
Distributed

 Computing

Self-Sovereign Identities in Cardossier

Master Thesis

Remo Glauser

glauserr@ethz.ch

Distributed Computing Group

Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Prof. Dr Roger Wattenhofer

Dr Remo Meier, Adnovum Informatik AG

June 11, 2019

Acknowledgements

At this point, I would like to thank all the people who supported this project and shared their
expertise. The project could be realized due to the Distributed Computing Group (DISCO)
headed by Prof. Dr Roger Wattenhofer, who gave me the opportunity to write this thesis at a
project of the Adnovum Informatik AG. Many thanks to my supervisor Dr Remo Meier, who
always had valuable advice for me. I thank Matthias Loepfe and Moritz Kuhn, which are in
charge of the Cardossier project at Adnovum, for paving the way to this thesis. A thank to the
Cardossier team who promptly responded to my questions.

i

Abstract

Distributed ledger based ecosystems, which go beyond traditional cryptocurrencies, request
for privacy-preserving identity management solution. Cardossier is an ecosystem which stores
transparently and securely all data form a car’s life cycle on an R3 Corda permissioned dis-
tributed ledger. It involves all industries of the car ecosystem and allows business processes
between the participants. A primary concern of ecosystems like Cardossier is how to manage
the data and identity of end-users. We present an architectural solution to identity man-
agement for Cardossier based on the concept of self-sovereign identities. It completely de-
centralizes identity management by letting users control their identifiers and personal data.
Our solution enables minimal disclosure of personal information, avoids identity correlation
attacks and allows users to give consent to Corda transactions. For this solution, partial ele-
ments were implemented as proof-of-work next to the existing Cardossier application.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 5

1.1 Identity . 6

1.2 Identity Management Models . 6

1.2.1 Isolated Identity . 7

1.2.2 Centralized Identity . 7

1.2.3 Federated Identity . 8

1.2.4 User-Centric Identity . 8

1.2.5 Self-Sovereign Identity (SSI) . 9

1.3 R3 Corda . 11

1.3.1 Corda in a nutshell . 12

1.4 Cardossier . 13

1.5 Problem Statement . 15

2 Research 17

2.1 SSI: Draft Specifications and Related Concepts . 17

2.1.1 Decentralized PKI . 17

2.1.2 Decentralized Identifier (DID) . 18

2.1.3 Universal Resolver . 20

2.1.4 Verifiable Credentials . 20

2.1.5 Identity Hub . 23

2.1.6 JSON Linked Data (JSON-LD) . 24

2.1.7 The Web Authentication API . 24

2.2 Related Projects . 24

2.2.1 Hyperledger Indy . 26

iii

CONTENTS iv

2.2.2 uPort . 28

2.2.3 BlockCerts . 30

2.2.4 Microsoft . 32

3 Analysis 33

3.1 Cardossier Data Types . 33

3.2 Identity Management System Requirements . 34

3.3 Evaluation of existing Projects . 35

3.3.1 Hyperledger Indy / Sovrin . 35

3.3.2 uPort . 37

3.3.3 BlockCerts . 37

3.3.4 Conclusion of Evaluation . 38

4 Concept Proposal 40

4.1 Data Model . 41

4.1.1 Car Data Model - Existing Model . 41

4.1.2 Identity Data Model . 41

4.2 Features . 43

4.2.1 DID Authentication . 43

4.2.2 Multiple identifiers . 44

4.2.3 User owns Identifiers and Credentials . 44

4.2.4 Verifiable Credentials . 44

4.2.5 Minimal Disclosure of Personal Information 45

4.2.6 Credential Revocation . 45

4.2.7 Anti-Correlation . 46

4.2.8 Credential Availability & Data Sharing . 46

4.2.9 Issue Credentials as Group member . 47

4.2.10 Keys & Data Recovery . 48

4.3 SSI Utilization in Cardossier . 50

4.3.1 General Utilization . 50

4.3.2 User Consent for Transactions . 50

4.3.3 Car Ownership and Transfer of Ownership 50

4.4 Credential Ecosystem . 53

CONTENTS v

4.4.1 System Architecture: Roles . 54

4.4.2 System Architecture: Interactions . 56

5 Implementation 63

5.1 Tools and Libraries . 63

5.2 Prototyping . 64

5.2.1 Network Domain . 64

5.2.2 Provider Domain . 66

5.2.3 User Domain . 67

6 Conclusion 71

CONTENTS 1

Glossary

Agent (Cardossier) A role a node operator can perform by offering identity owner specific
services such as Cardossier network access or data storage.

Claim An assertion made about a subject.

Credential A set of one or more claims made by an issuer.

Decentralized identifier A portable URL-based identifier. E.g. did:example:123456abcdef.

Decentralized identifier document A document that is accessible using an verifiable data
registry and contains information related to a specific decentralized identifier, such as
the associated repository and public key information.

DID owner An entity which owns the DID by being in possession of the private key counter-
part of the public keys in the DID Document.

Entity A thing with distinct and independent existence, such as a person, organization, con-
cept, or device.

Holder A role an entity can perform by possessing one or more verifiable credentials.

Identifier A label that uniquely identifies an identity.

Identity A digital representation of an entity. It consists of claims and identifiers.

Identity owner (Cardossier) A role an entity can perform by possessing identifiers and veri-
fiable credentials, which allow to create verifiable presentations.

Issuer A role an entity can perform by asserting claims about one or more subjects, creating
a verifiable credential from these claims, and transmitting the verifiable credential to a
holder.

Issuer (Cardossier) A role a node operator can perform by issue verifiable credential for an
identity owner.

Login credential Identifier plus secret used for authentication.

Node operator (Cardossier) A role a legal entity or person can perform by running Cardossier
node and participating on the network.

2

Glossary 3

Subject An entity about which claims are made.

Verifiable credential A W3C standard credential which can be use to build verifiable presen-
tations.

Verifiable presentation A W3C standard credential which can be use to build verifiable pre-
sentations.

Verifier A role an entity can perform by receiving one or more verifiable presentations for
processing.

Verifier (Cardossier) A role a node operator can perform by receiving and validating verifi-
able presentations.

Wallet A wallet holding verifiable credentials, storing key materials and enabling to create
verifiable presentation.

Acronyms

CA Certificate Authority.

DApp Decentralized Application.

DID Decentralized Identifier.

DID Doc DID Document.

DIF Decentralized Identity Foundation.

DL Distributed Ledger.

DLT Distributed Ledger Technology.

DNS Domain Name Service.

DPKI Decentralized Public Key Infrastructure.

PKI Public Key Infrastructure.

SDK Software Development Kit.

SSI Self-Sovereign Identity.

UTXO Unspent Transaction Output.

VC Verifiable Credential.

VP Verifiable Presentation.

ZK Zero-Knowledge.

ZKP Zero-Knowledge Proof.

4

CHAPTER 1

Introduction

In recent years distributed ledgers (DLs) became popular due to the rise of the digital curren-
cies like Bitcoin. However, the technology hold potential for applications far beyond Bitcoin
and cryptocurrencies. Today, distributed ledgers appear in a variety of commercial applica-
tions [14] and are not limited to the financial sector anymore [18]. Such an application is Car-
dossier [43], a DL-based digital dossier, where all data from a vehicle’s life cycle can be stored
transparently and securely. An initial focus lies on the used car market that is characterized
by a lack of trust, isolated parties and uncertainty, as many parties are involved. The goal
of Cardossier is to provide improvements in trust, transparency, efficiency and enable new
business opportunities. The application relies on R3 Corda as permissioned DL implementa-
tion that allows steering the data flow to parties only involved in business processes. One of
the primary concerns of ecosystems like Cardossier is how to manage the data and identity
of end-users in a privacy-preserving manner. How can users take control of their identity and
interact with the Cardossier ecosystem with privacy and trust? To answer this question, we
investigate the concept of self-sovereign identity [13] and its current implementations. We
design and prototype a self-sovereign identity management solution for Cardossier.

Document structure: In this chapter, we introduce identity management models, R3 Corda
and Cardossier, moreover, we state the detailed problem statement. In Chapter 2, we dis-
cuss emerging specifications and published concepts for SSI and related projects. Chapter 3
presents the requirements on identity management, and we evaluate related projects based
on them. We demonstrate a concept and architecture in Chapter 4 and a prototype imple-
mentation in Chapter 5. Finally, we present our conclusion Chapter 6.

Chapter structure: In the first section, the context of the term "identity" is defined. We
differentiate it from other research fields and set it into the context of digital systems (Sec-
tion 1.1). In the next section, different identity management models from isolated to feder-
ated until self-sovereign identities, including their historical appearing, are discussed (Sec-
tion 1.2). Next, a high-level introduction to the distributed ledger platform R3 Corda is given
(Section 1.3). Corda is the building element of the Cardossier project, which is introduced in
the subsequent Section 1.4. Finally, the problem statement of this work is stated out and its
scope defined in Section 1.5.

5

1. INTRODUCTION 6

Figure 1.1: Relationship between entity, identity and claims/identifiers

1.1 Identity

According to the ISO/IEC 24760-1 standard, each object with a recognizable, distinct exis-
tence such as a car, a person, an organization, a device or a group of such objects is described
as an entity. Thus, an entity is an item in the physical and digital world, and it has distinct at-
tributes. For instance, a person who has his name, date of birth or hair colour as an attribute.
An identity is defined as a representation of an entity in information and communication
technology systems [60]. In this context, identity refers to digital identity and differs from the
psychological, sociological and philosophical perspective [40]. Throughout this document,
the term identity is used, meaning a digital identity.

In some works, identity is defined as a set of attributes or characteristics [4], [60]. The
term claim is used instead, which provides an extended meaning. A claim is a statement
about an entity, which can be self-asserted, asserted by an authority or even by a third party.
Claims, which are used as unique identifies inside or outside a domain, are specified as iden-
tifiers. In Figure 1.1, the relationship between entity, identity and claims/identifiers is illus-
trated. The figure shows that an entity may have multiple identities, and each identity may
consist of multiple claims and identifiers. Further, it points out that identity does not repre-
sent more than one single entity. People may argue that a couple sharing a bank account are
two entities (two persons) having the same identity. It is not the case from a system point of
view since the couple itself is an entity, and the persons are attributes of it.

1.2 Identity Management Models

Since the beginning of computer systems and networks, the question of adequate identity
management arise. In early days when the systems have been less complex, rather primitive
or only a few people had access to such systems, simple identity management models like
the isolated model or the centralized model have been implemented, e.g. IP addresses and
domain names determined by the organization IANA. Later on, with the rise of commercial
web services and wide adoption of the Internet, Microsoft introduced a federated identity
system with Mircosoft Passport in 1999 [3]. Social networks emerged, and further companies
like Facebook, Linkedin or Google started to offer federated identities [39]. Since the user’s
amount of login credentials increase with each identity, user-centric identity [4] solutions

1. INTRODUCTION 7

Figure 1.2: Legend of identity model illustrations

have been presented, such as password managers. Finally, With the emergence of blockchain
technology, self-sovereign identities have been proposed [13].

1.2.1 Isolated Identity

Figure 1.3: Isolated Identity: An
identity for each domain.
(Legend: Figure 1.2)

The service provider has full administrative control over
the identities by managing them in his registry. A user
requesting service for the first time is enforced to go
through a registration process. The registration pro-
cess can have different elements, for instance, passport
based identification or verification of attributes such as
e-mail address or phone number. However, it keeps in
common that the service provider creates an identity of
the users inside its domain.

Figure 1.3 illustrates the model and describes an au-
thentication process. All service providers are isolated
in their domain and manage the identities of the user
separately. The user possesses different login creden-
tials (identifier and secret) for each provider for authen-
tication and accessing the service.

The usability for the user decreases with each new service he is going to use. Therefore,
manually managing all login credentials becomes challenging.

1.2.2 Centralized Identity

Besides the isolated model, the identities controlled by a single authority is still the most
spread identity management approach in the digital world.

1. INTRODUCTION 8

Figure 1.4: Centralized Identity:
An identity for one single domain
containing all organizations.
(Legend: Figure 1.2)

The centralized model is illustrated in Figure 1.4. It
shows that a user has only one login credentials, and
thus, he is represented by one single identity for all ser-
vices in the domain. The common identity is created
and managed by a central authority, which acts as an
identity provider.

It was the first model implemented straight away
from the beginning of the digitization. In the Internet’s
early days, organizations like IANA became validator of
IP addresses, and ICANN placed itself as the central au-
thority of the Domain Name Service (DNS). Later on,
with the rise of commercial sites on the Internet certifi-
cate authorities (CAs) appeared to prove ownership of
the web pages. Some of these organizations stepped to
hierarchical models. Nevertheless, they remained cen-
tralized at the root controller until today [13].

1.2.3 Federated Identity

Figure 1.5: Federated Identity: An
identity shared on request inside a
single domain
(Legend: Figure 1.2)

In the federated model, digital identity is not limited to
one single domain. Instead, users can utilize the same
identity on several service providers, and thus, they can
move from service to service inside the federation. Nev-
ertheless, each site remained an authority, which holds
control on the identities [13].

Figure 1.5 illustrates a federation. The providers
cooperate by exchanging the identities between each
other. It allows a user to login in with a single login cre-
dential to access several distinct services, called single
sign-on.

Prominent examples of federated identity platforms
are Google account, Microsoft account or LinkedIn
[39], which allow authentication to third party websites.
However, privacy protection is a crucial issue of such
systems [7], since it allows to collect data about the
user’s activities to the identity provider.

1.2.4 User-Centric Identity

From a user perspective, an increasing number of login credentials rapidly becomes unman-
ageable. If the usability is poor, then the authentication itself will be weak since the users are

1. INTRODUCTION 9

not able to handle a large number of credentials adequately. The issue is considered by the
federated model, which has been motivated by the need to simplify the user experience. The
idea is that a user requires only a single login credential, which would make memorizing or
storing primarily acceptable. However, the model is only effective if one or only a few iden-
tity domain’s exist, which is hardly conceivable. There will never be a single identity domain
for all service providers. Further, it requires different level of security and risk for different
mechanisms, infrastructures and credentials [4].

Figure 1.6: User-centric Identity:
A isolated identity with client side
management tool
(Legend: Figure 1.2)

The user-centric model intends to increase the us-
ability drastically by establishing an automated login
credential management on the user side. Figure 1.6 il-
lustrates the model. The service providers are isolated,
and they run their identity domain as in the isolated
model. For the user, there is a significant change that
he is equipped with a personal credential management
device. Thus, only one single secret for unlocking the
device is required to be memorized by the user. Besides
better usability, stronger secrets can be applied for au-
thentication to a service provider [4].

However, the model poses further challenges in
terms of security and data loss. In case the credential
management device becomes compromised, the ma-
licious party obtains access to all services and poten-
tially private data of the user. Furthermore, an adequate
data recovery mechanism is crucial since it has to be
consider that the credential management device can be
lost.

1.2.5 Self-Sovereign Identity (SSI)

Self-sovereign identity is not a new concept. In the physical world, it became the essential
concept for identity management. E.g. people own an identity document in the form of a
passport, have a membership card of the club and hold a bank card to withdraw money from
a cash-point. Such documents are usually kept in a personal wallet or are preserved by the
owner in a save place. It is natural for us that the identity is managed and controlled by our
own since people started to get used to it around 450 BC when Persian King Artaxerxes issued
the first passport [5]. The self-sovereign identity model is about enabling the same concept
in the digital world. It is about giving back control of the digital identity to the user and about
enabling system interoperability. Alternatively, as Christopher Allen, Co-author of the TLS
security standard said:

“Self-sovereign identity is the next step beyond user-centric identity, and that means it
begins at the same place: the user must be central to the administration of identity. That
requires not just the interoperability of a user’s identity across multiple locations, with the

1. INTRODUCTION 10

user’s consent, but also true user control of that digital identity, creating user autonomy.”
[13]

He points out that, SSI extends the user-centric model with the possibility of exchanging
the identity between domain on consensus with the user. The user should not only benefit
from increased usability by a credential management device; instead, he should obtain full
control about his identities.

Figure 1.7: Self-sovereign identity:
An user controlled identity
(Legend: Figure 1.2)

The Figure 1.7 illustrates the SSI model. Service
providers are organized in isolated domains, and the
user owns an identity management device alike to the
user-centric model. Furthermore, there is a globally dis-
tributed domain, realized as a Distributed Ledger (DL),
which provides a consistent view on shared identifiers
and public keys. A user can create, modify or delete
his identifiers stored in the DL. Moreover, he controls
additional claims and can use them to create identities
to register on a service. The Figure 1.2 describes the
scenario. The service provider 1 acts as an issuer of a
claim (e.g., name, date of birth or address) and trans-
mit it to the user, who stores the claim in his manage-
ment device. When he registers at a new service, he cre-
ates a new identity out of the claims and identifiers in
his management device. The key difference to the other
models is that a user controls the identifiers and can use
of claims asserted by a third party.

The heart of self-sovereign identity is the user’s con-
trol over his identity. To ensure full control, Christopher Allen formalized ten principles of SSI
[13]:

• Existence - users must have an independent existence: A user can never exist wholly
in digital form. Behind each SSI there is a entity with distinct existence. SSI makes
public and accessible some limited aspects of the entity.

• Control - users must control their identities: The user is the ultimate authority on
their identities. They should always be able to refer to it, update it, or even hide it.

• Access - users must have access to their data: An user must always be able to easily
retrieve all the claims and other data within his identity.

• Transparency - systems and algorithms must be transparent: The systems used to
administer and operate a network of identities must be open, both in how they func-
tion and in how they are managed and updated. Algorithms should be free and open-
source.

1. INTRODUCTION 11

• Persistence - identities must be long-lived: Preferably, identities should last forever,
or at least for as long as the user wishes. Though private keys might need to be rotated
and data might need to be changed, the identity remains.

• Portability - information and services about identity must be transportable: Identi-
ties must not be held by a singular third-party entity, even it is trusted. The problem is
that an entity may disappear, and thus, identities have to be transportable on the wish
of the user.

• Interoperability - identities should be as widely usable as possible: They are of little
value if they only work in limited areas. A digital identity system should make identity
information widely available.

• Consent - users must agree to the use of their identity: The sharing of identity and
claims must only occur with the consent of the user.

• Minimization - disclosure of claims must be minimized: When data is disclosed, that
disclosure should involve the minimum amount of data necessary to accomplish the
task at hand. E.g. to disclose that the identity is over 18 years old, should not be done
by revealing its actual birthday. Only the necessary information should be provided. In
this case, a proof or a claim that the identity is over 18 years old.

• Protection - the rights of users must be protected: When there is a conflict between
the needs of the identity network and the rights of individual users, then the rights
and freedoms of the individual user should be preserved over the needs of the net-
work. Identity authentication must be censorship-resistant and force-resilient, which
requires a decentralized system.

1.3 R3 Corda

Corda [15] is an open-source distributed ledger platform founded by a consortium of inter-
national banks. It was developed to steer the data flow to parties only involved in business
processes. In contrast to own independent and inconsistent systems, Corda enables interop-
erability without restriction in privacy. It is achieved by creating a digital model close to the
real world’s business logic. Parties participating in an agreement share an object only visible
to them. Thus, this shared object is not known by parties outside of the group of participants.
Corda use the UTXO (Unspent Transaction Output) computational model to record the global
state, thus, the latest state of the shared object is an immutable state. This state can be con-
sumed by a transaction to update the shared object by creating a new state. This process of
consuming and creating states leads to concatenate of all previous states, or in other words,
to a hash chain which is only present between the group. In contrast to other UTXO system
like Bitcoin, Corda uses a generalized approach of the concept by supporting arbitrary data
models. In this sense, Corda is a distributed ledger with significant differences to traditional

1. INTRODUCTION 12

blockchains. In contrast to permissionless blockchains, Corda enables real-world transac-
tions between identifiable parties, with privacy and legal certainty. Moreover, in contrast to
permissioned blockchains, Corda allows the co-existence and the interoperation of multiple
groups of participants along the same network [15].

Corda key features [45]:

• Privacy - Only the parties involved in the agreement have access to a shared object and
its transactions.

• Scalability - Since data is only shared and stored along the participants of a group (not
globally) transactions per time of the network can reach a large scale.

• Finality - At the time of completion of a transaction, all parties have an assurance that
the transaction is final and cannot be reversed. Unlike in mining mechanism of tradi-
tional blockchains1, where the is a chance that after successfully mining the block get
removed by another different block.

• Identifiable Participants - Participants of a shared object are clearly identified.

• Interoperability - Data shared between some parties can be transferred to any other
party without conversion.

1.3.1 Corda in a nutshell

A brief introduction to the Corda peer-to-peer network model and terminology is given in
this Subsection [47]. Starting with the terminology:

• State: An immutable representation of data.

• Shared object: A chain of states linked together with hashes. All states are considered
to spend except the latest one.

• Transaction: A record which takes null or several states as its input and outputs null or
several new states. The correctness of the transaction is verified by smart contracts.

• Smart contract: A function set related to a shared object. It defines rules to mutate the
shared object via a transaction.

• Object participants: Sharing a shared object. They may have to agree on a shared
object mutation depending on the related smart contract.

• Flow: A full process from creation to the signature collection until the completion of a
transaction. It contains the communication to all participants and the notary.

1proof of work consensus algorithm as presented in the Bitcoin white paper

1. INTRODUCTION 13

• Notary: A logical unit, which can be distributed among multiple entities by a byzantine
fault tolerance consensus algorithm [32]. It verifies the correctness of a transaction and
controls against double spending.

Figure 1.8: Corda network model

Corda network model, Figure 1.8: The network is a full-mesh - all nodes are connected, and
thus, can directly communicate with each other. Nodes can agree on shared objects, mean-
ing agree on the data format and smart contract, to have the same view on the data. Nodes
can participate in as many shared object as they like. Further, a certain shared object can
be shared between multiple nodes. How consensus is achieved to updated a shared object
is individually defined in a smart contract. However, each shared object has a notary, which
might be a byzantine fault tolerance network [32]. The notary validates the transaction of the
specific shared object and checks for double spending.

1.4 Cardossier

The vision of the Cardossier project [43] is to innovate the car ecosystem by creating a data
exchange of trusted data via a distributed ledger. Initially, the project started with the ques-
tion of how to establish more trust in trading used cars [22]. Since the information about
the car’s history is limited when buying a used car nowadays, we have to trust that the pro-
vided information by the seller is correct. The true condition of the car can only be verified
superficially by, e.g. taking a look at the engine, rudimentary checking for rust and making
a test drive. However, the correctness of some information cannot be verified such as the
frequency of maintaining the car, the correctness of the mileage or the existence of hidden

1. INTRODUCTION 14

damages caused by an accident. On a first view, it seems less of a big issue, but with taking
it into proportion of numbers, the full complexity becomes visible. Each year about 300’000
new cars get a car registration and about 856’000 cars are trade on the used car market only
in Switzerland [37], [42]. Most trades are performed on pen and paper what is prone to error.
A car history, which is verifiable and transparent, would reveal the real condition of a car.
These two desired properties are achieved in Cardossier by making use of Corda. Reaching
the goal of a verifiable car history requires to involve all car ecosystem related players starting
by the manufacturer to the dealer, insurance companies, registration authorities and private
buyers and sellers until to the scrap merchant into the system. All participants provide car
relevant data to the network and sign them with their identities to create trustworthy infor-
mation. Further, a buyer can verify that the seller revealed all data. Otherwise, the seller
could hide, for instance, information about car damages. It requires a mechanism to ensure
transparency.
Furthermore, added value is created by having connected all parties of the car ecosystem on
one single digital system [26]. A secure data exchange can follow without a central authority.
Additionally, a standard data format is established, and thus, unnecessary data conversion
between the parties can be avoided.
However, the main benefit for companies is the opportunity of business process automa-
tion. For instance, an insurance company may offer to enter car insurance in a few clicks
on Cardossier and provide the certificate of insurance in a verifiable data format such that
car insurance can be proved to the registration authority while asking for vehicle registration.
These and similar processes can be digitalized and become more cost and time-efficient.
Car owners benefit from a reduced administrative effort in managing his car by the digitalized
processes and data, which is accessible via a single dashboard. Especially, car fleet manage-
ment may gain inefficiency significantly.

The idea of a verifiable vehicle history report is not new. The platform CARFAX [44] based
on a traditional system2 is already providing similar functionalities. However, it does not
offer to the companies to create business processes and to execute them on the platform.
Furthermore, their vehicle report is about trusting on a single company which has to collect
the data of the full ecosystem. In Cardossier the trust and the data are distributed by the
unique architecture of Corda. Each party (dealer, an insurance company or merchandise) run
a Corda node which has an identity well-known inside the network. The parties can supply
new signed data (e.g. car mileage) to the network by attaching it to the related car object. A
smart contract verifies the correctness of the data and controls the authorization. However,
the data is not broadcasted along with the system as it is the case in blockchains. The data
is only provided to the nodes which are participating in the specific car object. Thus, car-
related data is never shared globally. Moreover, trust in data correctness is distributed along
with each data provider and the parties participating in transaction validation.

At this point, the private customers have not been brought in yet. They are crucial since
they should benefit from a verifiable vehicle report and the automated processes.

2A traditional system is referred as a centralized or distributed system which is controlled by a single entity
(individual, company or consortium)

1. INTRODUCTION 15

1.5 Problem Statement

The previous section provided a general introduction into the field, whereas the detailed
problem statement of the thesis is formalized in the first part of this section. In the second
part, the scope and delimitation of this work are described.

The general problem definition of this research objective is formalized as:

How can users take control of their identity and interact with the Cardossier ecosystem
with privacy and trust?

This general question is further divided into sub-questions; each of them demands a so-
lution for a key problem of the general problem statement. Answering a sub-problem con-
tributes to the general research question.

1. What are the requirements on identity management in Cardossier and can SSI fulfill
them?
Identity management (IdM) solutions are rarely standalone. Usually, the IdM is em-
bedded into a bigger system or ecosystem, and each identity model has different flows
and functionalities as presented in Section 1.2. The system demand on an IdM and the
desired identity model have to be investigated to provide a frictionless co-existence. In
our case, Cardossier and SSI principles which let users control their identities.

2. What are existing data models and implementations of SSI?
Efforts in realizing self-sovereign identities have been made in recent years. Specifica-
tions and proposals for SSI have been presented and implemented. The current specifi-
cations, tools and libraries of SSI projects, as well as their proposed future work, should
be investigated and analyzed on their re-usability in Cardossier.

3. How can SSI be enabled in Cardossier?
It is equivalent to the question of how to enable SSI in Corda since Cardossier is a Corda
based system. Therefore, it implicitly requests for a solution of how to provide SSI in the
permissioned distributed ledger Corda. A concept of an SSI solution should be worked
up, which considers the requirements and the pre-known problems:

• How can the disclosure of personal data be minimized?

• How can identity correlation attacks be prevented?

4. How can a user give consent to Corda transactions?
At this point, users cannot authorize Corda transactions. It is a desired feature for
claiming vehicle record ownership and giving consent to an ownership change. Since
SSI may provide a solution to enable the functionality, a concept should be worked up
to realizing it.

5. How can SSI be utilized in Cardossier?
SSI provides base functionalities which have to be embedded in Cardossier specific

1. INTRODUCTION 16

processes. Answer to the question of how a general process flow will look like should
be given.

6. What is a suitable architecture to enable the solutions?
A software architecture to realize the solution should be presented.

After stating out the research question and structuring it into sub-problems, we define
the scope and delimitation to allow a clear work definition.

1. A solution proposal about the architecture and concepts will be presented. Partial im-
plementations on the scope of a proof-of-work should be made.

2. It will be discussed how identity correlation can be avoided under the umbrella of IdM
solution. Correlation via external sources such as internet traffic will not be considered.

CHAPTER 2

Research

In this chapter, we discuss emerging specifications and published concepts for SSI in Sec-
tion 2.1. Furthermore, we describe the most popular projects which provide self-sovereign
identities, in Section 2.2.

2.1 SSI: Draft Specifications and Related Concepts

In this section, the fundamentals of SSI are discussed. The crucial element of each SSI system
is a decentralized public key infrastructure (DPKI), which have been conceptually described
by the Rebooting the Web of Trust organization. In a first step, the concept of DPKI is dis-
cussed (Section 2.1.1) before investigating the emerging W3C standard of decentralized iden-
tifier (DID) in a next step (Section 2.1.2).
DIDs can be enabled by a various systems with different properties, consequently the systems
will operate differently. Thus, the Decentralized Identity Foundation (DIF) has presented a
universal resolver which enables interoperability between DID providing systems, and there-
fore, DIDs become globally usable. The universal resolver is examined in Section 2.1.3.
A W3C Community Group has presented a draft standard for verifiable credentials. This stan-
dard describes the data model and approaches to create third-party verifiable credentials
based on DID’s as well as zero-knowledge capable credentials, see Section 2.1.4.
Data containing personal information should always be controlled by the identity owner as
well as the data stored on the cloud. To ensure data control, DIF presented the concept of
an identity hub to enable a remote data storage which utilizes DID’s as identity. The identity
hub is described in Section 2.1.5. Finally, in the last section, a different concept of a PKI is
discussed, the FIDO2 standard for user-centric identities (Section 2.1.7).

2.1.1 Decentralized PKI

Communications and interactions in the digital domain are secured through asymmetric en-
cryption, which requires a safe exchange mechanism of public keys, e.g. like described in
the TLS standard [6]. Sender and receiver exchange their public keys, encrypt their messages
with the counterpart’s public key and decrypt the messages with its private key. However,

17

2. RESEARCH 18

there is a missing element. How do the parties know that they communicate with the right
counterpart? The public key infrastructure (PKI) enables trust and proof of identity by in-
volving the use of certificates and trusted third parties [2]. Certificate Authorities (CA) issue
a certificate that allows validating the integrity and ownership of the public keys. Worldwide,
there exists only a few large CA’s which provide the internet with certificates.
The concept of decentralized PKI (DPKI) has been proposed by the organization Rebooting
the Web of Trust to resolve the issues of the traditional PKI [12]. They outlined several prob-
lems. Data might be managed in one company’s repository which leads to a single point
of failure. E.g. a web hosting company, which is responsible for the key management of
its clients and stores the keys in their repository, creates a potential security risk. In case
the repository is compromised the security of the clients’ websites may be broken. Another
outlined problem is fraudulent certificates caused through the limited number of CA’s. If
the authority were compromised, it would allow seamless Man-in-the-Middle attack on each
certificate the authority has issued. The decentralized PKI (DPKI) approach addresses these
problems by diffusing the trust around all participating entities, which avoids the need of
centralized authorities or key centralization, and thus, no malicious party can compromise
the integrity of the system. DPKI focuses primarily on distributed ledgers which provide de-
centralized key-value data storage. They propose direct control and ownership of a glob-
ally readable identifier for the identity owner by registering identifier and public keys at a
blockchain. Each participant has the same view on the blockchain and can link an identi-
fier’s lookup value to the latest public keys [12].

2.1.2 Decentralized Identifier (DID)

Decentralized identifiers are, as the name suggested, unique identifiers based on a decen-
tralized PKI. They are defined in a draft specification by W3C [33], and they are based on the
fundamental concept to enable SSI.
In general, a DID consists of DID tag, DID method and an id-string (e.g.
did:example:123456789abcdefghi), whereas the tag points out that this is a DID and the method
refers to the environment of the DID. It is not intended that the id-string is human-meaningful,
but a random string of characters. Otherwise, the capability of generating globally unique
identifiers is automatically not given as the Zooko’s Triangle: "human-meaningful, decen-
tralized, secure — pick any two", demonstrates [33]. Each DID belongs to a DID document
which contains meta-information such as public keys and service endpoints. The DID docu-
ment, which is created, read, updated and deactivated (CRUD operations) through the DPKI,
makes the concept compelling. It is fully managed by the DID owner (or empowered dele-
gate). It is publicly accessible on a distributed ledger to guarantee each participant the same
view on the document and to make it unforgeable. Important to mention is that the DID
document does not contain any personal information about the owner itself.

Listing 4.2.9 shows a simple example of a DID document. Each document is written in
JSON-LD (see Section 2.1.6) data format and contains the necessary element "@context",
which points to the location of the data schema. This principle of linked data structure should

2. RESEARCH 19

allow for better development of machine-to-machine communication. Further explanation
about JSON-LD can be found in Section 2.1.6. A "@context" value can be specified for each
DID method, but it must contain the general DID context. Every DID with the same DID
method must have the same context value. The next property, the "id" specifies the DID
to which this document belongs to. Further, one or more public keys of the DID owner are
provided by the "publicKey" property. It is very similar to commonly known internet certifi-
cates. The "authentication" property defines keys to use for authentication. Each DID must
have at least one public-private cryptographic key pair for authentication. Thus, the owner
can prove ownership through a challenge-response cryptographic algorithm. In order to en-
sure trust and reliability, it is crucial that the private keys are protected with a strong security
mechanism by the owner. Last but not least, services which the owner offers can be defined
in the "service" property.

Listing 2.1: An example of a DID Document [33]

1 {
2 "@context": "https://w3id.org/did/v1",
3 "id": "did:example:123456789abcdefghi",
4

5 "publicKey": [{
6 "id": "did:example:123456789abcdefghi#keys-1",
7 "type": "RsaVerificationKey2018",
8 "controller": "did:example:123456789abcdefghi",
9 "publicKeyPem": "-----BEGIN PUBLIC KEY...END PUBLIC KEY-----\r\n"

10 }],
11

12 "authentication": [
13 "did:example:123456789abcdefghi#keys-1"
14],
15

16 "service": [{
17 "type": "OpenIdConnectVersion1.0Service",
18 "serviceEndpoint": "https://openid.example.com/"
19 }]
20 }

DID Method Specification

The DID concept is designed to create decentralized identifiers on distributed ledger or net-
work, but it is not limited to that. The centralized system may add support for DID’s to create
an interoperability bridge between centralized, federated and decentralized identifiers. DID
document operations such as create, read, update and deactivate (CRUD operations) have to
be done differently on each distributed ledger or other systems. Therefore, each DID belongs
to a namespace with specific CRUD operations which are defined in the DID method spec-
ification. At a minimum the following attributes have to be specified to register a new DID

2. RESEARCH 20

method at the W3C community:

• DID method name

• Target system

• Namespace specific identifier including DID generation

• Context definition

• CRUD operations

• Security and privacy considerations

Since each DID method has a different underlying system, and thus, another mechanism to
perform the CRUD operations, each DID is isolated in its namespace. Hence, a universal
resolver (see Section 2.1.3) has been introduced to break the isolation and to reach interop-
erable DID’s.

2.1.3 Universal Resolver

Figure 2.1: DIF universal resolver [19]

A universal resolver has been introduced by
the Decentralized Identity Foundation (DIF)
[19] to make DID’s globally resolvable. The
tool is similar to the DNS system which re-
solves an identifier in the form of a domain
name to a website or web service. Figure 2.1
illustrates the concept. The resolver contains
the drivers for the different networks which
are selected depending on the DID method.
A driver is the implementation of the CRUD
operations for the corresponding network. As
a result, DID’s can be used globally through
a single resolution entry, and thus, an appli-
cation has not to care about specify network
drivers.

2.1.4 Verifiable Credentials

Credentials are an essential part in our daily lives: identity card, passport, driving licenses,
credit card, employee badge, etc. are used to assert that we have citizenship, we are capable
of driving a vehicle and we have access to accounts or buildings. However, they are mainly
limited to the physical world and are not present in the digital world except for login cre-
dentials. The W3C Verifiable Credentials Data Model [35] specifies an ecosystem which en-
ables cryptographically secure, privacy-respecting and machine-verifiable digital credentials,

2. RESEARCH 21

which can be used to replace physical credentials to establish trust at a distance and to auto-
mate processes, and thus, to become more efficient. Moreover, verifiable credentials provide
a basic building block to enhance privacy on the web. Personal information like healthcare
data of financial account details can be managed in an owner-controlled manner.

Credentials can have different meaning depending on the discipline. However, a general
definition can be given as attested information about qualification, competence, or authority
to an individual by an issuer [28]. Commonly, credentials can be verified by any third party
and the verification process requires no interactions with the issuer, and thus, it is privacy-
preserving. These two key attributes are enabled in W3C’s verifiable credentials by making
use of decentralized identifiers (DID’s) on its base. Verifiable credentials can be perceived
as an extension of the DID concept to claim additional information on a DID or an entity.
However, it is not limited to it, and any other sufficient identifier might be used.

The specification describes four roles: an issuer, a holder, a verifier and a verifiable data
registry whereby the last one is a publicly accessible registry such as trusted databases, de-
centralized databases, government databases, and distributed ledger [35]. On this registry,
identifiers and credential schemas are stored. An issuer may register new schemas or use a
schema from the registry to issue a verifiable credential to the holder. The holder owns an
identifier which is registered in the registry as well and is used to authenticate against the
issuer. After issuance, the holder stores the verifiable credential inside its vault. In case he
is required to use the information of his verifiable credentials, he creates a verifiable pre-
sentation which ideally contains only the minimum required information. Each verifiable
credential contains proof of the issuer. These proofs are a part of the verifiable presenta-
tion, and they allow to verify the authenticity of the provided data of the presentation. The
verifier checks the schemas, the identifiers and the proofs of the presentation without inter-
action with the issuer since all needed information is accessible from the registry. However,
it requires knowledge and registration of the identity of the issuer.

Verifiable Credential Data Model

A verifiable credential consists of three components: the credential metadata, the claim(s)
and the proof(s). Metadata describe the properties of the credential such as expiration date,
the issuer, the type of credentials, or credential identifier [35]. A claim is an assertion which
the issuer makes about the credential subject. It is a subject-property-value relationship as
illustrated in Figure 2.2, and thus, each claim contains single information such as the name,
the birthday, etc. about the subject. Finally, a verifiable credential is certified by one or more
digital signatures of the issuer.

Listing 2.2 shows an example of a verifiable credential. As in the DID concept, the data
format JSON-Ld is used, and thus, "@context" property is provided at the beginning of each
credential followed by the metadata (id, type, issuer, etc) and a single claim (credentialSub-
ject). In the end, a digital signature is provided to protect the integrity of the document and
to allow verification.

2. RESEARCH 22

Figure 2.2: A claim, a subject-property-value relationship [35]

Listing 2.2: An example of a verifiable credential [35]

1 {
2 "@context": [
3 "https://www.w3.org/2018/credentials/v1",
4 "https://www.w3.org/2018/credentials/examples/v1"
5],
6 "id": "http://example.edu/credentials/1872",
7 "type": ["VerifiableCredential", "AlumniCredential"],
8 "issuer": "https://example.edu/issuers/565049",
9 "issuanceDate": "2010-01-01T19:73:24Z",

10 "credentialSubject": {
11 "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",
12 "date of birth": "01.01.2000"
13 },
14 "proof": {
15 "type": "RsaSignature2018",
16 "created": "2017-06-18T21:19:10Z",
17 "creator": "https://example.edu/issuers/keys/1",
18 "jws": "eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19
19 }
20 }

Verifiable Presentation Data Model

The model is similar to verifiable credentials. Instead of having claims providing the infor-
mation, verifiable credentials are listed next to metadata and proof(s) [35]. A presentation
can then be validated by verifying each credential proof. In general, a proof might be simply
a digital signature. However, the model even supports more advanced proof schemas such as
zero-knowledge proofs (ZKP’s), see Section .

Zero-Knowledge Proof of Verifiable Credential

A zero-knowledge proof is a cryptographic method which allows proving the knowledge of a
value without disclosing the actual value. For instance, we know a password for an account,
and we prove that we know the password without leaking to a third party. From this basis,
more sophisticated ZKP’s have been introducing, such as proving your degree from a univer-

2. RESEARCH 23

sity without revealing your identity. In the context of verifiable credentials, the following key
capabilities can be achieved through ZKP mechanisms [35]:

1. A credential holder can combine multiple verifiable credentials from multiple issuers
into a single presentation without revealing credential or subject identifiers to the ver-
ifier. It is a critical capability when it comes to preventing deanonymizing through cor-
relation.

2. A credential holder can selectively disclose the claims of a verifiable credential. It allows
providing only necessary information to a verifier.

3. A credential holder can produce a derived credential that is formatted according to the
verifier’s data schema without needing to involve the issuer. This increases the flexibil-
ity of a holder to use its credentials.

Noted that point two could be achieved by issuing multiple atomic credentials (a credential
which contains only one claim). However, it would result in credential dependencies and in-
crease the complexity in credential management.
ZKP of verifiable credentials requires an additional extension to the data model. A verifiable
credential needs a proof which supports ZK, and thus, each credential has to be issued in ZK
manner to be used in a presentation under ZK. Furthermore, a credential must contain a cre-
dential definition to perform zero-knowledge operations. This credential definition has to be
accessible by the verifier, and thus, should be stored in the verifiable data registry.
The ZK property increases the benefits of verifiable credential drastically. It enables great
flexibility for the holder and strong privacy through minimum disclosure of personal infor-
mation - a property which is not feasible with physical credentials.

2.1.5 Identity Hub

Figure 2.3: DIF identity hub [36]

The Decentralized Identity Foundation has proposed
the concept of the identity hub (DIF) [36]. At its core,
an identity hub is a cloud data storage (like Dropbox,
google drive, etc.), and therefore, it provides the basic
functionalities of uploading, downloading and sharing
data. Since it is DID based, it differs in the identity man-
agement. A hub instance belongs to a DID, and thus, the
ownership relies on a public/private key pair of the DID.
A hub consists of three layers, see Figure 2.3, an au-
thentication layer, an authorization layer and the data
layer: The authentication layer is a challenge-response
authentication schema [36], read-write permissions for

each data object are managed fine-grain by the authorization layer, and the data layer man-
ages the data storage.
The owner controls the permissions and the data, whereas a hub service provider might

2. RESEARCH 24

provide the hub instance. All data might get lost when the hub service provider becomes
bankrupt, or he decides to refuse access to the owner. An issue which is addressed by pro-
viding a steamless synchronization mechanism between multiple hub instances. It allows
a user to own several auto-synchronized hubs at various providers. In the case a provider
refuse the access, the data will still be accessible on another hub instance. The identity hub
API is an open standard and the DIF has made an implementation publicly available under
free software licences [49]. It should enable that a DID owner can run its identity hub, and
thus, become fully independent.

2.1.6 JSON Linked Data (JSON-LD)

JSON-LD is a W3C syntax standard for linked data based on JSON [11]. It is used to create
machine-interpretable data across different documents and websites, which allows an appli-
cation to start at one piece of Linked-Data and following embedded links to other JSON-LD
documents that are hosted on different websites. The motivation is to provide a standard to
build interoperable web services with slightly changes on the widespread JSON standard.

2.1.7 The Web Authentication API

The web authentication API is a user-centric identity management solution for user authen-
tication based on a key pair [46]. It was presented by the FIDO Alliance to reduce the reliance
on passwords to authenticate users. Nowadays, all main web browser support the API. Fig-
ure 2.4 shows involved elements. A user posses an authenticator - any hardware which is able
to store a private key and communicate with a user agent. Currently, the smartphone and
USB Token/Yubikey are the most prominent FIDO authenticatiors. When the user is login to
a web page via the browser, he get asks from the relaying party (server) to sign a challenge.
The user connects his registered authenticator with the user agent, which forwards the chal-
lenge and receives back a signed authentication token. Then the browser forwards the token
to the relying party [38], [53].

2.2 Related Projects

Various projects are focusing on the concept of SSI. In this section, the three most dominant
projects/concepts in the area of SSI are discussed.
The Hyperledger Indy project is the leading project regarding SSI. It has the strongest com-
munity in which several international companies participate. Furthermore, the developed
system is currently the only one with zero-knowledge properties. It supports to proof cre-
dentials and ownership under zero-knowledge. However, it is also the only project which has
developed its permissioned blockchain, only for SSI. So far, no full-fledged application has
been provided since it is focused on developing tools and libraries, whereas the implementa-
tion of an application is left over to commercial providers.

2. RESEARCH 25

Figure 2.4: Web authentication API [53]

uPort make use of the permissionless blockchain Ethereum as its ground source, and thus, it
enables to use the identities also by Ethereum transactions. uPort provides a complete open-
source system from its own DPKI to tools for verifiable credential and a mobile app. More-
over, uPort is already used in production. For instance, citizens of the city of Zug, Switzerland
can get their digital identity card in the form of a verifiable credential on the uPort mobile
app [25].
BlockCerts allows creating digital academic records or degree certificates in the form of a
verifiable credential. The system is in production as well, but it is strongly limited and less
featured. However, BlockCerts is discussed since it makes use of a different approach to uti-
lize the blockchain for SSI
At this point, it has to be mentioned that several additional projects are working on SSI. How-
ever, most are less developed or using a similar approach as the three projects discussed
mention above. For instance, Jolocom, a start-up headquartered in Berlin, Germany, has
little difference to the implementations and features of uPort [20]. Furthermore, there are
various projects utilizing a blockchain in the same way as BlockCerts does, e.g. TalentChain,
ShoCard, OpenBadges.

Since there is also the giant corporate Microsoft contributing to SSI, we briefly discuss its
activities in the last part.

2. RESEARCH 26

2.2.1 Hyperledger Indy

Hyperledger Indy is an open-source project hosted by the Linux Foundation. The aim is to
provide tools, libraries and reusable components for creating decentralized digital identities
[48]. All its project focus is set to develop the fundamental building blocks to create self-
sovereign identity ecosystems. There are two code bases on its centre of development, the
indy-node and indy-sdk, whereas the node as the name suggested is an implementation of a
blockchain node and the SDK a tool kit for creating and using SSI. The node is designed with
scalability and robustness in mind, and therefore, it is an implementation of the Redundant
Byzantine Fault Tolerance (RBFT) [9] consensus algorithm. Thus, the indy-node allows creat-
ing permissioned blockchain networks. The SDK enables interactions with an indy network
(indy-pool). It allows us to put DID documents, schemas, etc. onto the ledger, and resolve
them. Furthermore, it contains an implementation of a wallet, which is used to create and
manage DID’s and verifiable credentials as well as to manage the private keys. Additionally,
zero-knowledge capable credentials are supported, from issuance to proving a claim under
zero-knowledge. It is an implementation of the Identity Mixer and U-Prove presented by IBM
Research and Microsoft, respectively [1], [10], [50]. It enables the following four capabilities
[48]:

• Hiding claims: Not required claims of a verifiable presentation can be hidden in the
verifiable presentation while the validity of all other claims can still be proven.

• Proof of having a claim: The claim is not revealed - only the knowledge is proved.

• " I am/have ..": It is different to "Alice is/has .." since no identifier is required. Verifiable
credentials can be proven without revealing the DID to which they have been issued.
Instead, the prover proves the knowledge of a secret which is linked to each claim.

• Minimum/maximum proof: It can be proven that a claim is smaller or bigger than a
certain threshold.

Besides, Indy has implemented a system to prove non-revocation of credentials. Instead of a
revocation registry - a list of credential ID’s and revocation state - the identity owner proofs
the revocation state to the verifier. Cryptographic accumulators enable it. It can be thought
of an accumulator as the product of multiplying many numbers together. For instance, in
equation a ∗b ∗ c = e the accumulator would be e. Let us assume a = 3,b = 5,c = 7 then e
has a value of 105. Because 3 is a factor of 105, we say that a is "in" e. If 3 should be taken
out of the accumulator, 105 is divided by 3 and 35 results. 3 has now been removed [31]. An
identity owner can prove to a verifier that he knows a number which is in the accumulator. If
he can make such a proof, the credential is valid. Otherwise, it was revoked by the issuer. All
credentials of the same type have a single accumulator, and a credential belongs to a certain
factor, on which only the issuer and the identity owner know about.

There are several projects making use of Hyperledger Indy to build up their network. The
most popular and the one having the most significant impact is Sovrin, see the section be-

2. RESEARCH 27

low. However, there are others, for instance, the Verifiable Organizations Network from two
Canadian states [59].

Sovrin

Sovrin Network is a Hyperledger Indy based network. It is a permissioned public blockchain,
which is managed by the non-profit Sovrin Foundation [54]. The foundation leads the open-
source community effort (Hyperledger Indy) to develop further and maintain the network.
Furthermore, it defines a trust framework to establish SSI in the network, and it is respon-
sible for recruiting new parties who participate in the network via a node, called stewards.
Additionally, the foundation aims to guarantee public accessibility.

However, the foundation does not lead the development of the complete application
stack [17]. Actual, only the network (DID layer) is declared as a non-profit public utility
whereby cloud services (cloud layer) and client-side applications (edge layer) are left over
to the competitive market. Figure 2.5 the layer architecture. The DID layer is the global state
and the fundamental component of the system. It enables to create DID as described by the
W3C standard for decentralized identifiers [33]. The cloud layer, as well as the edge layer, get
access to the ledger via a steward - a node of the Sovrin network. The utility of the cloud layer
is only optionally required since it is not necessary to enable W3C’s verifiable credentials [35],
but desirable to make the system more convenient for its users. The cloud layer serves four
core functions [17]:

• Persistent messaging endpoints: Clients operating on an edge device is typically not
directly addressable on the internet, but via a network service running on their behalf
like email servers, IP routers or other services. However, the addresses, in this case, are
selected by the service provider and cannot be specified by the user. In Sovrin, a user
can add, change and remove cloud agent endpoints - addresses to any communica-
tions (secure messaging, file sharing, VoIP, etc.).

• Coordination endpoints for multiple clients: A client may have multiple edge devices
(smartphone, laptop, etc.) with the same identities, and thus, the messages incoming
from the endpoints have to be spread along with all its devices.

• Encrypted backup of Sovrin keyrings: The keychain is the heart of each identity wallet.
Cloud agents may provide backup mechanisms for key recovery.

• Encrypted data storage and sharing: Data storage on the cloud as traditional providers
offer, but with the add on that the data should be encrypted and managed by the iden-
tity owner’s keychain.

The cloud agents make the system more user-friendly by enabling messaging, data storage,
portability and backups, however, identity owners are always able to communicate with the
DID layer directly to be independent of cloud agents for DID operations and validating trans-
actions. The edge layer contains all client-side applications. The most important is the wallet

2. RESEARCH 28

Figure 2.5: The sovrin architecture consists of three layers: DID layer, cloud layer and edge
layer [24]

which is used to store and manage the client’s private Ed25519 [8] keys (keychain), and also,
its verifiable credentials. The basic building block is actively developed by the Indy commu-
nity, whereas commercial providers should implement full-fledged applications for all kind
of devices.
Besides the protection of the keychain, an elementary question to solve is how to recover its
keys from key loss or compromise. Sovrin uses a community recovery concept [17]. An iden-
tity owner requires to designate their own set of trustees - any other identity owner from a
single person to organizations which he trusts to recovery his key if and only if he is asking
for it. If this is the case, a certain threshold number of trustees has to sign a transaction to
alter the public keys of the DID Document. The threshold can be specified by each iden-
tity owner individually. The transaction is validated against the most recent DID document
transactions by the validator nodes (stewards) before a specified timelock period. The time-
lock period is required to be able to recover in case of a key compromise when the attacker
has changed the trustees on the DID document. Only when the timelock expired the changes
become fully valid, and thus, the identity owner has a time frame to recover.

2.2.2 uPort

The uPort project has started to create self-sovereign identities anchored on the Ethereum
blockchain, and to solve the problem of private key recovery [51], a general problem in blockchains.
It is a start-up company and highly community-driven with a mindset for free software. The
complete project is publicly available under free software licences. They developed a smart
contract1 architecture which allows attaching attributes to an identifier, selectively disclose
its attributes and perform social key recovery. During the project lifetime, several adop-
tions have been made since the initial white paper and first implementation [57], some core
changes: the W3C standard for decentralized identifiers (DID) [33] was applied, the external

1a smart contract is a program which executed on the Ethereum Virtual Machine

2. RESEARCH 29

storage of the identity document on the decentralized file system IPFS was replaced with an
on-chain storage, and a funding service was added to allow users to interact without owning
Ether2.

Figures 2.6 shows the uPort architecture. It consists of several smart contracts to estab-
lish decentralized key management. A user has an identifier in the form of a DID, a private
key for creating signatures and a public key in the form of a DID document on the DID reg-
istry [58]3. Optionally, additional public attributes may be stored in the DID document. The
identity owner starts with the mobile app, which holds the private keys and allows to man-
age its identity through interaction with the ledger. Let us assume the identity owner wants
to update its public key. He creates the transaction for updating the key, but since he may
not have any funds (Ether), he can make use of a funding service which is offered by uPort
[55]. Going further, the entry contract for the identity owner is the Controller contract, which
maintains access control and recovery logic [51]. The recovery is made via specified recovery
delegates, which can be defined by the identity owner. A quorum of delegates is then able to
perform a key rotation in the name of the identity owner in case of key loss or compromise.
The proxy contract forwards the transaction. Its only purpose is to act as a permanent iden-
tifier, which is the contract’s address [51]. In our case, we are updating the public key of the
DID. The transaction is forwarded to the DID registry which executes the update and stores
the new public as an event on the ledger. Once stored on the ledger, an external DID resolver
can retrieve the DID document containing the new public key by looking up all events of the
identity [52].

At this point, it has to be mentioned that the components of the previously explained ar-
chitecture have been developed and deployed on the Ethereum testnets and mainnets, but
the deployed uPort mobile wallets support not all functionalists on the app stores. The func-
tionality of adding further public keys and service endpoints to its DID is missing. Either
social recovery is facilitated, nor key rotation can be done. The only recovery via seed, which
has to be stored somehow physically by the user, is supported.

Additionally to the above Ethereum based Decentralized Public Key Infrastructure (DPKI)
uPort provides libraries for the https DID method [29]. In this setup, the DID Document is
not stored on the ledger, but on a regular webpage under a well-known path. To be able to
retrieve the document, it is required to have the domain name as a part of the DID. Hence,
the DID has the following format: did:https:example.com. The set up allows maintaining the
DID Document at zero cost since no transaction fees occur while providing the same features
as hosted on the blockchain. However, it is a wrapper for the centralized PKI to make it com-
patible with the DPKI since the identifier, which is the domain name, rely on the authorities
of the Domain Name System (DNS). Furthermore, the identifier reveals information about
the identity which might not be desired.

Besides tools and libraries for a DPKI, uPort has implemented a variant of verifiable cre-
dentials based on JSON Web Tokens (JWT’s) [56]. It is an extended version of W3C verifiable

2Ether is the currency on the Ethereum blockchain
3Notice the uPort registry is deprecated and was replaced with the DID Registry

2. RESEARCH 30

Figure 2.6: uPort architecture

credentials standard [35]. It allows issuing and verifying credentials via an interaction flow
initialized with a QR code. The uPort mobile wallet user retrieves a disclosure request by
scanning a QR code provided by the verifier/authenticator. The request contains required
attributes and a callback. After the user has selected his credentials, which he is willing to
disclose to provide the requested attributes, a signed response is created and send back to
the verifier.

2.2.3 BlockCerts

The goal of the BlockCerts project is to digitalize academic records and to learning achieve-
ments [16]. It started as a research project at the MIT Media Lab, and it has been commercial-
ized by the start-up company Learning Machine. Their vision is tamper-proof digital degree
certificates which do not rely on a centralized authority. It has been realized by making use of
blockchains properties of being tamper-proof and decentralized. At the time of that writing,
BlockCerts provides an issuer and a verifier based on the Bitcoin or Ethereum blockchain as
well as a wallet to manage its credentials.

Figure 2.7 illustrates the process of issuance a certificate [21]. First of all, the issuer, e.g. a
school has a private key, and a public key which the school publishes on its webpage and the
recipient owns a blockchain address (public/private key). The authentication of the recipient
has already happened via any possible channel (e.g. in person, credentials from the school
etc.). In the first step, the issuer creates and sends the recipient a certificate offer. In return,
an address on the blockchain is received. The issuer creates a SHA256 hash of the certificate
[16] and he issues it onto the blockchain address. Afterwards, the certificate is transmitted

2. RESEARCH 31

Figure 2.7: BlockCert certificate issuance process [21]

to the recipient’s wallet. Finally, a verifier can verify the certificate in five steps [16]: (1) com-
puting the hash of the certificate, (2) fetching the hash from the blockchain, (3) comparing
the hashes, (4) getting the public key form issuer’s webpage and checking the signature, (5)
checking not revoked by issuer.

The system is limited to the specific use case of creating verifiable certificates as described
above. Moreover, the W3C standard of decentralized identifiers (DID’s) is currently not sup-
ported.

2. RESEARCH 32

2.2.4 Microsoft

Microsoft has proposed the ecosystem of decentralized identities in a white paper [23]. Only
recently, they announced a Identity Overlay Network (ION) which runs atop of the Bitcoin
blockchain [27]. The system used the IPFS file system to store DID documents and related
operations. Similar to uPort, consistence is ensured by anchoring the data via a hash on the
blockchain. It is a system based on the sidetree protocol developed by the Decentralized
Identity Foundation [34]. Further, they contribute to standard definitions, high-level API’s
and data storage. They participates in the W3C Credential Community Group which spec-
ified the W3C standard of decentralized identifiers [33] and the W3C standard of verifiable
credentials [35]. Furthermore, they participate in the specification and development of the
DIF DID resolver 2.1.3 and identity hub 2.1.5.
Their main focus lies on high-level API’s intending to support the interoperability of DID’s be-
tween the various system implementations such as Hyperledger Indy and uPort. At the time
of that writing, they have to define API’s for DID creation, DID resolution, DID authentication
and identity storage [41].

CHAPTER 3

Analysis

In this chapter, we discuss the requirements for a identity management system in Cardossier.
Beforehand, we categorize the occurred data in Cardossier into three data types in the first
section 3.1. In the section 3.2, we present the system requirements. Finally, in section 3.3, we
evaluate Hyperledger Indy, uPort and BlockCerts based on our requirements.

3.1 Cardossier Data Types

The Cardossier domain has three data types, see Figure 3.1:

• car/utilization related data: all data which belongs to a car such as import data, regis-
tration, mileage, crash, owner, insurance policy, etc.

• personal data: all data belonging to a person or legal entity such as name, address,
passwords, age, account, identification number, car insurance record, insurance policy,
etc.

• business data: all data involved in business processes such as insurance models, offers,
personalized tariffs, etc.

whereby there is an overlap between the types. Some data is part of two types like insurance
police or personalized tariffs.
Each data type is differently handled, so it fits privacy, availability and trust requirements
best. Car/utilization related data is managed via events and always linked to a car object
in the Cardossier network. The personal data should be managed in a privacy conserving
manner. Verifiable credentials/certificates should be used such that data can be verified by a
third-party. Finally, the business data are managed by the individual organizations itself on
their favoured systems.

33

3. ANALYSIS 34

Figure 3.1: Cardossier data types

3.2 Identity Management System Requirements

Identity management system requirements have been worked out by analyzing several use
cases in Cardossier. However, we do not discuss them in greater detail since it would go
beyond the scope of this document. Instead, we demonstrate why self-sovereign identities
should be used in Cardossier by discussing an example of a general use case.

There are two ways of how an end-user can interact with the Cardossier ecosystem: (1)
the user run its node or (2) he accesses the ecosystem via a node run by an organization. The
focus of this work is set on the second approach.
On a first view, an isolated model, where the user registration at any party providing access
to the network might be sufficient. Such a party is called agent throughout the rest of this
report. However, an isolated model comes to a limit when interactions between the user
and any party of the network are desired. For instance, a user wants car insurance form his
preferred insurance company. In this case, the information about the car (vehicle record) is
required, including the identity of the car owner. There are two options to enable such an
interaction:

1. the agent (Cardossier node operator) is authorized to forward the user’s identity and
the vehicle record to the insurance company; having federated identities.

2. the user provides his identity directly to the insurance company via an additional au-
thentication process, and he authorizes the agent to share the vehicle record with the
insurance company.

In both cases, the insurance company benefits by the verifiable vehicle record, which may
allow offering a customized insurance policy.
Option 1 asks for a federated model since the agent forwards the identity to another entity. A
drawback is that the agent may require a more detailed digital identity from the user which
fulfills the requirements of the insurance industry. Also, the agent must ensure that the iden-
tity data is valid. Furthermore, it has the consequence that the issued insurance certificate is

3. ANALYSIS 35

stored at the agent such that it can become part of a new identity. In conclusion, it has to be
completely trusted on the agent, which might be a reason for some user not to participate in
Cardossier.
In option 2, the agent acts only as a network entry for the vehicle record; no personal infor-
mation has to be shared. However, how can the user provide an identity to the insurance
company without any trusted third-party like in option 1? It requires that the user can man-
age its identities on a private device. It should have a high usability, otherwise, users may not
use it or misspend it. Moreover, the identity data have to have a verifiable format such that
the validity can be verified by any third party. These problems are addressed by self-sovereign
identity (SSI).

The example above describes only a single use case for identities in Cardossier. However,
it already shows certain requirements on identity management (IdM) system in Cardossier
such as (3) privacy-preserving identities, (6) verifiable credentials/certificates and (7) user-
owned identities and credentials. Additional requirements have been worked out from other
cases. It leads to the complete list of requirements in Table 3.1 and Table 3.2. Essential to
mention at this point, a privacy-aware system is the central aim of the Cardossier project in
general. It is essential to gain confidence in Cardossier of the complete car ecosystem which
includes the users as well as the companies. Therefore, privacy affects strongly on the IdM
system requirements.

IdM system requirements: Table 3.2 and Table 3.2

3.3 Evaluation of existing Projects

In this section, we evaluate the three SSI projects, Hyperledger Indy, uPort and BlockCert
based on our requirements. Finally, we answer the question whether one of them can be
used to realize SSI in Cardossier?

3.3.1 Hyperledger Indy / Sovrin

As mentioned above, Sovrin is a Hyperledger Indy based public network. Therefore, the two
projects are discussed together. Table 3.3 illustrates how individual requirements can be ful-
filled by using Indy. The tool and library provide almost all desired functionalities except
(R10) issue credentials as a group member is not supported. (R1) The SDK support to create
multiple DID’s and to store their key pairs in a wallet, which also provides the (R2) functional-
ity for authentication. (R3) the decentralization is achieved via the Sovrin network. (R4) Iden-
tity correlation can be prevented since the credentials, and the identifiers are independent of
each other. Thus, an identity owner can use the same credential with different identifiers.
(R5, R6) ZK capable credentials provided functionality for minimum data disclosure. Fur-
ther, (R7) the SDK contains library wrappers for Java and iOS, and therefore, the wallet and
functionalities are embeddable into a mobile app. (R8) The DIF identity hub could realize
credential availability. The Indy community has proposed to integrate the hub into its sys-

3. ANALYSIS 36

No. Requirement Description

R1 Multiple
identifiers

An entity should be able to use different identifiers depend-
ing on the use case.

R2 Identifier
authentication

Two parties should be able to authenticate the counter-
part’s identifier

R3 Decentralized
identities

Identities should be managed in a decentralized manner.
No central authority, which has the power to create, edit,
and delete the identities of the ecosystem.

R4 Non-correlating
identities

It should not be feasible to correlate identities via public
information or multiple interactions with the entity.

R5 Verifiable creden-
tials/certificates

A digital credential, which is issued by an issuer and which
can be verified from a third party. The credentials have to
belong to a certain identity

R6 Minimal
disclosure of
personal
information

Only necessary information of the entity should be dis-
closed.

R7 User own
identifiers and
credentials

The user should be in the centre of the IdM system to in-
crease trust in Cardossier ecosystem.

R8 Credential
availability

It should be possible that a third party can make use of
a verifiable credential of an identity also when the entity
(user) is not connected with the network.

R9 Revocable
credentials

An issuer should have the power to revoke credentials.

R10 Issue credentials
as group member

It should be possible to keep the entity of the issuer anony-
mous expect the information that he is a member of a cer-
tain group should be revealed.

R11 Key rotation It should be possible to rotate keypairs at any time
R12 Data backup and

recovery
mechanism

Identities should be back up and recoverable such that the
risk of data loss can be minimized.

Table 3.1: IdM system requirements

3. ANALYSIS 37

No. Requirement Description

R13 User consent for
transactions

An user should be able to give consent to specific Corda
transactions.

R14 Privacy preserving
declaration of car
ownership

The information of car ownership and the number of cars
an identity owns should be kept private.

Table 3.2: Corda specific requirements

tem; however, the library is currently in development. (R9) There is a revocation registry im-
plementation under zero-knowledge - meaning the identity owner makes a non-revocation
proof. (R11) Key rotation is supported, and the process of updating the DID document in the
ledger are implemented. Finally, (R12), an encrypted back up is supported and as a recovery
mechanism, was a social recovery proposed.

3.3.2 uPort

We refer to Table 3.3, which gives an overview of the current uPort functionalities. uPort does
not support our requirements (R4, R8, R9 and R10). However, uPort has an application in pro-
duction, which supports several features. (R1) The concept supports it and can be realized
by the provided libraries. (R2) A JWT based protocol is implemented for authentication pur-
pose. Next, (R3, R4) verifiable credentials are realized on a JWT extended data format which
allows to selectively disclose claims when for each claims a separate credential was issued be-
forehand. In case claims are bundled on one credential, the identity owner cannot perform
selective disclosure. (R7) Identity ownership is enabled via a mobile app. Finally, (R11) key
rotation is supported by rotating the public key in the DID document on the Ethereum net-
work and (R12) is realized by seed recovery and a smart contract implementation of a social
recovery mechanism.

uPort has an Ethereum based architecture. Thus, each mechanism, which has a smart
contract involved requires an Ethereum transaction such as key rotation, social recovery and
publishing as well as updating a DID document on the ledger. In order that an identity owner
does not require some Ether, uPort has an implementation that allows a third party to pay the
transaction fees.

3.3.3 BlockCerts

By referring to the overview in Table 3.3, the BlockCert application is evaluated. BlockCert
is the less featured project. It does not fulfill the requirements (R2, R4, R6, R8, R10 and R11).
For completeness, we briefly mention the key elements. BlockCert currently does not support
DID’s, but instead, the (R1) identifiers are the (R3) Bitcoin or Ethereum addresses. Further,
(R5) it supports certificates; however, they are no selective disclosure of claims. For storing

3. ANALYSIS 38

and managing the purpose of the certificates (R7), a mobile app is provided. Finally, (R9) is
enabled via a revocation registry and (12) is achieved by back up to external storage such as
Google Drive or Dropbox as well as seed recovery for private keys.

3.3.4 Conclusion of Evaluation

The evaluation has shown that the toolkit of the Hyperledger Indy project enables us to ful-
fill the most requirements. Especially, the independence of identifier and credentials is an
essential property to protect the identity owners privacy and to prevent from identifier corre-
lation. In consequence, the Indy should be used to realize self-sovereign identities. There are
three options providing SSI through the Indy-SDK. One option is to participate in the Sovrin
network and use it as decentralization layer for the decentralized public key infrastructure
(DPKI). An option in the mid-term when the potential of SSI can be exploit in Cardossier and
the decision is reasonable from a business point of view. A second option is to set up a Indy-
based network next to the Corda network. However, it cause a large overhead to operate and
maintain two networks. A third and last option is to integrate a DPKI which is compatible
to the Indy-SDK. The third option should be realized since the DPKI can be implemented on
Corda within reasonable effort.

3. ANALYSIS 39

No.
Hyperledger Indy /

Sovrin uPort BlockCerts

R1 DID’s by wallet
[indy-sdk, indy-plenum]

DID’s by [ethr-did] Bitcoin/Ethereum
address

R2 Authentication via
challenge [indy-sdk]

JWT based
authentication.
[uport-credentials,
uport-transports]

Not supported

R3 via Sovrin network via Ethereum via Bitcoin or Ethereum
R4 Identifiers and

credentials are
independant cause of ZK
verifable credentials
[indy-sdk]

Not supported Not supported

R5 Zero-knowledge capable
verifiable credentials.
[indy-sdk]

JWT credenitals
[uport-credenitals]

Yes, JSON-LD
credentials. [cert-issuer,
cert-verifier]

R6 It allows to hide claims
of a credential and to
create
minimum/maximum
proofs [indy-sdk]

Allows to selectively
disclose claims
[uport-credentials]

No, always the full
credential is presented
[cert-verifier]

R7 Java (Android) and iOS
sdk wrapper. [indy-sdk]

mobile app
[uport-mobile]

mobile app
[wallet-android,
wallet-iOS]

R8 DIF identity hub [agent
proposal]

Not supported Not supported

R9 non-revocation proof
[indy-sdk, indy-plenum]

Not supported Revocation registry
[cert-verifier]

R10 Not supported Not supported Not supported
R11 Wallet master key and

DID key pair rotation.
[indy-sdk, indy-plenum]

Supported
[ethr-did-registry]

Not supported, no DID
document

R12 Encryped back up &
social recovery [agent
proposal]

Seed recovery
[uport-mobile] or scoial
recovery [uport-identity]
for identifier

external back up and
seed recovery for
identifiers
[wallet-android,
wallet-iOS]

Table 3.3: SSI projects evaluation on basis of our requirements
Square brackets: software library

CHAPTER 4

Concept Proposal

Figure 4.1: An abstracted model of Cardossier. It shows all existing components in grey while
the extended one’s are marked as blue.

40

4. CONCEPT PROPOSAL 41

The proposed concept and considerations are discussed in the first section of this Chap-
ter. In the second section, we present a system architecture to implement the proposal.

4.1 Data Model

This section refers to the model illustrated in Figure 4.1 by discussing the individual elements
of the model.
The essence of the model depends on Corda properties, which differ from traditional blockchains.
However, we will not go into greater detail of Corda unless it has a direct impact on the de-
sign. As a general introduction to Corda see Section 1.3.

4.1.1 Car Data Model - Existing Model

In Cardossier, all data provider place car-related data on the network. Since several providers
will input data for the same car, a shared car identity is required. In Cardossier it is done by
allocating a Corda state object 1.3.1, called car object, for each car, see Figure 4.1. The car
object is shared with the notary and all involved parties. Since it does not contain any car
data nor personal information, only a car ID and link object references, it is considered as
non-critical data. A link object is an intermediate between car states and an event to hide
the events from the public and allow selective disclosure. For each specific purpose, there
is a distinct event type; however, in general, they contain car related information. All these
events are stored at the agent which the car owner favours most.
This design has several advantages: (1) it is privacy-aware. The car-related data are kept lo-
cally under the control of the agent, which can selectively share events with other partici-
pants via Corda Flows. (2) Events are globally verifiable. The link object contains the hash
of the event and the Car State a reference to the link object. Thus, any third party can verify
that an event belongs to the Car State. (3) Data completeness is verifiable. When he becomes
the new agent, all events have to move to him. He can be verified that the number of link
states receives all events. (4) It is scalable. The complete data of the ecosystem is segmented
in car objects and events. A car object never depends on other car objects, and thus, only
a single car object is required for data verification. Additionally, a car object is only shared
between involved parties and events only between the event issuer and the agent. Network
participants only have to manage a fraction of the network data.

4.1.2 Identity Data Model

In this subsection, the extended components to enable SSI in Cardossier are presented. The
component descriptions below relate to Figure 4.1

4. CONCEPT PROPOSAL 42

Private Keys

A decentralized public key infrastructure is established. The identity owner controls several
private keys to create signatures and zero-knowledge proofs.

Identifier (DID)

Each identifier is a DID, and thus, an identifier belongs to a public/private keypair. It allows
to prove ownership, and it enables to authenticate against any service or entity.

Credentials

A credential is a collection of claims which belong to the identity owner. Credentials are not
bounded to a DID but instead to a secret (private key) of the identity owner, what allows to
prove claims under zero-knowledge. A verifier can verify each claim without contacting the
credential issuer.

Identity Management Tool (IMT)

The identity owner has to be able to store his private key and manage his identifier on a pri-
vate wallet. For this purpose, the use of a mobile app is proposed. It should allow the identity
owner to control its identity and to interact with agents, credential issuers and verifiers.

DID Document Object

The identifiers corresponding public key is stored in an DID document object1, see Figure 4.1.
The object is considered non-critical since it does not contain any personal nor personal re-
lated data. It provides a map from the identifier to the public key. Since the public key must
be globally accessible, the object is shared between the agent and the notary. It allows us to
resolve every DID via the notary to get the DID document state. The control of the DID doc-
ument object is given to the identity owner who has to sign each update with its private key.
Every node of the network should be an agent, and therefore, the identity owner is indepen-
dent of the agent. As long as the notary is a sufficient decentralized network, it can be trusted,
and thus, the identifier belongs to the identity owner.

(Credential) Revocation Registry Object

A global registry, which defines if a verifiable credential is still valid or not. It also shows when
a credential was issued. The issuer can revoke the credential and reverse it.

1A Corda state object 1.3.1

4. CONCEPT PROPOSAL 43

Entity Registry Object

The entity registry is a shared object between the notary and the Cardossier association. Each
organization participating in the network with a Cardossier node is registered at the associ-
ation, which provides a map between organization information and organization DID in the
form of the entity registry. Only the association should be able to create, edit or delete an
entry in the registry. It is achieved by giving only to the association node permission for these
purposes. Thus, the correctness of the registry is validated by the association node and the
notary. However, the registry can be resolved by all nodes of the network.

Car DID

A car DID declares car ownership. The identity owner, which owns the car, has the private
key of the DID in his identity management tool. It allows proving ownership to any node or
other users via a challenge-response scheme.

Car Owner Map

A registry at the agent containing a map between card ID an a DID of the actual owner. This
DID is never shared within the network. Its only purpose is to provide a fast query mecha-
nism in case of large car fleets. Without it a car owner have to prove ownership for each car
separately.

4.2 Features

This section describes the functionalities of the proposed concept.

4.2.1 DID Authentication

The authentication takes place via challenge-response. After a request from the identity
owner, the verifier creates a challenge containing a random nonce. The identity owner adds
a DID to the challenge and signs it with its private key. The verifier verifies the response via
the public key on the DID Document.

■ DID document object: It contains the public key

■ Identity management tool: It contains the private key.

4. CONCEPT PROPOSAL 44

4.2.2 Multiple identifiers

Every identity owner can create as many DID as desired via its identity management tool.
Creation of a new DID also enforce the creation of a keypair whereby the public key is trans-
mitted to the agent and globally published as part of the DID document.
It is realized by:

■ DID document object: A new document object is create for each DID

■ Identity management tool: Allows to create new keypairs and DID’s.

4.2.3 User owns Identifiers and Credentials

It also implies decentralized identities. Each user owns his identities in the sense that he
and only he knows a secret. The knowledge of this secret is equivalent to the ownership of
the identifiers and credentials. It requires that the identity owners have their private keys on
their devices.
It is provided by:

■ Identity management tool: A user device which stores private keys and credentials.

4.2.4 Verifiable Credentials

The credentials are zero-knowledge capable verifiable credentials, and the identity owner
owns them. Each credential contains a master-secret-binding to the owners private secret.
This secret allows an identity owner to create four kinds of proofs: (1) he is the owner of the
credential without revealing its identifier, (2) he has a credential attribute without revealing
it, (3) he can selectively disclose credential attributes and (4) he can prove that an attribute is
smaller or larger than a number. Furthermore, he can self-assert claims to the proof.
Any third party can verify each credential without interaction with the issuer. For the verifi-
cation process, the verifier requires the public key of the issuer to check the signature. Each
credential includes the issuer’s DID which is resolved to get the public key from the DID doc-
ument state. Furthermore, the identity of the issuer is requested from the Entity Registry
Object. It allows us to decide the trustworthiness of the issuer. Additionally, there is a level of
assurance provided, which indicates the quality of the credential.

Level of Assurance:

• State 1: There is minimal confidence. The holder has only be authenticated, and the
data might be correct.

• State 2: There is some confidence. The holder identity has been verified form a State 3
or higher and the data might be correct.

4. CONCEPT PROPOSAL 45

• State 3: There is high confidence. The holder identity has been verified from a State 4
credential, and the data is correct.

• State 4: There is very high confidence. The holder entity has been verified, and the data
is correct.

With this two information, the issuer’s identity and the level of assurance, the verifier can
decide if he accepts the credential or not.
It is enabled by:

■ Anonymous Credentials: verifiable credentials are specified by W3C and an zero-knowledge
capable concept was presented by Hyperledger Indy.

4.2.5 Minimal Disclosure of Personal Information

Identity owners privacy should be preserved. For instance, only the actual requested data
should be presented to a verifier. These are achieved by ZK capable verifiable credentials,
which enable to hide claims in a verifiable presentation, or only to prove the existence of a
claim. Additionally, it allows proving that a claim has a value large, smaller or equal a certain
number. Besides, the user should be able to store his credential on a local device. Otherwise,
he has to trust on a third party for storing his personal information (credentials).
It is achieved by:

■ ZK capable verifiable credentials: It allows to hide not required claims of a credential,
to prove only the existence of a certain claim and to compare a claim against a number
without revealing its actual value.

■ Identity management tool: A user device which stores private keys and credentials.

4.2.6 Credential Revocation

Three approaches can enable the possibility of the issuer to revoke issued credential. (1)
time-revocation: credentials contain an expiration time, (2) revocation list: credentials are
linked to an index of a revocation registry, which can only be updated by the credential is-
suer, or (3) a proof of non-revocation: credentials include the zero-knowledge capability to
prove that the credential has not been revoked. This proof does not reveal any credential
identifier as it is the case with a revocation list, and thus, a verifier does not be aware when
different claims from the same credential have been presented.
All three options should be considered depending on the use case. A time-revocation to in-
dicate a expire data such that the identity owner and verifier know the validity time range,
e.g. for a road permission. A revocation list is required to revoke embedded presentation, see
Section 4.2.9. It can be realized via a revocation registry object in Cardossier. Only the owner
of a registry will be able to modify it - in this case, only the issuer of a credential. Ownership

4. CONCEPT PROPOSAL 46

is ensured through a smart contract and the notary, similar to the DID document object. Fi-
nally, we propose to use proof of non-revocation of general use cases of verifiable credential
since it enables great privacy by preventing credential-correlation.

■ Time-revocation: An expired data part of the credential

■ Revocation list: A map between credential ID and revocation state

■ Proof of non-revocation: Zero-knowledge proof that the credential has not been re-
voked - a concept of Hyperledger Indy, see Section 2.2.1

4.2.7 Anti-Correlation

It is desired that privacy also remains after many interactions and information cannot be
gained through clustering or correlation. There are two elements which should remain pri-
vate: (1) which cars and the total number of cars an identity owner owns and (2) the activities
of the identity owner on the network. In essence, both can be achieved when supporting dif-
ferent identities for each activity and car ownership. Therefore, it should be supported that
an identity owner can have multiple identifiers and create new ones whenever desired and
that claims do not rely on an identifier. The credentials and identifiers remain independent.
It has the effect that credentials can be used in combination with any identifier. Additionally,
unique credential identifiers (DID) should not be revealed to the verifier unless necessary.
Two features are supported to prevent form correlation:

■ Multiple identifiers: A user can have several identifiers (DID’s) and create new ones
whenever necessary.

■ Anonymous credentials: An user providing a credential to a verifier does not have to
reveal its identifier. Instead, he can prove credential ownership in a zero-knowledge
proof.

4.2.8 Credential Availability & Data Sharing

It is necessary for Cardossier that credentials can also be issued when the identity owner
went offline. For instance, after the identity owner and the issuer have interacted, credential
issuance may have to be triggered manually since some offline work must be done before.
Therefore, the functionality of a credential "inbox" should be provided, similar to a mailbox.
The identity owner can select an inbox service provider. The address of the inbox is then writ-
ten on the DID Document by the IMT. However, it is important that the inbox address is dif-
ferent for each DID, otherwise, DID correlation is feasible. Furthermore, the issued credential
should be encrypted by the issuer with an identity owner public key of the DID Document.
In the same way, data sharing can be achieved. With the difference of supporting more func-
tionalities such as giving data access to other parties selectively with reading and/or write

4. CONCEPT PROPOSAL 47

access.
Availability and data sharing is achieved by a credential inbox and a hub service:

■ Credential "inbox": A service provided by an agent similar to a mailbox, but for en-
crypted credentials.

■ Hub: It allows to store and shared signed data on a third party data storage (cloud)
while using DID authentication and authorization.

4.2.9 Issue Credentials as Group member

An issuer should stay anonymous except for knowing that he is a part of a particular group.
E.g. an identity owner want to prove that a certificate of insurance has been issued from an
accredited insurance company without stating the company. It is achieved by embedding a
verifiable presentation, which demonstrates the group membership, to the issued credential.
Beforehand, the issuer must have received the membership credential from an authority. It
could be the Cardossier association acting as a trust anchor. The membership credential is a
regular credential containing the association’s DID and a claim "insurance company". First,
the issuer creates a new credential definition (ZK public key), which he self-asserts to a verifi-
able presentation proving the membership. This presentation is added as a claim to the new
credential. There is no adaption for the identity owner except that he should verify the mem-
bership proof. Next, the identity owner creates a regular, verifiable presentation and presents
it to a verifier, who finally verifies both presentations, whereas only the embedded presen-
tation contains a DID (association DID). The self-asserted credential definition establishes
the link between the two proofs. Since only the owner of the master-secret of the embedded
credential can create a verifiable proof and only he knows the private key of the Camenisch-
Lysyanskaya signature of the issued credential.
A verifiable credential with membership proof will have the following structure:

1 {
2 // pseudo code
3 ...
4 "claims": {
5 "embedded presentation":{
6 "DID": "did:cardossier:associationNode",
7 "license": "car insurer",
8 "credential definition": {...},
9 "proof":{...}

10 },
11 claim1,
12 claim2,
13 }
14 "signature": {...}
15 }

4. CONCEPT PROPOSAL 48

However, this approach comes with a limitation in credential revocation of the embedded
credential. Proof of non-revocation cannot be used for embedded credentials since the ac-
cumulator value might have changed when a presentation of the outer credential is verified.
Therefore, a revocation list must be used for embedded credentials. It can is enabled by:

■ Embedded verifiable presentation: A verifiable credentials which contain a proof from
the issuer. It allows us to prove issuer properties to the verifier via the identity owner.

4.2.10 Keys & Data Recovery

We present a backup and recovery mechanism which rely on Shamir Secret Sharing. Fur-
thermore, we discuss how to recover from key compromise and security risk including its
mitigation.

Backup Mechanism

Still, an open challenge in the field is to provide a proper recovery mechanism for identity
owner’s secrets. The private keys, as well as all credentials and identifiers, should be backed
up. One way is to store an encrypted backup on an external system selected by the identity
owner. It has low usability since the responsibility is left over to the identity owner. It cannot
be ensured that he manages the backup properly. Another way is a social recovery mecha-
nism. The wallet is secret-shared with trusted friends and family. However, it presupposes
that they all have an application on their phones and that there are no strong social conflicts.
We present another approach, also based on secret sharing, but the share is distributed along
with some nodes. A network map provides a list of the IP addresses of the nodes. It allows
selecting nodes (backup nodes) based on a deterministic random function with the identity
owner’s email address and an arbitrary number (R) as input. The number is sent to the email
address as a backup. Authentication of the identity owner is achieved by email and pass-
word or by FIDO authenticators. In this setup, the identity owner can recreate the ID’s of the
backup nodes with R and the mail address. Additionally, the password can be reset by the
nodes via an email. The risk of being compromised via email compromise could be reduced
by enforcing a second authentication factor for password changes.
The presented backup mechanism can provide additional added value. The wallet can be re-
constructed from anywhere and on any device only with knowing a secret. It allows us to run
an implementation of the IMT in the web browser without remote hosting of the wallet. The
in-browser IMT collects the shares from the nodes and reconstructs the wallet locally.

■ Shamir Secret Sharing: Sharing the wallet along multiple nodes based on user secret.

Key Compromise

There are three kinds of key compromise. In case of a wallet compromise, all keys should be
rotated.

4. CONCEPT PROPOSAL 49

1. A DID can be compromised, meaning its private key. The key can be rotated and the
DID document object being updated, though not when already done by the attacker.
Therefore, the backup nodes should have the power to rotate the keys via an multi-
signature transaction. Only when a certain threshold of backup nodes sign the trans-
action the DID document get updated. To do so, the DID document must contain the
public keys of the backup nodes. Preventing that the attacker can change the listed
backup nodes on the DID document, updates should only get valid after a particular
time frame, and the identity owner should be informed about the change via an email
from the backup nodes. It allows the identity owner to react on not consented changes.

2. After a master-secret compromise all credentials belonging to the secret should be re-
voked, and a new secret be created. Otherwise, the attacker can make use of the cre-
dentials and impersonate the identity owner.

3. In case the password for authentication against the backup nodes are compromised,
the identity owner can rotate the password with his email address as described in the
Paragraph Backup Mechanism.

Security Consideration

There are two types of attacks - active and passive attacks.

Active attack - the aim of the attack is to take over identifiers and/or credentials such that the
identity owner can not recover from:

• DID compromise. The attacker rotated the keys as well as altered the authorized backup
nodes. The new backup nodes became valid after the time frame expiration since the
true identity owner did not react.

⇒ The time frame should be of, and it must be guaranteed that the notification
reaches the identity owner to minimize the risk.

• master-secret compromise. The attacker can not rotate it, and thus has no risk for an
active attack.

• wallet compromise. A threshold number of backup nodes become compromised or
start to act maliciously. They can take over all identities by reconstructing the wallet
and rotate all DID keys. In this case, an identity owner will not be able to recover since
the backup nodes do not act in his intend.

⇒ A high threshold can minimize the risk. However, it has to be carefully selected
since it has the consequence that the data storage rises. Nevertheless, the thresh-
old may be set to a rather small value since all nodes are well-known and regis-
tered. The node operators can be made accountable.

4. CONCEPT PROPOSAL 50

Passive attack - the attacker stays passive in the sense that he does not rotate keys:

• DID compromise. It would allow the attacker to authenticate against service providers
and potentially to access personal information.

⇒ Providers should trace the user access and inform the identity owner about un-
usual activities via a second channel, e.g. messaging service on the DID docu-
ment.

• master-secret and credential get compromised. Besides the attacker got personal infor-
mation, he can make use of the credential to create presentations. The attack is hardly
detectable as long as no damage for the identity owner becomes visible.

⇒ Minimizing the risk by wallet encryption with state of the art cryptographic schemes.

4.3 SSI Utilization in Cardossier

We demonstrate three cases to utilize self-sovereign identities.

4.3.1 General Utilization

The verifiable credentials and DID’s of the SSI ecosystem are used to manage personal data
in Cardossier. See Section 3.1 for more information about the Cardossier data types.

4.3.2 User Consent for Transactions

In some case, it is desired that an identity owner can sign a transaction, or in other words, give
consent for a transaction. It can be realized by a signature on the transaction input values.
The user/identity owner has a private key in his wallet, whereas the public key is part of the
state object in the network. When it comes to a transaction, the notary of the shared object
has to verify the signature. The verification is defined in the smart contract. Since the notary
is a decentralized entity, it can be assumed that the notary behaves correctly. Thus, only
transactions with a valid input signature of the identity owner are approved and executed.

4.3.3 Car Ownership and Transfer of Ownership

How can car ownership be claimed in a privacy-aware and scalable manner? On the one
hand, the owner should be able to prove ownership to any third-party in a way that does
not allow to correlate several cars to one identity (assuming owning several cars). Moreover,
on the other hand, the agent should be able to query all cars of the identity owner in a fast
way. It is of importance when it comes to fleet management. Both should be supported,
and therefore, two ways of proving ownership should be provided. The owner DID should be

4. CONCEPT PROPOSAL 51

Figure 4.2: Transfer of ownership

stored in an owner map object on the agent and never be published to another party. It is an
internal mapping between car object and DID. Proof of ownership to third-parties and can
be made via an car DID. The car owner is in control of the DID - he owns the DID private key.
Besides, the key is used to sign the change of ownership transaction.

■ Car owner map: When it comes to large car fleets, all car states can be queried in a fast
way with one single DID.

■ Car DID: A DID which is controlled by the car owner. The owner can prove ownership
to a requester by responding on a challenge.

Transfer of Ownership: Figure 4.2 illustrates the process. Initially, the car data is managed
by agent 1 and Alice is the current car owner since she controls the keypair A. Bob should
become the new owner. Agent 1 and agent 2 have already exchanged the car state and events
such that Bob could watch the car data. The transfer is realized in eleven steps:

4. CONCEPT PROPOSAL 52

1. Bob demonstrates DID for car ownership to agent 2

2. Agent 2 creates entry in car owner map (DID, Car DID).

3. Agent 2 returns its ID; used by agent 1 to identify the receiving node.

4. Bob creates a new key pair (public/private key) and stores it in the wallet.

5. Bob signs process ID and public key with his private key, and he transmits the data to
Alice

6. Alice verifies correctness and signs the data. Alice triggers a Corda transfer of owner-
ship transaction via the agent 1

7. Agent 1 performs transaction flow. Notary verifies the signatures and data correctness

8. A DID key rotation is performed to give control of the car DID to the new owner Bob.
Moreover, a new car state is created and the car object updated with a new owner node.

9. Agents confirm transaction completeness to Alice and Bob

4. CONCEPT PROPOSAL 53

4.4 Credential Ecosystem

Figure 4.3: Credential ecosystem: from the creation to the utilization of a verifiable credential

Figure 4.3 is on the center of this Section. It illustrates the proposal of a credential ecosys-
tem in Cardossier. In the first part, we look at it from a conceptual perspective, whereas the
software architecture of each of the four roles is described in Subsection 4.4.1. Also, the in-
teractions between roles as well as between architecture components, are stated out in the
Subsection 4.4.2.

The credential ecosystem consists of four roles, the credential issuer, agent, identity owner
and verifier, whereby the identity owner is the central player and at the start of most interac-
tions. By discussing Figure 4.3, (1) the identity owner initialize the interaction with the issuer,
exchange credential request data and provides a DID via DID authentication, (2) what re-
quires to resolve the DID for the corresponding DID Document. Also, the issuer may request
a secondary authentication to confirm an existing identity or request for identification via an

4. CONCEPT PROPOSAL 54

official identity document. After it, the identity owner may go offline, since the claims, which
is going to be issued in the form of a verifiable credential, has to be approved manually. In
the next step, (3) the issuer creates a credential, encrypts the credential with a DID’s public
key and transmits it to the agent. At this point, it has to be mention that the credential inbox
address should be part of the DID Document. Thus, the issuer knows the address after resolv-
ing the DID. Further, (4) the identity owner goes only, requests the credential from his inbox
and stores the credential in the identity management tool (IMT). Now, (5) he can make use
of the claims in a verifiable presentation, which is going to be shown to the verifier. (6) The
verifier resolves the issuers DID from the entity registry to get the identity of the issuer, and
he requests the credential revocation state from the revocation registry. Moreover, he verifies
the signature of the presentation and applies the trust policy, which defines which issuer he
trusts and which level of assurance of the claims is required to accept the presentation.

4.4.1 System Architecture: Roles

The software architecture of each role of the credential ecosystem, Figure 4.3, are provided in
this Subsection:

Issuer

Figure 4.4: Issuer architecture

An issuer can be any organiza-
tion running a Cardossier node.
Each issuer is well-know and reg-
istered at the Entity Registry. In
Figure 4.4, the building blocks of
the issuer application is shown.
It consists of access manage-
ment at the top to control the ac-
cess. The next layer is the man-
agement board, which is a user
interface with the key function-
alities of triggering credential is-
suance, revoking credentials and
viewing issued credentials. One
layer below there is the backbone of the application. The logic layer handles the user ac-
tions and coordinates between the modules: (1) a credential store is a database to store all
issued credentials, (2) the wallet holds the issuers private keys and creates the verifiable cre-
dentials, (3) the service API is the interface to communicate with the identity owner and (4)
the network adapter provides the connection to the Cardossier network and components, see
Section 4.4.1.

4. CONCEPT PROPOSAL 55

Agent

Figure 4.5: Agent architecture

The agent offers several services to the identity
owner application. The hub service (left) allows the
identity owner to store its credentials in the cloud
as well as to share and receive credentials when of-
fline. Its building blocks are a database to store the
credential (credential storage), an access manage-
ment module and the hub API, see Figure 4.5. A
second service offered by the agent is the network
service (centre) to provide access to Cardossier net-
work components such as DID Resolver or Entity
Registry. Additionally, the agent provides a backup
service via secret sharing to the identity owners. It
consists of a database to store the shares, an au-
thenticator and the API. Its structure is similar to the hub expect that the authenticator mod-
ule is more restrictive than the access management module. It does not allow to share data
nor to authorize access.

Identity Owner

Figure 4.6: Identity Management Device

Each identity owner has an Identity Man-
agement Tool (IMT) to control his identi-
ties. The top layer of an IMT is the ac-
cess management followed by the man-
agement board, which allows the iden-
tity owner some key functionalities: (1) to
view and delete credentials, (2) to create,
view and delete identifiers, (3) to rotate
keys, (4) to backup and recover its wal-
let, (5) and to select claims and identifiers
for proving its identity to a verifier, see
Figure 4.6. Further, a logic layer handles
the identity owner interactions and coor-
dinates between three modules: (1) the
wallet connector to communicate with verifiers and issuers, (2) the wallet to store identifiers
and credentials as well as to create verifiable presentations (proofs) and (3) an agent adapter
to connect with services provided by the agents.

4. CONCEPT PROPOSAL 56

Verifier

Figure 4.7: Verifier architecture

The verifier checks the verifiable presentation pro-
vided by an identity owner and decides the trust-
worthiness of the data. Building blocks are a net-
work adapter to access the DID Document and En-
tity Registry, tools for signature verification and a trust
policy, which defines the trusted issuers and the re-
quired level of assurance for specific claims. On top
of that, there is a logic layer and interface, see Fig-
ure 4.7.

(Corda) Network Adapter

Figure 4.8: Network Adapter

The network adapter provides access to distinct objects
in the network, and thus, requires a Cardossier node. It
allows to access the DID document object’s and to up-
date them when permitted, or also to create new ones.
Further, information about the issuer can be retrieved
from the Entity Registry. The Revocation Registry con-
tains a reference of each credential and a mark when the
issuer has revoked the credential. Each node can check the revocation state.

4.4.2 System Architecture: Interactions

In this subsection the interactions between the architecture components of each individual
role as well as between the roles are described in form of sequence diagrams:

• Issuer: interaction with the identity owner, see Figure 4.9

• Agent: interaction with the identity owner, see Figure 4.10

• Identiy owner: interactions with the issuer, agent and verifier, see Figure 4.11 and Fig-
ure 4.12

• Verifier: interactions with the identity owner, Figure 4.13

• DID-Authentication: challenge-response interaction, see Figure 4.14

4. CONCEPT PROPOSAL 57

Figure 4.9: Sequence diagram: issuer

4. CONCEPT PROPOSAL 58

Figure 4.10: Sequence diagram: agent

4. CONCEPT PROPOSAL 59

Figure 4.11: Sequence diagram: identity owner

4. CONCEPT PROPOSAL 60

Figure 4.12: Sequence diagram: identity owner

4. CONCEPT PROPOSAL 61

Figure 4.13: Sequence diagram: verifier

4. CONCEPT PROPOSAL 62

Figure 4.14: Sequence diagram: DID authentication

CHAPTER 5

Implementation

5.1 Tools and Libraries

A general view on the technology stack: R3 Corda is used as distributed ledger and mainly
written in Java. Java is the main programming language in Cardossier combined with Lombok
and Spring Boot. TypeScript and Angular are applied for web development. As build tool,
Gradle is used; For deployment, Kubernetes.

The wallet implementation and tools from the SDK of the Hyperledger Indy project are
used [30]. It provides the following functionalities:

1. Manage private keys: the wallet man-
ages the DID private keys (signing keys)
and a master-secret which is required
to perform zero-knowledge proofs.

2. Wallet encryption: an user can provide
a wallet key to encrypt the wallet. Addi-
tionally, the key is used in deriving DID
keys.

3. Create a DID: the creation of multiple
DID’s is supported. The new DID in-
cluding its private key is automatically
registered at the wallet.

4. Store DID with meta data: additional
to the DID meta information can be
stored

5. Create master-secret: the secret is
stored in the wallet and it is identified
via a secret ID.

6. Rotate the wallet key: the user can
change the encryption key of the wal-
let.

7. Rotate DID keys: a new keypair can
be created and directly registered at the
wallet.

8. Store verifiable credentials: all cre-
dentials are stored in the wallet.

9. Query verifiable credentials: it allows
to search for credentials with specific
attributes.

10. Create ZK verifiable presentations:
the master-secret is required to create
ZK-proofs.

11. Store additional data: can be stored
via tags.

63

5. IMPLEMENTATION 64

Figure 5.1: System domains

5.2 Prototyping

Since the scope of this work does not allow to realize all components and sequences of the
credential ecosystem described in Section 4.4.1 and Section 4.4.2, fundamental elements
have been implemented in the scope of proof of work. The aim is to implement basic features
and considerations to build up the basis of the concept; whereby, the focus is set to back-end
implementations. The prototyping was structured within three domains: a network domain,
service provider domain and a user domain. Figure 5.1 shows an overview of the three do-
mains. The network domain contains all functionalities within the Corda network, e.g. flows
to create a DID document object. The provider domain covers all server-side implementa-
tions, which are not Corda specific. In conclusion, the user domain contains front-end and
user-centric applications, such as the identity management tool (IMT).

The crucial element of the system is the decentralized public key infrastructure in the
form of DID and DID document. In a first step, the capabilities of creating and updating
DID documents as well as resolving a DID in the network were implemented. In a second
step, the wallet and tools of the indy-SDK were integrated on the back-end. Moreover, the
interface to front-end applications was developed. Finally, an example of an IMT was proto-
typed. It allows creating DID’s, interacting with verifiable credential issuers as well as present
credentials to a verifier.

5.2.1 Network Domain

In the network domain the feature of creating, updating DID documents, and resolving a DID
for a DID document was added. Each DID document is stored in the form of a shared object
in the network. It requires following main steps to extend the capability of creating a DID
document object:

5. IMPLEMENTATION 65

Figure 5.2: DID document data model

1. creating DID state object; specify the data model

2. creating DID document entity

3. realizing SQL schema

4. implementing Corda flow to create the DID document object

All DID documents are always shared between the creator node and the notary. Figure 5.2
illustrates the implemented DID document data model. A document can contain several
public keys in the form of a DidPubKey object. Each public key an be used for authentica-
tion, encryption or other purposes. Services are defined in a DidService object. Each service
object covers an id, a type and an endpoint, which should be an URL of the service. Further-
more, credential schemas and credential definitions are part of the document. These objects
are required for verifiable credentials of the indy-SDK. A credential definition contains public
cryptomaterial required for the camenisch-lysyanskaya signature of the zero-knowledge ca-
pable credentials. And, credential schema specifies the data model of a particular credential
type. Also, the document consists of elements necessary for Corda transactions such as the
linearId and stateRef. In Listing 5.1 the implementation of the model is shown.

Besides, a DID document update flow was implemented. It allows altering public keys,
services, schemas and definitions. Furthermore, a resolver flow enables to request each DID
document from the network. DID documents are always shared with the notary. Thus, the
resolver flow performs a request from the notary.

5. IMPLEMENTATION 66

Listing 5.1: An example of a DID document in Cardossier

1 {
2 "data" :{
3 "id" :"did:sb4b:2mwGekXcMhXhoMkvcM4Bfb",
4 "type" :"didDocument",
5 "schema" :null,
6 "node" :"O=localhost, L=Zurich, C=CH",
7 "stateRef" :null,
8 "service" :{
9 "did:sb4b:2mwGekXcMhXhoMkvcM4Bfb;inbox" :{

10 "serviceId" :"did:sb4b:2mwGekXcMhXhoMkvcM4Bfb;inbox",
11 "serviceType" :"CredentialInbox",
12 "serviceEndpoint" :"O=localhost, L=Zurich, C=CH"
13 }
14 },
15 "definition" :null,
16 "publicKey" :{
17 "did:sb4b:2mwGekXcMhXhoMkvcM4Bfb#keys-1" :{
18 "keyId" :"did:sb4b:2mwGekXcMhXhoMkvcM4Bfb#keys-1",
19 "keyType" :"Ed25519VerificationKey2018",
20 "controller" :"did:sb4b:2mwGekXcMhXhoMkvcM4Bfb",
21 "publicKeyBase58" :"eTZ6enk2YzQ3eTVoRG..",
22 }
23 },
24 }
25 }

5.2.2 Provider Domain

The Java wrapper of the Indy-SDK is integrated and extended with more convenient data ob-
ject. The SDK contains all wallet functionalities, see Section 5.1. A WalletService object is im-
plemented, which defines a wallet object in the system and covers all the required methods.
Multiple wallets can be created, each encrypted with a wallet pass-phrase. On a higher-level,
the wallet is connected with the DID-document-create and DID-document-update flow. Fur-
thermore, a REST API is written such that the wallets can be accessed from a front-end appli-
cation, e.g. from the issuer.

An issuer service is implemented. We cover the described issuer in Section 4.4.1. Basic
building blocks were realized: the wallet, issuer service API, network adapter for DID docu-
ments and partial implementation of the logic layer. Furthermore, the DID-authentication
sequence (Figure 4.14) was added to the implementation and the IMT-to-API sequence flow
of Figure 4.13 was realized. The issuer service was equipped with two demo credentials, a
"name" credential and an "insurance" credential.

A prototype of the verifier was realized by implementing the basic building blocks: net-
work adapted for DID documents and verification tools. The logic layer was integrated, and

5. IMPLEMENTATION 67

Figure 5.3: Home screen with multiple DID’s

the interface was realized. It enables the interaction sequence of Figure 4.13 without creden-
tial revocation and trust policy.

5.2.3 User Domain

A demo identity management tool was developed to showcase the basic functionalities. The
web application is making use of a wallet service from the back-end.

A first basic feature is to create and control DID’s. An identity owner can create multiple
ones, see Figure 5.3. It shows the home screen with multiple DID’s in possession. The home
screen lists up all DID’s and credential of the identity owner. New DID’s can be created with
the button on the top right, which will create a new DID document on the ledger.

The identity owner can request credential from an issuer. Clicking on the button get a
passport, he can select which identifier (DID) he is going to use for the connection, see Fig-
ure 5.4. Afterwards, a DID-authentication takes place in the background. When successfully
authenticated (the identity owner can prove ownership of the DID) the issuer creates a new
verifiable credential and transmits it to the identity owner. The credential is visualized on the
home screen, see Figure 5.5. It contains the three claims "surname: Glauser", "first name:
Remo" and "level of assurance: 1" in our example.

An identity owner can make use of his credentials by demonstrating them to a verifier.
The integration between the verifier and the identity owner is implemented. An identity
owner requests for service, whereby the verifier response with a request for a verifiable pre-
sentation. In our example, the verifier asks for the first name and surname of the identity

5. IMPLEMENTATION 68

Figure 5.4: DID selection for before credential issuance

5. IMPLEMENTATION 69

Figure 5.5: A new credential have been issued

5. IMPLEMENTATION 70

Figure 5.6: Selecting claims for a verifiable presentation

owner, see Figure 5.6. It shows how the user can select suitable claims for the request. In
our case, there are two claims with the attribute "first name". One is asserting "first name:
Remo" with a level of assurance (LoA) equals to 1 and the second with a LoA equals to 4.
The claim with LoA 4 should be selected since the confidence of the issuer that the claim is
valid is higher. Afterwards, all credential schemas and definition required for the proof are
collected from the network. Finally, the verifiable presentation is created and transmitted to
the verifier, which verifies the correctness of the presentation.

CHAPTER 6

Conclusion

We asked the question of how can users take control of their identity and interact with the
Cardossier ecosystem with privacy and trust. For answering this question, system require-
ments on identity management were elaborated, and the suitability of self-sovereign identi-
ties was analyzed. Data privacy is one of the primary concern of Cardossier, especially when
there are personal data involved. We have seen that the concept of self-sovereign identity
removes the trusted third-party and gives control of the identity to the user. On its basis,
it has a decentralized public key infrastructure. Privacy can be preserved on a degree not
reached by other identity management approaches. Furthermore, SSI enables data inter-
operability through verifiable credentials. We investigate existing data models and imple-
mentations of SSI and present a concept best-suitable for Cardossier. The integration of the
Hyperledger Indy-SDK was proposed. It enables minimal disclosure of personal information
through zero-knowledge proofs, and it allows separating claims from identifiers. We discuss
how these features can be utilized to prevent Identity correlation in Cardossier. Moreover, we
present a wallet backup & recovery mechanism which does not rely on a trusted third-party
or the participation of friends or family. Instead, trust is distributed among several nodes with
direct authentication via an additional channel such as username/password or FIDO authen-
ticators. We discuss the utilization of SSI in Cardossier for personal data, but also how it can
be used to give user consent to Corda transaction as well as how the management of car own-
ership can benefit. Besides, a system architecture of the credential ecosystem is presented.
We define for roles: a credential issuer, an agent, an identity owner and a credential verifier;
and we elaborate their individual software architecture and interaction sequences. Finally,
crucial elements of the architecture were implemented in the scope of a proof-of-work.

In conclusion, we demonstrated how to provide, and partially implement as proof-of-
work, an identity management that preserves privacy of end-users in decentralized ecosys-
tems like Cardossier.

The technology of self-sovereign identity is just on the rise and not yet widely adopted in
production. Tools and libraries are rapidly developed further, and so experience the used
Indy-SDK. When making the proposed concept productive in Cardossier, this fact should
be considered by following on the emerging W3C community standards. Since user-centric
identity management requires the active participation of the user - users must agree in digi-
tal identity/passport, download an app, request for credentials, etc. - a self-sovereign system

71

6. CONCLUSION 72

can only slowly be introduced. It requests for a hybrid system between federated and self-
sovereign identities. Organization participating in Cardossier should administrate the user’s
identities and offer to the users to receive control about their identities whenever they desire.
Further investigation of specifying this process might be considered. Besides, the usability of
the identity management tool for the end-user is crucial to get their acceptance for the ap-
plication. Therefore, a great effort to reach the best user experience should be taken. More-
over, only selective disclosure of car events is implemented. Zero-knowledge capable events
might be a desired property for minimizing the disclosure in a car data market. Cardossier
is based on a permissioned distributed ledger, so is the presented solution. One aspect of
the principles of SSI is transparency: The systems used to administer and operate a network
of identities must be open, both in how they function and in how they are managed and up-
dated. Permissioned networks do not entirely offer it since network participation is regulated,
however, permssionless blockchains lake on transaction scalability. A promising solution to
solve the issue for Decentralized Identities are sidetrees, which were presented by the Decen-
tralized Identity Foundation. Further investigation on its suitability for Cardossier might be
performed.

Bibliography

[1] J. Camenisch and E. Van Herreweghen, “Design and implementation of the idemix
anonymous credential system”, in Proceedings of the 9th ACM Conference on Computer
and Communications Security, ser. CCS ’02, Washington, DC, USA: ACM, 2002, pp. 21–
30, ISBN: 1-58113-612-9. DOI: 10.1145/586110.586114. [Online]. Available: http:
//doi.acm.org/10.1145/586110.586114.

[2] C. Adams and S. Lloyd, Understanding PKI: concepts, standards, and deployment con-
siderations. Addison-Wesley Professional, 2003.

[3] R. Oppliger, “Microsoft .net passport and identity management”, Information Security
Technical Report, vol. 9, no. 1, pp. 26–34, 2004, ISSN: 1363-4127. DOI: https://doi.
org/10.1016/S1363-4127(04)00013-5.

[4] A. Jøsang and S. Pope, “User centric identity management”, in AusCERT Asia Pacific
Information Technology Security Conference, Citeseer, 2005, p. 77.

[5] L. Benedictus, “A brief history of the passport”, The Guardian, Nov. 2006, ISSN: 0261-
3077. [Online]. Available: https://www.theguardian.com/travel/2006/nov/17/
travelnews (visited on 04/04/2019).

[6] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol version 1.2”, In-
ternet Engineering Task Force (IETF), California, USA, Tech. Rep., 2008.

[7] D. W. Chadwick, “Federated identity management”, in Foundations of Security Analysis
and Design V: FOSAD 2007/2008/2009 Tutorial Lectures, A. Aldini, G. Barthe, and R. Gor-
rieri, Eds. Springer Berlin Heidelberg, 2009, pp. 96–120, ISBN: 978-3-642-03829-7. DOI:
10.1007/978-3-642-03829-7_3. [Online]. Available: https://darticleoi.org/
10.1007/978-3-642-03829-7_3.

[8] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-security
signatures”, in High-speed high-security signatures, vol. 2, Springer, 2012, pp. 77–89.

[9] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant byzantine fault tolerance”,
in 2013 IEEE 33rd International Conference on Distributed Computing Systems, IEEE,
2013, pp. 297–306.

[10] C. Paquin, “U-prove technology overview”, Microsoft Corporation, p. 23, 2013.

[11] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström, “Json-ld 1.0”, W3C
Recommendation, Tech. Rep., 2014. [Online]. Available: https://www.w3.org/TR/
json-ld.

[12] “Decentralized public key infrastructure”, 2015, [accessed 15-April-2019]. [Online]. Avail-
able: https://danubetech.com/download/dpki.pdf.

73

https://doi.org/10.1145/586110.586114
http://doi.acm.org/10.1145/586110.586114
http://doi.acm.org/10.1145/586110.586114
https://doi.org/https://doi.org/10.1016/S1363-4127(04)00013-5
https://doi.org/https://doi.org/10.1016/S1363-4127(04)00013-5
https://www.theguardian.com/travel/2006/nov/17/travelnews
https://www.theguardian.com/travel/2006/nov/17/travelnews
https://doi.org/10.1007/978-3-642-03829-7_3
https://darticleoi.org/10.1007/978-3-642-03829-7_3
https://darticleoi.org/10.1007/978-3-642-03829-7_3
https://www.w3.org/TR/json-ld
https://www.w3.org/TR/json-ld
https://danubetech.com/download/dpki.pdf

BIBLIOGRAPHY 74

[13] C. Allen. (Apr. 2016). The path to self-sovereign identity, [Online]. Available: http :
//www.lifewithalacrity.com/2016/04/the-path- to- self- soverereign-
identity.html (visited on 04/04/2019).

[14] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman, et al., “Blockchain technology:
Beyond bitcoin”, Applied Innovation, vol. 2, no. 6-10, p. 71, 2016.

[15] R. Gendal Brown, J. Carlyle, I. Grigg, and M. Hearn, “Corda: An introduction”, R3 CEV,
Sep. 2016. DOI: 10.13140/RG.2.2.30487.37284.

[16] M. M. L. L. Initiative, Blockcerts-an open infrastructure for academic credentials on the
blockchain, Medium, Oct. 2016. [Online]. Available: https : / / medium . com / mit -
media-lab/blockcerts-an-open-infrastructure-for-academic-credentials-
on-the-blockchain-899a6b880b2f.

[17] D. Reed, J. Law, and D. Hardman, “The technical foundations of sovrin”, in The Techni-
cal Foundations of Sovrin, Sep. 2016.

[18] V. Morabito, “Business innovation through blockchain”, Cham: Springer International
Publishing, 2017.

[19] M. Sabadello, A universal resolver for self-sovereign identifiers, Medium, Nov. 2017. [On-
line]. Available: https://medium.com/decentralized-identity/a-universal-
resolver-for-self-sovereign-identifiers-48e6b4a5cc3c.

[20] C. Fei, J. Lohkamp, E. Rusu, K. Szawan, K. Wagner, and N. Wittenberger, “Self-sovereign
and decentralised identity by design”, Mar. 2018.

[21] C. Jagers, The new blockcerts mobile app, Medium, Apr. 2018. [Online]. Available: https:
//medium.com/learning-machine-blog/the-new-blockcerts-mobile-app-
eea18053f526.

[22] M. Loepfe, “Wie blockchain vertrauen und digitalisierung fördert”, p. 6, 2018.

[23] “Microsoft decentralized identity”, 2018. [Online]. Available: https://query.prod.
cms.rt.microsoft.com/cms/api/am/binary/RE2DjfY.

[24] “Sovrin protocol and token white paper”, Jan. 2018. [Online]. Available: https : / /
sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.
pdf.

[25] A. Young and S. Verhulst, “Self sovereign identity for government services in zug, switzer-
land”, p. 11, Oct. 2018.

[26] I. Bauer, L. Zavolokina, F. Leisibach, and G. Schwabe, “Exploring blockchain value cre-
ation: The case of the car ecosystem”, in 52nd Hawaii International Conference on Sys-
tem Sciences, 2019, p. 10.

[27] D. Buchner and A. Simons, Toward scalable decentralized identifier systems, May 2019.
[Online]. Available: https://techcommunity.microsoft.com/t5/Azure-Active-
Directory-Identity/Toward-scalable-decentralized-identifier-systems/
ba-p/560168.

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://doi.org/10.13140/RG.2.2.30487.37284
https://medium.com/mit-media-lab/blockcerts-an-open-infrastructure-for-academic-credentials-on-the-blockchain-899a6b880b2f
https://medium.com/mit-media-lab/blockcerts-an-open-infrastructure-for-academic-credentials-on-the-blockchain-899a6b880b2f
https://medium.com/mit-media-lab/blockcerts-an-open-infrastructure-for-academic-credentials-on-the-blockchain-899a6b880b2f
https://medium.com/decentralized-identity/a-universal-resolver-for-self-sovereign-identifiers-48e6b4a5cc3c
https://medium.com/decentralized-identity/a-universal-resolver-for-self-sovereign-identifiers-48e6b4a5cc3c
https://medium.com/learning-machine-blog/the-new-blockcerts-mobile-app-eea18053f526
https://medium.com/learning-machine-blog/the-new-blockcerts-mobile-app-eea18053f526
https://medium.com/learning-machine-blog/the-new-blockcerts-mobile-app-eea18053f526
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE2DjfY
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE2DjfY
https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-White-Paper.pdf
https://techcommunity.microsoft.com/t5/Azure-Active-Directory-Identity/Toward-scalable-decentralized-identifier-systems/ba-p/560168
https://techcommunity.microsoft.com/t5/Azure-Active-Directory-Identity/Toward-scalable-decentralized-identifier-systems/ba-p/560168
https://techcommunity.microsoft.com/t5/Azure-Active-Directory-Identity/Toward-scalable-decentralized-identifier-systems/ba-p/560168

BIBLIOGRAPHY 75

[28] “Credential — Wikipedia, the free encyclopedia”, Wikipedia, May 2019, [accessed 8-
May-2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Credential&oldid=895436374.

[29] Did resolver for https domains, GitHub repository, [accessed 15-May-2019], Apr. 2019.
[Online]. Available: https://github.com/uport-project/https-did-resolver.

[30] Indy-sdk: Api, GitHub Repository, [commit: 2977b26b], May 2019. [Online]. Available:
https://github.com/hyperledger/indy-sdk/blob/master/libindy/src/api.

[31] Indy-sdk: How credential revocation works, GitHub Repository, [commit: 4c0efa5e], May
2019. [Online]. Available: https://github.com/hyperledger/indy-sdk/blob/
master/docs/concepts/revocation/cred-revocation.md.

[32] Notary demo, GitHub Repository, [commit: 0fdb2674], May 2019. [Online]. Available:
https://github.com/corda/corda/tree/master/samples/notary-demo.

[33] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, and M. Sabadello, “Decentralized
identifiers (dids) v0.12”, W3C Community Group, Tech. Rep., 2019. [Online]. Available:
https://w3c-ccg.github.io/did-spec.

[34] “Sidetree protocol specification”, Tech. Rep., Jun. 2019, [git commit: 2d7a5f29]. [On-
line]. Available: https://github.com/decentralized-identity/sidetree/blob/
master/docs/protocol.md.

[35] M. Sporny, D. Longley, and D. Chadwick, “Verifiable credentials data model 1.0”, W3C
Community Group, Tech. Rep., 2019. [Online]. Available: https://www.w3.org/TR/
verifiable-claims-data-model.

[36] “Storage and compute nodes for decentralized identity data and interactions”, May
2019. [Online]. Available: https://github.com/decentralized-identity/identity-
hub.

[37] “Verkauf von neuwagen sinkt in der schweiz erneut”, Tages-Anzeiger, Jan. 2019, ISSN:
1422-9994. [Online]. Available: https : / / www . tagesanzeiger . ch / wirtschaft /
standardverkauf - von - neuwagen - sinkt - in - der - schweiz - erneut / story /
22560129.

[38] “Web authentication: An api for accessing public key credentials level 1”, W3C Recom-
mendation, Tech. Rep., Mar. 2019. [Online]. Available: https://www.w3.org/TR/
webauthn.

[39] Wikipedia contributors, “Federated identity — Wikipedia, the free encyclopedia”, 2019,
[accessed 6-April-2019]. [Online]. Available: https://en.wikipedia.org/w/index.
php?title=Federated_identity&oldid=884016571.

[40] ——, “Identity (social science) — Wikipedia, the free encyclopedia”, 2019, [accessed 6-
April-2019]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Identity_(social_science)&oldid=886772120.

[41] A new approach to digital identity, accessed 19 May 2019. [Online]. Available: https:
//didproject.azurewebsites.net/.

https://en.wikipedia.org/w/index.php?title=Credential&oldid=895436374
https://en.wikipedia.org/w/index.php?title=Credential&oldid=895436374
https://github.com/uport-project/https-did-resolver
https://github.com/hyperledger/indy-sdk/blob/master/libindy/src/api
https://github.com/hyperledger/indy-sdk/blob/master/docs/concepts/revocation/cred-revocation.md
https://github.com/hyperledger/indy-sdk/blob/master/docs/concepts/revocation/cred-revocation.md
https://github.com/corda/corda/tree/master/samples/notary-demo
https://w3c-ccg.github.io/did-spec
https://github.com/decentralized-identity/sidetree/blob/master/docs/protocol.md
https://github.com/decentralized-identity/sidetree/blob/master/docs/protocol.md
https://www.w3.org/TR/verifiable-claims-data-model
https://www.w3.org/TR/verifiable-claims-data-model
https://github.com/decentralized-identity/identity-hub
https://github.com/decentralized-identity/identity-hub
https://www.tagesanzeiger.ch/wirtschaft/standardverkauf-von-neuwagen-sinkt-in-der-schweiz-erneut/story/22560129
https://www.tagesanzeiger.ch/wirtschaft/standardverkauf-von-neuwagen-sinkt-in-der-schweiz-erneut/story/22560129
https://www.tagesanzeiger.ch/wirtschaft/standardverkauf-von-neuwagen-sinkt-in-der-schweiz-erneut/story/22560129
https://www.w3.org/TR/webauthn
https://www.w3.org/TR/webauthn
https://en.wikipedia.org/w/index.php?title=Federated_identity&oldid=884016571
https://en.wikipedia.org/w/index.php?title=Federated_identity&oldid=884016571
https://en.wikipedia.org/w/index.php?title=Identity_(social_science)&oldid=886772120
https://en.wikipedia.org/w/index.php?title=Identity_(social_science)&oldid=886772120
https://didproject.azurewebsites.net/
https://didproject.azurewebsites.net/

BIBLIOGRAPHY 76

[42] “Auto-schweiz: Statistiken”, [Online]. Available: https://www.auto.swiss/statistiken.

[43] Cardossier - managing the life cycle of a car with blockchain technology. [Online]. Avail-
able: https://cardossier.ch/ (visited on 05/10/2019).

[44] Carfax. [Online]. Available: https://www.carfax.eu.

[45] “Corda, designed for business”, R3 LLC, New York City, USA, Report. [Online]. Available:
https://www.corda.net/discover/technology.html (visited on 02/06/2019).

[46] Fido2, [accessed 31 May 2019]. [Online]. Available: https://fidoalliance.org/
fido2/.

[47] M. Hearn, “Corda: A distributed ledger”, p. 56, [Online]. Available: https://docs.
corda.net/_static/corda-technical-whitepaper.pdf.

[48] Hyperledger indy, [accessed 11-May-2019]. [Online]. Available: https://www.hyperledger.
org/projects/hyperledger-indy.

[49] Identity hub javascript sdk, [accessed 18 May 2019]. [Online]. Available: https : / /
identity.foundation/hub-sdk-js/.

[50] Identity mixer | anonymous credentials for strong accountability and privacy. [accessed
11-May-2019]. [Online]. Available: https://idemix.wordpress.com.

[51] D. C. Lundkvist, R. Heck, J. Torstensson, Z. Mitton, and M. Sena, “Uport: A platform for
self-sovereign identity”, p. 17,

[52] B. Pelle and T. Joel, Erc: Lightweight identity, GitHub, [accessed 15-May-2019]. [Online].
Available: https://github.com/ethereum/EIPs/issues/1056.

[53] S. Peyrott, Introduction to web authentication: The new w3c spec, [accessed 8 June 2019].
[Online]. Available: https://auth0.com/blog/introduction-to-web-authentication.

[54] Sovrin foundation, [accessed 11-May-2019]. [Online]. Available: https://sovrin.
org.

[55] Transaction fueling server, uPort, [accessed 15-May-2019]. [Online]. Available: https:
//developer.uport.me/rest-apis/fuel-server.

[56] Uport credentials, uPort, [accessed 15-May-2019]. [Online]. Available: https://developer.
uport.me/uport-credentials/login.

[57] Uport developer portal, uPort, [accessed 15-May-2019]. [Online]. Available: https://
developer.uport.me.

[58] Uport protocol specs, GitHub repository, [accessed 15-May-2019]. [Online]. Available:
https://github.com/uport-project/specs.

[59] Verifiable organizations network, [accessed 11-May-2019]. [Online]. Available: https:
//vonx.io/.

[60] “Iso/iec 24760-1:2011: A framework for identity management – part 1: Terminology
and concepts”, International Organization for Standardization, Geneva, CH, Dec. 2011.
[Online]. Available: http://www.iso.org/cms/render/live/en/sites/isoorg/
contents/data/standard/05/79/57914.html.

https://www.auto.swiss/statistiken
https://cardossier.ch/
https://www.carfax.eu
https://www.corda.net/discover/technology.html
https://fidoalliance.org/fido2/
https://fidoalliance.org/fido2/
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://docs.corda.net/_static/corda-technical-whitepaper.pdf
https://www.hyperledger.org/projects/hyperledger-indy
https://www.hyperledger.org/projects/hyperledger-indy
https://identity.foundation/hub-sdk-js/
https://identity.foundation/hub-sdk-js/
https://idemix.wordpress.com
https://github.com/ethereum/EIPs/issues/1056
https://auth0.com/blog/introduction-to-web-authentication
https://sovrin.org
https://sovrin.org
https://developer.uport.me/rest-apis/fuel-server
https://developer.uport.me/rest-apis/fuel-server
https://developer.uport.me/uport-credentials/login
https://developer.uport.me/uport-credentials/login
https://developer.uport.me
https://developer.uport.me
https://github.com/uport-project/specs
https://vonx.io/
https://vonx.io/
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/79/57914.html
http://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/79/57914.html

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Identity
	1.2 Identity Management Models
	1.2.1 Isolated Identity
	1.2.2 Centralized Identity
	1.2.3 Federated Identity
	1.2.4 User-Centric Identity
	1.2.5 Self-Sovereign Identity (SSI)

	1.3 R3 Corda
	1.3.1 Corda in a nutshell

	1.4 Cardossier
	1.5 Problem Statement

	2 Research
	2.1 SSI: Draft Specifications and Related Concepts
	2.1.1 Decentralized PKI
	2.1.2 *did
	2.1.3 Universal Resolver
	2.1.4 Verifiable Credentials
	2.1.5 Identity Hub
	2.1.6 JSON Linked Data (JSON-LD)
	2.1.7 The Web Authentication API

	2.2 Related Projects
	2.2.1 Hyperledger Indy
	2.2.2 uPort
	2.2.3 BlockCerts
	2.2.4 Microsoft

	3 Analysis
	3.1 Cardossier Data Types
	3.2 Identity Management System Requirements
	3.3 Evaluation of existing Projects
	3.3.1 Hyperledger Indy / Sovrin
	3.3.2 uPort
	3.3.3 BlockCerts
	3.3.4 Conclusion of Evaluation

	4 Concept Proposal
	4.1 Data Model
	4.1.1 Car Data Model - Existing Model
	4.1.2 Identity Data Model

	4.2 Features
	4.2.1 DID Authentication
	4.2.2 Multiple identifiers
	4.2.3 User owns Identifiers and Credentials
	4.2.4 Verifiable Credentials
	4.2.5 Minimal Disclosure of Personal Information
	4.2.6 Credential Revocation
	4.2.7 Anti-Correlation
	4.2.8 Credential Availability & Data Sharing
	4.2.9 Issue Credentials as Group member
	4.2.10 Keys & Data Recovery

	4.3 SSI Utilization in Cardossier
	4.3.1 General Utilization
	4.3.2 User Consent for Transactions
	4.3.3 Car Ownership and Transfer of Ownership

	4.4 Credential Ecosystem
	4.4.1 System Architecture: Roles
	4.4.2 System Architecture: Interactions

	5 Implementation
	5.1 Tools and Libraries
	5.2 Prototyping
	5.2.1 Network Domain
	5.2.2 Provider Domain
	5.2.3 User Domain

	6 Conclusion

