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Abstract

Most of the existing work which tries to learn an image editing style falls into
the categories of learning in a paired or unpaired manner. The former method
learns on pairs of unedited and edited images and the latter learns a style just
from edited images. But almost all existing approaches, paired or unpaired, use
thousands of images to learn an editing style. Our work tries to address this data
inefficiency by using Meta-Learning. To this end, we evaluate the effectiveness of
different Meta-Learning algorithms on the problem of learning an image editing
style from a paired image database in a supervised manner. Specifically, we use
an adapted U-Net architecture [1] to train on image pairs. We then combine it
firstly with Model-Agnostic Meta-Learning [2] and secondly with an adaptation
of RL? [3] to the supervised domain, which we call SL?. None of the Meta-
Learning algorithms improves the results compared to a standard optimization
with Adam [4]|. Nevertheless, we provide quantitative and visual evidence showing
that learning a prior image-editing style with Deep Learning models, let’s us learn
a new editing style with very few images. We also show that using a prior image-
editing style improves the results of training on a specific expert with a larger
data set.
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CHAPTER 1

Introduction

1.1 Why Image Editing?

"Use a picture. It’s worth a thousand words.” This idiom appeared in a news-
paper in 1911 [5] and is still true today. As digital cameras are becoming more
ubiquitous due to decreasing costs, and most smartphones are equipped with
high-quality lenses, the accessibility to photography has increased. This can also
be seen in the rising popularity of online image sharing platforms such as In-
stagram, Flickr, and Pinterest. But although the integration of cameras into
smartphones has improved the user-friendliness and accessibility of photography,
the art of taking a good photo is still a difficult process. Today this process most
often does not stop after taking the image, but continues into using image editing
tools to improve the taken picture. There are several reasons why people use such
techniques. Digital cameras take incomplete and noisy samples of a scene, to re-
construct a high-quality image. Also, cameras respond linearly to the incoming
light, thus they can only approximate the non-linear transformation our eyes are
able to perform. Not only that, but cameras are limited in resolution, dynamic
range, field of view etc. which leads to even more lossy representations of real-
ity onto images. These are the reasons why people turn to image enhancement
methods, which try to alleviate the above-mentioned problems. This can be done
by changing the color rendition, the sharpness, saturation, contrast, luminance
etc. But even in the case of having an image with a perfect rendition of reality,
one might still want to edit the image in certain ways. Be it to highlight certain
features of the photo, to create a certain mood, to make certain colors pop out
or just to make the image more subjectively pleasing. Thus image editing is a
critical aspect of a photographer’s workflow, which offers great power by enabling
her to fix and improve a photo.
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1.2 Problems of Image Editing

Unfortunately, the process of editing an image is very tedious, it requires a lot
of time and expertise. There is a myriad of parameters that one can adjust to
improve an image, each one of them influences the image in a specific, sometimes
complex way. Using different adjustments at the same time might lead to some
unexpected results due to side-effects. Although there exist countless books and
tutorials on good practices, editing an image is not straight forward, as the
photographer might need to trade-off different objectives. All this leads to a
situation in which the photographer needs a large knowledge of the image editing
tools and how they affect an image. It follows that automated photo adjusting
packages would greatly facilitate the process of image editing and make it more
available to everyday consumers. Firstly by reducing the time spent on editing
an image and secondly by removing the need for expert knowledge of the tools.

1.3 Insufficient Commercial Approaches

Today there exist several image editing software packages that offer automated
editing tools, although very limited ones. Some of them provide "global auto-
edit" tools which usually try to improve the general image quality by using some
rules that are based on heuristics. Some example rules are histogram stretching,
equalization and according to Bychovsky et.al. [6], simple methods such as fixing
the black and white points of the image to the darkest and brightest pixels. The
most prominent "global auto-edit" tools are probably provided by Adobe Light-
room and Apple Aperture (discontinued).

These packages usually offer other rule-based features that in popular language
have become known as "filters". Instead of making adjustments based on some
general heuristics, a photographer can manually edit an image and save the pa-
rameters she used. The person editing the image can then apply these same
parameters to other images.

Unfortunately, both above-mentioned techniques have big shortcomings. The
"global auto-edit" techniques pose the problem, that the results are not person-
alized to a specific user. That is, because general heuristics are used to improve
an image. These cannot factor in personalization, as the possibilities of adjust-
ing parameters are countless and oftentimes require trade-offs in different parts
of an image. But the resulting edited photo should be pleasing to the intended
audience (e.g the photographer) and not some general user, i.e. the decision if
an image looks good is subjective. The importance of personalizing the image
editing process was also shown and discussed in [7], [8], [9]. Then, in both cases,
rule-based techniques are used, i.e. the adjustments to the pixels are not really
dependent on the image itself. That means that if one increases the brightness
in one image and applies the setting to another photo, the result could be an
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image that is too bright. At best, some global-auto edit tool might take into
account certain properties of the input, nevertheless, the edit will still be based
on some basic pre-programmed rules. Filters do indeed take the importance of
personalization into account. Unfortunately, a user first has to find these pleasing
parameters, which we have declared to be a difficult task.

1.4 Challenges and Contributions

The solution to the above-mentioned problems is to learn an image editing style
with model and feature free methods. These firstly alleviate the problem of
rule-based approaches, because they are able to learn non-linear functions which
adjust parameters according to a given image. That means that they are for
example able to brighten up one darker image, but also realize that another
image might already be bright enough and thus doesn’t need much more adjust-
ments. Secondly, the methodologies we work with train a model on a paired
image dataset of edited and unedited images. Assuming that one has these be-
fore and after images, the model learns a style automatically without requiring
an inexperienced user to find some optimal adjustment settings. There are also
other approaches to this problem that only require a dataset of edited images
(unpaired problem setting). But almost all previous work that tries to learn an
image editing style (paired or unpaired), relies on very large datasets. This data
inefficiency drastically reduces the practicability of learning a new image editing
style. Because for all practical purposes, a dataset of several thousand images is
usually not available. In this work, we attempt to solve this data inefficiency by
applying Meta-Learning algorithms to the problem of learning an image editing
style. For our architecture, we use the Deep Photo Enhancer (DPE) network
from Chen [1]. We will make use of the Adobe 5K dataset [6] which contains
images that are edited by 5 different photographers. Our goal is to combine DPE
with different Meta-Learning algorithms which should solve the data inefficiency
problem. We train our Meta-Learning algorithms on 4 experts to then be able to
learn from very few images of the fifth expert. Concretely we make the following
contributions:

1. We compare different Meta-Learning algorithms on the task of learning an
image editing style.

2. We give analytic and visual evidence that the results of training a Deep
Learning model on a large dataset of a specific expert, can be improved by
learning a prior image editing style from different experts.
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Related Work

There is a lot of work attempting to tackle the problem of improving the sub-
jective quality of an image. The techniques to learn such a style can be divided
into two approaches, the ones who use actions or features to predict an improved
image and the others who do image-to-image translations. Predicting each indi-
vidual pixel, on one hand, makes the task more difficult than predicting a fixed
set of actions or features (which might have substantially lower dimensions than
a whole image). On the other hand, it yields a higher model capacity to express
arbitrary image adjustments. Conversely, the first method might be easier to
train and provide good results, but at the same time it will always be restricted
by the actions and features it uses to produce an improved image.

Feature/Action based Methods: In most of the early work, hand-crafted fea-
tures inspired by photographic practice are used to improve an image. In |7] for
example an end-to-end pipeline for automated image editing is proposed. With a
simple interface, a user is able to edit images according to her personalized style.
To reduce the number of images a user has to edit, the interface proposes images
which yield a maximal information gain about the editing style by using [10]. This
can already be viewed as a first attempt at solving the data-inefficiency problem
of learning an editing style. When the learned editing style has to be applied
to a new image, the most similar image of the already edited photos is chosen
according to some learned similarity metric. The editing style of this photo is
then applied to the new image. In a user study, they were able to conclude that
users indeed prefer a personalization of image editing operations. Similarly [11]
is also able to learn from very few images, but again the user has to manually
manipulate an image to create a dataset to learn from.

Another early approach is proposed by Bychkovsky et al. [6]. To this end, they
introduce an image data set of 5000 RAW photos which are then edited by 5
professional photographers. This allows them to then train a Gaussian Process
Regression (GPR) [12] model in a supervised manner. Note however that they
again do not model an image-to-image regression, they train on features inspired
by photographic practice and try to predict the luminance (which is important
to the editing style) of an image. They then show that they are able to learn

4
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from few (0-30) images of an expert, by pre-training a covariance function on a
larger (4K) dataset of that same expert or also of another expert. They call this
second option transfer-learning and show that it indeed improves the results. In
our work, we will make use of this very idea when applying Meta-Learning.

In a similar fashion [13], [14], [15], [16] all use features to learn an image editing
style, with [15],[16] making use of a ranking approach. More recent work often
makes use of Deep Learning methods, for example [9],[17], [18] with the last two
using Reinforcement Learning algorithms. Furthermore, many approaches who
work on features or actions, are able to learn an image enhancement style with
unpaired images. That means they do not need a supervised dataset of images be-
fore and after editing them, but only the latter. [19],[20],|21], [22],|23] all belong
to this category, with [19], [20] using Generative Adversarial Networks (GAN’s)
[24] and [20],[23] using Reinforcement Learning methods. These last approaches
all belong to the category of predicting certain actions and the order in which to
apply them, in order to reproduce an editing style.

Image-to-Image Translation based Methods: All approaches belonging to this
category that we know of, make use of Deep Learning methods. [25],[26] and
[27] use GAN’s to show that image to image translation works for very different
domains such as image colorization, map to satellite image translation etc. In
[28] and [29] more general style transfer approaches are presented, for example
to transform daytime images to nighttime images, switch out colors and surface
patterns etc. Closely related, [30],[31],[32],[33],[34],[35] all use image-to-image
translations for specific applications, with the last two making use of aesthet-
ically labeled images. Other methods such as [36],[37] make use of GAN’s to
enhance low-quality images to look like DSLR camera images. Lastly, there is
Chen et. al [1] who uses an adapted U-Net [32] architecture to show impressive
results and beat previous methods when training in a supervised fashion on 2250
images. Their main contribution to the U-Net is the introduction of global fea-
tures. Global features have already been explored in [30], however there they
need to train a supervised network with explicit scene labels in the dataset. Here
they directly use the U-Net to learn an implicit, global feature vector. Further-
more, they extend their architecture into a GAN to further provide very similar
results by training in an unpaired fashion on a little more than 600 images. Note
that we will use their Network Architecture and apply Meta-Learning to it.

Of all the aforementioned work, almost all ([18], [17], [16], [21], [23], [15], [22],
[20], [19], [34], [30], [35], [1], [36], [37], [33], [31]) use approximately thousand to
several thousand images to train their paired or unpaired models. The approaches
not requiring a lot of data are either not specifically optimized for learning an
image editing style or belong to the category of action/feature based methods.
The data inefficiency apparent in image-to-image based methods is what our work
tries to address. In some sense, we are inspired by Bychkovsky et al. [6], but try
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to work directly in the pixel space instead of using handcrafted features. Also,
we use Deep Learning Methods [1]| instead of model-based approaches such as a
GPR.



CHAPTER 3

Model

3.1 Model Architecture

Our model architecture is taken from Chen et al. [1] (see Figure 3.1), who ex-
tended on the U-Net architecture [32] and call their model Deep Photo Enhancer.
The U-Net architecture was initially proposed for bio-medical image segmenta-
tion but showed great results on other tasks as well. It is an architecture using
Convolutional Neural networks to do pixel classification or in our case an image-
to-image regression. Their architecture is optimized to work with few data points
and relies on strong data augmentation. The U-Net consists of a contracting net-
work which is used to capture context and an expanding network which yields
accurate localization on the output. Initially, the U-Net was based on the idea of
the Fully-Convolutional network [33|. However, [32] modified this architecture by
adding successive layers to the contracting network and replacing their pooling
operators with upsampling operators. This replacement generally increases the
resolution of the output. To provide localization, they also combine the high-
resolution features of the contracting network with the upsampled output. In
order to let context information flow to the higher resolution levels, the U-Net
further provides a large number of feature channels in the upsampling part. This

Conv, Selu, BN Conv Selu, BN, Conv
HW =512
— FC, Selu, FC Global Concat —— Residual
HW =256 L I
ocal Concat NN-Resize ' S—
|:| HW =128 .\ _gs @
HW=32 ’
| || )| I=——1 | | | |
316 32 64 128 E— 128 [ 128 256 192 9 48163 | 3

| 128 128

Figure 3.1: Our Model Architecture is used to train on a supervised dataset of
edited and unedited image pairs. The red block marks the global features.
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results in the contracting and expanding part being nearly symmetric and thus
providing a U shaped architecture. The main extension of Chen et al. [1] to
the U-Net, is the introduction of so-called global features. The idea here is that
high-level context information about a scene, such as the lighting-condition, scene
category or subject type is very relevant for our visual system to be able to adjust
to it. This is also true for cameras, which have specific settings that have to be
adapted to the current scene. Thus the conjecture is that these global features
are relevant for output pixels to decide on their local value.

The contraction network of our architecture consists of a 5x5 filter with a stride of
2 which is then followed by a SELU [38] activation and batch normalization [39].
To make the architecture more efficient, the global feature extraction shares the
contracting network of the U-Net with the extraction of local features for the first
5 layers. After the 32 x 32 x 128 feature map of the fifth layer, we start extracting
the global features. This is done by using the contraction steps to further reduce
the feature map to 16 x 16 x 128 and 8 x 8 x 128. We then use a fully-connected
layer with a SELU activation function, followed by another fully-connected layer
to produce a 1 x 1 x 128 feature map which are our aforementioned global fea-
tures. We also make use of a Residual layer, i.e. by adding the input image to
our predictions we are learning the difference between an unedited and edited
image instead of having to predict an image directly.

Given a label Y, i.e. an edited image and a prediction Y we optimize for the
following loss function:

arg min E[log1o(MSE(Y,Y))]

Model M
where
m—1n—1 _
MSECY) = -5 3 S P 0) - YD
1=0 j=0
and

Y = Modely (i, j)

with m and n being the height and the width of the images. As the logarithm is
a convex function, technically we are just optimizing for the mean-squared error
(MSE). However, we need the logarithm of the MSE to calculate the Peak-Signal-
to-Noise ratio, which we will show later.

3.2 Meta-Learning Models

3.2.1 MAML & FOMAML

In our work, we use Meta-Learning to address the data inefficiency of previous
approaches. Firstly we use an algorithm called Model-Agnostic Meta-Learning
(MAML) 2| which is completely model-free, i.e. it can be used on any model
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Algorithm 1: MAML
Input: p(7) distribution over tasks
Input: «,8 step size hyperparameter
1 randomly initialize parameters 6

2 while not done do
3 sample batch of tasks T; ~ p(T)

4 forall 7; do
5 evaluate VyL7;(fp) with respect to K samples
6 Compute adapted parameters with gradient descent:
9; =0- aVe,CTi (f@)
7 end
8 Update 6 < SVy Z ﬁf/;(fg;)
Tirp(T)
9 end

that is trainable by gradient descent. Thus it can be used for different Machine
Learning paradigms such as a Regression, Classification and even Reinforcement
Learning. On a high-level, its goal is to train a model on several individual tasks
in order to learn a "good" initialization of the weights. "Good" means that we
are then able to train our model on a new, similar task with very few data and
get good results. In their work, they show that they are able to achieve state of
the art results on two few-shot image classification benchmarks.

The Meta-Learning problem setting consists of a task distribution p(7) that
we want our model f to be able to adapt to. In a K-shot learning setting the
goal is to learn a new task 7; drawn from p(7) from only K samples drawn from
the data distribution of that task. First, we train on K samples from a specific
task for a defined loss-function L£7; using Stochastic Gradient Descent (SGD).
With the optimized parameters, we now evaluate newly drawn data from the
data distribution of the same task on the loss function. We then optimize our
original parameters based on how well we did on the evaluation loss across all
tasks (see Algorithm 1). So finding optimal parameters requires the model to be
able to quickly adapt to new tasks.

Unfortunately MAML is computationally very expensive due to the fact,
that one needs to calculate second order derivatives when propagating the meta-
gradient through the gradient operator in the meta objective (see Line 8 of Al-
gorithm 1). [2] thus proposes a first order approximation which is also discussed
in [40] and called FOMAML. The only thing that changes in algorithm 1 is line
8 which becomes:

0 BVy > Lr(fy)

Ti~p(T)

This effectively means that for each individual task we calculate the meta-
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7
L7, Vo(Lry+Lr,) = ¢ Vo,Lr, + Vo,Lr,

2

(a) MAML (b) FOMAML

Figure 3.2: A comparison of MAML and FOMAML

gradient with respect to the already optimized weights 6} of that specific task
and not with respect to the original weights 0(see Figure 3.2 for an illustration).

[2] have shown that using FOMAML yields nearly the same results and pro-
vides a 33% performance speedup. Additionally, it is also much simpler to im-
plement [40]. These findings suggest that the advantages MAML provides, come
from the task-specific optimization and not form the second order derivatives.

In our problem setting we have a dataset with original images that have been
edited by several photographers. The goal in our case will be to train our Meta-
Learning algorithm on several experts, such that when confronted with images
of a new expert, the model is able to learn the editing style quickly. That means
in our case, each expert is a task.

3.2.2 Supervised Learning® (SL?)

Our second Meta-Learning algorithm is based on the work of [41] which has
also been explored in the Reinforcement Learning domain by [3] (RL?: Fast
reinforcement Learning via Slow Reinforcement learning) and [42]. For clarity
of presentation, we will use [3] as a reference. Their objective is to learn a
prior model across different, but similar tasks, i.e. Markov Decision Processes
(MDP), by learning a Reinforcement Learning (RL) algorithm with another RL
algorithm (thus the name RL?). The inner RL algorithm is modeled via the
weights of a Recurrent Neural Network (RNN) that are learned through an outer,
general purpose Reinforcement Learning algorithm. As the target is to learn
across different tasks, they formulate the learning process in the following way.
Trials are a specific MDP selected from a set with several different MDP’s in it.
The number of times the agent is then allowed to sample from a specific MDP is
called the number of episodes. So one trial has several episodes in it. The goal of
the algorithm is to maximize the expected total discounted reward during a whole
trial and not, as one usually does, only of one episode. It is thus important for
the agent to know in which MDP it currently is in, to be able to act accordingly.
To this end, the agent will have to integrate all past information such as rewards



3. MODEL 11

Prediction| Loss Prediction| Loss Prediction| Loss

LSTM Zero
State Input
Unedited Zero Zero Unedited Unedited Zero Zero
Image Last Last Image Image Last Last
\ Prediction Loss | \ Prediction|| Loss |
Trial 1 / ExpertA Trial 2 / ExpertB

Figure 3.3: Our input always consists of the current image we have to predict the
editing style for, the previous LSTM state and the previous prediction and loss.

and actions.

We adapt the RL? algorithm to the supervised learning domain as a way to
do Meta-Learning and for further reference call it SL?. In our work, the trials
are the different experts that edit images in a specific way and an episode is just
one image. That means one task with n images of an expert in it, is one trial
with n episodes. The goal is that our model is able to recognize what expert
it is currently training on. If it sees images form a new expert, it should also
be able to adapt quickly to it. That’s why we extend our architecture with a
RNN. Specifically when our features have size 8x8x128 (in Figure 3.1 just before
the red, global feature block), we replace the fully-connected layer followed by a
SELU activation and another fully-connected layer, with a fully-connected layer
followed by a SELU activation and an LSTM [43]. The reason why we place the
RNN at this exact spot is because there we calculate the global features. As we
want our model to be able to differentiate in which task it is currently in, it makes
sense to place the RNN where it might get the most general information about
an image editing style and thus also knowledge about which expert it belongs
to. Note that we train our model consecutively on each expert for a certain task
size (similarly to MAML). Thus we teach the network to be able to adapt to
new tasks quickly. Naturally just feeding the network with unedited images, will
not let it learn what trial, i.e. expert it is currently learning on. This is why we
also use similar inputs as in [3]. Namely the input to the network is the current,
unedited image, the previous image prediction and the previous image loss (see
Figure 3.3). Because we are using an LSTM, naturally we always have to feed
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the previous state as well. Note that whenever we train on a new expert, we pass
the zero state and the previous prediction and loss are also set to zero.



CHAPTER 4

Experiments

4.1 Dataset

To evaluate different models we use the Adobe 5K dataset from Bychkovsky et
al. [6] which has original images that are edited by 5 professional photographers
(experts). Our training set for the DPE model (no Meta-Learning) consists of
2250 images and our test set consists of 498 images from Expert C (both are
equivalent to the dataset used in Chen et al. [1]). When we do Meta-Learning,
we train our meta-learner on all experts, except Expert C. Before evaluating on
the test-set, we pre-train on K images of Expert C (K-Shot learning). From all
expert-datasets, we remove the test-images of Expert C. This is to make sure,
that the model has never seen the test-images before, not even if they were edited
by another expert. Furthermore, we also remove 150 images which we use to pre-
train on Expert C. That means for example when we pre-train on K = 30 and
repeat the experiment for 5 times, we make sure that the model has never seen
these images before. Note that for larger pre-training data sizes K, we do not
make the guarantee that the model has never seen the image before, even if it
is only from another expert. This then leaves us with a training set of about
4470 (depending on batch size) images per expert. Finally Chen et al. [1| use a
data augmentation that multiplies the effective data size by 8, by using rotations
and left-right shifts. Thus we also use data augmentation for our Meta-Learning
algorithms. That means we train on 4 experts, with each one having a dataset
of 8 - 4470, which leaves us with a final dataset of about 143’000 images. So
even though we apply Meta-Learning, we initially still need a lot of data. But
the important difference is, that firstly this data is already available, i.e. one
does not need more data if one wants to Meta-Learn a new image editing style.
Secondly, this Meta-Learning has to be done once, afterward one should be able
to learn any image editing style with very few images.

13
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4.2 FEvaluation Metric

We use three different metrics to evaluate the performance of our models.

1. PSNR (Peak Signal to Noise Ratio):
20 - log1o(Max Pixel Value) — 10 - log1o(MSE(X,Y))

In our case Max Pixel Value is 255, as we have encoded the images as 8-bit
sRGB.

2. SSIM (Structural Similarity) [44]

3. CIE-LAB Error: This metric is calculated in the CIE-LAB color space
in which each pixel is defined by a triplet (L, a,b). The error is calculated
as:

MSE(Xp,Yr)

i.e. the mean squared error of the lightness values of two images (the first
element L of the triplet). We need this metric to be able to compare our
results with Bychkovsky et al. [6]. As mentioned before, they are able to
achieve good results after training only on few images.

4.3 Training

We trained all models for 50 Epochs. For the Deep Photo Enhancer Model,
we use a learning rate of 107> from which we subtract % after every epoch,
starting after the 25th epoch. We use the Adam Optimizer [4] and a batch
size of 3 (equivalent to Chen et al. [1]). For our FOMAML implementation,
we use an initial learning rate of 10™% and no learning rate decay. For the
inner optimization, we used Stochastic Gradient Descent and only for the outer
optimization do we use Adam. Our task size was 30 images per expert. For our
SL? implementation we use an initial learning rate of 10™2 which we change to
10~ at epoch 17. We trained it with SGD and a batch size of 5 and equivalently
a trial, i.e. task size of 5. As explained previously, the SL? algorithm always
resets the state and the previous prediction and loss to zero for each new task
that we train on. That means for the results we present, we actually don’t make
use of the idea of these special inputs. The reason is that our batch and task size
are equivalent. So we always feed zero values for these inputs and additionally
also feed zero values for the RNN state. We experimented with other settings
but ran out of time to make a full analysis with different task sizes.



CHAPTER 5

Results

5.1 Evaluation of Architecture

In this sub-section we review and extend the results of Chen et al. [1] and
make a few pointedly observations which help us understand the need for Meta-
Learning algorithms. We provide our own results for the Deep Photo Enhancer
architecture. Furthermore, we also provide the initial loss of the original images
and the edited images before training (see Table 5.1).

First, we have to note that Bychkovsky et al. [6] use a test set consisting of
2500 images, thus our test-datasets are not directly comparable!. Furthermore,
we have to mention the fact that it might be possible that they decoded their
images to another format than 8-bit sSRGB, which might also be a factor in the
comparison (although this seems unlikely given the results).

We also provide a comparison of the CIE-LAB Error of the Deep Photo En-
hancer architecture with the Results of the GPR in Bychkovsky et al. [6]. They
report that the average CIE-LAB Error in the test-set with Expert C (without
training) is 16.3. This is higher than in our test-set where we report an average
error of 11.94. Nevertheless, they show that after training their GPR, they are
able to achieve an error of 4.7 on their test-set (after training on 2500 images).
Compared to this the Deep-Photo Enhancer model performs quite well with an
error of 5.42, even though it does not need any hand-crafted features. The dif-

Tt was not possible for us to find out what images they used for their test-dataset.

PSNR  SSIM  CIE-LAB Error
Deep-Photo Enhancer 23.87 0.8988 5.42

Originals vs. Edited Images  17.8 0.782 11.94
(no training)

Table 5.1: Results of different models on the test set with 498 images of Expert
C. For PSNR and SSIM, higher is better and for CIE-LAB Error lower is better.

15
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PSNR SSIM CIE-LAB Error

Mean of Experts 21.35 0.8708 7.49
A,B,D.E vs Expert C
Average Image B,C,DE 21.48  0.8689 8.59
vs Expert A
Average Image A,C,D.E 24.97  0.9335 4.81
vs Expert B
Average Image A,B,D,E 23.74 0.9000 5.28
vs. Expert C
Average Image A,B,CE 23.21  0.9153 6.54
vs. Expert D
Average Image A,B,C,D 22.20  0.9148 7.56
vs. Expert E
Mean of Average Images 23.12 0.9065 6.56

Table 5.2: Comparing test-datasets of different experts.

ference of 0.72 is much lower than the Just-noticeable-difference threshold of 2.3
[45] that one could perceive. Again we want to be precautious, we did not di-
rectly test our model on their test-dataset. Nevertheless, we do want to make the
point that it seems like the model-free approach of Chen et al. [1]|, without using
any features, yields competitive results to Bychkovsky et al.[6]. This is also the
reason why we chose this architecture.

We present some further results to motivate the need and usefulness of Meta-
Learning. As we will be training on all experts except Expert C (we will only
pre-train on K data samples of Expert C in the end), we have to know how dif-
ferent the other experts are to Expert C. That’s why we compute the average of
evaluation metrics between the test-images of Expert C and all other Experts, i.e.
we calculate the value of an evaluation metric of Expert C and A, Expert C and
B etc. and take the average of that. We also compare the average test-images of
a set of certain experts with the test-images of the remaining expert (see Table
5.2). Note that Bychkovsky et al. [6] reports that across the whole dataset of
5000 images, the average CIE-LAB Error between the edited images is 3.3 and
the maximum error is 23.5.

Two things become apparent when looking at the results. Firstly, the Mean
of Average Images shows a very high PSNR and SSIM (respectively a low CIE-
LAB error). That means that generally speaking, taking the average of 4 Experts
and evaluating on the remaining expert will yield good results. This implies that
Meta-Learning an image editing style should be very useful. Secondly, we can
see that taking the average of all experts, except Expert C, and then testing
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K  Epochs PSNR SSIM CIE-LAB Error
BASELINE 1 5 1 17.80+0 0.7820+ 0 11.944+0
e ee_____5 .50 ___1780+0_ _ 0.7820+£0 __ 1191+002
30 1 17.80+0 0.7820 + 0 11.94+0
30 50 19.59 +0.50 0.8158 +0.01 9.81+0.73
BASELINE 2 0 50 23.34 0.8848 5.56
BASELINE 3 5 1 23.37+£0.04 0.88534+0.0 5.53 +0.04
e ee_____5___50__ 23394089 08864+0.0 _ 550+005
30 1 23.37+£0.04 0.8864+0.0 5.52 +0.07
30 50 23.62+0.15 0.8901 0.0 5.43 +0.03
Bychkovsky et al. [6] 5 - - - ~ 7.5
30 - - - ~ 7.5
____FOoMAML 0 __50 __ 2271 ____ 08689 __ ST .
5 1 22.86 £0.16 0.8712+0.0 5.70 +0.07
e eee____5___50__2290+02l 0.8768+0.01 _ 5.69+008
30 1 22.88 +0.26 0.87524+0.0 5.73 +0.07
30 50 23.02+0.36 0.8807 0.0 5.69 +0.11
sk 0 50 2331 08800 __ 554 |
5 1 23.32+0.01 0.8806 +0.0 5.54+0.0
e eee_____5___50_ 23324001 00817+0.0 _ 554001
30 1 23.32+0.02 0.8813+0.0 5.53 +0.01
5 50 23.36 £0.12 0.8904 +0.0 5.48 + 0.06

Table 5.3: Comparing our Meta-Learning Algorithms with 3 BASELINES. When
K=0 for the Meta-Learning algorithms, we did not pre-train on any data of
Expert C. We provide 99% confidence intervals for pre-training on K=5 and
K=30 for 5 experiments. Note that for Baseline 2 we report the SSIM and CIE-
LAB error that corresponded to the best PSNR value and not necessarily the
best overall values. This is to make the BASELINE 2 and 3 comparable.

on Expert C yields a PSNR of 23.74 which is already competitive with the re-
sults of the Deep-Photo Enhancer architecture of 23.87. As our Meta-Learning
algorithms will only train on images that are not edited by Expert C (naturally
except for the pre-training process on Expert C), we will also learn some kind of
"average", prior image editing style. Thus this result of 23.74 gives us a hint of
our model capacity.



5. RESULTS 18
5.2 Evaluation of Meta-Learning Algorithms

In this section we will explore how our algorithms perform for different sizes K of
the pre-training dataset of Expert C. To evaluate the effectiveness of our Meta-
Learning algorithms, we propose 3 different baselines. Note that the evaluation
process always happens on the test-dataset with 498 images.

1. BASELINE 1: Train the Deep Photo Enhancer model on K=30 and K=5
images of Expert C.

2. BASELINE 2: Train the Deep Photo Enhancer model on all data of all 4
Experts (except Expert C).

3. BASELINE 8: Same as BASELINE 2 but also pre-train the model on
K=30 and K=5 images of Expert C.

Note that when we pre-train on few images such as K=5 or K=30, the data
that we randomly selected can have a high influence on the results. Thus when-
ever we pre-train on K=5 or K=30 images, we select 5 sets of K datapoints and
report the average performance for all 5 pre-trained models using 99% confidence
intervals. For K that are larger than 30 we only performed the experiment once.
We did not use any data augmentation, so K is the actual number of images that
we trained on. But we do want to mention that data augmentation experimen-
tally improved the results and thus would be useful for a real application. We
also need to mention again that when we pre-train our SL? algorithm on Expert
C, we always set all inputs except the current image, i.e. previous prediction and
previous loss to zero for each batch. That means that we also set the state for the
RNN to zero. The reason is that we want the pre-train process to be equivalent
to the training process. Lastly one is usually interested in how quickly a model
trained with a Meta-Learning algorithm is able to adapt to a new task. Thus we
always report the evaluation metrics after 1 and after 50 Epochs.

First of all, we can see that the Deep Photo Enhancer, trained on K images
of Expert C performs very poorly (BASELINE 1 in Table 5.3) and is beaten by
every other experiment. But training the Deep Photo Enhancer model (without
Meta-Learning) on all experts except Expert C (BASELINE 2 in Table 5.3) al-
ready yields very good results. One can notice that it is still worse than only
training on 2250 images of Expert C (Table 5.1) and it also does not reach the
full model capacity that has been indicated by the average image of these other
experts (Table 5.2). Nevertheless, such a good performance was expected after
having seen how well an average image already performs. Taking the model of
BASELINE 2 and pre-training it on Expert C yields the results of BASELINE 3
in Table 5.3 which are very competitive with the original model that was trained
on 2250 images of Expert C. This is very impressive considering the fact that we

2We had to visually interpret these results from a graphic of their paper.
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use only a fraction of the data of Expert C. We can further see that increasing
the pre-train data size yields results that significantly outperform Chen et al. [1]
(see Table 5.4).

We would again like to make a comparison to Bychkovsky et al. [6] which
yielded very good results when training on few images (see Table 5.3). We can see
that all our methods are competitive with their results. We mention again, that
they use a different test and train set. The point we would like to make here is
that Deep Learning methods can achieve competitive results with feature-based
methods when training on only few data points.

The results further show, that our FOMAML algorithm performs much worse
than the other methods (see Table 5.3 and 5.4). We believe that this is due
to the fact that the model receives only sparse gradient updates. The reason
is that for each expert we need 30 images to optimize and then another 30 to
evaluate the loss function to be able to calculate the Meta gradient. We do this
process for 4 experts to finally get one final gradient update. We tried to train
the model for longer than 50 epochs, but it did not improve the results. Another

K  Epochs PSNR SSIM CIE-LAB Error

BASELINE 3 100 1 23.34 0.8838 5.49
100 50 23.74 0.8925 5.30
*********** 1000 1 2391 0.8910 531
1000 50 24.30  0.9010 5.1477
S 2250 1 2377 0.8911 55067
2250 50 24.19 0.9017 5.1878
FOMAML 100 1 23.32  0.8842 5.53
100 50 23.39  0.8858 5.50
”””””” 1000 1 2311 0.8825 577
1000 50 23.11 0.8834 5.77
”””””” 2250 1 2321 0.8842 567
2250 50 23.44  0.8882 5.55
SL? 100 1 23.40 0.8842 5.46
100 50 23.72  0.8948 5.32
*********** 1000 1 23.79 0.8953 534
1000 50 24.01  0.8981 5.29
”””””” 2250 1 2374 0.8923 545
2250 50 23.81 0.8926 5.43

Table 5.4: All models have been trained with 50 Epochs on K images of Expert
C. Note that for K = 2250 the dataset is identical to the training dataset of the
Deep Photo Enhancer Model in 5.1.
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reason why this algorithm might not work, is that it has been shown to work
on image classification tasks. In such a scenario, images between classes might
have much in common, but a classification task still has to differentiate between
clearly distinctive images. The task of predicting an image editing style, where
the changes to an image are only subtle and the content of the image stays the
same, has only small changes between different styles. Thus it might be, that
this algorithm is not optimally suited for such a task.

This is the reason why we turned to the SL? algorithm which should be
more suited for similar tasks. As one can see, the results (see Table 5.3) are
much better than for FOMAML. Unfortunately SL? is not able to outperform
a normal optimization with Adam (BASELINE 2), with or without pre-training
on images of Expert C. But although it is not able to outperform these baselines,
it is still able to improve on Chen et al. [1] when pre-training on larger data
sizes of Expert C (see Table 5.4). It might be possible that using larger Meta
task sizes, i.e. actually using the previous loss and prediction as an input, could
improve the performance. We will leave this up to future work. Lastly looking
at Figure 5.1 we can see that BASELINE 3, FOMAML and SL? visually yield
quite similar results to DPE trained on 2250 images.
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(a) Original Image (b) Label Edited by Expert C

(c) DPE trained on 2250 images of Expert (d) Average Image of Experts A,B,D.E
C

(e) DPE trained on all experts A,;B,.D.E + (f) Ours: FOMAML trained on all experts
pretrained on 30 images of Expert C (no A,B,D,E + pretrained on 30 images of Ex-
Meta-Learning) pert C

(g) Ours: SL? trained on all experts A,B,D,E + pretrained on 30 images of Expert C

Figure 5.1: Visual comparison of different algorithms



CHAPTER 6

Conclusion

In our work we have evaluated different Meta-Learning algorithms such as FO-
MAML and SL?. Both approaches have not been able to outperform an optimiza-
tion with a standard Adam optimizer. Nevertheless, we were able to significantly
improve on the results of Chen et al. [1], even when using notably less data. This
was achieved by learning a prior image editing style from other experts, before
training on the expert of interest. Bychkovsky et al. [6] showed that learning
a Covariance Function on Expert E (which is supposedly similar to expert C)
improves the results of training on few data of Expert C. Akin to them, we show
that learning a prior editing style on all experts also improves the results in the
domain of Deep Learning.
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CHAPTER 7

Future Work

In future work in this area, we would first like to do a further analysis of the SL?
algorithm, especially to find out if other parameter settings such as the learning
rate, the optimizer and the task size have a positive influence on the results. We
could also try out other Meta-Learning algorithms on the problem of learning
an image editing style. For example, one could directly learn the inner learning
rate through meta-gradient steps. Another line of thought would be to combine
our work with [10], which would allow us to make a selection of few images with
maximal information about the editing style. One could also try a totally differ-
ent approach to learn an image-editing style, by creating a new dataset based on
the dataset of Bychkovsky et al.[6] which contains the individual editing steps
that were made for a specific image. This would then lead to a feature based
supervised learning problem where one would try to predict the editing-actions
given an input image, instead of directly predicting an image. Even though it
would be feature based, the dataset would contain all possible editing steps that
are possible and thus one might achieve better results without having to sacrifice
the model capacity. We also recognize the usefulness of unpaired approaches,
thus it would be interesting to see if one could combine Meta-Learning with one
of these approaches.

Generally speaking, we would be interested in evaluating our and others work
with more loss-functions. Specifically, we would like to understand how image
editing affects a loss function and how well different loss functions capture the
representation of a style. This has been a long-standing problem in the Com-
puter Vision community and is especially important when trying to evaluate the
prediction of an image editing style.
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