
Distributed

 Computing

Simulating Bitcoin’s Network Topology
Semester Thesis

Lukas Bieri

lubieri@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Georgia Avarikioti, Roland Schmid

Prof. Dr. Roger Wattenhofer

January 13, 2019

Abstract

Bitcoin relies on a peer-to-peer (p2p) network to spread information in an efficient
and fair manner across a distributed network. This underlying network and the
mapping of its topology is particularly interesting because it determines how
efficient and fair those connections are distributed and how fast information can
be spread. The topology of the network is defined by the connection strategy of
the blockchain.

In this thesis, we analyze the standard bitcoin connection strategy and how it
compares to several newly developed connection strategies that have been eval-
uated. The simulation results indicate that the current implementation of the
Bitcoin connection strategy works very reliable and efficient compared to other
connection protocols. Additionally, having a few nodes that are highly connected
within the network or increasing the number of minimal connections per node on
every node from currently 8 to 13 connections indicates a decrease of the length
of the shortest paths between nodes.

i

Contents

Abstract i

1 Introduction 1

2 Background 3

2.1 Topology of Bitcoin . 3

2.1.1 Joining the Bitcoin Network 3

2.1.2 Connecting to Peers . 4

2.2 Technical Design of the Simulation 4

3 New Connection Strategies 7

3.1 Power of Two Choices . 7

3.2 IP Location Clustering . 8

4 Results 11

4.1 Standard Bitcoin Implementation 11

4.2 Influence of Initial Connections 11

4.2.1 13 initial connections . 14

4.2.2 Corrupt nodes . 14

4.3 Power of Two Choices . 16

4.4 IP Location Clustering . 19

5 Discussion of Result 28

5.1 Influence of Initial Connections 28

5.2 Power of Two Choices . 29

5.3 IP Location Clustering . 29

6 Conclusion 31

Bibliography 32

ii

Chapter 1

Introduction

Bitcoin is a distributed network and relies on a fast and fair information exchange
between its nodes to safeguard the security of its transactions. The gossiping
between individual nodes is the only way peers get information about the current
state of the network. This underlying peer to peer network allows them to agree
on new blocks that are mined.

Thus, the minimization of the propagation delay of a new block that is mined
is crucial for the whole network. However, the exact topology of the network
is intentionally hidden which makes it hard to reason about possible attacks or
manipulations that could occur in the Bitcoin network. For example one study
has revealed that an “advantage“ in the Bitcoin networks’ broadcasts can be
transferred directly into coin gains [1].

This thesis looks at comparing new possible connection strategies versus the
current implementation of the Bitcoin network by means of simulation. The
simulation is ran on a self-developed simulation tool which is based on the stan-
dardized Bitcoin implementation. 1 Firstly, a brute-force approach where the
number of edges was increased is examined. Such a brute-force approach indi-
cates to be a promising approach to increase speed and fairness. Secondly, two
algorithms were developed where a node that wants to connect to a neighbouring
node asks its neighbour for its degree and connects either to the higher or lower
number of degree node. Using this approach leads to either more speed and less
fairness or less speed and more fairness. Thirdly, an algorithm was developed
where a Bitcoin node differentiates other nodes based on their IP location into
different clusters. Using different propagation delays for local versus international
connection indicates that such a geographical mapping algorithm does perform
similarly to the standard Bitcoin implementation.

Additionally, various degree distributions deviations from the standard Bit-
coin protocol are taken into account to achieve more real world behaviour and

1As part of the project I built a simulation environment from scratch in python to test
and compare different network connection strategies and hypotheses. The source code of the
simulation can be pulled from Github as open source code. https://github.com/lukebieri/
bitcoinTopologySimulation

1

https://github.com/lukebieri/bitcoinTopologySimulation
https://github.com/lukebieri/bitcoinTopologySimulation

1. Introduction 2

explore what happens if some nodes deviate from the standard implementation.

Chapter 2

Background

Bitcoin runs on decentralized nodes that pass messages purely in a peer-to-peer
network to manage electronic cash transactions and has no official administrator
as Nakamoto [2] initially suggested in his famous paper. Thus, the challenge is
to build a network that converges to a global and coherent state while having
a fast and robust network topology. Tschorn et al. [3] showed how exactly the
standard bitcoin protocol [4] with its design choices is developed and discusses
the key ideas behind it.

Furthermore, Miller et al. [5] developed a method to observe and analyze
the Bitcoin network in its current state. The so-called “AddressProbe“ technique
relies on the two hours penalty that is taken into account for received address
messages from connected neighbours specified by the Bitcoin protocol to infer
this information. Miller et al. [5] found that of all nodes there exist some highly
connected and influential nodes that connect to many other nodes (range of
hundreds) and thus, deviating from the standard implementation of the Bitcoin
protocol [4]. Thus, the “AddressProbe“ technique proved that the Bitcoin network
is not a random graph. However, after the release of the Bitcoin Core 0.10.1 their
“AddressProbe“ technique does not work anymore [6].

2.1 Topology of Bitcoin

In this section we describe how the current connection strategy of the official
Bitcoin implementation is designed. Non-essential details may be omitted for
simplicity of the presentation.

2.1.1 Joining the Bitcoin Network

Though, a new node that wants to connect to the Bitcoin network finds their
first peers by querying one of Bitcoin’s DNS server from a set of hard-coded DNS
servers. Through this query it gets a list of Bitcoin nodes and from now on it tries
to populate and update this list further. This is done by “getaddr“ requests [7]

3

2. Background 4

to other nodes where individual nodes exchange random subsets of their private
address lists called “addr“ messages with requesting nodes.

2.1.2 Connecting to Peers

Each Bitcoin node tries to maintain a minimum number of 8 connections to
other nodes within the network. It tries actively to reach these 8 connections
by choosing addresses randomly out of its local list of addresses. However, a
node does not accept more than 125 connections to avoid running out of internet
bandwidth.

For each locally saved address that has been shared due to a “getaddr“ call or
a connection request there is a timestamp attached to it such that every node is
able to remove certain outdated addresses. All nodes query what information is
known by their neighbours every 24 hours to keep the table updated. This makes
sure that information about a newly connected node eventually floods the whole
network.

In addition, a Bitcoin node tries to hide its active connections from its neigh-
bours and will not reveal all its neighbours in a “getaddr“ call. Knowing all
neighbours of a peer could significantly increase the success probability of a dou-
ble spending as Nick [8] claims.

2.2 Technical Design of the Simulation

Since a whole Bitcoin network has to be simulated there needs to be an adequate
design choice. Running a simulation with a few thousand threads where each
thread represents a single Bitcoin node with the code from the official Bitcoin
implementation [4] would have used up too much computational resources. There
would have been a big overhead and the simulation would have been utterly
complex regarding code that is not relevant for the outcome of this thesis.

We thus concluded that a new simulation environment had to be built from
scratch. For a general overview, one may consult Figure [2.1] along the following
explanation.

All major parameters can be specified in the “main.py“ file which launches
one or multiple python simulations accordingly. There are various parameters
that can be set according to the kind of simulation one is interested in. The most
important parameters for this thesis are the distribution of the initial nodes a
single Bitcoin node wants to connect as well as its limit, the connection protocol
and the size of the simulation respectively how many nodes that should be used.
The simulation class in “simulation.py“ builds a Bitcoin network on a networkx
instance [9]. Networkx is a framework provided by the python community for
graph representations as well as calculations. It is particularly useful such that

2. Background 5

it provides algorithms to calculate the shortest path lengths. Additionally, each
node of the graph has an object from the class BitcoinNode in “bitcoinNode.py“.
The class BitcoinNode takes care of the connection strategy of an individual node
according to its initialization that are being set in the simulation class. It has
locally stored all relevant information that are being used by a real Bitcoin node to
take decisions on how it should connect to other nodes and the relevant protocols
for doing so. As a result all decisions regarding the opening of new connections
to other nodes are being taken by the BitcoinNode class. Thus, the Simulation
class just needs to maps the rewiring that have been agreed on by two individual
Bitcoin nodes to the networkx data structure. It can do so by observing messages
that are passed between individual Bitcoin nodes. These messages are organized
as dictionaries and called “envelopes“. They play a crucial part because these
messages are the only mean of communication for Bitcoin nodes. They are either
filled with message data to either give the simulation class feedback about its
state or to send a message to another node. Therefore, the Simulation class also
acts as a transport layer for individual Bitcoin nodes.

The core of the simulation is written in time intervals such that in every
time interval all nodes in the network are asked if they want to request new
“getAddr“ calls, if they have to build new connections or if there are messages
from other nodes that need to be handed over to a particular node to get a
response. Additionally, there are two types of nodes. A node can either be a
normal Bitcoin node that wants to connect to the network or there is a fixed
number of nodes that act as initial DNS nodes that are being requested when a
new node wants to connect to the Bitcoin network.

During runtime in predefined time slots and at the end of the simulation the
class Simulation calls the class NetworkAnalytics in “networkAnalytics.py“. The
class NetworkAnalytics analyzes the network and plots the result. It does not
perform any rewiring on the graph itself and is just used for analytical purposes.
Though, in this class the shortest path length function of the networkx library
is called. Depending on the number of nodes in the network and the number of
edges this can be a time consuming call lasting from a couple of seconds up to
more than an hour depending on the simulation and the hardware available.

2. Background 6

Figure 2.1: The simulation runs on a networkx data structure where each node
has a BitcoinNode object stored in it. These BitcoinNode object give a single
node the ability to communicate with other nodes to come to common agreements
about new connections. The Simulation class therefore acts as transport layers of
messages that are being sent between nodes, maps new nodes to the network as
well as taking nodes offline and observing messages that are being sent between
individual nodes to keep the edges updated with the information that is being
exchanged between individual Bitcoin nodes. The networkAnalytics class is called
on predefined time intervals and on the end of a simulation to analyze the network
by calculating the shortest path lengths inside the network or looking at degrees
for example.

Chapter 3

New Connection Strategies

In this thesis two main approaches with some variations for a new connection
strategy have been chosen to be developed further to set against the standard
Bitcoin protocol implementation.

3.1 Power of Two Choices

The power of two choices method describes the following problem. Assume that
n balls have to be placed in n bins independently and uniformly at random.

Mitzenmacher et al. [10] have shown that the maximum load (largest number
of balls in any bin) is approximately

log n

log log n
.

In addition they have shown that if one now adds the additional property that
the balls are placed such that they are placed in the least loaded bin of d ≥ 2 the
maximum load is

log logn

log d
+O(1)

with high probability.

One can now apply this powerful idea of the power of two choices method
to the Bitcoin connection strategy assuming each node in the network as being
a bin and every new node that connects to the network represents a ball. The
idea behind it is to balance the degree distribution evenly between all Bitcoin
nodes. This should be achieved if a node that wants to add one connection gets
two random addresses from its cache and asks both of those nodes chosen for
their degree. Afterwards the node that asked for the degree gets back the two
messages and will connect to the node with the lower degree. This algorithm is
described in the appendix in more detail [1]. The expectation we get from this
protocol is that it takes on average roughly the same number of hops for each

7

3. New Connection Strategies 8

node to reach all other nodes due to this degree balancing that we believe leads
to a network where each node should be connected to the network equally well.

If one now adapts this powerful idea of the power of two choices method to
the bitcoin connection strategy one comes to the following algorithm [1].

Additionally, out of curiosity the algorithm was also slightly modified such
that not the node with the minimum degree was chosen to be connected, but in-
stead the node with the maximum degree gets selected as illustrated in algorithm
[2].

Algorithm 1 Power of two Choices with the minimum number of nodes selected
1: procedure p2cmin(addrMan) . addrMan has data
2: while own degree < 8 do
3: choose addresses A1 and A2 u.a.r. from addrMan
4: ask A1 and A2 about their degrees D1 and D2
5: if D1 ≥ D2 then
6: connect to A2
7: else
8: connect to A1
9: return . node is fully connected

Algorithm 2 Power of two Choices with the maximum number of nodes selected
1: procedure p2cmax(addrMan) . addrMan has data
2: while own degree < 8 do
3: choose addresses A1 and A2 u.a.r. from addrMan
4: ask A1 and A2 about their degrees D1 and D2
5: if D1 ≤ D2 then
6: connect to A2
7: else
8: connect to A1
9: return . node is fully connected

3.2 IP Location Clustering

Propagation delays of messages that are being sent between a sender and a re-
ceiver correlate with the geographical location of the individual nodes [11]. Using
the IP location information could therefore potentially help nodes that want to
add a connection to minimize propagation delays. A single node could therefore
spread information on average faster to nodes that are localized closer to itself
and ideally minimize average path delays. Thus, Bitcoin nodes could be grouped
into clusters of geographically nearby nodes. The property of a single cluster
would be that it is able to spread information fast within its cluster because

3. New Connection Strategies 9

of its geographical location but it takes more time to reach other clusters since
they are (geographically) far away; therefore have on average a longer propaga-
tion delay. This would allow a node that wants to send information to all other
nodes to firstly pass it to its own cluster. In its own cluster it would spread very
quickly among all neighbours of the same cluster. Secondly, it would pass this
information to other nodes that are located in different geographical clusters. It
would take some time for this message to pass to the other clusters but as soon
as they have been reached it will spread very quickly within the clusters further
away. Thus, the longest hop (between two clusters) would be made at the begin-
ning and the message could afterwards profit from low latencies expected within
geographical clusters that are further away.

The practical implementation of this idea has been done as follows. We
defined 6 clusters, namely Europe, South-America, North-America, Asia, Africa
and Oceania. 6 clusters have been chosen to give each continent respectively
geographical region a similar weight and accounting for fast connections that
exist inside continents. Additionally, having 6 clusters leaves every node with 5
other clusters which is a reasonable number if the initial connections of a Bitcoin
node is 8. Thus, two different approaches have been analyzed in more detail.
Firstly, there is an approach where one chooses 3 nodes within the same cluster
and 1 node from each other cluster as illustrated in algorithm [3] with 8 initial
connections for each node. Secondly, there is an approach where one chooses 8
nodes within the same cluster and 1 node to each other cluster as illustrated in
algorithm [4] with 13 initial connections for each node.

Algorithm 3 3 local, 5 intercontinental
1: procedure geoConnection(addrMan) . addrMan has data
2: while own degree < 8 do
3: choose address A1 u.a.r. from addrMan
4: look-up cluster C1 from A1
5: if no connection exists to C1 then
6: connect to A1
7: else if number of connections to own cluster < 3 then
8: connect to A1
9: return . node is fully connected

3. New Connection Strategies 10

Algorithm 4 8 local, 5 intercontinental
1: procedure geoConnection(addrMan) . addrMan has data
2: while own degree < 13 do
3: choose address A1 u.a.r. from addrMan
4: look-up cluster C1 from A1
5: if no connection exists to C1 then
6: connect to A1
7: else if number of connections to own cluster < 8 then
8: connect to A1
9: return . node is fully connected

Chapter 4

Results

4.1 Standard Bitcoin Implementation

The results of the standard Bitcoin implementation simulation are shown in Fig-
ures [4.1, 4.2, 4.3]. We observe in Figure [4.1] that the number of average hops
peaks at 4 hops and indicates a Gaussian distribution. Looking at the degree
distribution of Figure [4.2] the number of nodes of a particular degree starts at
the minimum initial degree number of 8 and peaks at 16 edges (double the initial
degree distribution) and decays exponentially afterwards. Since the maximum
number of degree is 41 we conclude that there are no rough nodes that try to
connect to as many nodes as possible. Regarding shortest paths between any
two nodes within the network as in Figure [4.3] most of the time it takes 4 hops
from one node to any other node. Slightly more nodes can be reached with 3
hops than with 5 hops. Additionally, one usually needs 3, 4 or 5 hops to reach
any other node in the network with comparable few pairs that can be reached
quicker or that take longer.

4.2 Influence of Initial Connections

In this subsection we present and analyze the simulation results of varying the
number of the initial connections, illustrated in Figures [4.4, 4.5]. In the stan-
dard Bitcoin protocol these initial connections are set to 8 for all nodes. For
performance reason this simulation was only done with 3000 nodes. It illustrates
clearly that if one increases the number of initial connections the average shortest
path increases quite a bit. However, for 3000 nodes at approximately 48 initial
connections and more there is a flattening of the curve at an average hop at
around 2.5. Simulation shows that the average shortest path between any node
can hardly go below that limit with a “reasonable“ number of initial connections.

11

4. Results 12

Figure 4.1: The average path distance from one node to any other nodes using
the standard Bitcoin implementation.

Figure 4.2: The degree distribution from the standard Bitcoin implementation.

4. Results 13

Figure 4.3: The shortest paths between any two nodes from the standard Bitcoin
implementation.

Figure 4.4: Average of shortest paths between any node using different initial
connections in each round of simulation using 3000 nodes.

4. Results 14

Figure 4.5: Average of shortest paths between any node using different initial
connections in each round of simulation using 3000 nodes. (zoom of [4.4])

4.2.1 13 initial connections

In this subsection we present the simulation results of having replaced the initial 8
connections with 13, illustrated in Figures [4.6, 4.7, 4.8]. Looking at the average
hops in Figure [4.6] the peak, the standard deviation and the variance decrease
compared to the standard Bitcoin implementation in Figure [4.1]. The nodes
inside the network have now much higher degree as illustrated in Figure [4.7] and
thus there are more edges within the network. Additionally, the shortest paths
between any two nodes as illustrated in Figure [4.8] decreases as well compared
to the standard Bitcoin implementation in Figure [4.3] and now peaks at 3 hops.
However, there are still many node pairs that are only reachable by 4 hops.

4.2.2 Corrupt nodes

In this subsection we present the results if 1% of the nodes are “corrupt“ and con-
nect to many more nodes than those initial 8 connections, illustrated in Figures
[4.9, 4.10, 4.11]. The peak of the average hops between one node and all other
nodes in Figure [4.9] decreases compared to the standard Bitcoin implementa-
tion in Figure [4.1]. However, the variance and standard deviation increase. The
behaviour of the corrupt nodes can also be seen very nicely in the degree plot
in Figure [4.10] where some nodes have very high degrees. Some of them con-
nect to over 10% of the whole network. These corrupt nodes seems to decrease

4. Results 15

Figure 4.6: Average hops from one node to all other nodes using the standard
Bitcoin implementation with 13 initial connections.

Figure 4.7: Degree distribution using the standard Bitcoin implementation with
13 initial connections.

4. Results 16

Figure 4.8: Shortest paths between any two nodes using the standard Bitcoin
implementation with 13 initial connections.

the number of shortest paths in Figure [4.11] and the number of shortest paths
peaks at 3 hops but many nodes can be reached by just 2 hops. The 4 hops that
represented the peak in the standard Bitcoin implementation [4.3] don’t play
such a big role anymore if 1% of the nodes act as corrupt nodes.

4.3 Power of Two Choices

The power of two choices minimum implementation results in a slightly higher
peak (4.125 hops) in the average path distance as illustrated in Figure [4.12]
compared to the standard Bitcoin implementation in Figure [4.1]. The power of
two choices also has a smaller standard deviation and variance as the standard
Bitcoin implementation. Looking at the same plot using the power of two choices
maximum algorithm as illustrated in Figure [4.13] a smaller peak (3.75 hops)
can be noticed compared to the power of two choices minimum algorithm and the
standard Bitcoin implementation. However, the standard deviation and variance
is bigger for the power of two choices maximum algorithm than the two other
implementations.

Looking at the degree distribution of the power of two choices minimum
algorithm in Figure [4.14] and the degree distribution of the power of two choices
maximum algorithm in Figure [4.15] there is a clear difference. In the power
of two choices minimum algorithm most of the nodes have similar numbers of

4. Results 17

Figure 4.9: Average hops from one node to all other nodes using the standard
Bitcoin implementation with 1% of the nodes trying to connect to as many other
nodes as possible.

Figure 4.10: Degree distribution using the standard Bitcoin implementation with
1% of the nodes trying to connect to as many other nodes as possible.

4. Results 18

Figure 4.11: Shortest paths between any two nodes using the standard Bitcoin
implementation with 1% of the nodes trying to connect to as many other nodes
as possible.

Figure 4.12: The average path distance from one node to any other nodes using
the power of two choices minimum approach described in algorithm [1].

4. Results 19

Figure 4.13: The average path distance from one node to any other nodes using
the power of two choices maximum approach described in algorithm [2].

degree. The degree numbers are even closer together than in the standard Bitcoin
implementation [4.2]. However, in the power of two choices maximum algorithm
the degrees are more widely spread over a greater distance. There are nodes with
over 60 connections and some have only 8.

The shortest paths between any two nodes using the power of two choices
minimum algorithm as shown in Figure [4.16] leads to a result where most
node pairs have a distance of 4 hops as in the standard Bitcoin implementation,
illustrated in Figure [4.3]. However, there are more pairs that have a distance
of 5 hops than in the standard Bitcoin implementation. Looking at the shortest
paths between any two nodes using the power of two choices maximum algorithm
as illustrated in Figure [4.17] leads to a result where most pairs take 4 hops to
be reached. There are also many node pairs that can be reached in 3 hops. The 5
hops connections are fewer than in the power of two choices minimum algorithm.

4.4 IP Location Clustering

If very strict boundaries are set for the propagation delays between two different
clusters and within a single cluster the impact of local and inter-cluster connec-
tions can be illustrated best. (Using 10ms as a propagation delay within the
same cluster and 300ms as a propagation delay between two different clusters.)
In Figures [4.18, 4.19] most nodes within the same cluster are reachable within

4. Results 20

Figure 4.14: The degree distribution using the power of two choices minimum
approach described in algorithm [1].

Figure 4.15: The degree distribution using the power of two choices maximum
approach described in algorithm [2].

4. Results 21

Figure 4.16: The shortest paths between any two nodes using the power of two
choices minimum approach described in algorithm [1].

Figure 4.17: The shortest paths between any two nodes using the power of two
choices maximum approach described in algorithm [2].

4. Results 22

Figure 4.18: Shortest paths propagation delay for any node pair with constant
propagation delays within the same cluster of 10ms and between two different
clusters of 300ms. Clustering as in [3].

the first 90ms (3 hops inside the own cluster). Most nodes that are located in a
different cluster are reachable after 320ms (first hop to other cluster and 3 to 4
hops within that cluster or first hop within the same cluster, second hop to other
cluster and 3 hops within that other cluster).

Using more realistic values instead of these constant thresholds, a more real-
istic real world scenario can be simulated. For the propagation delays between
different clusters the values in table [4.1] have been used as means in a normal
distribution with a σ = 10ms. The propagation delays within the same clus-
ter have been modeled as a normal distribution of µ = 30ms and σ = 9ms.
These propagation delays are approximated using measurements from wonder-
network [12]. The results of that simulation are illustrated in Figures [4.20, 4.21].
Both of the plots look Gaussian too but there is a “bump“ at 350ms just before
it peaks at 400ms. Additionally, both Figures [4.20, 4.21] tend to have the same
behaviour for using a geographical clustering or not using one at all.

In Figure [4.22, 4.23] the average propagation delay from one node to all
its other nodes is illustrated. The use of more realistic propagation delays leads
to a distribution that could be approximated by a normal distribution. There
is a “bump“ around 400ms until there is another cut-off shortly before 450ms.
However, the use of a geographical clustering versus no geographical mapping
does not have a big impact on the average propagation delay.

4. Results 23

Figure 4.19: Shortest paths propagation delay for any node pair with constant
propagation delays within the same cluster of 10ms and between two different
clusters of 300ms. No Clustering.

cities Cape Town San Francisco Sao Paulo Sydney Tokyo Zurich
Cape Town - 298ms 341ms 420ms 377ms 161ms

San Francisco 298ms - 171ms 155ms 109ms 176ms

Sao Paulo 341ms 172ms - 367ms 269ms 234ms

Sydney 420ms 155ms 367ms - 115ms 306ms

Tokyo 377ms 109ms 269ms 114ms - 282ms

Zurich 161ms 176ms 236ms 306ms 281ms -

Table 4.1: This table represents the propagation delays between two cities (which
were used as reference cities for their continent) and has been measured by won-
dernetwork [12].

4. Results 24

Figure 4.20: Propagation delay between any two nodes with propagation delays
from a normal distribution. Clustering as in [3].

Figure 4.21: Propagation delay between any two nodes with propagation delays
from a normal distribution. No clustering.

4. Results 25

Figure 4.22: Average propagation delay for any node with propagation delays
from a normal distribution. Clustering as in [3].

Figure 4.23: Average propagation delay for any node with propagation delays
from a normal distribution. No clustering.

4. Results 26

Figure 4.24: Shortest path propagation delay for all node pairs with propagation
delays from a normal distribution. Clustering as in [4].

A third analysis of the IP clustering looks at what happens if one takes an
algorithm with 8 connections inside the same cluster and 5 connections to other
clusters. As illustrated in Figures [4.24, 4.25] this leads to a faster gossiping
of information between nodes compared to the Figures [4.20, 4.21]. However,
the difference between the use of the standard Bitcoin implementation and the
implementation with the geographical clustering is minor. In both of them one
sees a distribution with two peaks (at 250ms and at 350ms).

4. Results 27

Figure 4.25: Shortest path propagation delay for all node pairs with propagation
delays from a normal distribution. No clustering.

Chapter 5

Discussion of Result

5.1 Influence of Initial Connections

The standard Bitcoin implementation of the connection strategy seems to be a
reliable way to connect single Bitcoin nodes in an efficient way as the figures
[4.1, 4.2, 4.3] demonstrate. As Miller et al. [5] showed, there are in practice
some influential nodes that don’t follow the standard implementation and try to
connect to many more nodes. Eyal et al. [1] claim that if a node manages to
spread its information more quickly than other nodes and get other information
more quickly as a result too, it could gain advantage from deviating from the
protocol. In the simulation of [4.9, 4.10, 4.11] where this situation is created
artificially, we claim that having a few nodes that are highly connected (very
high degree) leads to a network that has much shorter minimal paths between
two different nodes. This result is expected since as soon as the message arrives
at a highly connected node it can be distributed to many more nodes than usual
which leads to a decrease in shortest paths especially if there are multiple such
highly connected nodes. This indicates that these influential nodes are actually
beneficial to decrease the number of hops a message has to take on average to
reach all nodes.

To decrease the number of hops we also tried a brute-force method. We
increased the number of initial connections as the Figures [4.4, 4.5] illustrate.
The decrease of average hops can be explained with every single node having a
higher degree which makes the network more connected. The flattening of the
curve at 2.5 hops after approximately 48 initial connections could be explained
that there is a limit at 1 anyway (every node connects to every other node) but
for every slight improvement of the average hops there need to be many more
edges implemented after this flattening region.

This brute-force method can be analyzed in more detail with the example of
13 initial connections as demonstrated in Figures [4.6, 4.7, 4.8]. The decrease of
the standard deviation, variance and number of hops for all shortest paths results
in more fairness because all nodes get the same information more synchronized
(lower variance of the hops) as well as more speed because the average number

28

5. Discussion of Result 29

of hops there have to be taken decreases. However, the bottleneck of this im-
plementation is the available bandwidth of each individual node. Some nodes
have due to their infrastructure no problem allocating more bandwidth to their
Bitcoin system. Hence, it could be reasonable to make the current 8 initial nodes
a bit more flexible and allow by default nodes with better connections to have
up to 13 initial connections because of the benefit in fairness and speed it would
give the whole network.

5.2 Power of Two Choices

The power of two choices algorithm assumes that if one asks a neighbour about
the degree of its connectivity that he is not going to lie in order to profit from
the protocol. This assumption can be made since most Bitcoin nodes are simply
running the standard Bitcoin implementation and would therefore not lie.

The power of two choices minimum algorithm leads to a balancing of the
degrees where most nodes have roughly the same degree (can be seen in figure
[4.14]) which matches the theoretical concept that Mitzenmacher et al. [10] have
proven. A nice side effect of this behaviour is that it also lowers the standard
deviation and variance of the average path length of one node to any other node
as seen in figure [4.12]. This leads to an increase in fairness within the network
since on average nodes receive information more synchronized. However, there is
a cost to this strategy as well; on average the shortest path between two nodes
is longer than in the standard Bitcoin implementation.

The power of two choices maximum algorithm on the other hand improves
the average of the shortest paths between any two nodes as seen in figure [4.13]
but the standard deviation and variance is larger than the standard Bitcoin im-
plementation which leads to greater speed but less fairness.

Each one of the two algorithms are only able to improve one metric but get
worse on the other. There seems to be a pay off between having some nodes that
have higher degree and are therefore able to spread information in fewer hops on
average leading to an increase of speed and having more balanced degrees that
lead to a smaller standard deviation and variance of the average hops for each
node and therefore fairness increases.

5.3 IP Location Clustering

The IP Location Clustering algorithm is a different approach that utilizes the
knowledge of the physical topology. As illustrated in the Figures [4.20, 4.21,
4.22, 4.23, 4.24, 4.24, 4.25] one can not see much of a difference between the
use of geographical information compared to not using geographical information

5. Discussion of Result 30

at all.

However, since it has the potential to perform equally well compared to the
standard Bitcoin implementation it might be an alternative way to set up the
network.

Chapter 6

Conclusion

Although a ground-breaking algorithm that dramatically improves the bitcoin
network topology seems a difficult task, in this work we explored multiple strate-
gies and gained valuable insight on how the connection strategy in Bitcoin works
and what happens if certain parameters are being changed. However, we were
able to show that on average highly connected nodes lead to a decrease of hops
for messages to be passed from one node to its destination node. Additionally, we
were able to show that a brute-force approach (increasing the initial connections)
leads on average to a faster message passing between node pairs, as expected.
This brute force approach also leads to a greater fairness because the standard
distribution of the shortest paths decreases.

The power of two choices is a simple and elegant approach. The power of two
choices minimum algorithm improves the fairness but lowers the speed. That is
because all nodes end up having roughly the same degree which leads to shortest
path lengths that show a smaller standard deviation. The power of two choices
maximum algorithm does the opposite. It creates nodes that have a higher degree
and therefore increase the standard deviation from the shortest path lengths but
at the same time decreases those path lengths on average. Therefore, the power
of two choices protocol might be of some use if an algorithm has to be designed
that only needs to improve either-one of these metrics.

The IP Location Clustering idea shows a similar behaviour as the current
standard Bitcoin implementation. It could therefore be used as an alternative to
the current standard Bitcoin protocol.

Concluding, a bigger use of bandwidth (more edges in the network) of indi-
vidual nodes is so far the simplest approach to decrease hops and increase the
networks fairness and speed.

31

Bibliography

[1] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnera-
ble,” Nov. 2013.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” oct 2008.

[3] F. Tschorn and B. Scheuermann, “Bitcoin and beyond: A technical survey
on decentralized digital currencies,” sep 2015.

[4] Bitcoin-Community, “Bitcoin core integration/staging tree,” jan 2018.
[Online]. Available: https://github.com/bitcoin/bitcoin

[5] A. Miller and J. Litton, “Discovering bitcoin’s public topology and influential
nodes,” 2015.

[6] G. Pappalardo and T. D. Matteo, “Blockchain inefficiency in the bitcoin
peers network,” apr 2017.

[7] Bitcoin-Community, “Protocol documentation,” jan 2019. [Online]. Avail-
able: https://en.bitcoin.it/wiki/Protocol_documentation

[8] J. Nick, “Guessing bitcoin’s p2p connections,” mar 2015.
[Online]. Available: https://jonasnick.github.io/blog/2015/03/06/
guessing-bitcoins-p2p-connections/

[9] Networkx-Community, “Networkx docs,” jan 2019. [Online]. Available:
https://networkx.github.io/documentation/latest/

[10] M. Mitzenmacher and A. w. Richa, “The power of two random choices: A
survey of techniques and results,” 2001.

[11] L. Subramanian, “Correlation between delay and distance,” apr
2002. [Online]. Available: https://www.usenix.org/legacy/publications/
library/proceedings/usenix02/full_papers/subramanian/subramanian_
html/node21.html

[12] wondernetwork, “Global ping statistics,” dec 2019. [Online]. Available:
https://wondernetwork.com/pings

32

https://github.com/bitcoin/bitcoin
https://en.bitcoin.it/wiki/Protocol_documentation
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
https://networkx.github.io/documentation/latest/
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/subramanian/subramanian_html/node21.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/subramanian/subramanian_html/node21.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix02/full_papers/subramanian/subramanian_html/node21.html
https://wondernetwork.com/pings

	Abstract
	1 Introduction
	2 Background
	2.1 Topology of Bitcoin
	2.1.1 Joining the Bitcoin Network
	2.1.2 Connecting to Peers

	2.2 Technical Design of the Simulation

	3 New Connection Strategies
	3.1 Power of Two Choices
	3.2 IP Location Clustering

	4 Results
	4.1 Standard Bitcoin Implementation
	4.2 Influence of Initial Connections
	4.2.1 13 initial connections
	4.2.2 Corrupt nodes

	4.3 Power of Two Choices
	4.4 IP Location Clustering

	5 Discussion of Result
	5.1 Influence of Initial Connections
	5.2 Power of Two Choices
	5.3 IP Location Clustering

	6 Conclusion
	Bibliography

