
Towards Usable Off-Chain Payments

Guillaume Felley

Supervised by:
Dr. Arthur Gervais

Prof. Dr. Roger Wattenhofer

September 2018

1

.

2

Acknowledgement

I would first like to thank my thesis supervisor Dr. Arthur Gervais of the De-
partment of Computing at Imperial College London. He followed my work from
the start until the end. He was always willing to take the time to understand
my progress and advise me for further directions.
I will give special thanks to my friends Thibault Meunier and Rami Khalil with
who I collaborated closely during this project.
Additionally, I would like to thanks Humble Team, a design agency that pro-
vided me with the graphical assets for the mobile app and Fedir Ushakov for
his help and expertise on mobile application front-end development.
Finally, I would like to address special mentions to my family for their con-
stant support and Carmen for her encouragements and help proof-reading my
grammar mistakes.

Guillaume Felley
London, 17.09.2018

3

Contents

1 Introduction 6

2 Background on Off-chain payment solutions 7
2.1 Payment Channel network . 7

2.1.1 Payment channel . 7
2.1.2 Linked payments . 9

2.2 Payment Channel Hubs . 10
2.2.1 Architecture . 10
2.2.2 Periodic commitment . 11
2.2.3 Challenge mechanism . 11
2.2.4 Transaction finality . 13
2.2.5 Payment hub networks . 13

3 Lightning Network 13
3.1 Implementations . 14
3.2 Network statistics . 14

3.2.1 Data acquisition . 14
3.2.2 General network statistics 14
3.2.3 Network topology . 15
3.2.4 Network fees . 18

3.3 Payment Routing . 19
3.3.1 Routing requirements 20
3.3.2 Privacy . 22

3.4 Autopilot . 22
3.5 Watchtowers . 23
3.6 Payment channels Wallets . 23

3.6.1 Challenges . 23
3.6.2 Existing wallets . 26
3.6.3 Comparison . 28

3.7 Other payment channels network implementations 28

4 Liquidity payment hub 29
4.1 Implementation . 29

4.1.1 Gas cost evaluation . 29
4.2 Comparison with payment hubs 31
4.3 Other payment channels hubs 32

4.3.1 Plasma cash . 32
4.3.2 Plasma debit . 33

4

5 Liquidity off-chain Wallet 33
5.0.1 Technology stack . 33

5.1 Transaction flow . 36
5.1.1 Authenticated invoicing system 37

5.2 Security . 38
5.2.1 Private keys protection 38
5.2.2 Wallet recovery . 39
5.2.3 Blockchain source . 39
5.2.4 Hub monitoring . 40

5.3 Application usage . 40
5.3.1 Analytics . 41
5.3.2 User study . 42

5.4 Further work . 43

6 Conclusion 44

5

1 Introduction

Blockchains such as Bitcoin or Ethereum are distributed append only ledgers
that rely on a full consensus over each of the updates of the ledger. These
updates are called blocks and are hash chained together by including in each
block a hash of the previous block. It is impossible to alter a block without
altering all the following blocks. The major innovation that made the success
of Bitcoin was the Nakamoto consensus[44] that uses proof of work to allow
an unknown number of mistrusting peers to reach consensus. This mechanism
has proven to be surprisingly resilient against all sort of attacks. However, this
level of security comes at a very high cost, since each node in the network is
required to verify the validity of the complete ledger starting from the genesis
block up to the current date. Every new block periodically produced has to
be broadcasted to all nodes in the network. Blockchains such as Bitcoin have
shown their limits in terms of scalability. In December 2017 transaction fees
for a Bitcoin transaction reached a peak of 55 USD, while the current fee in
August 2018 is around 0.50 USD1. Surge in transaction fees is being observed
when the demand is higher than the maximal throughput that the ledger can
provide. Bitcoin and Ethereum offer a maximum of 7 and 20 transactions per
second, respectively. It was shown that proof of work blockchains can hardy
scale beyond 60 transactions per second without weakening considerably their
security[35]. These limitations make applications such as micro-transactions or
mainstream adoption of cryptocurrencies difficult.
In this context, some people have proposed to change the paradigm: instead
of broadcasting every transactions in the Blockchain, transactions are made
off-chain and the ledger is used only in case of discourse to resolve conflicts.
The Blockchain would be used only occasionally when the peers disagreeing
on the outcome of a transaction. The first challenge in this approach is to
provide an efficient conflict resolution mechanism to guarantee that no party
can cheat. These approaches are built on the top of the existing Blockchain
leveraging the Bitcoin scripting language or the Ethereum virtual machine and
are therefore called second layer protocol. In this work we will look at two
different ways of building these second layer protocols. The first protocol is a
payment channels network, with its most famous implementation, the Lightning
Network for Bitcoin. The second type of protocols are payment channel hubs
such as NOCUST[39] that leverage the power of Turing Complete smart contract
languages on platforms like Ethereum.
However, these potential scaling solutions come with a new set of constrains that
highly impact user experience. The current state of the art is only accessible to
advanced users, the Lightning Network is only fully usable through a command
line interface and requires its users to have an always online server. These
solutions get their security properties from actively monitoring other parties
behaviour and to be willing to take actions if a fraud is detected. Additionally,
off-chain payments need to be collateralised and an inadequate or unbalanced

1https://bitinfocharts.com/comparison/bitcoin-transactionfees.html

6

amount of collateral can lead to payment failure. These constraints are new
and do not exist when doing regular Blockchain transactions, therefore it brings
new challenges to make the technology usable. In this work there is a particular
focus on wallet software. Wallets hold the funds of users by managing private
keys. This is the critical user facing part of a Blockchain infrastructure. Security
is the top priority for wallets, although they still need to be simple enough to
be accessible for non-technical users. Support of off-chain scaling solution in
wallet software is a complex task that deteriorates the user experience. Tasks
such as channel management or the requirement to maintain off-chain balances
add complexity and raise the entry barrier for cryptocurrency users. Security
monitoring has to be handled with care by the wallet as it can lead to losses of
funds. Additionally, payment failure due to routing issues or liquidity issues are
currently frequent.
On the first place, some background explaining the underlying mechanisms of
payment channel network and payment hubs like NOCUST[39] is presented. In
section 2 detailed informations on the current state of the Lightning Network is
given, together with data on the adoption and on the current network Topology.
Existing Lightning Network wallet were investigated, evaluating their capabil-
ities and their security. In section 3 we look at the current implementation of
a NOCUST hub deployed on the Ethereum main network. Additionally, some
results on performance and gas efficiency of the NOCUST hub are provided. In
the last chapter we will present the Mobile Wallet developed for the Liquidity
Network supporting off-chain payments through a NOCUST payment hub.
The contributions of this work by order of importance are: the first fully bi-
directional mobile wallet supporting off-chain payments for the Ethereum main
network, an analysis of the current state of the Lightning Network topology, a
survey of the capabilities of existing wallets for the Lightning network, an anal-
ysis of NOCUST’s operational gas costs and a user study of wallet expectations
in terms of user experience.

2 Background on Off-chain payment solutions

2.1 Payment Channel network

The idea of payment channels is not recent, it was first conceptualised by Satoshi
Nakamoto, creator of Bitcoin in its early days[24]. The approach consist of
locking up an amount of collateral on the Blockchain to back future off-chain
transactions.

2.1.1 Payment channel

A payment channel consist of locking up funds of two parties in a special ad-
dress. It will be required to use the blockchain and to pay the network fee only
when opening and closing the channel. Between the opening and the closing
of a channel, the parties can make a potentially unlimited number of off-chain

7

transactions.
To build a payment channel several building blocks such as Multi-signature,
Time-Lock contract and Hash locked contract are needed.

Multi-signature : It is a special address that requires several private keys
to unlock its funds. For a payment channel we will use a 2-of-2 multi-
signature, that require the approval of the 2 parties to spend the funds in
the address.

Time-lock contract : Makes the funds of this address spendable only at a
given time in the future, at certain block height.

Hash-lock contract Makes the funds of this address spendable only if the
preimage of a specific hash is provided.

By combing Time-lock contract and Hash-lock contract a Hash Time Locked
Contract or HTLC can be created. The funds in this contract will either be sent
to a specific address after a given time or to a different address if the correct
preimage of a given hash is provided. Payment channel networks are based
on exchanging HTLCs off-chain between the 2 parties involved in a channel to
update the off-chain state. The exchanged HTLCs are constructed in a way to
incentive the parties to collaborate. If a party tries to force the closure of a
channel without the other party’s collaboration he will see his funds locked for
a while before getting them back. If a party tries to cheat, he takes the risk of
losing all his funds.
These are the steps composing the life cycle of a payment channel:

Channel opening : To setup a bidirectional payment channel, both parties
involved must first agree on an opening transaction. The opening transac-
tion determines how much funds will be sent in this channel. To open the
channel Alice and Bob send 5 Bitcoins each one to a 2-of-2 multi-signature
address. This is the opening transaction.

Additionally, Alice and Bob both generate a secret and exchange its hash.

Alice now creates a subsequent transaction from the opening transaction
called the “commitment transaction”. With the commitment transaction,
Alice sends 4 Bitcoins to herself and 6 Bitcoin to a HTLC. It can be
unlocked by Bob on his own, but only after a certain amount of blocks,
for instance 1000 blocks (Time-locked). Alternatively, it can be unlocked
by Alice if she knows the secret value for which the hash is equal to the
value that Bob just gave her (Hash-locked). Of course, Alice cannot make
use of the second option as only Bob is in possession of the secret value.
Alice signs her half of the commitment transaction and gives it to Bob.

Meanwhile, Bob does the same action in a mirrored way. He creates a
commitment transaction from which he sends 6 Bitcoins to himself, and
four to a HTLC. Alice can unlock this address if she waits 1000 blocks or
Bob can unlock with Alice secret. Bob signs his half of the transaction
and gives it to Alice.

8

After this exchange of half-valid commitment transactions and the hashes
of the secrets they both sign and broadcast the opening transaction on-
chain funding the multi-signature.

At this point both parties could sign and broadcast the half-valid commit-
ment transaction that they got from the other. If Bob does, Alice gets 4
Bitcoins immediately and Bob gets 6 Bitcoins after 1000 blocks. If Alice
does, Bob gets 6 Bitcoins immediately and Alice gets 4 Bitcoins after 1000
blocks. Whomever signs and broadcasts the transaction will have to wait
1000 blocks. This mechanism ensures that both parties can always recover
their funds even if one party never comes back online. The reason why the
broadcasting party needs to wait 1000 blocks will be explained further.

Updating the Channel : After a while Bob and Alice wish to make an off-
chain transaction. Bob wants to send back one Bitcoin to Alice. First,
both parties need to repeat the process described previously to create a
new HTLC with updated values. This time, both Alice and Bob attribute
themselves 5 Bitcoins, and both attribute 5 Bitcoin the HTLC. The condi-
tions to unlock the HTLC are similar except that they require a new secret
and the balances are changed according to the new Bitcoin distribution.
They both sign this new HTLC and give it to each other.

Now, Alice and Bob exchange the secret from the First HTLC.

At this point, again, both parties could sign and broadcast the new HTLC
they just got. Their counter party would get 5 Bitcoins immediately, while
the broadcaster would have to wait 1000 blocks. Therefore, the channel is
updated.

It is now important to understand what is blocking Bob from broadcasting
the old HTLC in which he received 6 Bitcoins. Alice is now in possession
of the secret allowing her to get these 6 Bitcoin for herself. Because Bob
needs to wait 1000 blocks before getting the 6 Bitcoins, Alice has plenty
of time to broadcast the ”poisoning” transaction using Bob’s secret to get
the 6 Bitcoins for herself getting all of Bob’s funds. Therefore, Bob is
strongly disincentivised to broadcast an old state at his advantage.

It is important to note that for security, the parties need to constantly watch
the Blockchain. If a party goes offline for an extended period of time, more
than 1000 blocks, the second party can attempt to submit an outdated state to
steal funds. Both parties need to be online and willing to submit the poisoning
transaction if a fraud is detected.

2.1.2 Linked payments

We could imagine a situation where Bob has an open channel with Alice and
another one with Charlie. If Alice wants to send a payment to Charlie she
can open a channel with Charlie as they do not have a channel together. The
drawback is that she would have to pay the fees for opening a channel, moreover

9

she might need to transact only once with Charlie. In this case using a payment
channel is not interesting. Another possibility would be to send the payment
through the channel of Bob, as he is connecting both. Alice would send a
payment to Bob and Bob would forward it to Charlie. In this naive scenario
we would need to trust Bob for forwarding the payment and not keeping the
money for himself. However, using HTCLs and passing a hash preimage from the
recipient to the sender we can execute the linked payment in a trust free manner.
The payments across the links are enforced atomically, either all payments are
successful or all fail. Therefore, nobody can loose their funds. Under certain
conditions, the worst that can happen is to pay the network fees and to see
funds lockup for a period of time. If all the parties collaborate, the payments
happens only off-chain and do not require to pay the blockchain network fee.
This linked payments can have several hops, if Alice and Charlie do not have an
open channel with a person in common such as Bob, we could imagine a longer
route for the payment: Alice -> Mike -> Dave -> Charlie

The idea behind projects such as Lightning is to create a network of payment
channels to facilitate the creation of linked payment between entities that do not
necessarily know and trust each other. This needs a protocol to open channels,
advertise them and specify how to exchange HTLC to allow linked payments.
This protocol requires to broadcast sufficient information about channels to
allow for route discovery and find a path from origin to destination of a payment.
Additionally, it specifies how can an inermediary collect fees for forwarding
payments. Allowing intermediates to collect fees is important to incentive people
to forward payments and make an efficient payment network.

2.2 Payment Channel Hubs

Payment hubs leverage the power of Blockhains with Turing complete smart
contract languages such as the Ethereum Virtual Machine or EVM, building
such a system on a Blockchain like Bitcoin that has a limited scripting language
is not possible with the current state of the art. The requirements for building
such a payment system are similar to regular Blockchain transactions or with
payment channels. It should be completely trust free even towards the hub
operator. At any moment the user of the system has full custody of his funds
and given some assumptions he cannot lose his funds.

2.2.1 Architecture

A payment hub such as NOCUST[39] consists of an on-chain part, a smart-
contract and an off-chain, part the hub server or operator. The smart contract
and the hub server are complementary and work together. A user that wish
to transact through the payment hub is first required to deposit some funds
in the smart contract thus making an on-chain transaction. He then needs to
interact with the off-chain hub server. Similarly to a payment channel, the
initial action of depositing funds in the Smart contract requires the gas fees to
be paid. However, future transactions require to interact exclusively with the

10

off-chain hub server thus bypassing the need to pay network fees. The smart
contract is also responsible for the withdrawal of user funds. Therefore, if the
the hub server disappears or does not respond, the user is still able to withdraw
his funds through the smart contract living on the blockchain.

2.2.2 Periodic commitment

The hub operator or hub server has access to exclusive functionalities on the
contract. He can and should submit a periodic commitment, also called check-
point. The smart contract will be waiting, at a given fix interval of blocks, for
the operator to submit a commitment. The interval between 2 commitments
is called a round. The commitment consist of a Merkle root of an augmented
Merkle tree where the leaf nodes are the account balances of the users of the
hub. This Merkle tree is at the core of the payment hub security. It allows
to cheaply and quickly verify the integrity of the user account balances within
the tree. The smart contract is used to verify the account state. If the state is
invalid or any inconsistencies are detected the smart contract will enter in re-
covery mode. No further commitments from the hub operator are allowed and
the last valid commitment is considered final. The only operation permitted is
to allow users to withdraw their funds. The users should monitor the contract
state and should stop making off-chain transactions with the operator if the
contract enters in recovery mode.
Under the assumption that the user correctly monitors and verifies the contract
state, his funds are not at risk. The hub operator is strongly incentivised to not
cheat. If he does, victims can initiate a dispute procedure on the smart contract
to shutdown the system and therefore the operator cannot facilitate off-chain
payments anymore.
Disputes and verifications procedures happen in a smart contract, therefore, we
need a computationally efficient way to prove the correctness of an account state.
In NOCUST[39] an augmented Merkle tree is used. A value is added to each
node in the tree to be hash together with the child nodes. This value consists
of the sum of the values of the child nodes. For a leaf node, this value is equal
to the balance of the account. Figure ?? shows a simplified representation of
the account state Merkle tree. Each leaf node is a hash of the account address,
its balance and the root of a Merkle tree of off-chain transactions that occurred
during the last round. Note that transferk is the root of a regular Merkle tree
of transactions approved by user k.
Given such a structure, if the hub operator tries to cheat by increasing or de-
creasing the balance of one account, the balance of the root node will not be
matching the balance of the contract. If the hub operator cheats, there is always
at least one inconsistency in the state Merkle tree that a user can dispute.

2.2.3 Challenge mechanism

To guarantee the security of a NOCUST instance, each user should verify lo-
cally the integrity of his balance once per round. The verification consists of

11

Figure 1: Simplified representation of the augmented account state Merkle tree.
The Merkle root at the top will be committed periodically on the Blockchain.
bali is the balance of account i, addri is the Blockchain address of account i,
transferi is the Merkle root of a tree of transactions that occurred during the
round preceding the commitment.

membership verification of the updated account in the state Merkle tree given
the root hash of the last commitment on the smart contract. The hub operator
should provide to its users the Merkle proof of membership off chain. If the
hub operator refuses to send the proof of membership or if the provided proof
happens to be incorrect, the user should immediately initiate state update dis-
pute through a specific function on the smart contract. The open dispute will
force the hub operator to reply with a correct Merkle proof of membership that
matches the Merkle root of the last commitment. If the hub operator fails to
answer within a period of time, the hub is shutdown as the contract enters in
recovery mode where the only possible operation is to withdraw funds based on
the last successful commitment. A round is defined as the fix duration in num-
ber of blocks between 2 commitments. A commitment is challengeable during
the round following its submission. After this period, if all the challenges were
answered correctly, the commitment is considered correct and final and cannot
be challenged anymore.
There are two types a of challenges:

State update challenge: It verifies that the balance was correctly updated
according to the off-chain transactions made in the previous round. It
forces the hub to provide a correct Merkle proof for the leaf account in
the tree.

Transaction delivery challenge: It verifies that an off-chain transfer was
correctly included in the recipient transaction Merkle tree. It forces the
hub to provide the Merkle proof of membership of the recipient account in
state tree and the Merkle proof of membership of the challenged transfer
in the recipient transfer tree.

If the operator fails to answer any of these challenges after a period of time the

12

smart contract will automatically enter in recovery mode and the payment hub
stop operating.

2.2.4 Transaction finality

An off-chain transaction is considered final and fully confirmed once its root
hash has been committed and its dispute period has passed. It means that
when making a transfer you should wait for 2 commitments for the full finality.
If a round period is 12h then the confirmation time of a the transaction would
be between 12h and 24h. To circumvent this long confirmation time and have an
instant finality, the hub operator can provide some additional collateral to the
smart contract as a guarantee for the transactions that did not pass yet the 2
required commitments. The collateral is used to back the transactions received
during the current rounds and the previous round. The amount of collateral
needed is equal to the transaction volume over the last and current round.
Contrary to payment channels where the collateral is split for every participant
and can be used only within a given channel, in a payment hub the collateral can
be used freely between all participants without need of rebalancing. The only
requirement is that its amount should be inferior to the transaction volume over
a period of time. When the hub enters in recovery mode, there is a separate
contract function to recover funds from transactions that happened after the
last valid commitment.

2.2.5 Payment hub networks

Compared to solutions such as the Lightning network, a single payment hub is
very centralised from an architectural perspective. Despite the fact that one
does not need to trust the operator for not stealing your funds, it is still a single
entity facilitating and authorising all payments. The disadvantage compared
to regular on-chain transactions are that the hub is a single point of failure
and it is not censorship resistant: the hub can block some users from making
off-chain transactions. To respond to these issues several hubs can be used
connected using regular payment channels. Routing would be much simpler
than in a payment channel network as one would only have several large hubs.
The requirement for monitoring the channel state is less of an issue for a hub
running on a server that is supposed to be always online. In this context we
can assume a much higher reliability between the participants of this payment
channel network of hubs rather than when the participants are end user devices
such as a mobile phone. Solutions such as REVIVE[38] can be more easily
considered to address the issue of exhausted channels. REVIVE allows fast
off-chain channel rebalancing.

3 Lightning Network

The Lightning Network is the first and most advanced payment channel net-
work implemented. At the moment, it operates on the top of the Bitcoin net-

13

work. Its first developments started in 2015 with the Lightning Network original
publication[47]. In May 2017 was deployed the Segregated Witness update on
the Bitcoin protocol. This update made the Lightning Network possible and the
first implementations started to operate on the Bitcoin test network. In March
2018 the first implementations for the Bitcoin main network were released and
the first nodes and channels where setup. In August 2018 the Lightning Net-
work is still under intense development. The total value involve is currently
about 78.9 BTC or about 639’000 USD in August 2018.

3.1 Implementations

The Lightning Network is an open source project involving hundreds of devel-
opers around the world. Its key components are the BOLT specifications[15]
that aim at standardising the base protocol. There is currently 3 major imple-
mentations of the BOLT standard that allow to run a lightning node:

LND[41]: Developed by lightning labs written in the Go language. It supports
the alternative Bitcoin client btcd[48] and it is noticeably the only one to
support a Bitcoin light client, neutrino[40], as blockchain source.

c-lightning[30]: Developed by Blockstream, written in the C language.

Eclair[28]: Developed by ACINQ and written with the Scala language.

Each of these implementations provides a command line interface with full wallet
functionalities to transact on the Lightning Network. They generally require to
be connected to a Bitcoin full node such as the Bitcoind[?] client, also called
Bitcoin core. With a Lightning network client one can keep track of the network
graph, open and close channels, send transactions and forward payments.

3.2 Network statistics

3.2.1 Data acquisition

During the course of this project a Lightning node was setup using the LND
implementation. The node was run with a BTCD Bitcoin full node[48]. It
was taking a snapshot of the network every hour during 3 months. The data
presented in the section is from a snapshot of the network from late August
2018.

3.2.2 General network statistics

The Lightning Network currently has 2496 nodes of which 1449 are considered
active with at least one open channel. A node has an average capacity of 0.054
BTC (442 USD) with a median of 0.0038 BTC (31.2 USD). The node capacity
is defined as the sum of the capacities of its channels. Figure 7.a shows the
distribution of node capacities rounded to the order of magnitude. There is
currently 7915 active channels, the average channel capacity is 0.0096 BTC (79

14

USD) and the median is 0.002 (16.5 USD). Figure 7.b shows the distribution
of channel capacities. One can notice the large difference between median and
average of these 2 metrics.
The network has been growing very fast, from 61 channels in January 20182

to about 7915 today. Figure 3 shows a representation of the network graph
as of August 2018. We can quickly notice some well connected nodes in the
center with many channels open that are probably payment hubs. Nodes in the
periphery with one or two channels are certainly more end user wallets that do
not forward any payments.

(a) Node capacity

(b) Channel capacity

Figure 2: Distribution of node capacity (Sum of the capacity of all its open
channels) and channel capacity

The data was captured by our node for a period of 3 months. 3 months represent
half of the current life span of the Lightning network on the main Bitcoin net-
work that was officially in March. Figure 4 shows how the network has evolved
during the course of this project. The network is currently growing at a steady
rate of 300 new nodes per month and about 2000 new channels per month. The
total network capacity is also growing. We can notice some radical spikes and
drops in the total network capacity because some nodes are sometimes joining
and leaving the network with massive amount of funds3

The reader should note that these statistics do not include private nodes as
they are difficult to detect. However this number is most likely a minority of
the nodes as it is an experimental feature with limited usage. (See section 3.3.2)

3.2.3 Network topology

In this section the topology of the network is studied in depth. On the first
place one looks at the number of hops needed to join 2 random nodes. In
Lightning, we want to do multi-hop payments such as sending 1 BTC from Alice

2https://twitter.com/lopp/status/1022077129771687936
3User injecting about 40 BTC in the Lightning Network for a pe-

riod of 2 weeks. https://medium.com/andreas-tries-blockchain/
bitcoin-lightning-network-2-we-must-first-become-the-lightning-network-49c46953c1d7

15

Figure 3: Visualisation of the lightning Network graph. Source[14].

Figure 4: Evolution overtime of the number of nodes, number of channels, the
total network capacity and the median channel size.

16

to Dave through Bob and Carol: Alice -> Bob -> Carol -> Dave. Dijkstra
algorithm[32] was used for finding the shortest paths between nodes in a graph.
It requires on average 2.3 hops or routing nodes to join 2 random nodes. This
would result on an average of 3.3 linked transactions to send a payment between
2 random nodes. Figure 5 shows the probability distribution of the number of
hops. From the graph we can conclude that most of the time up to 3 routing
nodes is sufficient to link any sender to any recipient.

Figure 5: Probability distribution of the number of hops (intermediary nodes)
required to join random nodes in the network.

Interestingly, the shortest path between 2 random node has dropped over time.
When we started capturing the data in July, the average number of hops was
about 2.6, while now it is around 2.3 nodes. Figure 6 shows the evolution of the
average shortest path.
Figure 3 shows that large hub nodes tend to appear in the network. There are
multiple reasons for having large hubs in the network. Nodes need to be reliable,
always responsive and need to provide a large sum of collateral for an efficient
routing. Additionally, at the moment, it is in practice very difficult to open a
channel with a random node because most of them are not configured to accept
channel openings.
Table 1 shows the top 10 nodes with the most channels. They control 3001
channels or 36.6% of all the channels. Additionally, more than half of the
total network capacity, 55.5%, lies in their channels. Similarly to the mining
centralisation of the Bitcoin hash power, these numbers show also a high level
of centralisation in the Lightning Network topology. Out of the top 10 nodes,
7 are hosted in well known cloud computing providers such as Amazon Web
Service, Google Cloud Platform and Digital Ocean.

17

Figure 6: Evolution of the average shortest path between 2 random nodes over
time.

3.2.4 Network fees

When opening a channel each party has to chose his fee policy. This fee will
be collected by the channels owners if payments are forwarded through them.
There are 2 fee policies per channel, one for each of the directions. The fee policy
is publicly advertised and can be updated after the channel opening. Fees are
different from regular on-chain transactions, where the fee is proportional to
the size in bytes of the transaction. In Lightning, the fee is composed of a
fixed fee called the base fee, plus a fee proportional to the payment value. The
proportional part is called the fee rate. As routing nodes have to lockup a sum
of collateral to back transfers, it is coherent to charge users proportionally to
the use of this collateral.
Current Lightning network fees are extremely low. A 10 USD payment through
a random link will cost, according to the average fee policy, 1.12 Satoshi or
1.12∗10−8 BTC or about 0.000067 USD. However, in practice the fees can easily
be an order of magnitude more expensive. When sending money to popular
merchants the fees will be higher because their routes are in high demand.
Figure 7a shows the base fee distribution in Satoshi and figure 7b shows fee
ratio distribution in part-per-million. The median fee policy reflects the default
configuration in the Lightning clients: 1000 Satoshi base fee and 1 ppm rate fee.
It is very good news for users to have very low fees. However, if the fees stay
so low it will be hard to incentivise people to operate routing nodes. Some
operators have reported4 earning below 0.5 USD per week with more than 7000

4https://twitter.com/alexbosworth/status/1019985943321706496
https://medium.com/andreas-tries-blockchain/bitcoin-lightning-network-2-we-must-first-
become-the-lightning-network-49c46953c1d7

18

Rank Alias
Nbr. of

Channels
Capacity

BTC
Capacity

USD
percent of

network value
1 tady je slushovo 524 4.352 35690 5.52%
2 TrueVision.club 423 4.449 36483 5.6%
3 rompert.com 410 2.375 19472 3.01%
4 TheLND.com 277 0.168 1378 0.21%
5 fairly.cheap 277 22.279 182685 28.24%
6 KRYPTO.KOELN 275 0.589 4831 0.75%
7 Bitrefill.com 238 4.572 37488 5.79%
8 mainnet.yalls.org 204 3.028 24827 3.84%
9 ThrobbingSausage 194 1.968 16136 2.49%
10 AY YILDIZ LN 179 0.077 627 0.1%

Total 3001 43.857 359627 55.5%

Table 1: Top 10 nodes with the most open channels.

(a) Base fee (b) Fee rate

Figure 7: Fee policy parameters distribution of channels

USD at stake locked in their channels. The Lightning network is still in an
experimental stage, probably no participant expects profitability at the moment.

3.3 Payment Routing

Reliably routing payments in the Lightning Network is one of the major chal-
lenges. Its developers originally claimed to have very strong privacy properties:
Channels can be private and isolated between 2 parties with no broadcast ever
needed to take place. However, this conflicts with how to do multi-hop rout-
ing. How to find a route if channels are kept private? Routing payment across
several links currently has a high rate of failure. The reasons are multiple: non
existing route, outdated network graph, node not responding and unbalanced
channels.

19

3.3.1 Routing requirements

3.3.1.1 Beforehand known routing

The Lightning network is often compared to the internet network and how a sim-
ilar routing approach can be used. However their nature is very different. When
sending an IPv4 or IPv6 packet on the internet, their is no need to calculate an
exact route prior sending the packet. The packet is successively sent to routers
that maintain routing tables updated by protocols such as BGP. In fact you do
not even know the route that your packet has taken to reach his destination. In
Lightning, our packet is an atomic set of transactions cryptographically signed
to create a linked payment. Therefore, the sender authorising the transaction
needs to know the exact route with its parameters, such as channel fees and
capacities. If any of these parameters is outdated, or if any of the intermediate
nodes on the route goes offline, the payment will fail. Therefore, in practice
the sender needs to have a complete and as up to date as possible copy of the
full network graph to create a reliable route. In the next section we will discuss
the scalability issue caused by the requirement of maintaining a local network
graph.

3.3.1.2 Dynamic network graph

A second major difference with the internet network is that the internet network
routing works because the graph is relatively static. The edges of the network
are the “cables”, internet lines do not change very often. Lines are sometimes
closed and new lines are added, but overall it has a low impact on routing.
In a payment channel network, every single transaction changes the network
state. A payment from A to B decreases the capacity in the direction A to
B and increases the capacity in the direction B to A. A naive approach for
a payment channel network can be to broadcast every transaction to allow
others to correctly update the balances in the network graph. This approach is
obviously not scalable as the number of messages exchanged grows in a quadratic
fashion with the number of users making transactions. The Lighting Network
took a different approach: for scalability and privacy reasons it was chosen to
not broadcast transactions. This choice reduces the number of messages needed
to be exchanged to maintain the network graph, however it makes routing more
difficult. We will look at this issue in the next section.

3.3.1.3 Exhaust channels

The design choice of the last section leaves us with the impossibility to know
channel balances of channels that you do not control. You can see from the
original on-chain funding transaction the total capacity of the channel but you
cannot know what is the current repatriation of these funds. If Bob and Alice
have an open channel between them with a capacity of 5 BTC you cannot know
how much of this 5 BTC belongs to Bob and how much belongs to Alice. This
makes routing more difficult: if Alice owns 4 BTC and Bob 1 BTC, if someone

20

(a) Single channel with capacity of one from
Bob to Alice

(b) Situation where transfer are limited to
sending one unit to Felix.

Figure 8: Illustration of channel capacity.

tries to route a payment of 2 BTC through Alice and Bob in the direction Bob
to Alice, the payment will fail as Alice does not have the capacity to forward
this payment. In this example the advertised channel capacity was 5 BTC but
in reality it is of 4 BTC in one direction and 1 BTC in the other. Figure
8a illustrates this situation, where fund in the channel are represented by red
circles.
In reality, users like Alice and Bob will open channels with a Lightning hub. To
facilitate any payment, the hub needs to provide collaterals. Figure 9c illustrates
a situation where the possible transactions are very limited. The only possible
transaction is to send 1 coin to Felix, all the other participants cannot receive any
funds. These situations are very common in practice, where opening a channel
with a hub will most likely not provide spontaneously collaterals in your channel.
You need first to spend some of your funds to increase your inbound capacity.
The limit in inbound capacity or receivablility of funds is currently a major
limitation for the Lightning network. A possible solution would be to rebalance
the channels of the hub. However, it requires to pay on-chain transaction fees.
Off-chain rebalancing solutions such as REVIVE[38] were proposed. althouguh
it is not suitable for Bitcoin’s limited scripting language.
Another option to address the issue of Exhaust channels is to adjust the fee
policy of the channel. If the channel is Exhaust in one direction, the node can
broadcast a fee policy update to reduce the fee in the other direction to favour
the rebalancing. Fees can even be negative to pay for a rebalancing. The biggest
drawback of this approach is that policy updates have to be broadcasted to the
whole network. Therefore, the number of policy updates to keep track grows
quadratically with the number of users. Currently, this feature is being used by
a minority of the nodes. We measured that less than 5% of the channels ever
updated their fee policy.
A last approach to solve this liquidity requirement issues is to assume a certain
level of trust in a hub operator and to relax the collateral requirements by
allowing transactions to be backed by collateral located in a different channel of

21

the hub. This is the approach taken by Fairlayer with its Extended Lightning
Network5.

3.3.2 Privacy

When opening a channel with clients such as LND, the default option will be
to create a public channel. This means that the opening will be broadcast and
advertised in the network. The channel will be visible in the network graph
and routing is possible. If the channel is kept private it will not be publicly
advertised, therefore, incoming payments are difficult as the sender needs to
obtain the routing information via a different communication channel. A private
node is a node with exclusively private channels, some mobile wallets such as the
Bitcoin Lightning Wallet are configured to be private nodes. They only open
private channels to not expose any information such as Bitcoin public keys
and IP addresses. However, incoming payments are either disabled or require
routing hints. Routing hints indicate to the sender what intermediary public
node should the payment go through to reach the final destination. This hint
is included in a payment request and often shared in the form of a QR code.

3.4 Autopilot

Autopilot attempts to simplify the use of the Lightning Network for end users.
It automates some complex tasks needed when operating a Lightning node. It
is proposed as a module for the LND implementation6. Autopilot automatically
manages the channels of the node according to a set of heuristics fully config-
urable. It is implemented as a simple closed control loop that takes as input
parameters such as wallet balance, channel opening, channel closing and channel
updates. At each change in the inputs it is evaluated if it needs to open a new
channel with how much funds and to which node to connect to. The default
heuristic, given a minimum channel size, maximum channel size and percentage
of the wallet funds to allocate, will open channels to specific nodes chosen using
a preferential attachment following the Barabási–Albert model[29]. This model
allows the generation of scale-free networks. A scale-free network is a graph
with the property that the number of links k originating from a given node
exhibits a power law distribution P (k) ∼ k−γ of parameter γ. A scale-free net-
work can be constructed by progressively adding nodes to an existing network
and introducing links to existing nodes with preferential attachment so that the
probability of linking to a given node i is proportional to the number of existing
links ki that a node has. Additionally scale-free networks have the interesting
properties of being relatively robust to network failures and have a low average
distance between 2 nodes.

5XLN: https://medium.com/fairlayer/xln-extended-lightning-network-80fa7acf80f3
6Autopilot: https://github.com/lightningnetwork/

lnd/commit/306c4aef8e3af44fb3f2d8f52fc887f2c48e9c04\
#diff-ecf4f0aacb1b1749d365ca301f17036e

22

The goal of Autopilot is double. It create a smoother user experience by au-
tomating complex tasks, and it drives the network topology towards a more
scalable and reliable structure.

3.5 Watchtowers

Watchtowers attempt to solve the problem of the constant online presence re-
quired to protect a payment channel from other parties to potentially steal
funds. If a party chose to force close a channel with an outdated state in his
favour, the other party should immediately respond to the fraud by submitting
the corresponding hash pre-image that allows him to cancel the operation and
get his funds back. When force closing a channel in Lightning, a slack period
is given to allow the closure to be mitigated. This slack period is a channel
parameter chosen during the channel opening, usually set to a value between 14
and 144 Bitcoin blocks (between 3.5 hours and 1.5 day). If a wallet node such
as a mobile phone is offline for a period of time above this duration, the attack
is possible. To solve the issue, one can rely on a third party service provider
that monitors the channel and is willing to submit the mitigation transaction
if needed on the behalf of someone else. Note that this third party does not
have any private key that allows him to control the funds in the channel, he
should just have the hash pre-image that allows to mitigate a fraudulent closure.
However the user needs to trust the watchtower for effectively reacting to an
attack. More elaborated approaches were proposed, such as PISA[42], to reduce
this risk. However, it is only suitable for blockchains with more advanced Smart
contract capabilities such as Ethereum.
In Lighting, the protocol to define the interactions between a node and a watch-
tower is currently being drafted7. Wallets such as the android Lightning Wal-
let8 provide their own watchtower service directly integrated. As a simple
workaround, many Lightning wallets aiming to be user facing do not allow in-
coming Lighting transactions. By not allowing incoming transactions the user
is not put at risk of being victim of an old state submission. With only outgoing
transaction, the most recent state is always advantageous for the other party.

3.6 Payment channels Wallets

Requirements of current implementations of payment channel networks make
the user experience difficult. We first review the current challenges for users,
then we will present existing wallets that focus on user experience.

3.6.1 Challenges

In the previous sections we explained how the Lightning Network operates.
However some requirements are problematic to user experience. The challenges
are reviewed here.

7Wtwire WIP: https://github.com/lightningnetwork/lnd/pull/1512
8Lightning Wallet: http://lightning-wallet.com/

23

Network graph : To enable routing, each wallet needs to construct the full
network graph. In august 2018 the graph weighted about 7,7 Mega byte
with 2000 nodes and 8000 edges. The size is currently acceptable. How-
ever, Lightning Network is expected to scale beyond the current Bitcoin
user base. Bitcoin currently has 22 millions Wallets and between 2.9 and
5.8 million active users[12]. The Visa payment network has 1.07 billion
active users and a total of 3.19 billions credit cards[37]. Lightning is ex-
pected to grow by 3 orders of magnitude from its current state to reach
Bitcoin scale and 3 more order of magnitude to reach Visa scale. Ob-
viously, if the graph has to grow linearly with the user base it will not
be sustainable for a wallet to operate on devices such as a smart phones.
Additionally the graph needs to be constantly updated and synced at all
times to guarantee reliable routing. Any channel update has to be broad-
casted to all participants. Therefore, the number of exchanged messages
grows quadratically. If any parameter from the graph for a payment is
outdated, the payment will fail. For these reasons the wallet node will
have a high bandwidth consumption and the initial sync can take up to
an hour.

Online presence : A wallet should constantly monitor the Blockchain to pro-
tect his funds from being stolen and cannot go offline for an extended
period of time. This is the issue that Watchtowers attempt to solve. In
addition, online presence is not only required for security reasons but also
to received funds. The receiving party is required to sign the HTLC to
receive funds. This contrasts with regular on-chain transactions where no
interactions are required for the receiver.

Blockchain source : A lighting node requires a Blockchain source to oper-
ate. It is needed first to authenticate channels announcements. When
receiving these announcements one has to make sure that these channels
exist through verifying the corresponding UTXO of the funding trans-
action. If this verification is not done the node can potentially accept
junk channels and he is exposed to obvious denial of service attacks. The
Blockchain source is required also to monitor the submission of potentially
fraudulent forced closure. Last, it is used to submit channel opening and
closing transactions. Mobile clients, obviously cannot afford to run a Bit-
coin full node as they lack sufficient hardware resources. Regular SPV
nodes or light client node verifying only the Bitcoin block headers do not
fulfil the security requirements to operate Lightning node. The reason is
that a SPV client cannot guarantee that a transaction was not included
in the Blockchain. To solve this issue new Bitcoin light clients are be-
gin developed such as the Neutrino client[40]. However this client is still
experimental and is not ready to operate on the Bitcoin mainnet.

Inbound capacity : When opening and funding channels, initially, the in-
bound capacity will most likely be zero. Unless the hub provides you with

24

some collateral, you will never be able to receive more funds than what
you have already spent.

Channel management : The wallet is required to open, update and close
channels. These complex tasks are a burden for users. This can be done
automatically by an Autopilot feature described in section 3.4. However,
it is hard to completely abstract to user the channel management. Having
several channels means having several inbound and outbound capacities,
on per channel. Maximum payment size is equal to the largest channel
capacity. Therefore one gets unpredictable and recurrent fees for the on-
chain operations (for instance, funds can be lockup). It is hard to hide all
the complexity because the users would have the feeling of not having full
control of their funds.

Payment failure : Payment are often failing for the reasons described in sec-
tion 3.3.1. One reason is the impossibility to tell with certainty if the
channel we want to use is exhausted in a given direction or not. The only
solution is to make a guess and have a try. Additionally some parameters
from the network graph might be outdated, thus making the transaction
invalid. Nodes along the payment path might not be responding or failing.
Finally, a route might simply not exist

Funds backup : To backup a regular wallet, users are often asked to write
down a secret such as a 12 or 24 words passphrase from which the Bitcoin
private key is derived. With this passphrase users can recover their funds
if they lose access to the wallet. However the passphrase is not sufficient
to recover the funds in the lightning channels. The reason is that the
channels keys are updated after each payments. If the user looses his
mobile phone on which the wallet was installed he would not be able to
recover the funds currently in the channels.

To address these issues current wallets have adopted drastic trade-offs. To solve
the online presence issue and the Inbound capacity issue some wallets are simply
not allowing incoming payments making the off-chain wallet unidirectional. By
only making outgoing payments you are not exposed to the risk of the other
party submitting on old state as the balance would always be in your favour.
Additionally there is no need to confuse users with inbound capacity limitations
and hub-side collateral. A wallet that only allows outgoing off-chain payment
and only on-chain incoming payment is obviously not a fully functional off-chain
wallet.
The second important trade-off that some wallets have taken to solve the Net-
work graph issue is to rely on a third party route provider. Instead of generating
the route for a payment locally, the wallet will query a route server taking care
of maintaining the graph. This releases the wallet from having to synchro-
nise the network graph, which is very resource consuming. However, this route
provider is a single point of failure for the wallet and requires a certain degree
of trust in the route provider for giving the optimal route in terms of fees. In a

25

near future, when the Lightning Network fees will be higher, we could imagine
an attack where the route provider could make the payment going through his
channels with higher fees.
There are currently on the Lightning Network about 5 popular merchants such
as Satoshi Place9 and the Blockstream Store10. One can make payments to
these merchants with a relatively high chance of success. As there are very
few entities accepting payments, it is fairly easy for routing nodes to artificially
provide collaterals towards these entities. Making a payment between 2 regular
wallets is much more uncertain and it is often impossible to find a working route.

3.6.2 Existing wallets

We will present here some Lightning wallets with a focus on user experience.
Note that most wallets presented are based on the LND implementation and
are open source.

3.6.2.1 Mobile

Mobile wallets have the challenge of being very restricted in hardware resources.
These devices are also very likely to go offline, sometimes for a long period of
time.

Eclair wallet mobile Developed by ACINQ, it uses their own Lightning client.
It is a unidirectional wallet allowing only to send funds, channels have to
be managed manually. This wallet addresses the issue of funds backups
by connecting to the Google Drive account of the user and synchronising
the most recent channels keys. The keys are encrypted using the static
wallet passphrase before being uploaded. Eclair wallet does not do any lo-
cal Blockchain source and it is not authenticating channel announcements
properly11. It makes the wallet vulnerable to major denials of service at-
tacks as described in the previous section. Figure 9a shows a screenshot
of the wallet.

CoinClip Mobile wallet for IOS, currently only on the bitcoin testnet. Coin-
Clip has the specificity of being the only wallet to open public channels.
Each wallet is visible on the network graph and is clearly identifiable. Co-
inClip is also unidirectional, it does not offer any possibilities to backup
channel funds. It is the only closed source wallet presented here. Figure
9b shows a screenshot of the wallet.

Bitcoin Lightning wallet Bitcoin Lightning wallet is the only mobile bidirec-
tional Lightning wallet. It works together with the Olympus server [20],
fulfilling several tasks. It backs up the channels keys allowing to recover

9https://satoshis.place/
10https://store.blockstream.com/
11Eclair’s channel authentication issue: https://github.com/ACINQ/eclair-wallet/

issues/101\#issuecomment-408618910

26

(a) Eclair wallet

(b) CoinCplip wallet

(c) Bitcoin Lightning Wall

Figure 9: Lightning mobile wallets

channel funds. As it is a bidirectional wallet, there is a need to monitor
the Blockchain for outdated state submission. The Olympus server fulfils
this role and acts as a pre-configured watchtower. Last, this wallet relies
on a route provider, it does not fetch the network graph itself. This wallet
solved most of the challenges through relying on third parties. It assumes
a higher level of trust in the operator of the Olympus server. The server
operator can easily setup attacks to steal funds in the wallet as it controls
the Routing, the watchtower and the remote blockchain source. Figure 9
shows a screenshot of the wallet.

3.6.2.2 Desktop

LND wallet : This is the command line tool of the LND implementation, it
is a fully functional wallet holding private keys. It offers all the features
that one can expect from a Lightning wallet: it is bidirectional, it con-
structs fully the network graph and has autopilot embedded. The major
drawbacks are that it requires a Bitcoin full node to operate on the main
network. It has to be used with care as it does not provide any mechanism
to ensure security when the wallet is offline. It is not meant for everyday
use but rather as a development tool for advanced users. It is suitable to
run on servers to setup routing nodes.

Zap wallet : Zap is developed by independent developers. It is the the most
popular desktop wallet providing a graphical, minimalist, clear and in-
tuitive interface. It is written in JavaScript, using Electron. It uses the

27

Neutrino light node despite its experimental stage. It does not provide
any watchtower features neither channel backups.

htlc.me : It is a popular web-based lightning wallet very simple to use and
get started. However, it is custodial, the private keys are stored on their
server. Full trust is required in its operator.

3.6.3 Comparison

Table 2 is a summery of the different characteristics of the wallets presented
before.

Pla
tfo

rm

M
ai
nn

et

B
id

ire
ct

io
na

l

A
ut

op
ilo

t

A
ut

he
nt

ic
at

ed
ch

an
ne

ls

O
ffl

in
e
sa

fe

C
ha

nn
el

ba
ck

up
s

B
lo

ck
ch

ai
n

so
ur

ce

LN
gr

ap
h

Eclair mobile Android 3 7 7 7 3 3 Remote Local
CoinClip IOS 7 7 7 ? 3 7 ? Local

Bitcoin Lightning wallet Android 3 3 7 N.A 3 3 Remote Remote
Zap desktop Desktop 7 3 3 3 7 7 Neutrino Local

LND Desktop 3 3 3 3 7 7 Full node Local

Table 2: Lightning wallet comparison

3.7 Other payment channels network implementations

The Lightning network, despite being the first and currently the most advanced
payment channel network, it is not the only one. We will quickly present here
some projects developed for Ethereum.

Raiden [22]: It is the most well know payment channel network currently
in development and running on a test network. As Raiden operates on
Ethereum, that provides a Turing complete programming language, it can
benefit from amelioration such as PISA[42] or Sprites[43].

Celer [7]: Focuses on state channels or general computational purposes rather
than just payments. Their routing algorithm DRB is inspired from the
Back pressure algorithm[45] originally designed for wireless networks.

SpankChain [25]: Payment channel solution for Ethereum developed for the
adult industry with a strong focus on the privacy features that payment
channels can offer. SpankChain payment hubs are based on Perun[33]
virtual channels.

Trinity [26]: A payment channel network solution for the NEO Blockchain[19].

28

4 Liquidity payment hub

A first NOCUST payment hub was deployed on the Ropsten Ethereum Test
network in March 2018. After a period of testing, a payment hub was deployed
on the Ethereum main network12 in late June 2018. It currently handles a
low amount of Ether: about 6.67 USD worth Ether is in the system. Because
the project is in early stages and the priorities are to ensure reliability and
security, the deposits are limited to 0.001 Ether (0.28 USD). In the current
deployment a round lasts 4320 blocks or about 18 hours and in early September
2018 the contract was in its 61st round. The current version does not provide
any collateral and therefore 2 commitments are required for the transaction
finality. The hub registered 1623 addresses and facilitated 1736 payments as of
September 2018.

4.1 Implementation

A NOCUST payment hub infrastructure is composed of 3 major software ele-
ments: the on-chain smart contract, the hub server and the client.

Smart contract : The smart contract handles users deposits and authorises
withdrawals. It has challenges functions that allow to verify the integrity
of an account balance. Last, the smart contract is expecting the periodic
commitment from the hub operator.

Hub server : The hub server is controlled by the hub operator. It is responsi-
ble to submit the regular commitment into the smart contract. The hub
server should reply to all challenges that are posted on the smart con-
tract by its users. The operator needs to approve the off-chain transfer
and include them in the commitment. It has to take care that no double
spending happens.

Wallet client : The wallet client is needed to operate an off-chain wallet.
The client retrieves the Merkle proofs and verifies it against the smart
contract state. If the security status of the hub is considered safe, the
client allows to create off-chain transfers. In addition, the client enables
to make deposits, withdrawals and initiate challenges.

4.1.1 Gas cost evaluation

At each commitment the hub operator submits the root of the account Merkle
tree. The verification of membership of an user account within the Merkle tree
is at the core of NOCUST hubs security. However, as we are using a smart
contract as a recourse mechanism, it costs gas fees. Users should verify first
the proof of membership locally. Whenever a fraud is detected, the user should
do the verification on-chain by starting a challenge. Note that withdrawals also
require to submit a Merkle proof.

12Hub smart contract address 0xac8c3D5242b425DE1b86b17E407D8E949D994010

29

Figure 10: Gas costs of Withdrawals, State challenge initiations and answer to
the state challenges depending on the number of users. Gas price used is 10
Gwei and Ether price 300 USD.

The membership verification needs to be practical on-chain, in this section we
will look at the gas costs of such operations. The bottleneck of on-chain cal-
culations is often data costs. Data associated to contract calls is permanently
stored on the Blockchain. This means that every node in the network will have
to keep a copy of it. This is obviously expensive and that translates in high gas
costs. Storing a 256 bits word on-chain cost about 20’000 gas[49] at gas prices
of 10 Gwei, which means 0.0002 Ether or 0.055 USD at current Ether prices of
300 USD.
With a Merkle tree, the size of the proof grows logarithmically with the number
of leafs in the tree. In NOCUST, the number of leafs in the account tree is equal
to the number of users. Because we are using an augmented Merkle tree, for
each hash value in the path to the leaf we need an extra value for the cumulative
balance in the unknown branch. Therefore, the data complexity for verifying a
proof is O(log(N)), with N being the number of users. We run instances of the
hub with the contract deployed on a private test network to measure the gas
cost depending on the number of registered users. Figure ?? shows the results
of the experiment. We can notice that the gas costs grows logarithmically with
the number of users. The step-wise shape of the curves is due to the addition
of a new level in the Merkle tree, meaning that the costs increase only when a
new level needs to be added in the Merkle tree.
Note that if the hub is not cheating, it is never required to initiate a challenge.
When the hub is being cooperative, it offers a second type of withdrawals. The
hub can authorise withdrawals without verifying the account state on-chain,
making it cheaper and constant cost. It is still secure because the withdrawal
would still have to go through a full challenge period before being delivered.

30

4.2 Comparison with payment hubs

Payment channel networks like the Lightning network and payment hubs such
as NOCUST are both off-chain scaling solutions or layer 2 solutions that build
on the top of existing blockchain to improve the overall transaction through-
put. We will compare here the two approaches, pointing their advantages and
disadvantages.

Online presence requirements : The online presence requirements for both
approaches is more constraining than for regular Blockchain transactions.
With payment channels you are required to monitor your channels to
protect your incoming funds. If not done properly, the other party of the
channel could submit a forced channel closure with an outdated state in
his favour. Typically, the maximum interval is 24h. It is therefore needed
for the user to come online once a day. We have showed in the previous
section how this can be mitigated with watchtowers.

With payment hubs, users are required to come online once per round
to audit the last commitment of the hub and verify the integrity of their
account. If not all the checkpoints are verified, it would allow the hub
operator to cheat and manipulate users accounts.

Collateral requirements : A major issue with payment channel networks is
the lack of collateral or lack of liquidity. When executing a payment, if one
of the intermediary nodes does not have enough collateral, the payment
will fail. This worsens if a node on the network, potentially a merchant,
receiving a lot of funds draining all the routes in his direction. A node
with 10 channels that wants to guarantee the possibility of forwarding
funds up to a value of 1 BTC for each channel needs to provide 10 BTC
of collateral that will be lockup for a long period of time. The collateral
requirements of a payment channel network is very high. Additionally,
it should also be taken into account that payments are multi hops that
require the same amount of collateral at each hop. In a payment hub such
as NOCUST no collateral is required if participants are willing to wait
longer for transaction finality. If users want instant transaction finality,
the hub has to provide collateral to back the transactions of the current
and previous round as these might be reverted in case of a failed challenge.
Therefore, the collateral required is equal to the transaction volume over
the period of two rounds. Once the round has passed the collateral can
be reused for the next round.

In the context of a payment hub network, NOCUST hubs would be con-
nected together with payment channels. Additional liquidity would be
needed to operate the channels between the hubs. However, as hubs are
designed to support in the hundreds of thousand users there will be much
fewer hubs that there are Lightning nodes and therefore much less channels
in which to provide liquidity. Routing would mostly happen exclusively
directly without any hops, thus reducing the risk of failure due to a lack
of liquidities.

31

Routing : Routing is a major issue in payment channel networks as it scales.
Each participant needs to keep a complete copy of the network graph.
This approach becomes quickly not suitable for light clients with limited
hardware resources. In the context of a payment hub network, routing
would be trivial because the number of nodes would be much lower. In
addition, all hubs are assumed to be more ”professional” entities that are
dedicated to build a proper hub setup. In the Lightning Network routing
nodes can be user servers and are therefore much less reliable.

Resilience : In a payment hub network, many users rely on a single hub for
all their payments it’s therefore a single point a failure for many users.
From an architecture point of view, payment hub networks are more cen-
tralised than a payment channel network like Lightning. Users of payment
hub network would need to rely on several payment hub to improve their
resilience.

Censorship resistance : The operator of a payment hub can choose who is
allowed to transact through him and can block users at his own will. It can
get better in a situation where there are several hubs, where a censored
user could simply choose another hub to transact. A payment channel
network is much better in terms of censorship resistance. If a node refuses
to forward a payment, another node can be selected. Due to the use of
Onion routing encryption, an intermediary node cannot know the original
and final destinations of a payment beyond its directly connected peers.

4.3 Other payment channels hubs

A similar idea to NOCUST is Plasma[46]. Plasma is considered as one of the
major scalability solutions for Ethereum. It is developed by several startups such
as OmiseGo[21] or Loom Network[17]. The major difference between Plasma
and NOCUST is that Plasma is based on Unspent Transaction Output (UTXO),
while NOCUST is account-based. Therefore, users in Plasma need to monitor
and challenge UTXOs rather than a unique user balance. Plasma focuses more
on general computational purposes than just payments. Plasma comes in several
forms, we will discuss them in the next sections.

4.3.1 Plasma cash

Plasma cash is a Plasma implementation aimed for tokens of the ERC721[34]
standard. These tokens are non-fungible, each token is unique and therefore
distinguishable from each other. These tokens are also called collectible.
Plasma cash uses a sparse Merkle tree[31]. Sparse Merkle trees are similar to
regular Merkle trees, being their main difference that the leafs of the tree is
the complete output space of a given hash function. Therefore, a major part of
tree will be empty and many leafs will be equal to the empty element. Sparse
Merkle trees are less efficient than regular Merkle trees, but their advantage is
that they allow for an efficient proof of non-membership in the tree.

32

This data structure is efficient against double-spending, it allows for a straight-
forward verification of if an UTXO was already spent or not. There is a trade-off
between flexibility and fungibility. In Plasma Cash, tokens have to be spent in
the exact denomination in which they were created. There is no way to spend
less than or a fraction of a specific output.

4.3.2 Plasma debit

Plasma debit similarly uses Sparse Merkle trees but the leaves are transactions
and updated account balances. It gives flexibility and outputs can be freely
separated. Users are required to open a regular payment channel with the hub
operator. Therefore, it requires to pay the gas fees for the opening transaction.
To withdraw, the user claims the payment channel and a challenge period starts
for the submitted account state.

5 Liquidity off-chain Wallet

I have developed the first mobile wallet for the Liquidity Network payment
hub based on NOCUST[39]. It is a fully functional wallet that secures the
private keys and that allows to make transactions off-chain through a NOCUST
payment hub and regular on-chain transactions on the Ethereum main network.
It is available for Android on the Google playstore13 and for IOS14 on Apple
Appstore.

5.0.1 Technology stack

We wanted the application to be available for the two major mobile operating
systems currently available, Android and IOS. However, because they have a
very different architecture, they require to be developed in two different pro-
gramming languages, Java and SWIFT or Objective-C. To avoid duplicating
the work, a cross-platform framework was used where the application would be
developed once and used in both OS. We consider two JavaScript frameworks
Ionic and React Native, we will discuss here their pros and cons and explain the
reasons that leaded the choice of React Native. Then we will discuss the chosen
solution for State management.

5.0.1.1 Ionic

Ionic is a cross-platform framework maintained by the Apache Foundation re-
leased in 2013. It uses the TypeScript language which is a super-set of Javascript,
it brings type safety to Javascript. The major difference with its competitor Re-
act native is that Ionic is a Hybrid framework. The user interface of a hybrid

13Liquidity Wallet playstore: https://play.google.com/store/apps/details?id=
com.liquiditynetwork.wallet

14Appstore: https://itunes.apple.com/ch/app/liquidity-network-wallet/
id1395924630?l=en&mt=8

33

(a) First version Ionic (b) Final version on React Native

Figure 11: Ionic and React native version of the app

framework runs in a Web View, the whole application is wrapped in a web
browser engine that renders the interface. The use of native features of the de-
vice such as the Camera, Storage, etc ... require specific plugins to bridge native
features to the Web View. Ionic is very easy to get started if the developer is
familiar with web development. It is based on Angular, the most popular web
development framework. With Ionic you can be fairly confident that the appli-
cations will render the same on both, Android and IOS as the UI components
such as button, forms, scroll view are emulated within the Web View.
Ionic was originally chosen for the application, we were able to release a first fully
functional version of the wallet within a month, without any prior knowledge
in mobile development or JavaScript. However, the Hybrid application model
quickly started to show its limitations. With the user interface getting more
complex the performances of the Web View were affected, the reactivity was
low and the latency quite high, especially on lower end devices. It was decided
that this was not a sustainable solution for further developments and that a
different approach was needed. Figure 11a is a screenshot of the first version of
the app with Ionic.

5.0.1.2 React Native

React Native is an open source JavaScript framework maintained by Facebook.
It is the mobile version of the famous web development framework React. React
is meant for building user interfaces and advanced single-page applications for
web browsers. React and React native for mobile devices were released in 2013
and 2015, respectively. Both use the JSX syntax to structure user interfaces.

34

These technologies rely on the virtual Document Object Model (virtual DOM),
which is key to their performances. It keeps in memory a copy of the rendered
screen, the virtual DOM. When the screen needs to be updated, the new DOM is
compared to the virtual DOM and only the modified elements are updated on the
screen. The only drawback of this approach is a higher memory consumption.
As opposed to Hybrid apps like Ionic, React Native is a Native app. The
application is not wrapped in a webview but it is rendered natively by the
operating system. Components like Buttons and Forms are real Android or IOS
components. The drawback is that the developer has to take care and adapt
the application for each OS much more frequently than with Ionic. It even
requires sometimes to write some native code (Java or Swift). However, the
performances were much more satisfying. After a month developing on Ionic
the choice of moving to react native was taken. Unfortunately most of the code
had to be rewritten but the end result was more satisfying. Figure 11a is a
screenshot of the home screen of the final version of the app.

5.0.1.3 State managment

React native does not provide any solution for the state management of the
application. To fulfil this task the Redux library was slected. Redux implements
a “single” store often call a “single source of truth”. Redux attempts to make
state mutations predictable by imposing certain restrictions on how and when
updates can happen. The state is made read only and the only way to change
the state is to emit an action. Reducers handle the action, they are just pure
functions that take the previous state and return the next state and no side
effect is allowed. Because all changes are centralised and happen one by one
in a strict order, there are no race conditions to watch out for. Redux makes
state management easier and more robust when there are many interactions
happening in parallel.

5.0.1.4 Wallet features

In this section we will present the main features of the wallet

Deposit : It allows to make a deposit to the smart contract on the Ethereum
main network of the NOCUST payment hub. A deposit consists of a
contract call to a specific function with an amount of Ether.

Withdrawal : It allows to withdraw funds from the payment hub contract.

Off-chain transaction : Allow to make off-chain transaction without fees and
near instant through the NOCSUT hub.

On-chain transaction : Regular on-chain transactions.

Secure private key storage : Private keys are stored locally encrypted in
the device secure storage.

35

Private keys backup and recovery : Mechanism to backup keys offline al-
lowing users to recover funds if their device is lost.

Hub monitoring : Verify the state of the hub server and the hub smart con-
tract to insure that no cheating happened. Warn the user if any inconsis-
tency is detected.

5.0.1.5 User interface

We will present the user interface and its most important screens. Note
that the Fingerprint lock screen, PIN lock screen, Share wallet screen and
Settings screens are not presented here. We will refer to figure 12.

Home screen : On figure 12a we show the main screen of the application,
it acts as a dashboard for the user. (1) Opens the share wallet screen,
it allows the user the share its Ethereum address through a QR code
or via copying it to the clipboard. (5) Is the short form of the wallet
Ethereum address. (2) and (3) are the balances of the wallet, (3) is
the on-chain balance of the account in the Ethereum Network. (2) Is
the off-chain balance in the NOCUST payment hub. (4) opens the
conversion screen that allows the user to transfer funds between the
2 balances. (6) is the transaction history of the wallet, it shows the
on-chain and off-chain transactions and the conversions between the
balances. (7) Allows you to access the send screen.

Conversion screen : This screen allows you to transfer funds between
the 2 balances. From on-chain to off-chain, we call it a deposit and
from off-chain to on-chain, we call it a withdrawal. (1) Is a button
that allows you to change the direction of the conversion. In (2)
you specify the amount to transfer and confirm with (3). Note that
deposit and withdrawal are on-chain operations (contract calls) that
cost gas fees.

Send screen : This screen allows you to make transactions by specifying
the address and the amount in the forms. With (2) you can access
the QR code scanner to scan an Ethereum address or a Payment
request. By turning on the switch (1) you can send the transaction
on-chain instead of the default off-chain. Note that by turning the
switch on you will pay transaction fees.

5.1 Transaction flow

To make an off-chain transaction, the application currently requires the recipient
and the sender to be online to sign their state update. This is a major drawback
compared to regular on-chain transactions where no action is required from the
receiver. However, in the future the system might be changed to support passive
accepts requiring signature only for the state update of the sender.

36

(a) Home screen (b) Conversion screen (c) Send screen

Figure 12: Wallet main screens

The transaction is fast and shows up directly in the wallet of the receipient.
However, it can sometimes need up to 20 seconds maximum to be settled. If
the recipient of a transaction does not have the app open, it will receive a push
notification and will have up to 2 minutes to accept the transaction.
Deposits and withdrawals are on-chain transactions, they require first to be ac-
cepted on the Blockchain. Once the recipient accepted a deposit, 60 blocks of
confirmation are required before the deposit shows up in the wallet. A with-
drawal takes much longer, given that to get the funds back on-chain you have
to wait for a complete round or 2 commitments to pass. The reason is that
you have to wait for the full transaction finality and therefore you need to go
through the full challenge period. If the hub passes the challenge period suc-
cessfully, you can initiate a second transaction to confirm your withdrawal and
get your funds in the on-chain account.

5.1.1 Authenticated invoicing system

Most payments are expected to be made with online merchants. In order to
make it convenient for users and merchants, a standard payment request format
was designed. The payment request is supposed to fit in a QR code. The
payment flow with an online merchant is the following:

1. The user checks out his cart on the online merchant website.

2. The online merchant shows the payment request in the form of a QR code.

3. The user scans the payment request with the mobile wallet.

37

4. The user verifies the address and the amount of the merchant and confirms
the payment.

5. The merchant waits for completion of the transaction.

It is very convenient for users to use payment requests. The address and the
correct amount is automatically filled in. The transaction is secured through
the use of a secret random nonce passed in the payment request. This nonce is
generated on the server of the merchant website and included in the QR code
showed to the user. Then the secret nonce will be included in the signature
of the user authorising the transaction and therefore passed to the hub. When
the merchant receives the transaction, he should verify that the nonce matches.
The nonce is used similarly to the authentication cookies in web browsers. This
way the transaction is properly authenticated and it allows a binding between
the merchant and the user sending the transaction.

5.2 Security

Security is a critical aspect for a cryptocurrency wallet. It holds the private
keys allowing to unlock the funds and they need to be protected accordingly. In
this section we will go over the different security features that the wallet offers.

5.2.1 Private keys protection

A first critical step is the key generation. Several cryptographic softwares in
the past were found vulnerable due to an unsafe random number generator.
If the initial random seed used to derive the private key is predictable, the
users are exposed to a high risk of theft. To ensure safe random number gen-
eration the libraries chosen were carefully reviewed to ensure that they are
suitable for highly critical cryptographic operation. For example, a common
mistake in JavaScript is to use the convenient function Math.random(). This
function should never be used for cryptographic operations, since it is only suit-
able for non security critical applications. We chose the react native plugin
react-native-randombytes[23], which relies on the cryptographic module of
the underlying operating system. For Android, the SecureRandom[2] function
is used. In 2013 a flaw in its design was found[8] that lead to a theft of Bit-
coins. However, the vulnerability was since then corrected. For IOS the function
SecRandomCopyBytes[36] is used.
For protecting the private keys the wallet relies on the secure storage of their
respective operating systems. Keys are encrypted at rest and require the device
to be unlocked to use them. The keys used to encrypt private keys never reach
the main application process. On recent devices that offer a Hardware Security
Module, the keys are non exportable, making it impossible to retrieve the en-
cryption keys even with root access to the device. The secure storage on Android
is the KeyStore implementation[1]. It is fully available starting from Android

38

API level 22 (Released in Octobrer 2015). Therefore, on older devices the en-
cryption keys are stored in the shared preference of the device system making
rooted phones vulnerable. On IOS the implementation for secure storage is the
Apple keychain[3].
To restrict access to the application and therefore protect the funds of the user,
the application will be locked at start up and will require to be unlocked. When
creating a wallet, the user is requested to choose an authentication method.
Currently, two authentication methods are available: a 6 digits PIN code or
the fingerprint sensor. The fingerprint sensor option will obviously be available
only on devices that have one. On Iphone X the Fingerprint lock method will be
automatically replaced by Face ID, the face recognition lock screen from Apple.
Note that face ID and the fingerprint authentication have to be configured on
the underlying OS, respectively IOS or Android to be used as a authentication
method within the app. The lock screen will be showed every time at start up.
If the application is inactive or put in the background for more than 5 minutes,
it will be locked automatically. In the future, we plan to add a regular password
lock screen as an additional lock method.

5.2.2 Wallet recovery

The wallet follows the Bitcoin standard BIP39[5], BIP32[4] and BIP44[6] for the
key derivation. 128 bits of entropy from the random generator described in the
previous section are used and a 4 bits checksum is added. This is then encoded
using 12 words selected in a list of 2048 regular English words. The word list
specified by the BIP39[5] standard is constructed to avoid confusion so similar
words are avoided. The 12 words consitue the passphrase from which the private
key is derived and it should be kept secret at any time. BIP32[4] defines the key
derivation function that should be used and the hierarchical derivation scheme
that supports several cryptocurrencies and allows to create several key pairs.
BIB44[6] defines the derivation path to use depending on the cryptocurrency.
For the wallet we used the BIP32 derivation path m/44’/60’/0’/0/0, 44 is a
version identifier, 60 is the identifier for the Ethereum main network.
It is convenient to write down a passphrase on a sheet of paper as a permanent
offline backup. Additionally, the passphrase includes a checksum to ensure that
it was not mistyped. If the user looses his phone or it is stolen, the offline
backup will allow to recover the funds. When setting up the wallet, two options
are offered to the user: create a new wallet from a newly generated random seed
or restore a wallet using an existing passphrase.

5.2.3 Blockchain source

To get blockchain data and broadcast transactions we currently rely on Infura
infrastructures[13]. It is a free service run by the Ethereum foundation that
offers open RPC endpoints of Ethereum nodes. It is a third party in which a
certain amount of trust is required, the trust model is worse than for a SPV
client. They could potentially setup double spending attacks by simply lying

39

to the wallet. The data from the Ethereum network is not verified through the
verification of membership proof in the state Merkle tree or transaction tree.
In the future it is planned to allow the user to configure his own blockchain
source. This would allow you to use the wallet with your own Ethereum node.
For a better trust model, a SPV light client could be run directly on the phone.
The go-ethereum library[11] can be used in light mode to sync only the block
headers. This approach will be considered for future developments.

5.2.4 Hub monitoring

The security of NOCUST payment hubs rely on the the users carefully mon-
itoring the contract state and if any inconsistencies are detected an on-chain
challenge should be initiated. The wallet automatically take care of the moni-
toring, if the hub appear to cheat or to be malfunctioning the user will get an
alert. The current version does not allow to start a challenge from the wallet,
an external tool has to be used[16]. The current round length is 18 hours, to
insure the integrity of his off-chain account the user should come online at least
once every 18 hours to verify the last checkpoint and start a challenge if neces-
sary. In future developments of the hub it will be possible to start challenges
on the behalf of someone else account. It will allows for third party auditors
that can initiate challenges them-self for any account. Given the assumption
that there is at least one third-party auditor somewhere that correctly verify
the contract state and that is willing to react if he founds inconsistencies the
online presence requirement for users will be relaxed. The audit mechanism can
act as an additional security for the users.
If a challenge was started and that the hub appear to not be able to answer
the challenge the contract will enter in recovery mode. The recovery mode
makes the last valid commitment final, no more commitment are allow and
off-chain payments are therefore frozen. The last valid commitment is the last
commitment for which they was no challenge that the hub was not able to
answer. In recovery mode everyone can withdraw their funds by providing a
valid proof of stake (merkle proof of membership to the last valid commitment).
The funds from the off-chain transactions that were made after the last valid
commitment didn’t reached full finally. Therefore they are reverted unless the
hub provided enough collateral to guarantee these transactions. A separated
contract call is required to recover these funds.

5.3 Application usage

We focused on delivering the application for Android. Even if both versions An-
droid and IOS are fully functional, the listing process for Android applications
on the Playstore is much simpler than for IOS. In this section we present an
analysis of our audience and adoption. Then the results of a short user study
will be presented.

40

(a) Active installs (b) Geographic location of app installs

Figure 13: Active installs and geographic location

5.3.1 Analytics

The application integrate the Firebase analytic module from Google[?] to track
the usage of the app. With Firebase we can look at metrics to see who and how
the app is used. Data like number of sessions or retention is available to the
developer. Additionally, some more personal informations coming from users
Google accounts is anonymise and made available for the developer. We can see
location, age, gender or centers of interest. Additionally, we setup application
specific trackers. Firebase provides the possibility to add custom events to count
the number times that the users fulfil certain tasks, for example, counting the
number of deposits. All the results presented here are as of the 15th of August
2018.
Since its release in early June 2018 We counted 1192 first opens of the applica-
tions, figure 13a shows the number of active installs. It’s the number of devices
on which the application is installed and has been used in the last 30 days.
There is currently about 400 active installs, we therefore account for a large
number of uninstalls or inactive applications. We counted a total of 4432 ses-
sions or number of openings of the app. This means that on average each user
opened the app 3.7 times. The most popular location of app installs is surpris-
ingly India. This can be explained by the large population and the relatively
high English literacy in this country. It is followed by the United Kingdom and
China. 84% of the users are male and the most popular age group is the 25-34
years with 36% followed by the 18-24 and 35-44 years with both about 17%.
To allow the users to try the application rapidly without having to make a de-
posit we setup a faucet to allow the user to get 100 wei for free. One wei is equal
to 10−18 Ether, it is an extremely small amount of money but it is sufficient
to demonstrate the capabilities of the wallet. The user can send amounts as
small as 1 wei to other users without having to pay fees. The same transaction
on-chain would make very little sense as the transaction fees would be around
0.10 USD at current gas prices. We counted 545 outgoing transactions from the
wallet, unfortunately, only 130 unique users were able to make a transaction
which is about 10% of the installs. Table ?? is a summary of some events that
are tracked in the application.

41

Count Unique user
Off-chain transaction 545 130
On-chain transaction 17 13
Deposit 138 51
Withdrawal 5 3

Table 3: Use of the wallet functionalities

Regarding the lock screen method, 65% chose the 6 digits PIN code and 35% the
fingerprint sensor. 79%, chose to create a new wallet and 21% chose to restore
an already existing wallet.

5.3.2 User study

A short user study was conduced to get the expectations of users and feedback
for further improvements. Answers from 30 app users where gathered during a
survey period of one week.
First, it was needed to know more about the audience. We asked about their
background, if they where rather into Engineering, Finance, Law or others. A
large majority of our users unsurprisingly belonged to the ”Software, Engineer-
ing and Research” category with 59% of the answers. The second category was
”Finance, Business , Banking” with 13% and the third was ”Marketing, Public
relation, HR, Administration” with 9% of the answers. It was then asked to
evaluate how familiar they were with Blockchain technologies on a scale from 1
to 5. With 1 being complete beginner and 5 expert. The average score was of
3.5/5, surprisingly the respondents from the technical category considered them-
self less familiar with Blockchain technologies than the non-technical categories.
The category ”Software, Engineering and Research” got on average 3.3 and the
non-technical categories got on average 3.7. These answers overall confirm our
expectation that our audience is rather technical and familiar with Blockchain
technologies. Therefore, most of them probably already used a cryptocurrency
wallet.
An important answer that we were looking for is whether the wallet should
support exclusively off-chain transactions or both on-chain and off-chain trans-
actions. Once third-party auditors would be available to protect other users ac-
counts it could be possible to operate a wallet and transact exclusively off-chain
and never owning any funds on-chain. The wallet could delegate the broadcast
of withdrawal and thus paying the gas fees in off-chain ether. Supporting exclu-
sively off-chain Ether would simplify the UI and improve the user experience.
The user would not be required to manage his funds between two balances.
Such a system would almost completely abstract the underlying complexity of
the NOCUST hub.
In the user study it was first asked if they found the wallet too complex, 80%
answered no. It was then asked if they understood why the wallet has 2 balances,
on-chain balance and off-chain balance, 83% answered ”Yes”. It seems that that

42

these user fairly understood this concept of double balance in wallet. The next
step was trying to understand if they would have preferred to see only one
balance. The same question was asked but rephrased in different manners to
better understand their needs. It was asked if they find it annoying to have to
manage 2 balances, here, the responses were more balanced with 53% No and
46% Yes. Then ”Do you think the wallet should have only one balance ?” 16%
No, 40% Yes and 33% didn’t care. In these 2 last questions the answers seems
to be shared equally between the one balance and the two balance solution.
However, when we asked ”Do you think that the liquidity wallet should support
both, on-chain and off-chain payments ?” the response was clear, 76% sais yes,
in favour of the 2 balances solution. Some answers are contradictory, they don’t
seems to be really happy of having 2 balances but the majority wants the wallet
to support both on-chain and off-chain. A solution might be to offer 2 modes,
advanced with manual funds management and normal mode exclusively for off-
chain. It has to be kept in mind that these users are probably fairly comfortable
with Blockchain technologies and understands the concepts of on-chain and off-
chain, the responses might be different with less experienced users.
It was asked to grade the overall user experience of the wallet, the average is at
3.4 out of 5 with the median at 4. We then asked to grade how secure they feelt
while using the wallet, the average was at 3.3 out of 5 with a median at 3. No
consequent differences were observed between user with a technical background
and those that don’t.
Out of curiosity, it was asked to grade how much they value the importance
of open source software for cryptocurrency wallets. The average here was at
3.8/5. However, the average for technical users was at 4.3 and the average for
non-technical users was at 3.8. Therefore, we can say that technical users are
more sensible to open source than non-technical.

5.4 Further work

Support for several private key formats : To allow compatibility with other
wallets and allow to import private keys from them we would need to sup-
port the import of several private keys frormat. We currently only sup-
port 12 words passphrases, however some users might want to import raw
ECDSA private keys or the JSON format[27] use by other major wallets
such as My Ether Wallet[18].

Support for ERC20 tokens : ERC20 is a standard[10] to create independent
tokens or new cryptocurrency on the top of the Ethereum platform. It
allows for a seamlessly support of the token in the wallet. ERC20 consist
of a smart contract interface that a smart contract need to implement to
creat a ERC20 tokens. The interface has 9 functions, the most importants
are balanceOf(address owner) that allows to query the current token
balance of address owner and transfer(address to, uint256 value)

that allow to initiate a transfer of amount token value to the destination
address to. The same way that a NOCUST hub handle Ether accounts it

43

could handle any token build on Ethereum and could therefore be added
to the wallet.

Decentralised exchanges : A NOCUST hub supporting several tokens could
authorise atomic swaps between two users. Exchanging an amount of
token A for an amount of token B. Such swap transaction would have the
same trust model as a regular transaction in a NOCUST hub. Existing
cryptocurrency exchanges require users the withdraw the funds they wish
to exchange to the accounts of the exchange platform. They will hold users
funds for a short period of time to execute the trade before returning the
funds. A NOCUST exchange do not require at anytime to take custody
of its users funds therefore having a better trust model. Such a swapping
feature could be added to the wallet when it will support ERC20 tokens.

support for Bitcoin : Bitcoin limited scripting languages unfortunately does
not offer sufficient capabilities to run an instance of the NOCUST smart
contract on-chain. However solution such as XCLAIM[50] would allow to
have bitcoin backed token on Ethereum, meaning an ERC-20[10] compli-
ant token that

Continuous integration : Due to tight time constrains to develop the ap-
plication the development of automated tests and setup of proper a con-
tinuous integration pipeline was skipped. Continuous Integration best
practices are crucial for the longer term maintenance of the application.
Automated unit tests need to be develop to insure the correct behaviour
of each module of the application. Additionally End-to-End or E2E tests
need to be developed. E2E tests simulate the interaction of user of ap-
plication, it allow testing the application close to real usage conditions.
Libraries such as Detox[9] allow for such tests scenarios. The test suite
would then need to be integrated within a Continuous integration pipeline
running the tests after each commit to the source repository.

6 Conclusion

We looked at the Lightning network topology. Since it was introduced on the
Bitcoin main network in January 2018 the Lightning Network is growing very
fast. Its original authors were at first predicting a distributed, peer to peer
topology for the network, while the current reality is that such a structure is not
practical and scalable. The current network is more centralised than previously
expected, the top 10 nodes are involved in 36.6% of the total number of channels
and represent 55.5% of the node capacity. The network is currently mostly used
for testing, users open very small channels to not take big risks. We have seen
that fees are insignificant at the moment and routing nodes does not mind being
unprofitable. Therefore, we can conclude that currently users of the Lightning
Network are not yet acting like rationally actors. The topology will evolve as
the network will gain traction and real life usage. Payment failures are major

44

issues at the moment and payments fail because of unsuccessful routing or lack of
liquidities, therefore highly impacting the user experience. Given the current low
transaction volume on the lightning network and the small number of merchants
accepting Lightning payments the collateral can easily be artificially provided
to prevent channels from being exhausted. On the receiving end of a linked
payment, collateral requirements prevents the user from receiving an amount of
money before he effectively first spent this amount. To our knowledge, there is
few research ongoing to improve the liquidities issues, especially how to address
the limitation of inbound capacity of a wallet.
The lightning network presents other issues such as the online presence re-
quirement and the complex channel management. However, these issues will
be addressed in the future by developments like Watchtowers and Autopilot
feature.
We have seen that there is currently no practical mobile wallet for the Lightning
Network. The only exception is the Bitcoin Lighting Wallet that opted for a
drastic trade-off in terms of trust assumptions.
Payment channel hubs such as NOCUST on Ethereum allow for a better user
experience. These payment hubs leverage the power of a Turing complete virtual
machine to allow for more flexibility. In the future it is expected to have several
hubs connected by payment channels. Therefore, we assume from the start
a more centralised topology similar to the one towards which the Lightning
Network is evolving.
We developed from scratch the first mobile wallet for Ethereum with full off-
chain capabilities. A special care was given to the security of the wallet and
more specifically the protection of the private keys. The wallet is available
for Android and IOS and currently has about 1600 active installs as of early
September 2018. We believe that this wallet provides a better user experience
than existing mobile wallets supporting off-chain payments.

References

[1] Android keystore. https://developer.android.com/training/articles/

keystore. Accessed: 14-09-2018.

[2] Android random number generator. https://developer.android.com/

reference/java/security/SecureRandom. Accessed: 14-09-2018.

[3] Apple keychain. https://developer.apple.com/documentation/security/

keychain_services. Accessed: 14-09-2018.

[4] Bip32. https://github.com/bitcoin/bips/blob/master/bip-0032.

mediawiki. Accessed: 27-08-2018.

[5] Bip39. https://github.com/bitcoin/bips/blob/master/bip-0039.

mediawiki. Accessed: 27-08-2018.

45

[6] Bip44. https://github.com/bitcoin/bips/blob/master/bip-0044.

mediawiki. Accessed: 27-08-2018.

[7] Celer network. https://www.celer.network/. Accessed: 27-08-2018.

[8] Cve-2013-7372. https://nvd.nist.gov/vuln/detail/CVE-2013-7372. Ac-
cessed: 27-08-2018.

[9] Detox, end-to-end testing and automation framework. https://github.com/
wix/detox. Accessed: 27-08-2018.

[10] Erc-20 token standard. https://github.com/ethereum/EIPs/blob/master/

EIPS/eip-20.md. Accessed: 27-08-2018.

[11] go-ethereum client. https://github.com/ethereum/go-ethereum. Accessed:
27-08-2018.

[12] How many people use bitcoin. https://www.bitcoinmarketjournal.com/

how-many-people-use-bitcoin/. Accessed: 27-08-2018.

[13] Infura, scalable blockchain infrastructure. https://infura.io/. Accessed:
14-09-2018.

[14] Interactive lightning network explorer. https://lnmainnet.gaben.win/. Ac-
cessed: 31-08-2018.

[15] Lightning network bolt specifications. https://github.com/

lightningnetwork/lightning-rfc. Accessed: 27-08-2018.

[16] Liquidity web wallet. https://wallet.liquidity.network/. Accessed: 27-
08-2018.

[17] Loom network. https://loomx.io/. Accessed: 31-08-2018.

[18] My ether wallet. https://www.myetherwallet.com/. Accessed: 27-08-2018.

[19] Neo - an open network for smart economy. https://neo.org/. Accessed:
27-08-2018.

[20] Olympus server repo. https://github.com/btcontract/olympus. Accessed:
27-08-2018.

[21] Omisego. https://omisego.network/. Accessed: 31-08-2018.

[22] Raiden network. https://raiden.network/. Accessed: 27-08-2018.

[23] react-native-randombytes plugin. https://github.com/mvayngrib/

react-native-randombytes. Accessed: 14-09-2018.

[24] Satoshi nakamoto talking about payment channels. https://lists.

linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002417.html. Ac-
cessed: 27-08-2018.

46

[25] Spankchain. https://spankchain.com/. Accessed: 27-08-2018.

[26] Trinity, universal off-chain scaling solution. https://trinity.tech/#/. Ac-
cessed: 27-08-2018.

[27] Utc json keystore file. https://theethereum.wiki/w/index.php/Accounts,

_Addresses,_Public_And_Private_Keys,_And_Tokens#UTC_JSON_Keystore_

File. Accessed: 27-08-2018.

[28] open source community Acinq. Eclair, ln implementation written in scala.
https://github.com/ACINQ/eclair. Accessed: 31-08-2018.

[29] Réka Albert and Albert-László Barabási. Statistical mechanics of complex
networks. Reviews of modern physics, 74(1):47, 2002.

[30] open source community Blockstream. C-lightning, ln implementation writ-
ten in c. https://github.com/ElementsProject/lightning. Accessed: 31-
08-2018.

[31] Rasmus Dahlberg, Tobias Pulls, and Roel Peeters. Efficient sparse merkle
trees. In Nordic Conference on Secure IT Systems, pages 199–215. Springer,
2016.

[32] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[33] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski.
Perun: Virtual payment channels over cryptographic currencies. Technical
report, IACR Cryptology ePrint Archive, 2017: 635, 2017.

[34] William Entriken. A standard interface for non-fungible tokens. https:

//github.com/ethereum/EIPs/blob/master/EIPS/eip-721.md. Accessed: 31-
08-2018.

[35] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hu-
bert Ritzdorf, and Srdjan Capkun. On the security and performance of
proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 3–16. ACM,
2016.

[36] Apple Inc. Ios random number generator.

[37] VISA Inc. Operational performance data. https://s1.

q4cdn.com/050606653/files/doc_financials/2018/Q3/Visa-Inc.

-2018-Operational-Performance-Data.pdf, 2018. Accessed: 27-08-2018.

[38] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain pay-
ment networks. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 439–453. ACM, 2017.

47

[39] Rami Khalil and Arthur Gervais. Nocust - a non-custodial 2nd-layer fi-
nancial intermediary. Cryptology ePrint Archive, Report 2018/642, 2018.
https://eprint.iacr.org/2018/642.

[40] Lightning Labs. Neutrino client. https://github.com/lightninglabs/

neutrino. Accessed: 27-08-2018.

[41] open source community Lightning Labs. Lightning network daemon, ln
implementation written in go. https://github.com/lightningnetwork/lnd.
Accessed: 31-08-2018.

[42] Patrick McCorry, Surya Bakshi, Iddo Bentov, Sarah Meiklejohn, and An-
drew Miller. Pisa: Arbitration outsourcing for state channels.

[43] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry.
Sprites: Payment channels that go faster than lightning. arXiv preprint
arXiv:1702.05812, 2017.

[44] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[45] M. J. Neely, E. Modiano, and C. E. Rohrs. Dynamic power allocation and
routing for time-varying wireless networks. IEEE Journal on Selected Areas
in Communications, 23(1):89–103, Jan 2005.

[46] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart
contracts. White paper, 2017.

[47] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable
off-chain instant payments. draft version 0.5, 9:14, 2016.

[48] open source community Satoshi Nakamoto. Bitcoin core client, original
bitcoin client written in c++. https://github.com/bitcoin/bitcoin/. Ac-
cessed: 31-08-2018.

[49] Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger eip-150 revision (759dccd - 2017-08-07). https://ethereum.github.

io/yellowpaper/paper.pdf, 2017. Accessed: 27-08-2018.

[50] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou,
Arthur Gervais, and William J. Knottenbelt. Xclaim: Interoperability
with cryptocurrency-backed tokens. Cryptology ePrint Archive, Report
2018/643, 2018. https://eprint.iacr.org/2018/643.

48

