
Distributed

 Computing

Tichu Bot
Semester Thesis

Peter Müller

pemuelle@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Zeta Avarikioti, Lukas Faber
Prof. Dr. Roger Wattenhofer

August 22, 2020

Acknowledgements

I would like to thank my supervisors, Lukas Faber and Zeta Avarikioti, for their
valuable advice during our weekly meetings.

i

Abstract

Inspired by the recent success of reinforcement learning playing imperfect infor-
mation games such as poker and Dota on a super-human level, we attempted
to develop an agent to play the four-player card game Tichu. Tichu is a coop-
erative multi-agent game of imperfect information with a large state and action
space. As such, it presents a challenging task for many current reinforcement
learning methods. We applied a mixture of imitation learning, current reinforce-
ment learning methods and Tichu-specific optimisation to the task. Our resulting
agent is able to play the game on a decent human level.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 2

3 Background 3

3.1 Tichu . 3

3.1.1 Challenges . 4

3.2 Reinforcement Learning . 5

3.2.1 Self-Play and Multi-Agent Reinforcement Learning 6

3.3 Imitation Learning . 6

3.4 Theory of Mind . 6

4 Reinforcement Learning 7

4.1 Tichu Environment . 7

4.1.1 Simplified Tichu Version 7

4.1.2 State, Actions and Reward 8

4.2 Policy Optimisation . 8

4.3 Training . 9

5 Optimisations 10

5.1 Imitation Learning . 10

5.1.1 Behavioural Cloning Pre-Train 10

5.2 Predict Hidden State and Monte Carlo Tree Search 10

5.3 Separate Tichu Calling Model . 11

6 UI 13

iii

Contents iv

7 Results 14

7.1 Evaluation . 14

7.1.1 Baselines . 14

7.2 Experiments . 15

7.2.1 Training from Scratch . 15

7.2.2 Behavioural Cloning . 17

7.2.3 Separate Tichu Calling Model 17

7.2.4 Monte Carlo Tree Search 17

7.3 Evaluation against Humans . 18

8 Conclusion 19

8.1 Future Work . 19

Bibliography 20

A Tichu Actions & State Features A-1

B Evaluation Matrix B-1

Chapter 1

Introduction

Over recent years, artificial intelligence has become more proficient at beating hu-
mans in increasingly more difficult games. Following the success of reinforcement
learning (RL) in the perfect information games of Go and chess [1], the challenge
has shifted to imperfect information games such as poker [2] or Dota [3]. In Tichu,
competing teams of two players each try to get rid of their cards as quickly as
possible while securing points along the way. The cooperation required between
the two team-players, while not knowing what cards the other players hold, and
the vast number of playable combinations are just a few examples that make the
game challenging from an RL point of view.

Most of the current approaches that play games on a super-human level rely
heavily on tree-search methods. While these approaches generally perform quite
well, they often require extensive amounts of computing power to be able to make
their moves in a reasonable amount of time. With the goal of developing an agent
which is playable without extensive computing resources, we primarily focus on
purely RL-based methods in this thesis.

1

Chapter 2

Related Work

In perfect information games such as chess or Go the entire game state is visible
to all the players. Go has long been recognised as the most challenging perfect
information game for artificial intelligence (AI). In 2016, DeepMind was able to
beat the Go world champion, Lee Sedol, with their RL agent AlphaGo. [4]
AlphaGo learnt the game by playing thousands of matches with amateur and pro-
fessional players and, therefore, acquired considerable human knowledge. In 2017,
DeepMind published a new approach entitled AlphaZero, which learnt solely by
playing against itself, starting from completely random play. [1] AlphaZero was
not only able to outperform AlphaGo in the game of Go but also achieved state-
of-the-art performance in the perfect information games of chess and Shogi.

In imperfect information games, only a part of the game state is observable
by each player (e.g. in poker the players do not know the cards the other players
are holding). While there has been some success in playing imperfect informa-
tion games on a super-human level (i.e. poker [2] and Dota [3]), some unsolved
challenges remain. One example of such a challenge concerns the reasoning in-
volved in the hidden information based on the history of the game. The recently
published Hanabi challenge [5], which titles as the new frontier for AI research,
focuses on the challenge mentioned above, which is called theory of mind (ToM)
reasoning. Hanabi is a multi-agent card game of imperfect information, which
relies strongly on ToM reasoning to be played well. Recently, some progress has
been made in this challenge. [6] They have presented a new deep multi-agent RL
method, the Simplified Action Decoder. With this, they were able to achieve a
new state-of-the-art performance in the four and five player games of Hanabi.

‘Big 2’ is a card game which can be viewed as a simpler version of Tichu. It is
also a four-player game with imperfect information, and the cards and combina-
tions are played similarly. The main differences between Big 2 and Tichu are that
Big 2 is not played in teams of two and dispenses with several other Tichu rules
(i.e. exchanging cards, calling ‘Tichu’ and the use of special cards). Researchers
have applied RL to the task of playing Big 2. [7] They used the proximal policy
optimisation algorithm and trained their model through self-play. The resulting
agent was able to outperform amateur human players.

2

Chapter 3

Background

3.1 Tichu

Tichu1 is a four-player card game, played in teams of two players with teammates
sitting opposite each other at the table. Tichu is played with a deck of 56 cards,
which consists of a standard 52 card set (2 to Ace in four suits) and four special
cards (explained at the end of this section).

The game starts with each player being dealt eight cards. Each player can
then decide whether they want to call a ‘Grand Tichu’ or not. When a player
calls a ‘Grand Tichu’, they bet on being the first to get rid of all their cards,
which, in return, will give them 200 points if they succeed and -200 points if they
fail. The remaining cards are dealt, resulting in all the players holding 14 cards.
From this point on until the player plays their first combination, they can call a
‘Tichu’. A ‘Tichu’ is the same bet as a ‘Grand Tichu’, but it is only worth 100
or −100 points.

Then, each player selects three cards to simultaneously exchange with the
other players by passing one card face down to each of the other players. After
the exchange, the player with the Mah Jong card starts the game by playing
the first combination. In what follows, only higher combinations of precisely the
same type can be played, or a player can pass. If three players pass in a row, the
trick is completed. The player who plays the last combination wins the trick and
plays a new combination of his choice.

Combinations are based on poker hands with a few additions. Valid combi-
nations are single, pair, trio, full house, straight (of at least five cards), pair steps
(a straight of consecutive pairs) and bombs (four of a kind or a straight flush of
at least five cards). Bombs can be played at any point in the game (even out of
turn) and do not have to match the combination laying on the table.

The round ends when only one player with cards remains. The last player has
to give their remaining cards to the opposing team and the tricks they have won

1https://www.fatamorgana.ch/tichu/tichu_english.asp

3

https://www.fatamorgana.ch/tichu/tichu_english.asp

3. Background 4

to the player who was the first to get rid of their cards in this round. Points are
counted based on the cards from the tricks won by each team. Kings and tens
are worth 10 points, fives are worth five points, the Dragon is worth 25 points,
and the Phoenix is worth −25 points. All the other cards are worth 0 points. In
the case that the players of one team finish first and second, the round ends, the
team earns 200 points, and the counting of points from the tricks won by each
team is omitted. Additionally ±100 and ±200 points are added for won and lost
‘Grand Tichus’ and ‘Tichus’.
The rounds continue until one team reaches a total score of 1000 points or more.

Special Cards:

• The Mah Jong card is the starting card, the player with the Mah Jong
card starts the game by playing the first trick. The Mah Jong card has a
value of 1 and can either be played as a single card or in a straight from 1
to 5 or further. Additionally, it allows the player to wish for a card rank
when playing the card. Every player who has a card in the desired rank
and can play a valid combination must do so. The wish remains active until
one player fulfils it.

• The Dog card can only be played as a single card after a player wins a
trick (or as the first card). It passes the lead to the player’s partner.

• The Phoenix card can be used as a wildcard in any combination (except
for bombs). When played as a single card, it assumes a rank 0.5 higher
than the previous card played.

• The Dragon card is the highest card in the game and can only be played
as a single card. If the trick is won with the Dragon, the player has to give
the trick to a chosen opponent.

3.1.1 Challenges

We noted the following challenges that make Tichu difficult for an RL agent to
learn.

• Imperfect Information: The game-state of Tichu is only partially ob-
servable, which means that the cards of all the other players are hidden. An
RL agent needs a way to extract additional information from the history
of the observable states and actions of the other players.

• Cooperative Multi-Agent: The multi-agent setting itself already poses
a challenge for RL. Additionally, Tichu requires a mix of cooperative and
competitive play, which is an additional difficulty.

3. Background 5

• Large State and Action Space: There are over 1030 possible initial
hand distributions in Tichu, meaning the number of possible game states
is even larger. Additionally, one can form approximately 109 different valid
combinations from 14 cards.

• Multiple Game Stages: The different stages of Tichu (announcing Tichus,
trading cards and playing combinations) result in multiple learning tasks
for the RL agent.

• Sparse Rewards A single round of Tichu lasts on average 120 turns. The
reward of the round is only known at the end. This results in the credit
assignment problem, meaning the agent has to discern which of the actions
he took during the round contributed to the reward at the end. Addition-
ally, there are conflicting long- and short-term rewards; for instance, when
winning a trick worth many points, it is not guaranteed that the player
will keep these points. In the case of finishing last, these points go to the
winning team.

3.2 Reinforcement Learning

Reinforcement learning is a subset of machine learning which focuses on agents
learning via trial and error within a simulated environment. The general RL

Figure 3.1: RL cycle 2

cycle can be seen in Figure 3.1 and works as follow. At every time-step t, the
agent receives the current state St from the environment. Based on this state, the
agent then chooses an action At to take. The environment executes the action
and returns a reward Rt+1 and a new state St+1 to the agent. This cycle repeats
until a terminal state is reached within the environment. The goal of RL is to find
a policy which maximises the cumulative reward when the agent acts according
to it. A policy in RL defines a mapping from state to action.

3. Background 6

3.2.1 Self-Play and Multi-Agent Reinforcement Learning

The general single-agent setting in RL focuses on a single agent solving a task
within a mostly static environment. In contrast, learning in multi-agent settings
is fundamentally more difficult. An example of this is the non-stationarity of the
environment, as multiple agents interact simultaneously with the environment
and potentially with each other. The optimal policy for an agent, therefore, also
depends on the policies of the other agents.

3.3 Imitation Learning

Imitation learning (IL), also referred to as learning from demonstration, is the
method of learning by observing and imitating the behaviour of a human expert.

Behaviour Cloning (BC) focuses on learning a policy using supervised
learning over state-action pairs of expert trajectories. It is the simplest form of
IL because it treats the problem as a supervised learning task. However, the
main issue with this approach is the compounding errors when using the trained
policy in a test environment. [8] The reason for this is that the trained policy will
make mistakes which compound over time. These compounding errors result in
states that did not appear in the expert data set, leading to the BC agent failing.

3.4 Theory of Mind

One challenge which arises in the cooperative multi-agent setting with imper-
fect information is the beliefs concerning the hidden information. Humans can
interpret the actions of others and act in a certain way such that others who
observe their actions can reason over their intents and beliefs. This capability
is commonly referred to as the theory of Mind (ToM) [9]. In our Tichu setting,
an example of this would be making assumptions about the hands of the other
players based on their actions.

Chapter 4

Reinforcement Learning

4.1 Tichu Environment

As the foundation for our Tichu environment, we used an existing implementation
from Github.1 The code originates from a previous attempt at applying Deep
Q-Learning on Tichu, but no written work referencing the code and presenting
the results could be found online.

4.1.1 Simplified Tichu Version

To simplify our problem and increase our training performance, we made the
following changes to the original rules of Tichu.

1. No straight bombs. The discrete action space of Tichu is huge with
approximately 109 different valid combinations that can be formed from 14
cards. We can reduce the action space to approximately 103 by ignoring
the colours of the cards. Since the colour of a card is only considered when
playing a straight bomb combination, removing it does not change the game
very much but rather makes learning easier.

2. No asynchronous bombs. We wanted to work with a turn-based en-
vironment to simplify the RL process. To incorporate the asynchronous
bombs into a turn-based environment, we would have had to ask all four
players whether they wanted to play a bomb or not after every move. In
the worst-case scenario, this would increase the episode length by a factor
of 4.

Additionally, we defined a single round of Tichu as one episode instead of a
whole game to 1000 points, as otherwise the episode length explodes.

1https://github.com/lukaspestalozzi/Tichu

7

https://github.com/lukaspestalozzi/Tichu

4. Reinforcement Learning 8

4.1.2 State, Actions and Reward

In order to train an RL agent on Tichu, the environment has to encode the
current state of the game into a vector of input features. A few examples of our
input features which only consider the currently observable state of the game
are the cards the player is holding, the number of remaining cards for all other
players and information about the current trick on the table. Ideally, the input
features would also contain a complete history of observable state-action pairs
from all the players. However, with rounds lasting over 100 steps and the large
state and action space of Tichu, this would increase the input vector excessively.
For this reason, we added a set of human-engineered features about the history
of the game. Some examples of these features were counts of the already played
cards and information on which combinations the other players had passed. This
resulted in a total of 85 features for our state vector. A detailed description of
all the input features can be found in the appendix (Table A.2).

The action space of our environment consisted of all the legal actions possible
according to our simplified Tichu setting. This included all the valid combinations
that could be formed with 14 cards but also all other actions such as calling Tichu
and trading cards. This resulted in a total of 1,415 different actions. With every
state update, the environment also provides a legal-actions-mask to the agent.
This mask states what actions from the action space are allowed in the current
state of the game. A detailed description of all the actions can be found in the
appendix (Table A.1).

As the episode reward, we counted the points according to the Tichu rules
at the end of the round. We then subtracted the points of the opponent’s team
from the points of the agent’s team. We did this in order to maximise the point
difference for the opponent’s team instead of just the points the agent’s team
scored. Through this, our agent will be rewarded for denying the enemy team a
Tichu, which otherwise would only result in negative points for the enemy team
but would not affect the score of the agent’s team.

4.2 Policy Optimisation

We used proximal policy optimisation (PPO) [10] as our RL algorithm, based on
its previous success in imperfect information games. [3, 7, 11] We made use of the
more recent PPO2 implementation based on the OpenAI baselines2. In contrast
to PPO, PPO2 is optimised for distributed training. It uses one process to train
the policy network and multiple processes running the environment to generate
training data in parallel.

Due to the long training time, hyperparameter tuning tends to be difficult.
2https://github.com/openai/baselines

https://github.com/openai/baselines

4. Reinforcement Learning 9

For this reason, most of the hyperparameters for the policy network were left at
the default value. Only the hidden layer configuration was changed to five layers
with 512; 1024; 2048; 1024 and 512 neurons, which is considerably larger than
the default. This configuration was found by performing a grid search on the
supervised learning task for behavioural cloning.

4.3 Training

The agent is trained using self-play utilising a shared policy network for both
players on the agent’s team. We used opponent sampling as proposed by previous
work [12, 3], meaning that our agents play against the latest policy for 80% of
the games and against random older policies for 20% of the games. We saved the
policies every 200,000 time-steps and added them to the opponent pool. Playing
occasionally against past policies is performed in order to achieve a more robust
policy and avoid strategy collapse. Strategy collapse refers to the phenomenon in
which the agent forgets how to play against a wide range of opponents because
it only requires a small set of strategies to defeat its latest past version. [3]

Due to the time complexity within the Tichu environment, which mainly
resulted from calculating the legal actions at every step in the game, making use
of a GPU would have required many environments running in parallel, and this
far exceeded our available computing resources. For this reason, we trained our
policy network solely on CPU machines. Running the environment and training
the network on 16 CPUs resulted in a training speed of around 10 million time-
steps per 24 hours, which corresponds to approximately 200,000 rounds of Tichu.

Chapter 5

Optimisations

In order to further improve the performance of our agents, we tried to address a
few specific shortcomings, which are described in the following.

5.1 Imitation Learning

One problem which arises when applying RL algorithms to games such as Tichu
with a large state and action space is their sample efficiency. An agent might
need to play millions of games before finding a good policy. In past work, IL has
been used to initialise a policy from human expert plays in order to accelerate
learning. [4] For this reason, we initialised our policy network via BC using game
logs from an online Tichu platform.

5.1.1 Behavioural Cloning Pre-Train

We gathered our expert trajectories by scraping the Tichu game logs1 of the online
board-game platform Brettspielwelt. We only used the state-action pairs of the
winning team for each round. Additionally, all the games containing straight
bombs and asynchronous bombs were filtered out since they do not work in our
environment.

We pre-trained our policy network for ten epochs on the entire expert dataset.
After this, we continued training via PPO, as explained in the previous chapter.

5.2 Predict Hidden State and Monte Carlo Tree Search

A crucial aspect of Tichu is the reasoning that occurs with regard to the hands
of the other players based on their past actions. Since our previous approach
did not consider the actions taken by the other players during the game, in our

1http://tichulog.brettspielwelt.de/202001

10

http://tichulog.brettspielwelt.de/202001

5. Optimisations 11

opinion crucial information was missing that was needed to play the game on a
human level. With games lasting over 100 time-steps and the history containing
much unnecessary information, including the entire history of partially observable
states and actions in the input to our RL agent was not feasible.

As previously stated, the reasoning over the hidden state based on the ac-
tions of others is part of the ToM. Solving this problem for multi-agent imperfect
information games is still an ongoing research topic, that is, the currently un-
solved Hanabi challenge. [5] We tried to apply an approach from previous work
conducted on that topic to improve our end-game performance. [13] Accordingly,
we saved the entire state-action history of the game. The saved state only in-
cludes the information observable by all the players. In our case, this means the
information about the players’ hands is masked. With the knowledge of their
own hand, the already played cards and the number of remaining cards of each
player, the agent can generate all the possible hand distributions for the other
players at the current state of the game. The already played cards for every
state in the history can be reconstructed from the observed actions. For each
possible distribution, the agent can, therefore, fill in the masked information in
the state-action history. This means we can now check for every state-action pair
in the history if the action taken corresponds to the action selected by the policy
for our reconstructed state. Undertaking this for all possible hand distributions
allows us to reconstruct the hidden information.

This method has some limitations. First, the number of possible hand dis-
tributions for the remaining cards is enormous early in the game, making this
method only possible for the end-game. Second, for this method to work, we
have to know the policy the other agents are following or at least be able to
approximate it. In a setting where the agents play against humans, this is almost
impossible. However, we can assume that a policy network trained via BC on
human game-play approximates a human policy.

With this approximation of the hidden information, we can convert the im-
perfect information game into a perfect information one. Perfect information
games (i.e. Go and chess) have already been solved successfully via Monte Carlo
Tree Search (MCTS). [4] For this reason, we tried replacing the RL agent with an
MCTS agent during the end-game when approximating the hidden information
was possible.

5.3 Separate Tichu Calling Model

During the training of our agent, we observed that it never called a ‘Grand Tichu’
or ‘Tichu’. With the policy network initialised via BC, the initial ‘Tichu’ calling
rate was around 0.15 per game, meaning the agent called a Tichu approximately
every seventh game. However, during further training via RL, this rate always

5. Optimisations 12

dropped to 0. We were not able to find a reason for this behaviour. However,
one could hypothesise that by calling ‘Tichu’, a player and their teammate would
mainly focus on finishing first, possibly neglecting the other 100 points from
won tricks. When training from scratch, the behaviour can be explained in the
following way. In a random setting, the probability that the agent wins a Tichu is
0.25, which results in an expected reward of −50 when calling ‘Tichu’ and −100
when calling ‘Grand Tichu’. Not calling any ‘Tichus’ results in an expected
reward of 0. For this reason, it makes sense that the policy collapses to refraining
from calling Tichus early during training.

In an attempt to force the agent to play more Tichus and possibly to improve
its overall performance, we trained two separate supervised neural networks on
the task of calling ‘Tichu’ and ‘Grand Tichu’. As an input for the networks,
we took the eight cards for ‘Grand Tichu’ and 14 for ‘Tichu’. The network
has one single output stating whether this hand will finish first or not. As our
training data, we again used the game logs and extracted all the initial hands
and whether they finished first for every game. The datasets were balanced using
random under-sampling, and two simple fully connected neural networks were
trained on the task. Both networks had an input size of 17 (a count between
0 and 4 for each of the 17 different cards) and two hidden layers with 48 and
96 neurons. The trained network was then used in conjunction with a trained
RL agent for the calling ‘Tichu’ decisions. Since the output of the network is
a probability between 0 and 1, we were able to tune the cutoff and, therefore,
the level of aggressiveness at which the agent calls ‘Tichu’. We ran a simple grid
search for the optimal cutoff value by evaluating different agents for 1,000 games
and optimising for the highest reward. The search resulted in an optimal cutoff
value of 0.75 for both ‘Tichu’ and ‘Grand Tichu’.

In addition to using these Tichu calling networks on top of already trained
agents, we trained an agent, utilising it during training. In theory, this should
allow an agent to learn to play with this more aggressive way of calling ‘Tichu’
and, therefore, further improve its overall performance.

Chapter 6

UI

In order to test the trained RL agents against humans, we developed a web
application consisting of a React front-end and a python back-end. The app is
deployed on a Heroku Dyno and accessible via this URL for the reader to test:
https://tichu-ai.herokuapp.com1

Figure 6.1: Screenshot of our Tichu UI

The front-end is written in React and allows one or multiple humans to play
against the trained RL agents.

The back-end handles the game state by running the same environment used
for the RL part. It holds the trained agents and performs moves for the AI.
To keep the game state synchronised on all the open web clients, we broadcast
updates via a WebSocket. Additionally, some REST endpoints are exposed to
handle different commands from the clients (i.e. game setup, applying human
actions and checking the validity of a build combination).

1Edit 11.02.22: Deployment moved to https://tichu-ai.netlify.app

13

https://tichu-ai.netlify.app

Chapter 7

Results

7.1 Evaluation

We evaluated our different approaches against two baselines and in an All vs.
All tournament. As a performance measure, we took the reward of the agent
averaged over 10,000 rounds of Tichu. It should be noted that we defined our
reward as the point difference with the opposing team, which means the expected
reward against an opponent of the same strength would be 0.

To keep the influence of chance as small as possible during the evaluation, we
used the following methods. We generated a fixed set of initial hand distributions
used for all the evaluation rounds. Additionally, each round was played a second
time with the same initial hand but shifted one position to the right. This shift
meant that the agent played the same round twice, but the hands were switched
between teams, which cancels out wins based solely on good hands.

7.1.1 Baselines

In order to compare our different approaches, we used the following two baseline
agents:

• Random Agent: At every turn, the random agent selects an action at
random from the set of legal actions for the current state of the game.

• Rule Agent: The rule agent selects its actions based on the following rules:
It never calls ‘Grand Tichu’ or ‘Tichu’. It always trades the two lowest cards
to its opponents and the highest card to its partner. When possible, it never
passes and always plays the lowest possible combination. When leading a
new trick, it selects the combination with the highest number of cards.

14

7. Results 15

7.2 Experiments

The following agents were evaluated against our two baselines and in an All vs.
All tournament style.

1. Behavioural Cloning This agent’s policy was trained via BC only.

2. PPO We trained different agents using PPO with one or multiple of the
following variations. All the PPO agents were trained for 40 million steps
(approx. 800,000 rounds of Tichu), which took five days on average.

(a) Scratch Policy network randomly initialised. Trained from scratch
without any human expert demonstration.

(b) BC Policy network initialised via behavioural cloning rather than ran-
dom.

(c) Tichu Model The separate Tichu calling model from Section 5.3 was
used on top of the trained agent during evaluation.

(d) Tichu Model (Training) The separate Tichu calling model was used
during training and evaluation.

(e) MCTS During the end-game, the MCTS approach from section 5.2
was used.

The summarised evaluation results can be seen in Table 7.1. The entire evaluation
matrix from the All vs. All tournament can be found in Appendix B.1.

Average Reward vs.
Agent All Rule Random
1 Behavioural Cloning 19.8 190.2 481.7
2 PPO (Scratch) −110.0 86.3 432.1
3 PPO (BC) 17.2 166.3 458.0
4 PPO (BC) + Tichu Model 33.7 208.4 510.3
5 PPO (BC) + Tichu Model (Training) 39.3 199.9 508.5
6 PPO (BC) + Tichu Model (Training) + MCTS (37.2)1 193.4 507.7

Table 7.1: Evaluation Results

7.2.1 Training from Scratch

To monitor our policy’s training performance, we evaluated our policy every
500,000 steps by playing 1,000 rounds against random previous versions of itself

1Avg. Reward vs. Agent #5

7. Results 16

0 10 20 30 40

50

100

150

200

Step (in millions)

R
ew

ar
d
vs
.
pr
ev
io
us

po
lic

y

Figure 7.1: Reward PPO (Scratch)

(Figure 7.1). Additionally, we tracked the frequency of different combinations
during these 1,000 evaluation games (Figure 7.2).

0 10 20 30 40
0

5

10

Step (in millions)

C
om

bi
na

ti
on

s
pe

r
R
ou

nd Single
Pair

0 10 20 30 40

0

0.1

0.2

0.3

Step (in millions)

Straight
Pairstep
Trio

Figure 7.2: Combination Frequency PPO (Scratch)

We observe that the learning progress seems to continue steadily throughout
the training, with the current policy being able to outperform its previous ver-
sions consistently. In Figure 7.2 we can see that the frequency of the ‘simple’
combinations decreases and the frequency of the ‘larger’ combinations increases
during training, which is also a sign of the agent improving in our opinion. It
appears that if we train the policy for longer, the performance will continue to
improve.

Training from scratch without human knowledge was, however, somewhat
inefficient. Even after five days of training, the agent made many mistakes and
mainly played single cards when evaluated via the UI.

7. Results 17

7.2.2 Behavioural Cloning

The agent trained via BC is already able to beat the agent trained from scratch
by, on average, more than 100 points per round.

0 10 20 30
0

0.05

0.1

0.15

Step (in millions)

T
ic
hu

Fr
eq
ue
nc

y

0 10 20 30
0

0.05

0.1

0.15

Step (in millions)

G
ra
nd

T
ic
hu

Fr
eq
ue

nc
y

Figure 7.3: Tichu Frequency PPO (BC)

When continuing to train the agent with the BC initialised policy, we observe
a slow but constant training improvement. As mentioned earlier, the Tichu call-
ing rate during training decreased considerably (Figure 7.3). Nevertheless, the
trained PPO (BC) agent is able to beat the initial BC agent.

7.2.3 Separate Tichu Calling Model

Using the separate Tichu calling model on top of our trained PPO (BC) agent,
further improved its performance. The agent with the Tichu calling model is able
to beat the same agent without it by 10 points on average. Using the Tichu calling
model during the training of the agent also further improved the performance by
a few points.
When evaluating the agent via the UI against humans, the performance increase
is quite noticeable in our opinion. Even though it calls Tichus quite aggressively,
most of the time it is able to win them.

7.2.4 Monte Carlo Tree Search

Due to the time complexity of our MCTS agent, we only evaluated it against
our best PPO agent from the previous section. The cutoff value to begin the
approximation of the hidden information was set to 1000, meaning the MCTS
begins once the number of possible hand distributions is below 1000. Additionally,
we set a time limit of 10 s per move to perform the tree search.

7. Results 18

From the results, we can see that the best PPO agent with MCTS in the end-
game was able to beat the same agent without MCTS by 37 points on average.
However, in this scenario, we know the exact policy the opponent is following and
are, therefore, able to reconstruct the hidden information with high accuracy.
In a real-world scenario when playing against humans, the opponent’s policy is
unknown, and it is, therefore, unlikely we would be able to reconstruct the hidden
information with high accuracy.

7.3 Evaluation against Humans

With the help of the developed UI, we were able to test our trained agent against
humans. The evaluation rounds were played by two human players against two
trained agents. We used the PPO (BC) + Tichu Model (Training) agent as the
opponent for this evaluation. In total, 43 rounds were played, resulting in an
average reward of 21.2 for our agent.

We must note that 43 rounds is a relatively small sample size. In addition,
we could not apply the switching of hands to reduce the influence of chance as
human players are able to remember the hands of previous rounds.

Even though our agent was able to beat humans by 21.2 points on average
per round, we still think it is not performing on a super-human level. When
observing the agent playing, we can sometimes still see some obvious mistakes,
which should not occur in a perfect play. Nevertheless, the results are quite
promising, and we would argue that the agent is playing on a decent human
level.

Chapter 8

Conclusion

During this thesis, we were able to create an RL agent that plays Tichu on a
decent human level. This was mainly achieved through a mixture of IL, RL
and optimisation specific to the setting of Tichu. The combination of the dif-
ferent challenges presented by Tichu made it difficult to find a general solution
for achieving super-human performance. In particular, an efficient belief state
construction in a large game of imperfect information is still an ongoing research
topic, which was not the primary focus of this thesis.

8.1 Future Work

More work has to be performed in order to apply RL to the full version of Tichu
with more than 109 possible actions. Some methods have been proposed to deal
with large discrete action spaces by grouping similar actions together. [14] The
authors demonstrated the capability of their method for tasks of up to 106 actions
but suggest it could also be applied to larger action spaces.

Further, it would be interesting to apply the methods used by the recently
published paper on the Hanabi challenge to the case of Tichu. [6] In particular,
because an efficient belief state construction is, in our opinion, crucial to playing
Tichu on a super-human level.

19

Bibliography

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. v. d. Driessche, T. Graepel, and D. Hassabis, “Mastering the
game of Go without human knowledge,” Nature, vol. 550, no. 7676, pp.
354–359, Oct. 2017, number: 7676 Publisher: Nature Publishing Group.
[Online]. Available: https://www.nature.com/articles/nature24270

[2] M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “DeepStack:
Expert-level artificial intelligence in heads-up no-limit poker,” Science,
vol. 356, no. 6337, pp. 508–513, May 2017. [Online]. Available:
https://www.sciencemag.org/lookup/doi/10.1126/science.aam6960

[3] C. Berner, G. Brockman, B. Chan, V. Cheung, C. Dennison, D. Farhi, Q. Fis-
cher, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki,
M. Petrov, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang, “Dota 2 with Large Scale Deep Reinforce-
ment Learning,” p. 66.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. v. d.
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree
search,” Nature, vol. 529, pp. 484–503, 2016. [Online]. Available: http:
//www.nature.com/nature/journal/v529/n7587/full/nature16961.html

[5] N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F.
Song, E. Parisotto, V. Dumoulin, S. Moitra, E. Hughes, I. Dunning,
S. Mourad, H. Larochelle, M. G. Bellemare, and M. Bowling,
“The Hanabi challenge: A new frontier for AI research,” Artificial
Intelligence, vol. 280, p. 103216, Mar. 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370219300116

[6] H. Hu and J. N. Foerster, “Simplified Action Decoder for Deep Multi-
Agent Reinforcement Learning,” arXiv:1912.02288 [cs], Dec. 2019, arXiv:
1912.02288. [Online]. Available: http://arxiv.org/abs/1912.02288

[7] H. Charlesworth, “Application of Self-Play Reinforcement Learning
to a Four-Player Game of Imperfect Information,” arXiv:1808.10442

20

https://www.nature.com/articles/nature24270
https://www.sciencemag.org/lookup/doi/10.1126/science.aam6960
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.sciencedirect.com/science/article/pii/S0004370219300116
http://arxiv.org/abs/1912.02288

Bibliography 21

[cs, stat], Aug. 2018, arXiv: 1808.10442. [Online]. Available: http:
//arxiv.org/abs/1808.10442

[8] S. Ross and J. A. Bagnell, “Efcient Reductions for Imitation Learning,” p. 8.

[9] C. L. Baker, J. Jara-Ettinger, R. Saxe, and J. B. Tenenbaum, “Rational
quantitative attribution of beliefs, desires and percepts in human
mentalizing,” Nature Human Behaviour, vol. 1, no. 4, pp. 1–10, Mar.
2017, number: 4 Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s41562-017-0064

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” arXiv:1707.06347 [cs], Aug. 2017, arXiv:
1707.06347. [Online]. Available: http://arxiv.org/abs/1707.06347

[11] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch, “Emergent Tool Use From Multi-Agent Autocurricula,”
arXiv:1909.07528 [cs, stat], Feb. 2020, arXiv: 1909.07528. [Online].
Available: http://arxiv.org/abs/1909.07528

[12] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emergent
Complexity via Multi-Agent Competition,” arXiv:1710.03748 [cs], Mar.
2018, arXiv: 1710.03748. [Online]. Available: http://arxiv.org/abs/1710.
03748

[13] A. Lerer, H. Hu, J. Foerster, and N. Brown, “Improving Policies via Search in
Cooperative Partially Observable Games,” arXiv:1912.02318 [cs], Dec. 2019,
arXiv: 1912.02318. [Online]. Available: http://arxiv.org/abs/1912.02318

[14] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep
Reinforcement Learning in Large Discrete Action Spaces,” arXiv:1512.07679
[cs, stat], Apr. 2016, arXiv: 1512.07679. [Online]. Available: http:
//arxiv.org/abs/1512.07679

http://arxiv.org/abs/1808.10442
http://arxiv.org/abs/1808.10442
https://www.nature.com/articles/s41562-017-0064
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1909.07528
http://arxiv.org/abs/1710.03748
http://arxiv.org/abs/1710.03748
http://arxiv.org/abs/1912.02318
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.07679

Appendix A

Tichu Actions & State Features

Type Action Count

Basic

Pass 1
Win Trick 1
Grand Tichu 2
Tichu 2

Trade
Left 17
Right 17
Team Mate 17

Play Combination

Single 17
Pair 26
Trio 26
Full House 468
Straight 495
Pair Steps 296
Bomb 13

Special
Play Dog 1
Give Dragon Trick Right/Left 2
Wish After 1 14

Total Possible Actions 1415

Table A.1: Tichu Action Space

A-1

Tichu Actions & State Features A-2

Type Feature Count Range

Private Information
Hand 1 17 0 to 4
Cards Traded (Given) 2 3 0 to 17
Cards Traded (Received) 2 3 0 to 17

Global Information
Announced Tichus 4 0 or 1
Announced Grand Tichus 4 0 or 1
Player Cards Counts 4 0 to 14

Trick on Table

Last Combination Type 3 1 0 to 7
Last Combination Height 4 1 0 to 14
Last Combination Length 5 1 0 to 14
Trick Points 6 1 −25 to 125
Trick Leader 7 1 0 to 3

Card Counting

Played Cards Count 1 17 0 to 4
Played Combination Count 8 7 0 to 55
Combination Pass Height 9 12 0 to 14
Number of Won Tricks 10 4 0 to 14
Points in Won Tricks 11 4 −25 to 125

Total Features 85

Table A.2: Tichu State Features
1 Count for each of the 17 different card values
2 Value of the cards given/received
3 i.E. single (=0), pair (=1)
4 i.E. single 5 (=5), straight 4-8 (=8)
5 i.E. single 5 (=1), straight 4-8 (=5)
6 points the trick on the table is worth
7 i.E. you are the leader (=0), player to the right is leader (=1)
8 Count how many times the following combinations have been played during
the current round: Single, Pair, Trio, Full House, Pair Steps, Straights,
Bombs
9 For the following combinations: Single, Pair, Trio, Full House, Pairsteps
(of exactly 4 cards) and Straights (of exactly 5 cards) and the Opponent
players: Left and Right; the lowest height of that combination the player
passed on. i.E. Trick on the table is a pair of 4s and the player to the left
passed (Combination: Pair, Player: Left (=4))
10 Count of won tricks for each player
11 Points in the won tricks of each player

Appendix B

Evaluation Matrix

Opponent

Agent B
eh
av
io
ur
al

C
lo
ni
ng

P
P
O

(S
cr
at
ch
)

P
P
O

(B
C
)

P
P
O

(B
C
)
+

T
ic
hu

M
od

el

P
P
O

(B
C
)
+

T
ic
hu

M
od

el
(T

ra
in
in
g)

Behavioural Cloning 111.5 −3.9 −14.0 −14.3

PPO (Scratch) −111.5 −90.1 −115.5 −122.9

PPO (BC) 3.9 90.1 −12.1 −13.1

PPO (BC) + Tichu Model 14.0 115.5 12.1 −6.8

PPO (BC) + Tichu Model (Training) 14.3 122.9 13.11 6.8

Table B.1: Evaluation Matrix

B-1

	Acknowledgements
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Tichu
	3.1.1 Challenges

	3.2 Reinforcement Learning
	3.2.1 Self-Play and Multi-Agent Reinforcement Learning

	3.3 Imitation Learning
	3.4 Theory of Mind

	4 Reinforcement Learning
	4.1 Tichu Environment
	4.1.1 Simplified Tichu Version
	4.1.2 State, Actions and Reward

	4.2 Policy Optimisation
	4.3 Training

	5 Optimisations
	5.1 Imitation Learning
	5.1.1 Behavioural Cloning Pre-Train

	5.2 Predict Hidden State and Monte Carlo Tree Search
	5.3 Separate Tichu Calling Model

	6 UI
	7 Results
	7.1 Evaluation
	7.1.1 Baselines

	7.2 Experiments
	7.2.1 Training from Scratch
	7.2.2 Behavioural Cloning
	7.2.3 Separate Tichu Calling Model
	7.2.4 Monte Carlo Tree Search

	7.3 Evaluation against Humans

	8 Conclusion
	8.1 Future Work

	Bibliography
	A Tichu Actions & State Features
	B Evaluation Matrix

