
Distributed

 Computing

Restaurant Swiper
Bachelor’s Thesis

Anton Brucherseifer

antonbr@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Roland Schmid, Simon Tanner
Prof. Dr. Roger Wattenhofer

March 17, 2019

Acknowledgements

I thank my supervisors Roland and Simon for their valuable feedback and for
giving me ideas that I would not have thought of. Also, I would like to thank
Anja, Fabio, Daniel, Eric, David, Johanna, Matthias and Adrian who participated
in the usability tests and provided creative inputs. Besides contributing many
ideas and style hints, Anja illustrated the beautiful thumb icons that are now
visible in the application.

i

Abstract

Whenever a group of people wants to eat out, a decision where to eat must
be made. Depending on the group members’ location, there might be many
restaurants to choose from. How can hungry people find the perfect restaurant
matching their appetite without getting bored by scraping the Internet?

In this thesis we built a web application that can help resolve this issue in
an enjoyable way. The application finds information about the users’ appetite
by showing them pictures of food. By swiping left or right, the users indicate
whether they like what they see. From that information, and the user’s location,
the application finds the most suitable restaurants in the area. Optionally, the
user can set the price range, the maximal distance of the restaurant and the time
when they would like to eat.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Related Work . 1

2 Background 3

2.1 The Yelp Fusion API . 3

3 Methods 5

3.1 Usability Tests . 5

3.2 Data Gathering . 5

3.2.1 Food Pictures . 6

3.2.2 Similarity Between Restaurant Categories 6

3.3 Grouping . 7

3.4 Settings . 7

3.5 Serving Food Pictures and Recommendations 8

3.5.1 Step 0: Choice of the Food Pictures 8

3.5.2 Step 1: Data Preprocessing 10

3.5.3 Step 2: Recommendation 10

4 Implementation 14

4.1 Client . 14

4.1.1 Pages . 15

4.1.2 User Location Provider 15

4.1.3 API Client Provider . 17

4.2 Server . 19

4.2.1 API Endpoint . 19

iii

Contents iv

4.2.2 Data Handler . 20

4.2.3 Session Data Handler . 20

4.2.4 Yelp Handler . 21

5 Results 22

6 Conclusion 24

6.1 Personal Insights . 24

6.2 Future Work . 24

Bibliography 26

Chapter 1

Introduction

There are numerous apps and websites providing information about restaurants.
However, many people still struggle with finding a place to satisfy their needs.

The problem might be, that there are too many restaurants to choose from.
This may result in a lot of tedious work reading restaurant menus and reviews.
Another issue is the arising discussion that may lead to a bad atmosphere at
the dining table. With Restaurant Swiper, we can even overcompensate for this
problem by providing a game-like way to choose the perfect restaurant.

1.1 Related Work

Some example competitors for our application are Google Maps 1, TripAdvisor 2

and Yelp 3. These systems offer information on many other aspects than restau-
rants, however, we will focus on restaurants specifically in the following. All of
them offer a website and smartphone apps to make their database easily accessible
for everyone.

They provide restaurant information such as price range, food category, lo-
cation, business hours, client reviews and ratings. The price range is usually
categorized by three or four symbolic values, rather than providing a numerical
price range. For instance, on Yelp, a restaurant has one of the following price
tags: $, $$, $$$ or $$$$. A restaurant’s food category is indicated by a set of
“categories” (Yelp) or “cuisines” (TripAdvisor). Those well-known information
providers usually show the location in form of a map or simply a number that in-
dicates the distance or travel time from the current user location. Google Maps,
TripAdvisor and Yelp offer client reviews and ratings to inform future clients
about the quality of a restaurant. The ratings of a restaurant are usually shown
as an average value. Yelp and TripAdvisor provide methods to sort a set of
restaurants by rank, which is usually composed of the average rating and the

1https://www.google.com/maps [Accessed 25-February-2019]
2https://www.yelp.com/ [Accessed 25-February-2019]
3https://www.tripadvisor.ch/ [Accessed 25-February-2019]

1

https://www.google.com/maps
https://www.yelp.com/
https://www.tripadvisor.ch/

1. Introduction 2

number of reviews. Furthermore, users can look at pictures of the interior, the
food and the staff.

One application that has a lot in common with Restaurant Swiper is Foodguide
4. In spite of having a very similar input method for the user’s food preferences,
however, their general idea differs from ours. Like our application, Foodguide
shows pictures of food such that the users indicate whether they like the meal.
The dishes that are shown in the pictures are at the same time the recommen-
dations that Foodguide suggests to their users. Additionally, users have the
possibility to see a list of their liked meals. Since the pictures were uploaded
and carefully tagged by other users, they contain information on the restaurant
where they were taken.

After this introduction, we present a brief overview of this thesis. In Chapter
2, we explain where our application gets all its restaurant data from. This should
give a general idea of the opportunities and limitations for our thesis. We de-
scribe our approaches on how we tackled some fundamental issues in Chapter 3.
In that chapter, we present the overall workflow of our application and provide a
deep insight on our recommendation technique. Chapter 4 gives an overview of
the technologies that we used to implement the application. An evaluation of the
final product is provided in Chapter 5. We will conclude the thesis in Chapter 6
while presenting some personal insights and suggesting possible improvements.

4https://thefoodguide.de/get-the-app-en/ [updated on 11-February-2019]

https://thefoodguide.de/get-the-app-en/

Chapter 2

Background

2.1 The Yelp Fusion API

All of the three big restaurant databases Google Maps, TripAdvisor and Yelp
provide APIs that enable other apps to access those databases. Therefore, we
did not have to put together our own database to serve our users with information
on restaurants. Using an API also enables our application to be used all over the
world instead of just a limited area.

Because of these APIs’ legal and technological restrictions, one cannot com-
bine all three of them to create the ultimate meta API. Therefore, we had to
limit ourselves to one of them. We chose the Yelp Fusion API since they provide
an easy-to-use interface that meets our requirements perfectly.

Yelp is concerned with all kinds of businesses. For our app, we are only
interested in businesses with the category restaurants. There exist 312 sub-
categories of restaurants [1], which are of great relevance for this thesis. Our
application mainly uses the businesses/search endpoint of the Yelp Fusion
API. This is the endpoint that serves a list of businesses containing most of their
information. To retrieve a list of restaurants, one sends a HTTP GET request
to https://api.yelp.com/v3/businesses/search?query . The query string is
a list of parameters separated by an ampersand (&). It is mandatory to let the
API know of a location. For this, one can either use the parameter location,
or the parameters latitude and longitude. The location parameter takes an
address, a city or even a train station as an input, while latitude and longitude
require the exact coordinates as decimal numbers. Additionally, users of the API
can add parameters to customize the output, such as:

• radius: maximal distance to the restaurant in meters (Yelp’s upper limit
is 40000.)

• categories: list of categories, of which at least one must be served in each
restaurant

3

2. Background 4

• limit: maximal number of restaurants to be returned (Yelp’s upper limit
is 50.)

• sort_by: order of the list. possibilities: best_match, rating, review_count
or distance

• price: a subset of {$, $$, $$$, $$$$}

• open_now: if true, only return restaurants that are currently opened

• open_at: only return restaurants that are opened at the specified time (in
Unix time)

The response is a JSON object containing the total number of businesses
found, the list of businesses and the region that was searched. Each business
contains multiple attribute fields including rating, price, set of categories, name,
URL to its Yelp page, coordinates, image URL and distance.

The following GET request

https://api.yelp.com/v3/businesses/search?
location=zurich stadelhofen&
categories=restaurants&
sort_by=distance&
limit=5

retrieves the closest 5 restaurants to the train station “Zürich Stadelhofen”.

Chapter 3

Methods

We will now illustrate the methods that were used for solving different issues.
Starting with the usability tests, we will give a general intuition, why we used
paper prototypes to design the user interface. In the next section, we explain
the origins of the some data (e.g. food pictures) that had to be fetched manually.
The Sections 3.3 and 3.4 clarify some fundamental concepts of our application.
Finally, we will present our algorithms for presenting appropriate food images
and restaurant recommendations.

3.1 Usability Tests

One widely used method in the user-centered design process is paper prototyping.
It offers the possibility to test a web application, before any code is written. This
helps creators to eliminate elementary problems in the very early design process.
Furthermore, it allows for quick changes and retesting the product.

For this thesis, we created mock-ups of the application before writing any
code. The goals of the usability test with the paper prototypes are:

• clearing uncertainties that rose up in the process of creating the paper
prototypes

• getting to know more issues in the overall design

It is important that the users think out loud so that we get an insight of how well
they understand what we are trying to achieve. To animate our testing person to
talk, we can ask questions like “What do you think you can do from this page?”
or “What do you think happens when you click on that button?”

3.2 Data Gathering

Aside from restaurant data, our application also requires many pictures of food
to present to our users as well as some similarity measurement to compare two

5

3. Methods 6

restaurant categories. For both of these features, we got the necessary data from
the Yelp Fusion API. For the pictures, we only store their URLs which are later
embedded in the swipe page, so clients download them directly from Yelp.

3.2.1 Food Pictures

Our application depends on a large set of food pictures including information
about what exactly each picture shows. The solution here was to make many
requests to the Yelp Fusion API, since they offer a set of pictures for each of
their restaurants. These pictures may have been uploaded by guests or owners
of the restaurant. Since we know the restaurant in which the picture was taken,
each picture comes with a set of Yelp categories. The only problem left with
the pictures is that they do not necessarily show food. Some pictures show the
interior, the staff or the menu of the restaurant. For our purpose, the pictures
should show food only. Additionally, each of them has to clearly represent the
set of categories, that is associated with it. We therefore had to remove the
unsuitable pictures manually.

3.2.2 Similarity Between Restaurant Categories

Measuring the similarity of two restaurant categories is used for different pur-
poses:

• delivering food pictures (If we have not stored any pictures of a certain
category, we show a similar one.)

• adding similar restaurants to a Yelp API query to obtain a broader set of
restaurants

• recommending restaurants that serve similar categories than the ones the
user liked

To enable this, we collected data about many restaurants and inferred a similarity
measurement from their categories. We say two categories are similar, if there
exist many restaurants that serve both of these categories.

Definition 3.1 (similarity value). We define the similarity value of two cate-
gories cat1 and cat2 as

similarity(cat1, cat2) = 2
|R(cat1) ∩R(cat2)|
|R(cat1)|+ |R(cat2)|

, (3.1)

where R(cat) denotes the set of restaurants that serve the category cat.

3. Methods 7

3.3 Grouping

Since many people like to have company at the dining table, Restaurant Swiper’s
main purpose is giving recommendations to groups. To that end, we have imple-
mented a mechanism that enables users to create and join groups. When a group
of people decides to eat together, they have to agree on a group name to let the
application know, that they belong together. This name should currently not be
in use by any other group.

The member that creates the group is considered the group’s master. All set-
tings for the group, including the location, come from its master. Consequently,
the master has the responsibility to submit the correct settings for the group.

The application provides a separate page to create and join groups. Alterna-
tively, group members can share their URL to invite further users to the group.
Whenever Restaurant Swiper is opened with a group URL, the user will be added
to that group. If it was an invalid URL (i.e. the group name does not exist), an
alert is shown, where the user has the chance to create a group with that name.

At what point should the application show the recommendations to the group?
For single users, the recommendation page is shown as soon as they have swiped
all their pictures. However, in the group case, the application does not know
whether all users are done, because new members can join as long as the group
exists. Our solution is to leave this issue to the user resp. to the group’s master.
As soon as a user has finished the swiping procedure, the application indicates
that the recommendation is not yet ready. At this point, the master has the
possibility to lock the group, meaning that no group member can swipe anymore.
If the master locks the group while some members have not yet finished swiping,
an alert will be shown. The master can then either wait for those members or
block them from submitting additional votes. Only if the group is locked, the
recommended restaurants are shown. After a group has eaten, the group gets
deleted on our server and the group name becomes available again. If the time
to eat is set, the session will be deleted three hours after the specified time.

3.4 Settings

Users can manually set some parameters to narrow the set of restaurants that
they are interested in. The settings of a group can only be edited by its master.
For the group’s location, the application simply uses the location of the group’s
master. There exists a separate page on the application, where users can change
the price range, the maximal distance and the time to eat. Furthermore, users
can check and edit their location.

To optimize compatibility with the Yelp Fusion API, our application adopts
Yelp’s set of price values {$, $$, $$$, $$$$}. For each of them, the users can

3. Methods 8

specify whether they want to include it or not. If none are selected, all price
levels are assumed adequate.

The maximal distance is a number between 0 and 40000 meters describing
the upper bound of the distance the users are willing to travel.

Additionally, users can specify the time and date, when they would like to
eat. The set of possible restaurants that come into consideration depends heavily
on that time, as the application only considers restaurants that are open at the
specified time. If the time to eat is not set, the application assumes that the
users would like to eat now.

Along with those settings, a user can examine the exact location, that the
application knows. Besides that, the users then can overwrite this location by
specifying a string to be passed to Yelp. If they would like to use the automatic
locating method again, they can also indicate this here.

3.5 Serving Food Pictures and Recommendations

In this section, we describe what it takes for our application to detect the users’
preferences and to compose a list of restaurants. To get optimal user feedback,
the application has to decide which pictures the user should see. The selection of
images depends on the possible restaurants nearby and what the users and their
group members have voted previously. The raw data, that is obtained from the
user’s swipes is preprocessed in the next step. Lastly, the application assembles
a small list of restaurants which will be shown to the user.

3.5.1 Step 0: Choice of the Food Pictures

As mentioned in Section 3.2, each picture is associated with a set of categories.
Therefore, it is mostly a question of which categories should be shown to the user.
The following algorithm selects a picture given a category: First, it searches the
database for pictures that contain the desired category and that have not yet
been shown to the user. If there are no suitable pictures, the algorithm will
look for similar categories while lifting the similarity threshold until it finds some
pictures. As soon as the algorithm has a set of pictures, it randomly selects one
of them and sends it to the user.

The Initial Pictures

When the application is first opened, it does not know much about the user’s
food preferences. The application might know some of the user’s preferences
from the settings, which are stored locally. However there are no information
about the user’s appetite, since we consider this information volatile. To get

3. Methods 9

to know the user’s surroundings, the application does an initial request to the
businesses/search endpoint of the Yelp Fusion API. This request already con-
tains some filtering. Since Yelp does not only consider restaurants, but businesses
in general, we have to tell the API to return restaurants only. All attributes from
the settings page (see Section 3.4) are applied as filters for the initial Yelp re-
quest. We also set the maximal number of restaurants to be returned to 50 which
is the maximum we can get out of one Yelp request. On top of that, we set
the sorting order to distance, so we can measure the restaurant density of the
user’s neighbourhood. Depending on the preferences that the user has submit-
ted in the settings, it might happen that there are no restaurants that meet the
requirements. For instance, if the time to eat is at night, there might not be any
open restaurants nearby. In that case, the user will see an alert saying that no
restaurants were found and to check the settings.

From exploring the user’s surroundings, the application can infer what cate-
gories the user might be interested in and how much swiping must be done. To
be able to make these measurements, we introduce the closeness factor f .

Definition 3.2 (closeness factor). The closeness factor is a number f ∈ [0, 1],
that describes how likely it is for a specific user to go to a restaurant, while
only considering the distance between user and restaurant (drest) and the user’s
preferred travel distance (dpref).

f(drest, dpref) =

{
1− drest

min(2dpref ,40000)
, for 0 ≤ drest ≤ min(2dpref , 40000)

0, otherwise
(3.2)

All distances are measured in meters. If no distance was specified in the
settings, dpref is set to 5000.

Let Pics denote the set of pictures that a user swipes. At the point of
checking the user’s neighbourhood, the application decides exactly how many
pictures the user should swipe. This number |Pics| depends on the restaurant
density and the restaurant diversity. The restaurant density of a location is the
average of the nearest 50 restaurants’ closeness factors. The restaurant diversity
is the number of categories that occur in those restaurants divided by the total
number of categories.

The application is looking for |Pics|/2 categories of which the user should see
pictures. These categories are randomly chosen with a non-uniform probability
distribution Pinit(cat). On one hand, the probability of category cat to be chosen
depends on how often it occurs in close restaurants. If the user is a member of a
group, categories that have been seen by other group members are less likely to
occur in one’s own set of initial pictures.

3. Methods 10

Further Pictures

From the votes of the initial pictures, the application has some knowledge about
the user’s appetite. Based on the previous swipes, we use another probability
distribution Pfurth(cat) to select further categories to be shown. For categories
that the user has liked, Pfurth increases, while it decreases for categories that the
user has disliked. If the algorithm detects that the user has disliked most pictures,
it will show some more categories that the user has not yet seen. These categories
are then determined by the same algorithm that finds the initial pictures.

3.5.2 Step 1: Data Preprocessing

Input

After a user resp. a group has finished swiping, the application has some raw data
that represents their appetite. For each member of the group, the application
stores two maps: likes : categories → N and occurrences : categories → N.
The number likes(cat) states how many times a user liked category cat, while
occurrences(cat) is the total number of times, the user saw the category cat.

Output

The preprocessed data consists of one map per member Lp.

Definition 3.3 (preprocessed category preferences).

Lp(cat) =
likes(cat)

occurrences(cat)
(3.3)

It describes the fraction of times, that a user liked the category cat.

3.5.3 Step 2: Recommendation

In the following, we describe how the application assembles a list of restaurants,
given the preprocessed data and the settings of the user. As a quick reminder,
the settings define the location context as well as the price range and the time,
at which the restaurant should be open.

The procedure goes as follows: Initially, the application sends multiple re-
quests with varying parameters to the Yelp Fusion API. We then have a set
of possible restaurants, about which we can make some measurements of how
well each restaurant matches the users. From that, the recommendation engine
outputs three restaurants for the user: the best, the cheapest and the nearest.

3. Methods 11

Finding Possible Restaurants

To begin with, we require a set of restaurants Rpot, that potentially interest
our users. We want Rpot to be as large as possible, meaning that some of the
restaurants might not fulfill all of the user’s requirements on price and distance.
The number of restaurants |Rpot| is highly dependent on the location, radius, time
of the day and the diversity of the category preferences. In densely populated
areas this number can go up to 100 - 200 restaurants.

In order to come up with this list of restaurants, we make several requests
to the Yelp Fusion API. The fixed parameters include location, open_now resp.
open_at, limit, radius and price. The location is sent as a string or as coor-
dinates, depending on the input method that the user chose (Section 4.1.2). To
get the maximum out of each request, we set the limit to 50. The value for
radius is taken directly from the user input in the settings page. It is to point
out that the Yelp Fusion API uses this value as a suggestion only and the actual
search radius depends on the density of the area [2]. For the parameter price,
we include the neighboring price levels as well. For instance, if a user has selected
the price levels {$, $$}, we would like to get restaurants having the price tag $,
$$ or $$$.

The variations in the parameter values take place in the parameters categories
and sort_by. For each fitting category we make two requests to Yelp: one
is sorted by rating and one by distance. At this point we make use of the
previously defined similarity measurement, meaning that we do not only accept
exactly the fitting categories, but also similar ones. Hence, we actually make
Yelp requests for each class of similar categories.

Evaluate Performance for Each Restaurant

After we have obtained a sizable list of potential restaurants Rpot, we would like
to have some kind of measurement, how well they fit to our users. We will now
explain how we evaluate the fitting values for the contexts category preferences,
distance, price range and quality. We measure the fit value for category prefer-
ences for each user separately, while the others are measured once for the entire
group.

To get an idea of how well a restaurant matches the category preferences
of a user m, we introduce the function fitmc . This function maps the user’s
preprocessed category preferences Lm

p and the category set of a restaurant Cr to
a number between 0 and 1.

fitmc (Cr, L
m
p) = max

cr∈Cr,cp∈Lm
p

(
Lm
p (cp) · 5

√
similarity(cr, cp)

)
(3.4)

i.e. the maximal product of the preprocessed category value Lm
p (cp) and the

similarity between a restaurant category cr and a user-liked category cp. To

3. Methods 12

aggregate the numbers fitmc of the individual group members m to one single
value fitc, we simply use the minimum:

fitc(Cr, Lp) = min
m∈group

(fitmc (Cr, L
m
p)) (3.5)

Another restaurant property that is crucial to the user is the restaurant’s
location and specifically its distance. For this, we use the closeness factor (see
Definition 3.2). This function will always favor closer restaurants, even inside
the user’s preferred radius dp. To prevent our algorithm from laying too much
weight on the restaurant’s location, we set the fit value fitd to be

fitd(dr, dp) =
(
f(dr, dp)

)0.3 (3.6)

where f is the closeness factor. An alternative way to evaluate the distance
would be to fully accept all restaurants inside the radius dp and only penalize
restaurants that are too far away. However, we decided against this, because
many users prefer short travelling times.

For users, who have some preferences about the price of the restaurant, the
recommendation is likely to contain only restaurants inside their desired price
range. However there might be restaurants that match all their other preferences
perfectly, but are a bit more expensive or a bit cheaper. For that case, we
introduce the function fitp, that computes the price-fit value. The arguments
of fitp are the set of price values accepted by the user Pp ⊂ {1, 2, 3, 4} and the
price value of the restaurant pr ∈ {1, 2, 3, 4}.

fitp(pr, Pp) = 1− min
pp∈Pp

abs(pp − pr)

4
(3.7)

For computing the fit value for the quality context fitr, we simply normalize
the rating rr of a restaurant:

fitr(rr) =
rr
5

(3.8)

The final performance of restaurant r and preferences p is then composed of
the product of computed values:

fit(r, p) = fitc(Cr, Lp) · fitd(dr, dp) · fitp(pr, Pp) · fitr(rr) (3.9)

Output

After we have carefully evaluated each restaurant, we would like to have one
distinct restaurant for each of the following roles: best, cheapest and nearest.
These are the three restaurants that will be shown to the users. Let Rfit denote
the list of all restaurants sorted by the performance value fit(r, p) in descending
order The best is simply the first element of Rfit. The restaurant with the

3. Methods 13

role cheapest is not directly the cheapest. This restaurant is intended to have
the cheapest price category that was selected in the settings. If the algorithm
cannot find any restaurants with that price category, it will search the next higher
price range until it finds a restaurant. If there are multiple restaurants with the
most favorable price category, the algorithm will select the one with the highest
fit(r, p). The nearest restaurant is simply the nearest of the top quarter of the
list Rfit.

Chapter 4

Implementation

Restaurant Swiper consists of multiple programs. The client software is a web
application, that is powered by the Ionic Framework. For hosting this web ap-
plication we use the built-in Node.js server. To handle server-side tasks such as
computing recommendations and building groups, we have implemented a second
server in Python. Figure 4.1 shows an overview of the most important classes of
the client and the Python server.

4.1 Client

The web interface is built with the Ionic Framework which is a cross-platform
toolkit for building mobile and desktop apps [3]. To program Ionic applications
the languages TypeScript, HTML and CSS are used. Ionic applications can run
on a variety of platforms such as browsers, Android, iOS and others. Since our
application is not dependent on any native device features, it can be used with
any modern web browser.

Our application consists of five pages that utilize two services or providers [4],
as they are called in Ionic 3 1. The purpose of using services is to separate the
GUI from the data access to enable more modular software development. Their
tasks are to get the user’s location (Section 4.1.2) and to communicate to the
Python server (Section 4.1.3).

Next to the providers that have been implemented by us, our application uses
some built-in Ionic features. One example is Ionic Storage. It is used for keeping
information stored on the user’s device. This offers the possibility for our users to
continue where they left off, in case the application gets closed or they reload the
page for some reason. Additionally, it is used for communication between pages
and services, ensuring consistent memory across different TypeScript classes.

1Restaurant Swiper is built on Ionic 3. The term “service” is used in Ionic 4 [5], which was
released during the development of Restaurant Swiper.

14

4. Implementation 15

SwipePage

RecommendationPage

SettingsPage

JoinGroupPage

LocationFaqPage

ApiClientProvider

+ getSwipe(): Promise

+ getRestaurants(): Promise

...

UserLocationProvider

+ getLocation(): Promise

+ getStringForApi(): string

...
YelpHandler

ApiEndpoint

+ get(): string

Client (TypeScript) Server (Python)

HTTP

SessionDataHandler

DataHandler

Figure 4.1: Restaurant Swiper’s most important classes

4.1.1 Pages

The root page is called SwipePage and it is where the user’s appetite is deter-
mined. The user can either press the thumb buttons or swipe the food picture
to the left or to the right. For the thumbs’ sliding animation, we use a modified
version of animate.css 2

As soon as a user has swiped all pictures that it got from the server, the
RecommendationPage is shown. The recommended restaurants are only visible if
the user is not in a group, or if the group is locked. Otherwise, the user is told
to lock the group resp. to wait for the other users to finish swiping.

The SettingsPage provides GUI components for specifying the settings de-
scribed in Section 3.4. Groups can be created and joined in the JoinGroupPage.
For users, who have difficulties with the automatic locating method, we provide
the LocationFaqPage to guide them through the troubleshooting process.

4.1.2 User Location Provider

Modern web browsers offer the functionality to get the location of the client using
native device services. Restaurant Swiper uses these features to get to know the
location of the user. Nevertheless, it is important to offer the user an alternative
to the automatic locating process. Entering the location manually can be useful
in several cases:

2https://github.com/daneden/animate.css [Accessed 21-February-2019]

https://github.com/daneden/animate.css

4. Implementation 16

UserLocationProvider

useString: boolean
geoLocation: Geolocation
geoLocationString: string
latitude: number
longitude: number
radius: number
userWantsManual: boolean

getLocation(): Promise<UserLocationProvider>
validLocation(): boolean
readUserLocationFromStorage(): Promise<UserLocationProvider>
storeJson(): Promise<string>
getStringForMaps(): string
getStringForApi(): string
presentLocationAlert(): void

Figure 4.2: UserLocationProvider class

• Technical issues: Not all devices or browsers offer a location service. Besides
that, even modern Android devices have difficulties locating themselves, if
Google Location Accuracy is turned off.

• Privacy issues: Some users might not want to turn on location services for
privacy reason.

• Current location irrelevant: The current location might not be where the
user would like to eat.

In order to function properly, our application must know a location to make
the initial Yelp request (see Section 3.5.1). For that reason, learning the user’s
location is one of the app’s first tasks when it is opened in a browser. By default,
the automatic locating method has the highest priority.

However, if the user has overwritten the automatic location in the settings
page, the automatic locating method is skipped. Also, if Restaurant Swiper has
no access to the location, another method has to be used. The second priority for
getting the user’s location is to look in the device’s storage for an old location,
i.e. from the last use of the application on this device. Whenever interested, the
user can check and edit the location in the settings (Section 3.4).

If there is no location stored, the user will be prompted with an alert to
enter the location manually (Figure 4.3). Using the location from last time is
considered better, since we do not want to bother our users to enter a location
all the time. The alert offers the possibilities to enter a location as text and to
retry the automatic method. The idea behind the retry button is, that the user
resolves the location problems before retrying. If it still did not work, the same

4. Implementation 17

Figure 4.3: Location Alert

alert reappears with an additional button that navigates to a help page to resolve
location issues. With the manual location method, a user can type the name of
a city, an address or a train station. A flow chart diagram of the getLocation()
function can be found in Figure 4.4.

The UserLocationProvider class (Figure 4.2) can handle location data from
either automatic or manual input. The automatic location is stored as the two
numbers latitude and longitude. A manual location, on the other hand, is
stored as a string. If the manual location should be used, the geolocationString
variable is sent to the Yelp Fusion API in the parameter location (see Section
3.2). Otherwise, the location is sent as coordinates (i.e. the parameters latitude
and longitude).

4.1.3 API Client Provider

This provider builds the interface between the front end and the Python server.
Initially, the ApiClientProvider must get some information from the storage
such as the location and the session ID (if it already exists). After that, it
can be used for sending some specific requests to the server (see Section 4.2).
These functions are asynchronous and return a promise with the response of the
server. This means that the component that called the function can define a
callback function which is executed as soon as the promise resolves resp. rejects.
In addition, the ApiClientProvider updates some data in the device storage.
The data that is updated at this point contains the session_id as well as the

4. Implementation 18

User opens app

userWantsManual?

Automatic location
worked?

false

true

device storage has
stored old location?

no

yes

the app can be
used

yes

no

app stores the
location locally

App shows location alert app stores the
location locally

user enters location

user presses "retry" button

user presses "?" button

Help Page is shown
back button

Figure 4.4: getLocation()

4. Implementation 19

information whether the client is the master of its group (in the group case).

4.2 Server

As mentioned in the introduction to this chapter, our web application requires
two servers to communicate with. Since there was no programming necessary for
the web server, we will focus on the Python server in the following. This Python
server was specifically written for Restaurant Swiper and is built to handle all
requests from the ApiClient provider (Section 4.1.3). As a data format, JSON is
used.

Both servers can be accessed over HTTPS. For this purpose, we use ningx
as a reverse proxy. This additional step had to be made to enable the auto-
matic locating method on browsers that block the functionality for unencrypted
connections. These browsers include Google Chrome [6] and Mozilla Firefox [7].

4.2.1 API Endpoint

api_endpoint.py is the main file that is executed to start the server. As the
name already suggests, it builds the endpoint between the client and the server.
It is powered by Flask to handle HTTP requests and it defines the workflow
that is executed on every request from the client. Furthermore, it holds the
SessionDataHandler object, where the data about all current user and group
sessions is stored.

On every request to the API, some initial functions have to be executed, such
as getting the right session object from the SessionDataHandler and adding
some attributes to be sent back to the client. If the client is not recognized,
a new session is created (Section 4.2.3) and the session_id is added to the
response. Therefore. it is important that the client adds its session_id to every
request. In the first request of a session, the location has to be submitted as well.

The swipe endpoint is requested, whenever the Swipe Page is loaded and
every time a user swipes a food picture. If the user has not swiped the first
picture, the server will respond with the initial food pictures (Section 3.5.1). In
the case that the user has swiped, the server receives the set of categories of
the swiped image and the vote result (i.e. whether the user liked or disliked the
picture). This information gets written to the SessionDataHandler object. At
this point, the server checks if the user has finished the swiping procedure. If so,
the done_swiping attribute is set to True and added to the response. Otherwise,
the server will add some more pictures to the response, if needed.

The endpoints create_group and join_group handle the grouping mecha-
nism. Creating a group is successful, if the provided group_name does not exist,

4. Implementation 20

whereas for joining a group, it is vice versa. These endpoints then return ex-
plicit feedback indicating the success of the operation. Optionally one can also
join a group by opening the application with the group’s URL. In that case, any
endpoint can be requested.

In order to finally get the list of restaurants that are most suitable for a
user resp. a group, the endpoint recommendation is used. This is where the
recommend() function from YelpHandler is called. In the group case, this func-
tion is only called if it has not yet been called since the settings changed or the
group has been unlocked. The reason for this is to make fewer requests to the
Yelp Fusion API and to minimize the waiting time for the response on client side.
A detailed description of the recommend() function is given in Section 3.5.3.

4.2.2 Data Handler

All non-volatile data for the server is stored in .csv files. This includes URLs
of the food pictures and some statistics on the categories, which is needed for
the similarity measurement. For simple access to these files, we introduce the
class DataHandler. The idea is that the queries provided by DataHandler can
be called without worrying about data storage. For instance, the function
get_random_picture() returns a random picture of a given restaurant category
resp. of a similar category. Optionally the caller can specify a set of categories
to be excluded as well as a set of pictures to be excluded. A picture is a Python
dictionary containing a URL and a set of categories.

4.2.3 Session Data Handler

The SessionDataHandler consists of a list of sessions, a list of group sessions
and a DataHandler object. It provides many functions that are needed by the
ApiEndpoint as well as the YelpHandler. For instance, this class contains the
implementations for getting the right pictures to send to the user (Section 3.5.1).
Since we have our own definition of Session and GroupSession, we will now
explain what exactly these classes do.

A session is created, every time a user opens Restaurant Swiper and does not
yet have a valid session ID. A session ID is valid if and only if there exists a session
in the SessionDataHandler with that ID. By default, a session gets deleted after
three hours, since we assume that the users have eaten by then. The session
keeps track of a user’s received pictures and the category preferences.

If multiple users join a group, a GroupSession object is stored in addi-
tion to each member’s Session object. The GroupSession has a set of session
IDs to keep track of its members and is identified by the group name. Since
GroupSession is a subclass of Session, group sessions also get deleted after the
group has eaten.

4. Implementation 21

4.2.4 Yelp Handler

This is where all requests to the Yelp Fusion API (Section 2.1) are constructed and
sent. The YelpHandler contains several functions such as get_restaurants_closeby(),
which implements the initial Yelp request described in Section 3.5.1. The recommend()
function gets a set of possible restaurants (in parallel) and orders them by how
well they fit. It returns a small list of restaurants assigning roles to them such
as best, cheapest and nearest. If no food pictures were liked, it assumes that the
user resp. the group is not hungry and suggests nearby bars.

Chapter 5

Results

In this thesis, we implemented an application, which is able to recommend restau-
rants to hungry users, after they have enjoyed a game-like process. The appli-
cation can run in modern browsers and can therefore be used on a variety of
devices (i.e. desktop, tablet, mobile) and operating systems such as Linux, Mac
OS, Windows, iOS or Android. With the grouping mechanism, multiple users
can form a group to get recommendations based on their current appetite while
avoiding arguments about where they should eat.

Despite having invested some time in creating mock-ups and executing us-
ability studies, there are some ways of improvement for the UI. Since Restaurant
Swiper is a web application, it can be viewed on different screen sizes. That is
why today’s web pages put great value on responsiveness. Until this point, our
application is optimized for a smartphone in portrait mode, while on wide screens
it looks less appealing. Another usability issue is the fact that users might not
immediately realize that they should create a group. This feature is extremely
valuable because visiting restaurants is usually not done alone. We have not
found the perfect compromise for teaching the users how to use the application
without bothering them. Instead, the users see a hint at the bottom of the swipe
page telling them to invite their friends and from a group (Figure 5.1). From
asking some people to use the application, we learned that they usually finish
swiping before even realizing that there exists a grouping mechanism.

22

5. Results 23

(a) mockup (b) result

Figure 5.1: swipe page for a single user

In contrast to the user interface, the server’s computations are not directly
visible to to the user. One has to test the application multiple times to detect
the quality of the restaurant recommendations. Due to spending much time on
producing a usable application, there are some flaws in recommendation compu-
tation. One example for a non-optimal decision is that the application computes
the number of pictures that a user has to swipe before the swiping procedure
begins. However, this number should be dependent of the user’s votes, such that
the application gets a meaningful understanding of the user’s appetite. Never-
theless, the usability benefits from this decision because users know how long the
swiping is going to take.

Chapter 6

Conclusion

For this thesis, a lot of time was spent on implementing various features to end
up with a working application. For every feature, we tried to build a working
version as quick as possible so that we could optimize it afterwards. This approach
succeeded in the sense that we managed to produce an application that serves
its purpose.

6.1 Personal Insights

In spite of having achieved the main goal, our approach might not have been op-
timal. We might have saved a lot of time if we had planned the code architecture
more thoroughly in the beginning. For instance, the communication between
client and server is not perfectly abstracted. Adding an element to be sent to the
server always involved a great deal of programming. However, we cannot know
at this point whether another approach would have been faster.

I am happy with what I achieved with my bachelor thesis. The application
works and supports almost all features that were proposed in the task description.
Furthermore, the development process was passed quite fluently, without ever
getting stuck for multiple days. There were many small issues on the way, but I
always managed to make some progress.

6.2 Future Work

By what means can Restaurant Swiper be improved? For instance, one can
optimize the user interface as well as the computation of the recommendations.
To that end, Chapter 5 gives some ideas of what can be reformed for these
features.

One of the Restaurant Swiper’s biggest troubles is the quality of the data.
For the city of Zurich, the Yelp Fusion API offers data about many restaurants.
However, in rural regions, only a small fraction of restaurants have an entry on

24

6. Conclusion 25

Yelp. To solve this issue, one could switch to Google’s Places API. For this, one
would have to make many small adjustments to Restaurant Swiper, but most
concepts should be similar to Yelp.

A small adjustment, that could satisfy many users, lies in the concept of
the settings. Instead of indicating a maximum distance, users could then say
how much they value the restaurant’s distance. Using this input, the application
could change the weight of the closeness factor when evaluating the restaurant
performances (Section 3.5.3).

Bibliography

[1] List of yelp categories (json file). https://www.yelp.com/developers/
documentation/v3/all_category_list/categories.json [Accessed 16-March-
2019].

[2] Yelp fusion api documentation: businesses/search. https://www.yelp.com/
developers/documentation/v3/business_search [Accessed 16-March-2019].

[3] (2019, Jan.) What is ionic framework? https://ionicframework.com/docs/
intro [Accessed 14-March-2019].

[4] Ionic 3 cli documentation: ionic generate. https://ionicframework.com/
docs/v3/cli/generate/ [Accessed 16-March-2019].

[5] Ionic 4 cli documentation: ionic generate. https://ionicframework.com/
docs/cli/commands/generate [Accessed 16-March-2019].

[6] P. Kinlan. (2016, Apr.) Geolocation api removed from unsecured ori-
gins in chrome 50. https://developers.google.com/web/updates/2016/04/
geolocation-on-secure-contexts-only [Accessed 13-March-2019].

[7] (2017, Aug.) Firefox 55 for developers. https://developer.mozilla.org/en-US/
docs/Mozilla/Firefox/Releases/55 [Accessed 13-March-2019].

26

https://www.yelp.com/developers/documentation/v3/all_category_list/categories.json
https://www.yelp.com/developers/documentation/v3/all_category_list/categories.json
https://www.yelp.com/developers/documentation/v3/business_search
https://www.yelp.com/developers/documentation/v3/business_search
https://ionicframework.com/docs/intro
https://ionicframework.com/docs/intro
https://ionicframework.com/docs/v3/cli/generate/
https://ionicframework.com/docs/v3/cli/generate/
https://ionicframework.com/docs/cli/commands/generate
https://ionicframework.com/docs/cli/commands/generate
https://developers.google.com/web/updates/2016/04/geolocation-on-secure-contexts-only
https://developers.google.com/web/updates/2016/04/geolocation-on-secure-contexts-only
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/55
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Releases/55

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 The Yelp Fusion API

	3 Methods
	3.1 Usability Tests
	3.2 Data Gathering
	3.2.1 Food Pictures
	3.2.2 Similarity Between Restaurant Categories

	3.3 Grouping
	3.4 Settings
	3.5 Serving Food Pictures and Recommendations
	3.5.1 Step 0: Choice of the Food Pictures
	3.5.2 Step 1: Data Preprocessing
	3.5.3 Step 2: Recommendation

	4 Implementation
	4.1 Client
	4.1.1 Pages
	4.1.2 User Location Provider
	4.1.3 API Client Provider

	4.2 Server
	4.2.1 API Endpoint
	4.2.2 Data Handler
	4.2.3 Session Data Handler
	4.2.4 Yelp Handler

	5 Results
	6 Conclusion
	6.1 Personal Insights
	6.2 Future Work

	Bibliography

