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Abstract

In recent years various algorithms for shortest path queries where proposed. Out
of all the proposed methods Hub Labelling (variant of 2-hop labelling) stood out
for its superb query performance. Hub Labelling algorithms compute label for
each vertex that holds all hubs through which any destination in the graph can
be reached from that vertex. We implement a state of the art Hub Labelling
framework proposed by Delling et at. [1]. We modify this algorithm to allow for
recursive shortest path recovery that is entirely label based. We use this algorithm
to study where hubs are placed on the road networks and how this placement
correlates with real world road usage data, namely taxi trips. We discover that
the most important hubs selected by the algorithm do not correspond well to
the real world data. However, time graph hubs come closer to it than distance
graph hubs. We also look into how well the labelling could be used to recover an
alternative path. Our proposed naive method looks promising for short distance
alternative paths but needs some further improvement.
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Chapter 1

Introduction

Answering shortest path queries is important on wide range of tasks. Proba-
bly one of the most common ones is shortest path finding on a road network.
An obvious baseline for query performance is Dijkstra’s algorithm. Although it
is efficient in general case, when answering long distance queries on continent
sized road networks it can take seconds. To reach better performance variety
of algorithms were proposed. The one’s focusing on road networks specifically
(i.e. Contraction Hierarchies [2], Transit Node Routing [3, 4], Pruned Highway
Labelling [5], Hub Labelling [6]) tend to utilise the fact that shortest paths over
long distances use the same few connections - highways. As highlighted by Bast,
Delling, Goldberg, Müller-Hannemann, Pajor, Sanders, Wagner and Werneck in
their Route planning in transportation networks survey [7] Hub Labelling algo-
rithms offer the best query performance. We will now briefly discuss the history
of Hub Labelling algorithms. It is known that Hub Labelling and its Hierarchi-
cal Hub Labelling variant that we will be discussing here are NP-Complete as
shown correspondingly by Mathias Weller [8] and Babenko, Goldberg, Kaplan,
Savchenko, and Weller [9]. While there was previous work on Hub Labelling algo-
rithms, for example O(log(n)) optimal hub labelling by Cohen, Halperin, Kaplan
and Zwick [10] they were computationally infeasible on larger graphs (i.e. algo-
rithm by Cohen et al. requires precomputing all pairs shortest paths). Here we
will be focusing on more performant approaches to Hub Labelling.

1.1 Contraction Hierarchies

Contraction Hierarchies [2] as proposed by Geisberger, Sanders, Schultes, and
Delling is a popular shortest path algorithm that uses pre-processing to make
shortest path queries orders of magnitude faster than Dijkstra on road net-
works. This algorithm depends on introducing shortcuts to the graph during
pre-processing. Shortcut is a new edge edge(u,v) that has the length equal to the
distance dist(u,v) between v and u in the original graph. Intuition is that these
shortcuts are also intended to utilise the fact that long distance paths use simi-
lar segments (highways) and these can be replaced by shortcuts. In Contraction
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1. Introduction 2

Hierarchies nodes are processed in a specific (total) order and when a node is
processed it is removed from the graph and shortcuts are introduced in the graph
between its neighbours for which the shortest path between them used the now
removed vertex. Vertices are ordered by their importance in the graph. Least
important vertices are contracted first. Importance is estimated using linear com-
bination of difference in number of edges if this vertex was replaced by shortcuts
(shortcuted) and number of already contracted neighbours. This estimate can
be improved using some global importance measures i.e. betweenness centrality.
After contracting all the n − 1 vertices we have our set of shortcuts E+. We
then make two pre-processed graph instances: upward graph G↑ = (V,E ∪ E↑)
that includes edges and shortcuts from lower importance vertices to higher im-
portance vertices E↑ = {(u, v) ∈ E ∪ E+ : importance(u) < importance(v)}
and a downward graph G↑ = (V,E ∪E↓) that includes shortcuts and edges from
higher importance vertices to lower importance vertices E↓ = {(u, v) ∈ E ∪E+ :
importance(u) > importance(v)}.

To answer a s-t query a modified bidirectional Dijkstra shortest path search
is performed. Forward search is performed in G↑ and a backward search is per-
formed in G↓. Geisberger et al. [2] showed that iff there exists a shortest path
between s and t in the original graph, then both searches will eventually reach
node u that has the highest importance of all the nodes in the shortest s-t path.
Then the path (distance) can be recovered by concatenating (summing) forward
and backward search results. As discussed in the survey by Bast et al. [7] Con-
traction Hierarchies (CH) has very good query time while only requiring short
pre-processing. Note that CH always returns the correct shortest path, but by
finding better ordering one can reduce the pre-processing and query time as well
as number of shortcuts introduced dramatically.

1.2 Hub Labelling

Abraham, Fiat, Goldberg and Werneck [11] proposed a concept of highway di-
mensions to theoretically explain the good performance achieved by Contraction
Hierarchies and other algorithms (Transit Node Routing [3, 4] and Reach [12]).

Definition 1.1 (Highway dimension). Given a weighted graph G = (V,E), its
highway dimension is the smallest integer h such that

∀r ∈ <+,∀u ∈ V,∃S ⊆ Bu,4r, |S| ≤ h such that
∀v, w ∈ Bu,4r, P (v, w) ∩ S 6= ∅ if |P (v, w)| > r and P (v, w) ⊆ Bu,4r

Definition 1.1 states that for every r and every ball Bu,4r of radius 4r a small
set of vertices (at most size h) covers all shortest paths of length greater than
r that are inside the ball. This directly implies that there should be a shortest
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path cover that for each vertex would cover all the paths originating at it and
the intersection of such cover and the ball around the vertex would be small if
h is small. See [11] for a more detailed proof. Abraham et al. [11] conjecture
that for road networks h is small. Abraham et al. [11] showed that Contraction
Hierarchies run in O((hlog(h)log(D))2). Also the theory they developed implied
that there should exist a hub labelling of size O(hlog(h)log(D)). Where h is the
highway dimension of the graph and D is the diameter. We will see in the next
chapter that distance query runs in linear time in the label size. This makes Hub
Labelling faster than Contraction Hierarchies with theoretical guarantees.

In a follow up work Abraham, Delling, Goldberg and Werneck [6] developed
an implementation of Hub Labelling that as predicted by the theoretical work
of Abraham et al. [11] outperformed previous methods. Pre-processing stage
computes two labels for each vertex v. A forward label Lf that holds hubs on all
outgoing shortest paths and a reverse label Lr that holds hubs on all incoming
shortest paths. These labels should have a cover property : for any two vertices
s, t Lf (s)∩Lr(t) contains a vertex u on a s−t shortest path. Also distance to the
hub recorded in the label (distLf (s)(u) and distLr(t)(u)) matches shortest path
distance from s to u and from u to t. Recovering shortest path distance is then
straight forward. We just need to find the hub shared between the vertices that
minimizes the total distance. Cover property guarantees that that there exists a
hub on the shortest path between any two vertices.

Abraham et al. [6] propose an implementation that efficiently constructs such
a labelling by making use of Contraction Hierarchies pre-processing. They use
a relaxation of labels that they call superlabels. Distance recorded in superla-
bels does not need to be equal to the real distance. It is only enforced that
distLv)(w) ≥ dist(v, w). The cover property for superlabels defines that for the
shortest path between s and t distances distLf (s)(u) and distLr(t)(u) to the shared
hub u on the shortest path must match the exact distances. Because of this query
results stay valid. The labelling for v is then defined as all the vertices visited
by Contraction Hierarchies search originating at v for Lf (v) and all the vertices
visited by Contraction Hierarchies search terminating at v for Lr(v). As shown
by Geisberger et al. [2] the Contraction Hierarchies search guarantees that the
vertex on the shortest path to (from) any destination will be visited. Abraham
et al. [6] found that labels created in such a manner on the road network of
Western Europe have on average 500 hubs in them. To reduce the label size
further they prune the superlabels by deleting vertices w from a label Lf (v) with
distLf (v)(w) > dist(v, w). The same can be done for the reverse labels. As
pruning does not delete hubs from the label that have exact distance, the cover
property remains satisfied, and labelling is still valid.
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1.3 Hierarchical Hub Labelling

Abraham, Delling, Goldberg, and Werneck [13] introduced the notion of Hier-
archical Hub Labelling and improved the previous algorithm by considering a
different way to order vertices.

We say that the labelling is hierarchical if v ≺ w when w ∈ Lf (v) ∪ Lr(v)
is a partial order. It is shown by Abraham et al. [13] that a hierarchical label
can always be transformed to a canonical label. In canonical labelling for every
shortest s-t path only the highest ranked vertex v along the shortest s-t path
is included in the forward label of s and the backward label of t. This implies
that r(v) ≥ r(s) and r(v) ≥ r(t) and that ordering implied by canonical labelling
is consistent with some total order r. Hierarchical labelling can be refined to a
canonical labelling by pruning each label as follows: for every vertex w ∈ Lf (v)
we keep it only if it is the maximum ranked vertex along the v-w shortest path.
To check this we can run a HL query from v to w. If there is a maximum ranked
vertex u 6= w it should be present in both Lf (v) and Lr(w) per label construction.
Label construction is discussed below.

The authors propose a new Top-Down vertex ordering algorithm. For sim-
ple shortest path covering version each vertex v maintains the set of uncovered
shortest paths that contain v. In each iteration a vertex in most uncovered paths
is picked, and the sets of uncovered paths are updated. This is repeated until
all paths are covered. Authors found that a weighted covering version incurs
only small computational overhead and improves label quality. In the weighted
covering version all vertex priorities (number of shortest paths that would get
covered) are weighted by the size of sets consisting of the first and last vertices
on the paths that would be covered by picking v. This can be considered label
greedy as we maximise the ratio between number of shortest paths covered and
number of labels that are updated. While the unweighted version would be path
greedy (aims to cover the most uncovered paths).

To efficiently track how many shortest paths would be covered if v was picked
authors suggest to store a shortest path tree for each vertex. This tree represents
all uncovered shortest paths starting at that vertex. When vertex v is picked, in
all the trees sub-tree rooted at v is removed (parent pointers are replaced with
NULL). While removing each sub-tree we also update the counter of uncovered
shortest paths for each of the children in the sub-tree. As we will see later,
this is similar to the procedure used in the algorithm we implemented [1]. For
computational reasons authors propose to start with the Contraction Hierarchies
ordering and then re-order top x vertices or to apply range optimisation multiple
times. Range optimisation only reorders vertices v that are in a certain range
a < r(v) < b in the order r at the time. First vertices up to a in the order are
shortcuted, then Dijkstra’s algorithm is run to compute all shortest paths that
are not covered by vertices in order higher than b. The whole order r is split in
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Figure 1.1: Hierarchical labelling algorithm framework [1].

multiple overlapping ranges. Algorithm is performed on each range in sequence.
Multiple applications of this allow to further refine the ordering.

To generate labels authors introduce a recursive procedure. In each iteration
of this procedure the lowest ranked unprocessed vertex v in the order is short-
cuted. This continues till only one vertex s is left in the graph. It receives a
trivial label of Lf (s) = Lr(s) = (s, 0). Then going back through the order each
of the vertices receive a label that is a concatenation of the labels of the vertices
it was neighbouring when it was processed (shortcuted). Distance to the corre-
sponding neighbour is added to the hub distances coming from that neighbour
as well as a new hub representing that neighbour is created. If a hub is present
in the labels of multiple neighbours lowest total distance to that hub is recorded
in the current vertex’s label. This whole process bears some similarity to the
Pruned Labelling algorithm [14] we will discuss in the next chapter.

This algorithm proved to produce around 8% smaller labels than the previous
algorithm and ran considerably faster.

1.4 General framework

As can be seen from Hierarchical Hub Labelling, and as highlighted by Delling,
Goldberg, Pajor and Werneck [1] hierarchical labelling algorithms follow a certain
framework which can be seen in Figure 1.1. First an ordering is computed for all
the vertices. Then it is used to compute a labelling for exact distance queries.
Optionally the labelling can then be further compressed. In this work we do not
investigate the various compression techniques, but an interested reader can refer
to [15, 1] for compression techniques that offer order of magnitude lower memory
requirements in exchange for slower queries. Also, as proposed by Abraham et
al. [11] there are various memory compression techniques that do not impact
performance. Such as re-labelling vertices so that vertices that appear in the
most labels receive the smallest IDs and then using fewer bits to represent their
integer IDs (i.e. 8-bit INT for the first 256 IDs).

In the next chapter we will discuss the algorithm proposed by Delling et at.
[1] that we implemented for our experiments in more detail.



Chapter 2

Algorithm

Here we discuss the algorithm we chose to implement for our experiments. It
was proposed by Delling et at. [1] and follows the mentioned framework. To
produce labelling from a given order Pruned Labelling (PL) algorithm proposed
by Akiba, Iwata and Yoshida [14] is used as a sub-routine. Vertex ordering is
computed online, but is ideologically similar to the non-weighted (path greedy)
ordering scheme of Hierarchical Hub Labelling. This algorithm currently does
not have an open source implementation. It was chosen because it offers superb
performance for a single core implementation and appears easier to modify than
previously mentioned algorithms. It is a cleaner and more distilled version of
what we have seen previously.

2.1 Pruned Labelling

Pruned Labelling (PL) was proposed by Akiba et al. [14]. It was originally
proposed for unweighted graphs, but it easily extends to weighted ones.

As originally proposed PL runs pruned BFS from vertices in the order
v1, v2, ..., vn. Algorithm starts with empty labels Lf and Lr. At each step i BFS
search is run from a vertex vi. When BFSi visits a node u we use current partial
labels Lf (vi) and Lr(u) to compute the best currently known shortest path in
the labels. If the distance of the shortest path from the labels is lower or equal to
current dist(vi, u) we prune the BFS and do not check any outgoing edges of u.
If the current distance is smaller than the one recovered from the labels the root
of the BFS tree (current hub vi) is added to the reverse label Lr(u) of the visited
node with appropriate distance and the BFS proceeds as usual. The reverse BFS
is also run from vi to update the forward labels of the nodes Lf (u) that operates
in the same way. The progression of the algorithm on a bidirectional graph can
be seen in Figure 2.1 as provided by Akiba et al. [14]. In our implementation
we use Dijkstra’s algorithm instead of the BFS, but prunning works in the same
way. Akiba et al. [14] show that PL is correct and produces minimal labelling.
Meaning if any hub would be removed from any label we would lose the cover
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2. Algorithm 7

Figure 2.1: Examples of pruned BFSs. Yellow vertices denote current roots, blue
vertices were visited and labelled, red vertices were visited but pruned, and grey
vertices were already used as roots [14].

property. Delling et al. [1] show that PL produces hierarchical and canonical
labelling. Which should be fairly obvious from the pruning algorithm.

To improve performance Akiba et al. [14] suggest to not re-initialise each
BFS tree as that takes O(n) and BFS trees get much smaller as the algorithm
progresses. In our implementation distance arrays used while performing Dijk-
stra’s algorithm are also not re-created. Instead we track which vertices where
visited and re-set the corresponding cells of the array after Dijkstra’s algorithm
terminates. In our experience this offers a substantial performance boost on large
graphs.

2.2 Vertex ordering

Delling et al. [1] propose a new sampling based ordering scheme called SamPG.
It is based on the unweighted top-down ordering we saw in Hierarchical Hub
Labelling [13]. It works as follows: initially we sample k << n vertices uniformly
at random and build shortest path trees from them. These trees are then used
to estimate how many shortest paths a particular vertex would cover. Of course
after selecting first few vertices we would get very unreliable estimates, as few
uncovered shortest paths would remain in the sampled trees. This is solved by
continuously sampling more shortest path trees from random roots after each
Pruned Labelling iteration. The sampled trees are pruned in the same way as
during Pruned Labelling iterations. Meaning shortest paths already covered by
current hubs are pruned. Time spent on the tree sampling and the labelling
is balanced by tracking how many vertices were visited in total during labelling
operations cl and how many vertices were visited during tree sampling ct (original
k trees are free). Trees are only sampled until ct > cl or number of vertices in
the existing trees exceeds 10kn.

While total number of descendants in sampled trees is a straight forward esti-
mate of vertex importance it is not very robust. The importance of vertices that
are near the root of a randomly sampled tree is overestimated in such case. To
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remedy this, the authors [1] proposed to maintain c buckets of trees and counters
σ1(v), σ2(v), ..., σc(v). Where a counter σi(v) is a count of descendants of v over
all trees ti such that i = (j mod c). Then robustness of estimation can be in-
creased by discarding the maximal counter for v and summing all others to obtain
importance estimate for v. Ties are broken by considering total sums without
discarding the maximum counter. Authors found that c = 16 and discarding two
biggest counters before summing them up works best. In our implementation we
used the same procedure and values.

The trees are initially stored in memory as n sized arrays. Delling et al. [1]
propose to switch to a hash table representation when a tree contains less than
n/8 vertices.

At each iteration of the algorithm after picking a vertex v that is going to
become a new hub we have to update all the trees and counters removing all of the
children of v. In the beginning to determine v we scan over all vertices computing
their importance and choose the most important one. Then we iterate over all
trees ti and and remove v and its descendants from ti and update all counters
accordingly. However, as soon as we pick v that covers less than n/8 shortest
paths we begin using a reverse index that for each vertex stores a pointer to the
trees that contain it. We also build a max-heap of vertices using their importance,
which allows us to more efficiently retrieve next hub v in subsequent interactions.
Next, we switch tree representation from n sized array to a hash table for all of
the trees. Original authors [1] suggest to switch the representation of each tree
dynamically.

2.3 Distance and path queries

2.3.1 Distance query

To efficiently return the distance dist(v, u) between two vertices v and u we have
to make sure that the labels are sorted by vertex ID. Then we can scan both labels
Lf (v) and Lr(u) only once to find a matching hub with minimum distance. So
query time will be linear in the label size O(|Lf (vi)| + |Lr(u)|) as discussed by
Abraham et al. [6].

2.3.2 Path query

We elected to perform a recursive distance query to retrieve the full path. Mean-
ing when we query distance and find the shared hub j in the labels Lf (v) and
Lr(u) that provides minimum total distance we then perform a distance query
from v to j and from j to u. Then we concatenate all the hubs that were found
during the recursive procedure into a path. However, because of Pruned Labelling
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construction it might happen so that u is directly present in the label Lf (v) even
if they are not neighbours given that u is a very important node and vice versa.
In this case the recursive algorithm will not find a next hop to recurse on. To
solve this we elected to extend the Pruned Labelling scheme so that it includes
the current hub into a label of a vertex if the current distance is equal to the
best recorded distance in the label. In such a case the neighbours of this vertex
are not explored. This ensures that we will always have the next hop recorded in
the labels. In our experiments this increased the label size by around 10%. But
this way we ensure that path queries are linear in the path length times the label
size up to a constant factor. With the modified labels we can recurse till we find
no shared hub u. Then this means that the vertices are neighbours. This label
usage to check if they are neighbours allows us to return paths using just labels
without the original graph.

Of course there are other alternatives to recover the full path without mod-
ifying the labels. For example one could use a guided Dijkstra’s algorithm that
at each step would proceed to the neighbour that has the lowest distance to the
target. However, this approach would be slower as it would require us to compute
distances to the target for the neighbours of the whole path.

2.3.3 Optimised distance query for Pruned Labelling and pruned
tree sampling

Akiba et al. [14] also proposed a faster way to compute distances during Pruned
Labelling iterations that we also use for pruning sampled trees. Normal distance
query algorithm is linear in sum of label lengths O(|Lf (vi)| + |Lr(u)|). We can
instead pre-compute an array T of length n where T [j] = distLf (vi)(j) for all
j ∈ Lf (vi) and T [j] = inf otherwise. Then distance query between vi and u can
be answered if for all l in Lf (u) we compute T [l] + distLr(u)(l) and return the
minimum. This algorithm runs in O(|Lr(u)|) for repeated queries from vi.



Chapter 3

Data

3.1 Graphs

We perform our tests on graphs1 made for 9th DIMACS Implementation Challenge[16].
Namely the US TIGER2 graphs that are undirected and sometimes have gaps in
their road network and directed Western Europe road graph that was provided
by PTV Planung Transport Verkehr AG3 to the challenge participants. This
Western Europe graph does not include Ireland and Czech Republic. Details
about the graphs we used can be found in Table 3.1. All graphs come with node
coordinates and have a distance and a time based versions abbreviated as “-t”
and “-d” respectively.

Abbreviation Description Type Vertices Edges

NY New York City Undirected 264,346 733,846
BAY San Francisco Bay Area Undirected 321,270 800,172
COL Colorado Undirected 435,666 1,057,066
FLA Florida Undirected 1,070,376 2,712,798
NW Northwest USA Undirected 1,207,945 2,840,208
NE Northeast USA Undirected 1,524,453 3,897,636
CAL California and Nevada Undirected 1,890,815 4,657,742
LKS Great Lakes region Undirected 2,758,119 6,885,658
E Eastern USA Undirected 3,598,623 8,778,114
W Western USA Undirected 6,262,104 15,248,146

CTR Central USA Undirected 14,081,816 34,292,496
EU Western Europe Directed 18,010,173 42,560,279

Table 3.1: Graphs used in our experiments

In addition to these graphs we have extracted a graph for Porto, Portugal
out of the Western Europe graph that has 19,999 vertices and 46,959 edges.

1http://users.diag.uniroma1.it/challenge9/download.shtml
2https://www.census.gov/programs-surveys/geography.html
3https://i11www.iti.kit.edu/resources/roadgraphs.php

10
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Figure 3.1: Porto graph extracted from PTV Western Europe graph.

This graph is used to compare taxi traces we have to the hubs produced by
Hub Labelling. Taxi traces are discussed in the third subsection of this chapter.
We kept all nodes between the coordinates of (41.5 -8.250) and (41.0 -8.750) as
this is where majority of the taxi traces we had were located. We also include
neighbours of these nodes. The extracted graph can be seen in Figure 3.1.

3.2 Taxi trips

In all the Hub Labelling algorithms it is assumed that all shortest paths are
made equal. In reality it is possible some shortest paths are used much more
than others (their destinations are more popular). To check this assumption we
use records of taxi trips that have start and end point coordinates for each trip.
We then compute shortest paths on the graph for those trips. More details will
be provided in the next chapter.

We use regulatory logs submitted to and published by NYC Taxi and Limou-
sine Commission 4. All Yellow and Green cabs in New York City have to submit
their trip logs. Up to 2016 these logs contained trip start and end coordinates.
For our research we downloaded logs for January 2015 (14 million trips). We

4https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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then filtered out trips that took place on the third week of January (2015-01-19
to 2015-01-25) that was quite uneventful. This resulted in 4,6 million trips. Out
of those we randomly extracted 100,000 trips and mapped each start and end
point to the closest vertex on our graph using haversine distance.

3.3 Taxi traces

We use taxi trace dataset5 provided by Moreira et al. [17]. This dataset includes
taxi traces during all occupied taxi trips taken from 2013-07-01 to 2014-06-30
in any of the 442 taxis operating in Porto, Portugal. All trips that had missing
points in their GPS traces were marked by the creators of the dataset. We
discarded such trips, as well as any trips that only had one GPS point associated
with them. This results in 1.7 million clean trips. Out of those we randomly
sample 340 thousand (20 %) and map them to the graph we extracted for Porto
from the PTV Western Europe graph as described in the previous section.

3.3.1 Fast map matching

To map the taxi traces to the graph we use the algorithm by Yang and Gidofalvi
[18]. It has an open source implementation6. It is claimed by the authors that
the algorithm can match up to 45,000 points/s. The algorithm is based on the
Hidden Markov Model approach that is now a classic approach to map matching
since Newson and Krumm [19] proposed it. The HMM algorithm treats GPS
point emission probabilities as Gaussian distributed around the true location
of the car and uses the variance as a free parameter. Transition probabilities
are estimated as a ratio between shortest path to the candidate point on the
candidate edge and euclidean distance to that point (from the current locations).
Candidate points are selected by mapping the GPS point to the nearest point
on the candidate edge. Understandably only the candidates that are not too
far away from the GPS points receive a non zero probability. After the HMM
is modelled the Viterbi algorithm is used to compute the most likely trajectory.
The most expensive part of this tends to be the computation of the shortest
paths between the current point and the candidate point [18]. The Fast Map
Matching (FMM) algorithm [18] tries to alleviate this problem by precomputing
all of the shortest paths on the graph that have a distance of at most ∆. We set
∆ = 5km. This makes repeated path mapping on the same graph much faster.
If the shortest path to a candidate point is not found in the precomputed hash
table (is longer than ∆) Dijkstra’s algorithm takes over. For other parameters
we set GPS error (σ for emission probability) to 50 m, candidates to consider to

5https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+
Challenge,+ECML+PKDD+2015

6https://github.com/cyang-kth/fmm

https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge,+ECML+PKDD+2015
https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge,+ECML+PKDD+2015
https://github.com/cyang-kth/fmm
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Figure 3.2: GPS trace and its matched path. Yellow dots mark the raw GPS
trace, red dots mark vertices along the matched path.

8, candidate search radius to 300 m and no direction change penalty. You can
see GPS trace and its matched path in Figure 3.2.



Chapter 4

Results

4.1 Importance of a good ordering

First we make sure good vertex ordering is as important for label size and runtime
as assumed. For this we first ran original Pruned Labelling algorithm as proposed
by Akiba et al. [14]. It orders vertices by their degree. It is know that this
ordering does not perform well on some graphs. In particular road networks
[14, 1]. As can be seen in Table 4.1, SamPG order indeed performs much better
on the road graphs. Here for SamPG we initially sampled 1000 shortest path
trees.

Graph Vertex order Preprocessing time Average label size

NY-d Degree 497 s 704
NY-d SamPG 82 s 71
NY-t Degree 278 s 556
NY-t SamPG 58 s 46

Table 4.1: Performance based on ordering

As mentioned in the previous section for SamPG ordering we choose how
many trees are initially sampled. Delling et al. [1] do not specify how this
parameter was chosen in their study. We perform a small study to determine
what influence this parameter has to the label size (and the preprocessing time).
As can be seen in Table 4.2, this parameter does have an impact on label size,
but not a large one in most cases. Unless we sample way too few trees. This
is most visible when we only sample 10 and 50 trees for the time graph. Here
we can also see that the algorithm’s preprocessing time increases superlinearly
with the label size, when the ordering is bad. As well as the fact that distance
graphs appear to be more resilient to sampling too few trees initially. In this
table we didn’t include the time to sample the initial trees in the preprocessing
time. Sampling 1000 trees takes 38 s in the time graph and 48 s in the distance
graph.

14
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Graph Initially sampled trees Preprocessing time Average label size

NY-d 10 143 s 120
NY-d 50 73 s 78
NY-d 100 54 s 76
NY-d 500 66 s 66
NY-d 1,000 58 s 71
NY-d 3,000 148 s 70
NY-d 5,000 216 s 70
NY-d 10,000 376 s 69
NY-d 20,000 670 s 68
NY-t 10 1318 s 458
NY-t 50 234 s 139
NY-t 100 60 s 70
NY-t 500 47 s 47
NY-t 1,000 58 s 46
NY-t 3,000 139 s 45
NY-t 5,000 207 s 45
NY-t 10,000 363 s 44
NY-t 20,000 662 s 44

Table 4.2: Influence of initially sampled trees.

4.2 Scaling to larger graphs

We investigate how the algorithm’s runtime and label size scale with the graph
size. We always sample 1000 shortest path trees initially. Results can be seen
in Table 4.3. We can see that the label size tends to increase with the graph
size. However we see that by increasing the graph size 10 times, label size only
increases by 10 to 30 %. This is what we expect to see as far away destinations
should be accessible trough only a few hubs and most of the hubs in the label
come from nearby destinations. Runtime seems to depend on both, the graph
size and the label size. We also observe that distance query times are as expected
more or less linearly dependent on the label size. We sampled 10,000 random trips
(source and target vertices) to estimate the query time. Of course this makes the
estimate somewhat noisy.

Compared to Delling et al. [1] on EU-t graph our algorithm takes 1 hour
longer (3h 21 min compared to 2h 19 min) to complete preprocessing and produces
labels that are 18 % larger (97 compared to 82). This label size increase is
partially due to our modified Pruned Labelling algorithm that allows straight
forward recursive path query. The difference can also partially come from Delling
et al. potentially using more initially sampled shortest path trees. As we have
seen in the previous section sampling more trees initially reduces the label size.
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Graph Vertices Edges Preprocessing Label
size

Distance
query

NY-d 264,346 733,846 1 min 22 s 71 0.9 µs
BAY-d 321,270 800,172 1 min 23 s 53 0.8 µs
COL-d 435,666 1,057,066 2 min 3 s 62 0.9 µs
FLA-d 1,070,376 2,712,798 5 min 57 s 68 1.1µs
NW-d 1,207,945 2,840,208 6 min 50 s 70 1.2 µs
NE-d 1,524,453 3,897,636 12 min 4 s 100 1.4 µs
CAL-d 1,890,815 4,657,742 13 min 1 s 81 1.2 µs
LKS-d 2,758,119 6,885,658 25 min 49 s 106 1.5 µs
E-d 3,598,623 8,778,114 35 min 29 s 112 1.6 µs
W-d 6,262,104 15,248,146 57 min 46 s 103 1.6 µs

CTR-d 14,081,816 34,292,496 4 h 7 min 159 2.2 µs
EU-d 18,010,173 42,560,279 7 h 44 min 376 3.4 µs
NY-t 264,346 733,846 58 s 46 0.8 µs
BAY-t 321,270 800,172 1 min 13 s 39 0.7 µs
COL-t 435,666 1,057,066 1 min 34 s 39 0.8 µs
FLA-t 1,070,376 2,712,798 4 min 49 s 48 0.9 µs
NW-t 1,207,945 2,840,208 5 min 26 s 45 0.9 µs
NE-t 1,524,453 3,897,636 8 min 10 s 55 1.0 µs
CAL-t 1,890,815 4,657,742 9 min 53 s 51 1.0 µs
LKS-t 2,758,119 6,885,658 10 min 1 s 55 1.0 µs
E-t 3,598,623 8,778,114 23 min 7 s 59 1.1 µs
W-t 6,262,104 15,248,146 40 min 10 s 60 1.2 µs

CTR-t 14,081,816 34,292,496 2h 27 min 75 1.5 µs
EU-t 18,010,173 42,560,279 3 h 21 min 97 1.6 µs

Table 4.3: Scaling of the algorithm. Using 1000 initially sampled trees.

4.3 The impact of graph metric

As can be seen from Table 4.2 and Table 4.3 time graphs always yield smaller la-
bels and require shorter pre-processing time (if sufficiently many trees are initially
sampled). Intuitively it makes sense as highways should be even more important
in the time graph. Thus time graph should have a lower highway dimension.
Here we provide a visual inspection of hubs on the time and distance graphs of
New York (Figure 4.1) and Western Europe (Figure 4.2 and 4.3). In both cases
we see that time graph hubs are placed in more intuitive locations.
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Figure 4.1: 100 most important hubs computed on the New York graph. Blue
dots mark the time graph hubs, red dots the distance graph hubs and green dots
hubs that coincide between the two graphs.



4. Results 18

Figure 4.2: 100 most important hubs computed on the Western Europe graph.
Blue dots mark the time graph hubs, red dots the distance graph hubs and green
dots hubs that coincide between the two graphs (only Gotthard Pass).
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Figure 4.3: 10 most important hubs computed on the Western Europe graph.
Blue dots mark the time graph hubs, red dots the distance graph hubs and green
dots hubs that coincide between the two graphs (only Gotthard Pass).
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Figure 4.4: Raw taxi trip heatmaps on the New York distance graph.

4.4 Unequal importance of shortest paths

As we have mentioned in the hub labelling algorithm, all shortest paths are as-
sumed to be equally important. In reality it might happen that some destinations
(vertices) are much more popular than others. Intuitively it makes sense, a dirt
road in the outskirts of a city will see much less traffic than a road in the city
centre. To check which hubs would be more important if we weight them by
popularity we use New York taxi trip records that provide start and end location
of every trip taking place in New York between 2015-01-19 and 2015-01-25. We
randomly sampled 100,000 of these trips and used Hub Labelling to compute
shortest paths. The raw heatmaps produced by the sampled trips can be seen in
Figure 4.4 and Figure 4.5. As can be expected taxi trips heavily prefer the city
centre and the airport. Which might not be entirely representative of the true
traffic. We should also keep this in mind in the next section. Using this more
realistic path weighting we estimate hub importance by greedily picking the hub
that covers most yet uncovered taxi trips. This is similar to the path greedy
SamPG procedure we use. Comparison with time and distance graph hubs can
be seen in Figure 4.6. We can notice that for the top 200 time graph hubs two
overlap with the taxi trip hubs. While for the distance graph none do. We also
see that the top 10 most important taxi trip hubs between the distance graph
and the time graph are similar. With time graph taxi trip hubs showing more
preference to the highway nodes.
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Figure 4.5: Raw taxi trip heatmaps on the New York time graph.

(a) Distance graph (b) Time graph

Figure 4.6: Ten most important hubs in New York time (a) and distance (b)
graphs for taxi trips. Blue dots represent top 200 hubs as computed by HL, red
dots are 10 most important hubs computed from taxi trips and green dots are
overlapping hubs.
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Figure 4.7: Mapped taxi trip trace heatmaps for taxi trips in Porto from 2013-
07-01 to 2014-06-30.

4.5 Hub importance compared to real world traffic

We use taxi trip GPS traces from all the taxi cabs active in city of Porto to
evaluate which hubs would be most important according to them. As we saw
before, taxi trips are unbalanced in the sense that they prefer transportation
hubs (i.e. airports and train stations) and city centre to residential areas. But
taxi drivers are experienced and can be expected to chose an optimal route.
Heatmap of the mapped taxi traces can be seen in Figure 4.7. We computed the
most important hubs according to taxi traces in the same way as in the previous
section. By greedily picking hubs that cover the most of so far uncovered taxi
traces. Comparison with distance and time graph hubs can be seen in Figure 4.8
and Figure 4.9 respectively. In both graphs none of the top 200 HL hubs overlap
with top 10 hubs we get from taxi traces. Although time graph hubs seem to be
a bit closer to the taxi trace hubs.
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Figure 4.8: Most important hubs in Porto distance graph compared to most
important taxi trip trace hubs. Red dots mark 10 most important hubs based on
taxi traces and blue dots mark 100 most important distance graph hubs selected
by HL.
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Figure 4.9: Most important hubs in Porto time graph compared to most impor-
tant taxi trip trace hubs. Red dots mark 10 most important hubs based on taxi
traces and blue dots mark 100 most important time graph hubs selected by HL.
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4.6 Performance of recursive shortest path queries

Our modified labels always include a hop between any two vertices, unless they
are neighbours. We expect our recursive path query algorithm to perform a
number of HL queries linear in the path length. Up to a factor of 2 as when the
nodes are next to each other one extra HL query is performed to make sure there
is no intermediary node and they are in fact neighbours. In Table 4.4 we perform
a small study on different length randomly sampled shortest paths. We sample
paths randomly until we find 1000 paths of each length. We see that in fact time
taken per hop in the path is at most twice the distance query time. The path
query times are orders of magnitude faster than Dijkstra. Dijkstra can take more
than a second to answer a long path query on the graph of Western Europe.

Graph Distance
query time Path length Path

query time Time per hop

NY-d 0.9 µs ≤ 100 hops 85 µs 0.97 µs
NY-d 0.9 µs ∈ (100, 1000) hops 507 µs 0.95 µs
NY-d 0.9 µs ≥ 1000 hops 934 µs 0.88 µs
NY-t 0.8 µs ≤ 100 hops 62 µs 0.74 µs
NY-t 0.8 µs ∈ (100, 1000) hops 275 µs 0.76 µs
NY-t 0.8 µs ≥ 1000 hops no paths no paths
EU-d 3.4 µs ≤ 100 hops 256 µs 3.12 µs
EU-d 3.4 µs ∈ (100, 1000) hops 2417 µs 3.21 µs
EU-d 3.4 µs ≥ 1000 hops 12591 µs 3.06 µs
EU-t 1.6 µs ≤ 100 hops 109 µs 1.28 µs
EU-t 1.6 µs ∈ (100, 1000) hops 1411 µs 1.42 µs
EU-t 1.6 µs ≥ 1000 hops 3298 µs 1.06 µs

Table 4.4: Shortest path query performance. Path query times are averaged over
1000 random samples.

4.7 Recovering alternative path from the labelling

Potentially interesting application would be to use hub labelling to recover good
alternative shortest path. For example in case of an accident on the road or
to balance traffic and reduce congestion. While ideally the labelling algorithm
would be modified for this use case, we show that even the current implementation
returns acceptable alternative shortest paths over city sized distances. This might
be partially due to the fact that we introduce extra hubs into the labels to simplify
shortest path recovery. First we use New York taxi trip start and end points to
generate paths.
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To recover an alternative s-t path from the label while scanning Lf (s) and
Lr(t) we return the hub with 2nd best distance (2nd best hub). Then to recover
the full path we recurse as usual, taking best distances in all subsequent steps.
As a result of this procedure some trips end up with very similar paths while
some get a good alternative path (Figure 4.10). If we look at how much the
path length increased for the alternative path (fractional stretch) we see that the
increase is mostly less than 20 % (Figure 4.12). If we investigate how good the
alternative path is in respect to how big of a fraction of its hubs are present in
the shortest path (Figure 4.13) we observe that the alternative path uniqueness
varies quite uniformly. With more unique paths being slightly more likely for real
world taxi trips in New York.

If we look at various length random trips in Western Europe (Figure 4.11) we
see that for short trips (at most 100 hops) the behaviour is similar to the New
York graph (Figure 4.14 and 4.15). Although we see that paths are less unique in
this case (bigger fraction of hubs are shared with the shortest path). For medium
length paths the situation is similar, but even bigger fraction of hubs overlap
between the alternative and the shortest paths (Figure 4.16 and 4.17). Here we
also see that there is a small number of trips for which an alternative path is
not found (zeroth column in the histogram in Figure 4.17). In our alternative
path recovery scheme this can happen when the shortest path goes over a very
important hub in the graph which does not have any alternative due to the
hierarchical construction. For long paths (Figure 4.16 and 4.17) we see that this
problem becomes more acute. Also more hubs are shared between the alternative
and the shortest paths. Although inspecting them visually (Figure 4.11) we can
see that they do differ for a substantial distance and could be useful to avoid
certain part of the map. In both cases we notice that alternative path distance
increase is smaller in the medium length and long paths. This might be related
to the fact that they tend to be less unique too.

All the figures provided here are for the corresponding time graphs. The
distributions were identical for the distance graphs.

Our alternative path recovery scheme can be modified to route around any
vertex in the s-t shortest path. When we detect that an undesirable vertex u
will be our next hop we then instead use the alternative path recovery scheme
for that portion of the path and choose second best hub from the labels instead
of u. If this portion of the path is short we will be in the favourable scenario of
alternative path for a sub 100 hop path that we have just seen.

It is left for future work to see if uniqueness and recovery of alternative paths
can be improved by a different alternative path recovery algorithm and/or differ-
ent label construction.
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(a) (b)

Figure 4.10: Example of a good (a) and worse (b) alternative path for a taxi
trip in NY. Red dots are shortest path vertices, yellow dots are alternative path
vertices and green dots are overlapping vertices.
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(a) (b)

(c)

Figure 4.11: Example of a short (a) and medium length (b) and long (c) alter-
native path for a random trip in Western Europe. Red dots are shortest path
vertices, yellow dots are alternative path vertices and green dots are overlapping
vertices.
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Figure 4.12: NY taxi trip histogram for fraction of length increase in the alter-
native path compared to the shortest path.

Figure 4.13: NY taxi trip histogram for fraction of hubs in the alternative path
that were present in the shortest path.
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Figure 4.14: EU random short trip (at most 100 hops) histogram for fraction of
length increase in the alternative path compared to the shortest path.

Figure 4.15: EU random short trip (at most 100 hops) histogram for fraction of
hubs in the alternative path that were present in the shortest path.



4. Results 31

Figure 4.16: EU random medium length trip (between 100 and 1000 hops) his-
togram for fraction of length increase in the alternative path compared to the
shortest path.

Figure 4.17: EU random medium length trip (between 100 and 1000 hops) his-
togram for fraction of hubs in the alternative path that were present in the
shortest path.
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Figure 4.18: EU random long trip (more than 1000 hops) histogram for fraction
of length increase in the alternative path compared to the shortest path.

Figure 4.19: EU random long trip (more than 1000 hops) histogram for fraction
of hubs in the alternative path that were present in the shortest path.
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Related work

We are unaware of any work comparing Hub Labelling hub priority estimates
to real world trip data. However there is an experimental study performed on
Hub Labelling by Li, U, Yiu and Kou [20]. There authors mainly compare three
vertex ordering techniques. Two of them being degree ordering and betweenness
centrality (greedy shortest path cover) ordering. Both of which we have seen here.
As well as their newly proposed significant path based ordering. This ordering
is much quicker than betweeness centrality ordering, but results in slightly worse
labels. They also confirm that degree based ordering performs very poorly on the
road graphs. They also compare the effectiveness of label compression techniques
proposed by Delling et al. in [1] and [15].

We are also unaware of any work attempting to provide an alternative path
based on Hub Labelling. There is work by Abraham, Delling, Goldberg and
Werneck [21] proposing fast alternative path finding algorithm with theoretical
alternative path optimallity guarantees. Of course it’s not as fast as Hub La-
belling. Delling, Goldberg, Pajor and Werneck [22] discuss a graph separator
based routing engine that among many things can support arbitrary metrics,
real-time traffic updates and alternative path finding. The alternative path find-
ing part of this engine was based on the just mentioned work by Abraham et al.
[21]. The described routing engine [22] was used in Bing Maps at the time.

33



Chapter 6

Conclusions

In this work we validated the performance of Hub Labelling algorithm as pro-
posed by Delling et al. [1]. We also demonstrated that shortest path can be
recovered efficiently with a slight modification to the labelling algorithm. We
experimentally showed that a reasonable alternative path can be recovered from
the labels for short to medium distances. This can possibly be improved in future
work. Non the less, from our analysis we can see that in most cases Hub Labelling
can be used as is to provide an alternative path around one particular hub that
we want to avoid (i.e. if there is a road accident). At last we related the hubs se-
lected by Hub Labelling algorithm to real world road usage data. We found that
there is a substantial difference. Albeit time graph hub ranking seems to come
closer to the real world hub importance. This leads us to ponder if one could
come up with a more efficient metric for the graphs that would better match real
world hub importance as well as provide smaller labels. As time graphs also tend
to yield much smaller labels than distance graphs.
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Chapter 7

Future work

Two main directions we see following from this work would be:

• Creating hub labels entirely using real world trip data to investigate if more
realistic vertex importance measure would yield smaller labels. As we have
seen time based graphs (which reflect real world vertex importance better
than distance graphs) yield smaller labels. It would be possible to use the
algorithm originally proposed by Cohen et al. [10] for this. One would just
need to come up with a good way to amend real world data (i.e. taxi trips)
to cover all possible node pairs. So the algorithm by Cohen et al. [10] that
uses precomputed all pairs shortest paths and (label) greedily picks hubs
that maximise the ratio between new paths covered and number of labels
updated would yield valid labels that satisfy the cover property.

• Improving our simple alternative path recovery scheme so that it more
reliably returns an alternative path over long distances and possibly of-
fers alternative paths that are more unique and have smaller and better
bounded stretch. It should be possible to achieve this by modifying the
label construction further.

Bonus future direction not entirely related to this work would be parallelization
of the algorithm proposed by Delling et al. [1] that we reimplemented. Because
this algorithm offers superb single thread performance, a parallelized version
should offer a state of the art algorithm for labelling arbitrary graphs. While
it’s not immediately obvious how to parallelize the Pruned Labelling algorithm
[14], recently Jin, Peng, Wu, Dragan, Agrawal and Ren proposed a parallelized
version of it [23]. They also claim improved single thread performance. It might
be possible to extend their findings to this Hub Labelling scheme proposed by
Delling et al. [1]. At the same time it would be worthwhile to come up with a way
to perform label greedy version of the tree SamPG hub importance estimation. As
Abraham et al. [13] have shown label greedy ordering offers better performance
than path greedy ordering.
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