance matrix for a given dataset, we
cite the following Lemma by [13], on rectangular matrix multiplication.

Lemma 2.5 ([13]). For all sufficiently large N , and α ≤ .172, multiplication
of an N × Nα matrix with an Nα × N matrix can be done in N2poly(logN)
arithmetic operations, over any field with O(2poly(logN)) elements.1

Next, we present how to build the distance matrix, combining fast matrix
multiplication and Probabilistic Polynomial Threshold Functions.

Theorem 2.6. Let X be a set of n points in {0, 1}d, a radius r ∈ R, some

ε � log6(d logn)

log3 n
, α = Ω(ε

1
3

log(d
ε logn

)
) and let ‖ · ‖1 denote the Hamming distance.

There exists an algorithm that computes, with high probability, a n1−α×n matrix
W and a partition S1, ..., Sn1−α of X that satisfies the following properties:

1A proof can be found in the Appendix of [14]

2. Approximate r-nets 7

1. For all i ∈ [n1−α]2 and j ∈ [n], if min
p∈Si
‖xj − p‖1 ≤ r then Wi,j > 2|Si|.

2. For all k ∈ [n1−α] and j ∈ [n], if min
p∈Si
‖xj − p‖1 > r+ εd, then |Wi,j | ≤ |Si|

The algorithm runs in Õ(n2−α).

Proof. We construct an algorithm that is similar to the one used for near-
est/furthest neighbor search in Hamming space, presented in [6]. We first create
a random partition of X into disjoint sets S1, ..., Sn1−α , each of size s := nα. For
every such Si and every point q ∈ X we then want to test, if at least one point is
within (r+ εd) distance of q or not. This can be expressed as a Boolean formula
in the following way:

F (Si, q) := [min
p∈Si
‖p− q‖1 ≤ r + εd]

=
∨
p∈Si

[
d∑
j=1

(pjqj + (1− pj)(1− qj)) ≥ d− (r + εd)]

=
∨
p∈Si

[

d∑
j=1

(pj − 0.5)(2qj − 1) ≥ d− (r + εd) + 0.5]

Applying Theorem 2.4, we construct a probabilistic PTF to express F (Si, q). We
then give a bound on the maximum number of monomials, according to Theorem
2.4:

s ·
(

O(d)

O((1
ε)

1
3 log(s))

)
≤ nα ·O(

d

(α

ε
1
3

) log n
)
O(α

ε1/3
logn)

≤ nα · nO((α

ε1/3
) log(d

α logn
)) � (n1−α)0.1

As stated in [6], this bound also holds for the construction time of the polynomial.
Next we sample a polynomial f from the probabilistic PTF for F (Si, q). As
presented by [6], we are able to do this in O(n log(d) log(nd)) time. We then
split f into two vectors φ(Si) and ψ(q) of (n1−α)0.1 dimensions over R s.t. their
dot product results in the evaluation of the corresponding polynomial. We are
able to do this as the polynomial P (x11, ...x|Si|d) has parameters of the form
xij = (pj − 0.5)(2qj − 1). This reduces the problem of evaluating n2−α many
polynomials to multiplying a matrix A := n

s × (ns)0.1, where the i-th row of A
consists of φ(Si)

T , with a matrix B := (ns)0.1 × n, where the i-th column of
B consists of ψ(xi). We further reduce the multiplication, by splitting B into

2By [k] we denote the set {1, 2, ..., k}

2. Approximate r-nets 8

s matrices of size (ns)0.1 × n
s . By Lemma 2.5 we are able to do each of these

multiplications in Õ((ns)2) arithmetic operations over an appropriate field. The

total time of the multiplications is then Õ(n
2

s) = Õ(n2−α) as we do s matrix
multiplications.

We then reassemble each of the s matrices by placing them next to each
other, such that the j-th column corresponds to the point qj ∈ X. This leads to
the matrix W where

1. Wij > 2|Si| if

∨
p∈Si

[

d∑
j=1

(pj − 0.5)(2qj − 1) ≥ d− (r + εd) + 0.5 + εd]

= [min
p∈Si
‖p− q‖1 ≤ r]

2. |Wij | ≤ |Si| if

∧
p∈Si

[
d∑
j=1

(pj − 0.5)(2qj − 1) < d− (r + εd) + 0.5]

= [min
p∈Si
‖p− q‖1 > r + εd]

By Theorem 2.4, the error probability of each entry is 1
3 which can be lowered

to 1
n3 by repeating O(log n) times and taking majorities. The overall runtime is

then Õ(n2−α).

2.1.3 Building a Net

Now, we present how we can build an approximate r-net for a data set, as in [8]:
we first employ the sparsification technique and then build the distance matrix in
the sparse dataset where we can search efficiently. The running time of building
an approximate r-net is dominated by the time complexity of the construction
of the distance matrix.

Theorem 2.7. Given X ⊂ {0, 1}d with |X| = n, some distance r ∈ R and

some ε � log6(d logn)

log3 n
, we can compute a set C that contains the centers of an

approximate r-net with additive error at most ε with high probability in time

Õ(n2−α + n1.7+αd), where α = Ω(ε
1
3

log(d
ε logn

)
).

Proof. We apply Theorem 2.2 to the set X with radius r and error ε. This
results in the remaining points X ′, a partial approximate r-net C ′ for X \X ′ and

2. Approximate r-nets 9

Pr[Y ≤ n1.7] ≥ 1− n−0.2, where Y := |{{i, j}|xi, xj ∈ X ′, ‖xi − xj‖1 ≤ r + εd}|,
in time O(n1.5d). We then apply Theorem 2.6 to assemble the distance matrix
W and the partition S1, ..., Sn1−α on inputs X ′, ε and r. If we encounter more
then n1.7 entries Wij where Wij > 2|Si|, we restart the algorithm. As we know
that Pr[Y ≤ n1.7] ≥ 1 − n−0.2, with high probability we pass this stage in a
constant number of runs.

Next, we iterate top down over every column of W . For every column j,
first check if xj is already deleted. If this is the case we directly skip to the
next column. Otherwise set C = C ∪ {xj} and delete xj . For every entry
in that column such that Wi,j > 2|Si|, we then delete every x ∈ Si where
‖xj − x‖1 ≤ r + εd.

As we iterate over every column of W , which correspond to every point of X ′,
the net fulfills covering. Since points that are added as centers were not covered
within r of a center by previous iterations, C also fulfills packing. Thus C now
contains the net points of an approximate r-net of X ′.

By Theorem 2.6, building the distance matrix takes Õ(n2−α) time and it-
erating over every entry of W takes Õ(n2−α) time as well. For at most n1.7 of
these entries, we check the distance between points in a set Si and the point
of the current column which takes another O(n1.7+αd). The runtime is thus as
stated.

2.2 Approximate r-nets in Euclidean Space

In this section, we reduce the problem of computing approximate r-nets from
Euclidean to Hamming space. Then, we apply Theorem 2.7 to compute ap-
proximate r-nets in Euclidean space. We distinguish between `1 and `2 metrics.
Specifically, we first show how to map the dataset from Euclidean space with `1
metric to Hamming space. Then, we present a reduction from `2 to `1 Euclidean
space. Note that the error in the original Euclidean space is multiplicative, while
in Hamming space additive. Although the proofs of both Theorem 2.9 and 2.10
use the same mappings as in [6], the problem of computing r-nets is different
and more general than finding the closest pair, thus we cannot directly cite their
results.

2.2.1 `1 case

To reduce the problem of computing approximate r-nets from the Euclidean to
the Hamming space (with `1 metric) we use Locality Sensitive Hashing (LSH),
formally defined below.

Definition 2.8. Let r, c ∈ R and p1, p2 ∈ [0, 1] where p1 > p2. A distribution D
of hash functions is called (r, cr, p1, p2)-sensitive, if, for a metric space V under

2. Approximate r-nets 10

norm ‖ · ‖, a hash function h randomly drawn from D satisfies the following
conditions for any points x, y ∈ V :

1. ‖x− y‖ ≤ r ⇒ Pr[h(x) = h(y)] ≥ p1

2. ‖x− y‖ ≥ cr ⇒ Pr[h(x) = h(y)] ≤ p2

We call hashing methods that exhibit these properties locality sensitive hash
functions (LSH).

Now, we show how to compute approximate r-nets in Euclidean space under
the `1 norm, by employing a specific instance of LSH functions.

Theorem 2.9. For a set of input points X ⊂ Rd, some radius r ∈ R and some

error ε� log6(logn)

log3 n
, with high probability, we can construct a (1+ε)-approximate

r-net under `1 euclidean norm ‖·‖ in time Õ(dn+n2−α) where α = Ω(ε
1
3 / log(1

ε))

Proof. The following inequalities, are the same as the ones derived in [6] for their
algorithm that finds all nearest/furthest neighbors of a set. First apply a variant
of locality sensitive hashing, to map points from `1 to Hamming space. For
each point p ∈ X and i ∈ {1, ..., k}, k = O(ε−2 log n), we define hash functions

hi = {hi1(p), ..., hid(p)}, where hij =
⌊
paij+bij

2r

⌋
, aij ∈ {1, ..., d} and bij ∈ [0, 2r)

sampled independently uniformly at random. For each value hi(p), we define
fi(p) = 0 with probability 1

2 or fi(p) = 1 with probability 1
2 . We then define a

new point in Hamming space as f(p) = (f1(p), ..., fk(p)). For any p, q ∈ X, the

2. Approximate r-nets 11

following properties then hold:

Pr[hij(p) 6= hij(q)] =
1

d

d∑
a=1

min{|pa − qa|
2r

, 1}

Pr[fi(p) 6= fi(q)]

= Pr[fi(p) 6= fi(q)|hi(p) = hi(q)]Pr[hi(p) = hi(q)]

+ Pr[fi(p) 6= fi(q)|hi(p) 6= hi(q)]Pr[hi(p) 6= hi(q)]

= 0 +
1

2
Pr[hi(p) 6= hi(q)]

=
1

2
Pr[

d∨
j=1

hij(p) 6= hij(q)]

=
1

2
(1− Pr[

d∧
j=1

hij(p) = hij(q)])

=
1

2
(1−

d∏
j=1

Pr[hij(p) = hij(q)])

=
1

2
(1−

d∏
j=1

(1− Pr[hij(p) 6= hij(q)]))

(2.2)

1. If ‖p− q‖ ≤ r then Pr[hij(p) 6= hij(q)] ≤ 1
2d and thus

Pr[fi(p) 6= fi(q)] ≤ 1
2(1− (1− 1

2d)d) := α0

2. If ‖p− q‖ ≥ (1 + ε)r then Pr[hij(p) 6= hij(q)] ≥ 1+ε
2d and thus

Pr[fi(p) 6= fi(q)] ≤ 1
2(1− (1− 1+ε

2d)d) := α1

Then it follows that α1 − α0 = Ω(ε). By applying a Chernoff bound, we derive
the following:

1. If ‖p − q‖ ≤ r then E[‖f(p) − f(q)‖] =
k∑
i=1

Pr[‖fi(p) − fi(q)‖] ≤ kα0 and

thus Pr[‖f(p)− f(q)‖ ≤ α0k +O(
√
k log n) := A0] ≥ 1−O(1

n)

2. If ‖p− q‖ ≥ (1 + ε)r then E[‖f(p)− f(q)‖] =
k∑
i=1

Pr[‖fi(p)− fi(q)‖] ≥ kα1

and thus Pr[‖f(p)− f(q)‖ ≥ α1k −O(
√
k log n) := A1] ≥ 1−O(1

n)

As we know that α1 − α0 = Ω(ε) it is easy to see that
A1 − A0 = k(α1 − α0) − O(

√
k log n) = Ω(kε). For the new set of points

X ′ := f(X), we construct an approximate r-net with additive error Ω(ε), which
yields the center points of an approximate r-net of the original points with mul-
tiplicative error (1 + ε).

2. Approximate r-nets 12

We hence apply Theorem 2.7 on inputs X = X ′, d = k, ε = Ω(ε) and r = A0.
This gives us the centers C of an approximate r-net for X ′ in Õ(n2−α + n1.7+α)

time where α = Ω(ε
1
3 / log(1

ε)). The points that get mapped to the net points in
C are then the centers of a (1+ ε)-approximate r-net of the points in X under `1
metrics with high probability. Applying this version of locality sensitive hashing
to X ′ takes O(dkn) = Õ(dn) time, which leads to the runtime as stated.

2.2.2 `2 case

We first employ a power tool, the Johnson Lindenstrauss Lemma. Specifically,
we use a variant that allows us to map `2 points to `1 points, while preserving
a slightly perturbed all pair distance under the respective norm, as for example
seen in [15]. Thus, we can construct approximate r-nets in the general Euclidean
space, as formally stated below.

Theorem 2.10. For set of input points X ⊂ Rd, some radius r ∈ R, some error

ε� log6(logn)

log3 n
, with high probability, we can construct a (1+ε)-approximate r-net

under `2 euclidean norm ‖ · ‖ in time Õ(dn+ n2−α) where α = Ω(ε
1
3 / log(1

ε))

Proof. We define a mapping from `2 to `1. Every x ∈ X gets mapped to the

vector f(x) = (f1(x), ..., fk(x)) where k = (ε−2 log n) and fi(x) =
d∑
j=1

σijxj . The

coefficients σij ’s are independent normally distributed random variables with
mean 0 and variance 1. As presented in [15], it holds that for any two points
x, y ∈ X, (1− ε)‖x− y‖2 ≤ C‖f(x)− f(y)‖1 ≤ (1 + ε)‖x− y‖2 with probability
1−O(1

n) for some constant C. The cost of applying the mapping is O(dkn). We
then employ Theorem 2.9 on the new set of points, to get a (1 + ε)-approximate
r-net in the time stated.

Chapter 3

Applications

In the following chapter, we present applications for the algorithms we presented
in the previous chapter. To that end, we exhibit an improvement on a framework
called Net & Prune. Net & Prune was invented by [7] for low dimensional
applications. An extended version of the framework, that is efficient in higher
dimensional datasets, was later presented by [8]. In what follows, we apply
the approximate r-net algorithm to immediately improve the high dimensional
framework. We then present various applications, that depend on approximate
r-nets and the framework.

3.1 Net & Prune Framework

Net & Prune mainly consists of two algorithms, ApprxNet and DelFar, which
are alternatively called by the framework, and a data structure that is specific to
the problem we want to solve. When supplied with these, the framework returns
an interval with constant spread, which is guaranteed to contain the optimal
solution to the objective of the desired problem. To improve the framework, we
first improve these two algorithms. ApprxNet computes an approximate r-net
for a given point set and DelFar deletes the isolated points, i.e. the points that
do not contain any other point in a ball of radius r around them.

As an improvement to ApprxNet, we refer to Theorem 2.9 and Theorem 2.10.
We now present an algorithm, that yields an improved version of DelFar:

Theorem 3.1. For a set of points X, some error ε� log6(logn)

log3 n
, a radius r ∈ Rd

and the norm ‖·‖, that denotes the `1 or `2 norm, we can construct an algorithm
DelFar that outputs, with high probability, a set F , where the following holds:

1. If for any point p ∈ X it holds that
∀q ∈ X, q 6= p, ‖p− q‖ > (1 + ε)r then p 6∈ F

2. If for any point p ∈ X it holds that
∃q ∈ X, q 6= p, ‖p− q‖ ≤ r then p ∈ F

13

3. Applications 14

We do this in time Õ(dn+ n2−α), where α = Ω(ε
1
3

log(1/ε))

Proof. We prove the Theorem for the `1 metric. For an `2 instance we can simply
apply the mapping of Theorem 2.10 and the proof holds. Initially, we map the
points to Hamming space, applying the techniques described in Theorem 2.9.
During the brute force part of the algorithm we do the following: we delete each
point that is covered by a center and then we add both the point and the center
to set F . We do not add centers to F that do not cover any other points. Later,
when traversing the distance matrix, we check each entry that indicates if the
partition contains a close point. We calculate the distances between the current
point and all points of the partition. We add in set F , and then delete, the
points that are actually close. We ignore points, where every entry in its column
indicate no close points. In the end, we return the set F . The running time of
the algorithm is the same as in Theorem 2.10, since deleting a point after adding
it to set F takes constant time.

The Net & Prune framework allows us to solve various so called nice distance
problems. As presented by [7], the problems solved in the sections to come, are
all proven to be of such kind. One of the properties of such problems is, that
there needs to exist a so called (1+ ε)-decider for that problem. In the following,
we denote a formal definition of such deciders.

Definition 3.2 ([8]). Given a function f : X → R, we call a decider procedure
a (1 + ε)-decider for f , if for any x ∈ X and r > 0, deciderf (r,X) returns one
of the following: (i) f(x) ∈ [β, (1 + ε)β] for some real β, (ii) f(x) < r, or (iii)
f(x) > r.

Even though [7] presented a decider for each of the problems that follow,
the extended framework by [8] requires deciders to be efficient, as otherwise the
frameworks runtime does not hold. This is a good opportunity to apply Theorem
2.9 and Theorem 2.10 from the previous chapter. In the following sections, we
employ the theorem below to find constant spread intervals. These contain the
solutions to nice distance problems. We then apply deciders to approximate the
solution of the problem.

Theorem 3.3 ([8]). For c ≥ 64, the Net & Prune algorithm computes in
O(dn1.999999) time a constant spread interval containing the optimal value f(X),
with probability 1− o(1).

3.1.1 kth-Smallest Nearest Neighbor Distance

When having a set of points in high dimensional space, we may be interested
in finding the k-smallest nearest neighbor distance. This means, when looking

3. Applications 15

at the set of distances to the nearest neighbor of each point, finding the kth-
smallest of these. Computing this with a naive algorithm takes O(dn2), which
is not suitable in high dimensional space. Alternatively, we are able to build a
(1+ ε)-decider and then apply the Net & Prune framework to solve the problem.
This has previously been done by [8]. Theorem 2.9 and Theorem 2.10 yield
immediate improvement on the runtime of the decider, as it is built with help of
DelFar.

Theorem 3.4. For a set of points X, ε � 4 log6(logn)

log3 n
and the norm ‖ · ‖,

that denotes the `1 or `2 norm, with high probability, we can find the (1 + ε)-
approximate k-smallest nearest neighbor distance of X in time Õ(dn + n2−α),

where α = Ω(ε
1
3

log(1/ε)).

Proof. First we describe the decider, which is basically the same as in [8], except
that we plug in the new algorithm for DelFar. The decider then works as follows:
We first call DelFar on the set X with radius r/(1 + ε

4) and error ε/4 to get a
set W1. Then we call DelFar on X again but this time with radius r and error
ε/4 to get another set W2. If it then holds that |W1| ≥ k, we know that when
drawing balls of at most radius r around each point, at least k of the points
have their nearest neighbor within their ball. This means, that r is to big and
we output f(X, k) < r. Similar, if |W2| < k, we know that even if we draw
balls around all the points with at least radius r, not even k points have their
nearest neighbor inside their ball which implies that r is to small and we output
f(X, k) > r. Finally, if we have that |W1| < k and |W2| ≥ k, we know that
the exact k-nearest neighbor has to be in the range [r/(1 + ε

4), (1 + ε
4)r] and we

output that interval.
As this satisfies the definition of a (1 + ε)-decider, we plug it into the framework
and get a constant spread interval [x, y] which contains the exact solution. We
then use the decider again to (1+ε)-approximate the exact solution. We slice the
interval into pieces x, (1+ε)x, (1+ε)2x, ..., y and do binary search on those slices,
by applying the decider. If we hit an r where the decider gives us an interval
[r/(1+ ε

4), (1+ ε
4)r], we return (1+ ε

4)r and are done. The optimal solution might
then be r/(1 + ε

4), which is a (1 + ε
4)2 factor smaller then what we return. This

is fine as (1 + ε
4)2 = 1 + ε/2 + ε2/16 ≤ 1 + ε and what we return is thus a (1 + ε)-

approximate as desired. While searching we makeO(1/ log(1+ε)) = O(1/ε2) calls
to the decider. The search thus ends up having a runtime of Õ(dn+ n2−α).

3.2 Min-Max Clustering

To understand the following problem, we first define Upward Closed Set Systems
and Sketchable Families, as introduced in [7].

3. Applications 16

Definition 3.5 (Upward Closed Set System & Sketchable Families [7]). Let P
be a finite ground set of elements, and let F be a family of subsets of P . Then
(P,F) is an upward closed set system if for any X ∈ F and any Y ⊂ P , such
that X ⊂ Y , we have that Y ∈ F . Such a set system is a sketchable family, if for
any set S ⊂ P there exists a constant size sketch sk(S) such that the following
hold.

1. For any S, T ⊂ P that are disjoint, sk(S ∪ T) can be computed from
sk(S) and sk(T) in O(1) time. We assume the sketch of a singleton can
be computed in O(1) time, and as such the sketch of a set S ⊂ P can be
computed in O(|S|).

2. There is a membership oracle for the set system based on the sketch. That
is, there is a procedure orac such that given the sketch of a subset sk(S),
orac returns whether S ∈ F or not, in O(1) time.

Min-Max Clustering is a method of clustering sets of the Upward Closed Set
Systems within Sketchable Families under some cost function. The following is
a formal definition of Min-Max clustering, as provided by [7].

Definition 3.6 (Min-Max Clustering [7]). We are given a sketchable family
(P,F), and a cost function g : 2P → R+. We are interested in finding disjoint

sets S1, ..., Sm ∈ F , such that (i)
m⋃
i=1

Si = P , and (ii) max
i
g(Si) is minimized. We

will refer to the partition realizing the minimum as the optimal clustering of P .

We later resort to the following Lemma when building a (1 + ε)-decider for a
concrete instance of Min-Max Clustering.

Lemma 3.7. Given a set of n points X ⊂ Rd, a radius r ∈ R, some error

parameter ε � log6(logn)

log3 n
, the norm ‖ · ‖, that denotes the `1 or `2 norm, and a

set C ⊂ X s.t. ∀x, y ∈ C, ‖x−y‖ ≥ 2r(1+ε), with high probability, we can return
sets Pi, such that ∀ci ∈ C,∀x ∈ Pi, ‖ci−x‖ ≤ (1+ε)r and ∀x ∈ X∩Br(ci), where
Br(ci) = {x : x ∈ Rd, ‖x − ci‖ ≤ r} we have that x ∈ Pi in time Õ(dn + n2−α),

where α = Ω(ε
1
3

log(1/ε)).

Proof. We reduce the problem to Hamming space with error ε and radius r,
applying the same techniques as in Theorem 2.9 for `1 points or Theorem 2.10
for points in `2. After this reduction, we get a set of new points X ′ and a new
radius r′. We apply brute force on X ′ to get part of the solution. We randomly
choose a point of ci ∈ C and then iterate over every point in x ∈ X ′. We check if
‖x−ci‖ ≤ r′+εk, for k = (ε−2 log n) the dimension in Hamming space. For every
point where this holds, we the original point into the set Pi and then delete x
from X ′. We do this

√
n times which takes Õ(n1.5) time in total. Without loss of

3. Applications 17

generality, we now assume that |C| >
√
n, as otherwise we would be done at this

point. With a similar argument as in Theorem 2.2, we argue that, after using
brute force, with probability at least 1− n−0.2, |{(c, x)|c ∈ C, x ∈ X ′, ‖x− c‖ ≤
r′+ εk}| ≤ n1.7. As in Theorem 2.7, we then build the distance matrix W of the
remaining points inX ′. We iterate over every column corresponding to remaining
center points cj . For every entry Wi,j > 2|Si|, we add original version of every
point x ∈ Si such that ‖x− cj‖ ≤ r′+ kε to Pj . This takes time Õ(n2−α + n1.7).
It then holds that ∀ci ∈ C,∀x ∈ Pi, ‖ci − x‖ ≤ (1 + ε)r, as we only added points
to Pi’s, where this property holds. It also holds that ∀x ∈ X ∩ Br(ci), as every
point is only within the ball of one single center, because of the constraint on
C. As we only do brute force and then build a distance matrix which we iterate
through in a similar fashion as in Theorem 2.7, the runtime is as stated.

The proof of the following Theorem describes how to utilize the above Lemma
to build a decider. The framework then allows us to solve a concrete instance
of Min-Max Clustering. A similar decider was built by [7], to solve the same
problem in low dimensional space.

Theorem 3.8. Let P ⊂ Rd, let (P,F) be a sketchable family and let ‖ · ‖ be the
norm, that denotes the `1 or `2 norm. For a set W ∈ F , let rmin(W) be the
smallest radius, such that a ball centered at a point of W encloses the whole set.

We can then, for ε� 4 log6(logn)

log3 n
, (4 + ε)-approximate the min-max clustering of

P with rmin(W) as the cost function, with high probability, in time Õ(dn+n2−α),

where α = Ω(ε
1
3

log(1/ε)).

Specifically, one can cover P by a set of balls and assign each point of P to a
ball containing that point, such that the set of assigned point of each ball is in F
and the maximum radius of these balls is a (4 + ε)-approximate of the minimum
of the maximal radius used by any such cover.

Proof. First notice that, when building a (1 + ε)-approximate (4ropt(1 + ε))-
net, where ropt is the radius of the optimal clustering Popt of P , the following
properties hold. Let Wi ∈ Popt be the cluster that contains center ci of the r
net. It then holds that diam(Wi) ≤ 2ropt. Also any two center points of the net
have distance at least (4ropt(1+ ε)) from each other, thus there are no i 6= j such
that Wi = Wj . Now define Ci as the set of points that are contained in a ball
of radius 2ropt around center ci, hence Ci = P ∩ B2ropt(ci). It then holds that
Wi ⊂ Ci and since Wi ∈ Popt, we know that Wi ∈ F . Thus Ci ∈ F by definition
of upward closed set systems.

This observation allows us to build a decider for f(P,F), which is the function
returning the optimal solution to the objective of the clustering. First, we build
a (1 + ε

4)-approximate (4r(1 + ε
4))-net. We then apply Lemma 3.7 on inputs

X = P ,r = 2r, ε = ε
4 and C = C , where C is the set of center points of the net.

It is easy to see, that the needed property on C is met,as it contains the center

3. Applications 18

points of a (4r(1 + ε
4))-net. The sets Pi, that get returned by Lemma 3.7, are

then supersets of Ci, if r ≥ ropt. From the definition of sketchable families we
know that, for every Pi, we are able to decide if Pi ∈ F in O(n). Assume now
that there exists a Pi which is not in F . Pi is thus not a superset of Ci, and we
return r < ropt. Otherwise, we know that ∀i, Ci ⊂ Pi and thus r ≥ ropt. Now
its left to decide if ropt is within some constant spread interval. To that end, we
repeat the process above, but for a slightly smaller net, say a (1+ ε

4)-approximate
4r-net. If all of the Pi’s for this new net are in F , we know that the original r
was to big and we return f(P,F) < r. Otherwise, because we applied Lemma
3.7 to radius 2r

(1+ ε
4

) and found that balls of that radius centered at ci are not

in F , we know that the optimal value is at least r
(1+ ε

4
) , dew to our observation

about the diameter of the clusters in the beginning. We also know that ropt
can be as big as 4(1 + ε

4)2r as we are able to cover the whole space with balls
of such radius and subsets of these are in F . Therefor, we return the interval
[r
1+ ε

4
, 4(1 + ε

4)3 r
1+ ε

4
]. Plugging this into the framework thus provides us with a

constant spread interval, which contains the solution. By searching the interval
the same way as in Theorem 3.4, we end up with an interval [r

1+ ε
4
, 4(1+ ε

4)3 r
1+ ε

4
].

We return r
1+ ε

4
, which is a (4+ε)-approximate solution since the real solution may

be up to a 4(1 + ε
4)3-factor off and 4(1 + ε

4)3 = 4((ε4)3 + 3(ε4)2 + 3 ε4 + 1) ≤ (4 + ε).
In the worst case, the decider builds an approximate r-net twice and also calls
Lemma 3.7 twice. Applying the framework with that decider and searching the
returned interval thus results in Õ(dn+ n2−α).

3.3 k-center

The k-center clustering is tightly coupled to the problem of building r-nets. For
a set of high dimensional points, we want to find k clusters, that minimize the
maximum diameter of any of these. For any ε > 0, computing a (2− ε) approx-
imate k-center clustering in polynomial time has been shown to be impossible
except P = NP [16]. We thus focus on computing (2 + ε)-approximates of the
optimal solution. In the following we present two approaches to this. First, we
build a decider, such that we are able to employ the framework, which provides
us with a (4 + ε)-approximate k-center clustering. We then exhibit a different
approach to the problem. Instead of relying on the framework, we derive an
algorithm that computes approximate greedy permutations. We then present a
way of reducing the computation of a (2 + ε)-approximate k-center clustering to
building approximate greedy permutations. The drawback of this approach is,
that the runtime has a logarithmic dependency on the spread of the data.

3. Applications 19

3.3.1 (4 + ε) approximate k-center

As in previous sections, we design a decider which then gets called by the frame-
work. The construction is similar to [7], where they construct a decider to
(4 + ε)-approximate k-center clustering in lower dimensions.

We first prove the following Lemma, which is going to be useful later.

Lemma 3.9. There are the following relations between a set C, which contains
the net points of a (1+ε)-approximate r-net on a set of points X, and the function
f(X, k), which returns the optimal clustering radius for the k-center problem on
the set X.

1. If |C| ≤ k then f(X) < (1 + 2ε)r

2. If |C| > k then r ≤ 2f(X)

Proof. For the first property we create a (1 + ε)-approximate r-net of X. Due to
the covering property of approximate r-nets, every point in X is within (1 + ε)r
of a center point and thus (1 + 2ε)r is not an optimal radius for the k-center
clustering.

For the second property note that an approximate r-net with more then k
centers contains at least k + 1 centers. These are at least r from each other
due to the packing property. Thus k centers with a radius of < r/2 would not
be able to cover all of the k + 1 centers from the approximate r-net and hence
r ≤ 2f(X).

Theorem 3.10. For a set of n points X ∈ Rd, some integer k, n ≥ k > 0, some

error parameter ε � 32 log6(logn)

log3 n
and the norm ‖ · ‖, that denotes the `1 or `2

norm, with high probability, we return a (4 + ε)-approximate k-center clustering

in time Õ(dn+ n2−α), where α = Ω(ε
1
3

log(1/ε)).

Proof. In the following we present the decider that we plug into the framework.
First we create a (1 + ε

32)-approximate r
1+ ε

16
-net and check if we get k or less

center points. If we do, then due to Lemma 3.9 we can safely return f(X, k) < r.
If we do not, we create a (1 + ε

32)-approximate (2(1 + ε
16)r)-net and check if we

have at most k centers in this net. In that case, due to Lemma 3.9 we know that
r

2(1+ ε
16

) ≤ f(X, k) < 2(1 + ε
16)2r and we return this interval. Otherwise, we have

more than k-centers. Thus we know from Lemma 3.9 that r(1 + ε
16) ≤ f(X, k)

and we return f(X, k) > r. We therefor satisfy the properties of a (1+ε)-decider
and apply it to the framework to compute a constant spread interval containing
the exact solution. As in the previous sections, we slice the interval and do binary
search using the decider. If we find an interval r

2(1+ ε
16

) ≤ f(X, k) < 2(1 + ε
16)2r,

we return 2(1 + ε
16)2r which is a (4 + ε) approximation, as it might miss the real

3. Applications 20

solution up to a factor of 4(1 + ε
16)3 = 4 + 3ε

4 + 3ε2

64 + ε3

1024 ≤ 4 + ε. It is easy to

see that the decider runs in time Õ(dn + n2−α) and as in the previous section,
the search takes O(1/ε2) iterations. Therefor, the runtime is as stated.

3.3.2 (2+ε) approximate k-center with dependency on the spread

Another way to approach the approximate k-center clustering, is given by [10].
There they construct a 2-approximate k-center clustering by using greedy per-
mutations. A greedy permutation of a point set is an ordering, such that the
i-th point is the furthest from all previous points in the permutation. In [9] they
describe a way of constructing an approximate greedy permutation by building
approximate r-nets. In the following, we present a way to improve this con-
struction by applying the approximate r-net algorithm from the previous chap-
ter. We then present how to exploit approximate greedy permutations to create
(2 + ε)-approximate k-center clusterings. Unfortunately, building the greedy
permutation has a logarithmic runtime dependency on the spread, which is the
ratio of the biggest to the smallest distance within the point set. Therefore, the
algorithm is only useful for data, where the spread is in poly(n).

Approximate greedy permutation

A greedy permutation is an ordered set Π of the input points, such that the
point πi is the furthest point in V from the set {πj}i−1

j=1. The following is a
formal definition of approximate greedy permutations, as described in [9].

Definition 3.11. A Permutation Π is a (1 + ε)-greedy permutation on n points
on metric space (V, d), if there exists a sequence r1 ≥ r2 ≥ ... ≥ rn s.t.

1. The maximum distance of a point in V from {πj}ij=1 is in the
range [ri, (1 + ε)ri]

2. The distance between any two points u, v ∈ {πj}ij=1 is at least ri

We now prove the following Lemma, which helps us build the approximate
greedy permutation later.

Lemma 3.12. For a set of n points X ⊂ Rd, the norm ‖ · ‖, that denotes the
`1 or `2 norm, a set of points C ⊂ X, such that ∀x, y ∈ C, ‖x − y‖ ≥ r , some

error ε� log6(logn)

log3 n
and a radius r ∈ R, with high probability, we can compute a

set F , such that ∀y ∈ F, c ∈ C, ‖x− y‖ ≥ r. We do this in time Õ(dn + n2−α),

where α = Ω(ε
1
3

log(1/ε)).

Proof. We proceed similar as when building the approximate r-net. We first
reduce the problem to Hamming space with additive error ε as in Theorem 2.9

3. Applications 21

for points in `1 or Theorem 2.10 for `2 points. We then arrive at the mapped
point set X ′ and radius r′. Next, we apply a slightly modified version of Theorem
2.2. Instead of randomly choosing a point from X ′, we randomly choose a point
c ∈ C. We then iterate over every point in x ∈ X ′ and check if ‖x− c‖ ≤ r′+ εk
for k = (ε−2 log n), the dimension in Hamming space. For every point x where
this holds, we delete x from X ′ as well as from the original set X. We do this√
n times, which takes Õ(n1.5) time in total. We now assume, without loss of

generality, that |C| >
√
n, as otherwise we would be done at this point. By

applying a similar argument as in Theorem 2.2, it holds that with probability at
least 1− n−0.2, |{(c, x)|c ∈ C, x ∈ X, ‖x− c‖ ≤ r′ + εk}| ≤ n1.7. As in Theorem
2.7, we now build the distance matrix W of the remaining points in X ′. We then
iterate over every column corresponding to the remaining center points cj and,
for every entry Wi,j > 2|Si|, delete the original version of every point x ∈ Si
such that ‖x− c‖ ≤ r′ + kε from X. This takes time Õ(n2−α + n1.7). The point
set X then, by construction, only contains points which are further then r from
any point in C.

The algorithm for building the greedy permutation is very similar to the
algorithm presented in [9]. We build sequences of approximate r-nets, starting
with a radius that is an approximation of the maximum distance within the point
set. Then, we consecutively build approximate r-nets for smaller and smaller r,
while keeping centers of previously computed approximate r-nets. Putting the
center points into a list in the order they get computed results in an approximate
greedy permutation.

Theorem 3.13. For point set X ⊂ Rd with |X| = n, ε � 4 log6(logn)

log3 n
and the

norm ‖ · ‖, that denotes the `1 or `2 norm, with high probability, we can compute
a (1 + ε)-approximate greedy computation in time Õ((dn + n2−α) log Φ), where

α = Ω(ε
1
3

log(1/ε)) and Φ =
max

x,y∈X,x6=y
‖x−y‖

min
x,y∈X,x6=y

‖x−y‖ is the spread of data X.

Proof. In [9] they presented a way to compute a (1 + ε)-approximate greedy
permutation. In the following, when talking about building an approximate r-
net we refer to Theorem 2.9 for Euclidean points with `1 metric or Theorem 2.10
for points in `2 metric space. We choose a point p at random and search for the
furthest neighbor of that point. ∆, which is the distance to the furthest neighbor,
is then a 2-approximation to the maximum distance within X by the triangle
inequality. Thus, max

x,y∈X,x6=y
‖x − y‖ ≥ ∆ ≥ 1

2 max
x,y∈X,x 6=y

‖x − y‖. Next we define

a sequence of radiuses ri = ∆
(1+ ε

4
)i−1 for i ∈ {1, ..,M :=

⌈
log1+ ε

4
Φ
⌉

+ 2} where

Φ :=
max

x,y∈X,x6=y
‖x−y‖

min
x,y∈X,x6=y

‖x−y‖ is the spread of the data. Note that rM ≤
min

x,y∈X,x 6=y
‖x−y‖

(1+ε) .

We then iterate over this sequence, where in the first iteration, we compute
an approximate r1 net C1 of X. We do not need to run the algorithm as we

3. Applications 22

know that {p} = C1 as r1 = ∆ and a ball of radius ∆ around p covers X by

construction. In every iteration i > 1, we then first define the set Si =
i−1⋃
j=1

Cj .

Next, we alter the approximate r-net algorithm in such a way, that the points
in Si are already centers of the net and thus points within distance ri of Si are
not added as net points. By Lemma 3.12 we are able to do this, without an
increase of the runtime. We then apply Lemma 3.12 to X with error ε/4, the set
Si and radius ri. After that we compute a (1+ ε

4)-approximate r-net of the set F
that gets returned. The net points are then stored in the set Ci. The sequence
〈C1, ..., CM 〉 then forms a (1 + ε)-greedy permutation, as shown in [9]. It is
sufficient to do M iterations as we know that a (1+ ε

4)-approximate rM -net adds
all the remaining points to CM as rM is less then the minimum distance of the
set. The number of iterations is M and O(log1+ ε

4
Φ) = O(4

ε log Φ) = Õ(log Φ).
In each iteration we apply Lemma 3.12 and compute an approximate r-net, the
total runtime is thus as stated.

k-center with approximate greedy permutation

In [10], Gonzales proved that an exact greedy permutation leads to a 2 approxi-
mation of the solution for the k-center objective, if we take the first k elements
out of the permutation and declare them as cluster centers. The maximum ra-
dius of a cluster, is then the minimum distance of the (k + 1)-th point in the
permutation to one of the first k points. With a (1 + ε)-approximate greedy
permutation we can then derive a (2 + ε)-approximate solution for the k-center
problem, since for every element πi and every ri as in the definition of the ap-
proximate greedy permutation, we know that, in metric space (V, ‖ · ‖), it holds
that ri ≤ max

u∈V
min

j∈{1,...,i}
‖πj − u‖ ≤ (1 + ε)ri. Thus the radius used, if we take

the first k elements of the approximate greedy permutation as cluster centers,
is at most a 1 + ε factor larger than the radius we would use by taking the first
k elements of the exact greedy permutation, which in turn is at most a 2 factor
larger than the exact k-center clustering radius.

Chapter 4

Conclusion & Future Work

Our work has lead to interesting improvements on the construction time of ap-
proximate r-nets and applications thereof. We wish to highlight the following
open problems. First, can we find a lower bound to the construction time of
approximate r-nets? This would also tell us more about the limits of the Net
& Prune framework. Second, can we get rid of the spread dependency on the
approximate greedy permutation algorithm, as this would make the algorithm
suitable for much more general data sets? Our work seems to suggest that this is
tightly coupled to finding all nearest neighbors of a data set. Third, we suspect
that it is easy to find an efficient decider for the k-th smallest distance in a data
set. As this is also a nice distance problem, the framework would provide us
with a fast computation for an approximate solution to this problem.

23

Bibliography

[1] Estivill-Castro, V.: Why so many clustering algorithms: a position paper.
ACM SIGKDD explorations newsletter 4(1) (2002) 65–75

[2] Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster
method. The computer journal 16(1) (1973) 30–34

[3] Defays, D.: An efficient algorithm for a complete link method. The Com-
puter Journal 20(4) (1977) 364–366

[4] Lloyd, S.: Least squares quantization in pcm. IEEE transactions on infor-
mation theory 28(2) (1982) 129–137

[5] Kriegel, H.P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
1(3) (2011) 231–240

[6] Alman, J., Chan, T.M., Williams, R.: Polynomial representations of thresh-
old functions and algorithmic applications. In: 2016 IEEE 57th Annual Sym-
posium on Foundations of Computer Science (FOCS), IEEE (2016) 467–476

[7] Har-Peled, S., Raichel, B.: Net and prune: A linear time algorithm for
euclidean distance problems. Journal of the ACM (JACM) 62(6) (2015) 44

[8] Avarikioti, G., Emiris, I.Z., Kavouras, L., Psarros, I.: High-dimensional
approximate r-nets. In: Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM (2017) 16–30

[9] Eppstein, D., Har-Peled, S., Sidiropoulos, A.: Approximate greedy clus-
tering and distance selection for graph metrics. CoRR abs/1507.01555
(2015)

[10] Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science 38 (1985) 293 – 306

[11] Dasgupta, S.: Performance guarantees for hierarchical clustering. In Kivi-
nen, J., Sloan, R.H., eds.: Computational Learning Theory, Berlin, Heidel-
berg, Springer Berlin Heidelberg (2002) 351–363

[12] Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data
clustering: A cluster ensemble approach. In: Proceedings of the 20th inter-
national conference on machine learning (ICML-03). (2003) 186–193

24

Bibliography 25

[13] Coppersmith, D.: Rapid multiplication of rectangular matrices. SIAM J.
Comput. 11 (1982) 467–471

[14] Williams, R.: New algorithms and lower bounds for circuits with linear
threshold gates. In: Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, ACM (2014) 194–202

[15] Matoušek, J.: On variants of the johnson-lindenstrauss lemma. Random
Struct. Algorithms 33(2) (September 2008) 142–156

[16] Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems.
Discrete Applied Mathematics 1(3) (1979) 209 – 215

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Approximate r-nets
	2.1 Approximate r-net in Hamming Space
	2.1.1 Sparsification
	2.1.2 Distance Matrix
	2.1.3 Building a Net

	2.2 Approximate r-nets in Euclidean Space
	2.2.1 1 case
	2.2.2 2 case

	3 Applications
	3.1 Net & Prune Framework
	3.1.1 kth-Smallest Nearest Neighbor Distance

	3.2 Min-Max Clustering
	3.3 k-center
	3.3.1 (4+) approximate k-center
	3.3.2 (2+) approximate k-center with dependency on the spread

	4 Conclusion & Future Work
	Bibliography

