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Abstract

Graph neural networks (GNNs) have achieved unparalleled results on tasks re-
lated to graph-structured data. Despite their massive practical success, under-
standing the mechanism and limitation of GNNs is still a crucial task. In this
paper1, we attempt to gain a better understanding of GNNs from three different
angles. On account of the over-smoothing issue GNNs face, we propose to train
GNNs with an additional loss function to find the fixed points of node embed-
dings and thus learn more robust representations. Our proposed method achieves
competitive results as other baseline methods. Besides, preserving feature iden-
tity is arguably a desirable property for many neural network architectures. To
investigate whether nodes retain their identity across GNN layers, we borrow
the concept "identifiability" from [1] and adapt it to GNNs. Our experiment
result reveals that certain nodes retain their identity across the model, however,
identifiability does not impact the performance of GNNs. Finally, we take a step
back and measure the demands of using GNNs by introducing a new concept
Graph Neural Network Necessity and then assess several most frequently used
node classification datasets according to it.

1The code is available at https://github.com/wwwfan628/gnn_visualization
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Chapter 1

Introduction

Graphs are rich, flexible and universal structures existing in many high-impact
real-world applications such as social networks [2, 3, 4, 5], biological networks [6,
7, 8, 9] and chemical molecules [10, 11, 12]. Graph-type data used to be tack-
led predominantly with graph kernels methods. Despite massive success, graph
kernels methods suffer significant limitations, like high time complexity, disjoint
feature and rule learning [5]. The recent advances of optimization techniques
and great progresses in parallel computation have made Graph Neural Network
a compelling alternative.

Various promising GNNs methods were proposed in the last decade [13, 3,
4, 14] and many of them boosted performance of graph related tasks, such as
node classification [15, 2, 3, 4], graph classification [12, 16, 13, 17] and link pre-
diction [18, 19, 20, 21]. GNNs generalize deep learning architectures on grid-
structured data to graph-type data. Typically, they consist of feature aggregation
and graph-level readout. During the feature aggregation, node representations in
a low-dimensional feature space are learned by aggregating and transforming fea-
ture vectors from a node’s local neighborhood [3, 22, 4]. Representation of entire
graph are then obtained using graph-level pooling schemes [18, 13] that compress
node representations into a global feature vector.

Compared with their practical popularity, theoretical research and interpre-
tation of GNNs have not been explored extensively. The current rapid growth
of GNNs calls for a deeper insight into the internal behavior of these complex
models and a better understanding on how decisions are made by them. In this
paper, we focus on understanding GNNs from the following three aspects:

• We attempt to train GNNs to find fixed points of node embeddings with
a joint loss function consisting of the normal classification loss and an ad-
ditional loss function that seeks to minimize the difference between input
and output of last hidden layer. These fixed points are a step forward
towards more stable representations that might be useful in light of the
over-smoothing issue. Our proposed method performs competitively on
citation datasets compared with other baseline methods.
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1. Introduction 2

• We make adaptions of the concept identifiability from [1] to GNNs, which
originally refers to Transformers [23]. Generally speaking, preserving fea-
ture identity can boost performance of many computer vision and natural
language learning tasks . However, our experiment result reveals that al-
though a number of nodes maintain their identity across GNN layers, node
embedding identifiability is not relevant to the accuracy of node classifica-
tion problem.

• Based on an experiment of extremely deep Graph Convolutional Network
(GCN) [3], we find that the classification result relies only on the graph
structure when piling up enough layers. Together with the fact that Multi-
Layer Perception (MLP) is a purely attribute-based model that does not
consider the graph structure, we introduce the new concept Graph Neu-
ral Network Necessity (GNN-N), since GNNs take advantage of both node
features and graph structures and are only necessary when other effortless
alternatives cannot solve the problem properly. We then utilize GNN-N to
appraise several most frequently used node classification datasets.



Chapter 2

Related Works

Fixed Point. Increasing depth and non-linearity can enhance representation
power of many neural network architectures [24, 25, 26]. Motivated by an ob-
servation that the hidden layers of many existing deep sequence models converge
towards some fixed point, several works has proposed different methods find-
ing the fixed point to implicitly increase depth of networks. Deep Equilibrium
Models (DEQ) [27] and Implicit Deep Learning (IDL) [28] find the fixed point
by solving a system of equations, while Equilibrated Recurrent Neural Network
(ERNN) [29] relies on augmenting the model with a time-delayed self-feedback
loop. However, they are approaches for Recurrent Neural Networks (RNNs) not
for GNNs. A more related work for GNNs is Steady-States Embedding (SSE) [30]
that designs a learning method which alternates between updating the embed-
dings and projecting them onto the steady-state constraints to find fixed point.
Compared with SSE, our proposed method by adding an additional loss function
to find fixed point is more straightforward and run-time efficient.

Several recent works discuss the performance degradation when stacking many
GNN layers. Since finding fixed points of node representations equals stack-
ing infinite GNN layers, the performances should share some similarities. Re-
search [31, 22] supports the explanation that the over-smoothing issue accounts
for the performance degradation, which means repeatedly stacking layers may
make representations of nodes converge to a same value or be proportional to the
square root of the node degree. Approaches [32, 33, 34, 35, 36, 37] are proposed
to alleviate over-smoothing issue. Several of them [33, 36, 37] reform from the
topological view by modifying the graph topology. Xu et al. [32] leverage differ-
ent neighborhood ranges to enable better structure-aware representation. Chen
et al. [34] incorporate the initial node representation during feature propagation
and add an identity matrix to the weight matrix during feature transformation
to obtain robust representation.

Another prominent factor that compromises performances of deeper GNNs is
the entanglement of representation transformation and propagation [38], which
results in redundant parameters and unnecessary complexity. Reducing non-
linearity [39] or representation transformation [38] can effectively improve the
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2. Related Works 4

performance of deeper GNNs.

The above mentioned works stick to the traditional approach stacking GNN
layers deeply, whereas we make an attempt to find fixed points directly after a
very early GNN layer, which has not been affected by the over-smoothing issue
yet. If the joint loss function in our approach is optimized to zero, the last hidden
layer reaches a fixed point and thus can be viewed as an implicit layer in a broad
sense. This apparently reduces the complexity and the number of parameters in
the model compared to stacking infinite GNN layer.

Identifiability. Previous research has verified the importance of identity in
deep learning [40]. In the field of computer vision, the standard parameteriza-
tion makes it non-trivial for a convolutional layer trained with stochastic gradient
methods, such as AlexNet [41], to preserve features that were already good. In
another word, such convolutional layers can neither converge to the identity trans-
formation nor retain feature identity. This shortcoming was observed and ad-
dressed by [42, 43] through residual networks, which explicitly introduced a repa-
rameterization of the convolutional layers such that when all trainable weights
are 0, the layer represents the identity function. Since then, residual networks
and subsequent architectures have consistently achieved state-of-the-art results
on various computer vision benchmarks such as CIFAR10 and ImageNet [43].

Regarding natural language processing, Brunner et al. evolve the concept
feature identity to token identifiability [1], which is defined as the fine-grained,
word-level mappings between input and output generated by a model [23]. They
devise an experimental setting recovering input tokens from word embeddings
with linear or non-linear perceptron and then finding the match in a nearest
neighbour sense within the same input sentence. Their result gives substance
to the hypothesis that contextual word embeddings maintain their identity as
they pass through successive layers of a Transformer. A large number of further
research is conducted based on this assumption [44, 45, 46, 47, 48, 49]. For
instance, [48, 49] use classifiers to probe hidden embeddings for word-specific
aspects without factoring in how much the word is still represented and [46, 47]
sum the attention to a specific sequence position over layers and attention heads,
while the given position might encode a different mixture of inputs in each layer.

Our work expands the above discussions about identity issue to the field of
graph related problems. More specifically, we make adaptations on the concept
token identifiability to graph-type data structure and introduce node embedding
identifiability, which investigates the existence of mappings between input fea-
tures of one node and its embeddings after GNN layers.

GNN-N. Chapelle et al. summarize conventional algorithms and models deal-
ing Semi-Supervised Learning problems in the book [50]. The most representa-
tive algorithms that only consider graph structure and ignore node attributes
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are Label Propagation(LabelProp) and Normalized Laplacian Label Propagation
(LabelProp NL). Both of them rely on the idea of building a graph whose nodes
are data points (labeled and unlabeled) and edges represent similarities between
points. LabelProp iteratively propagate known labels through neighbourhoods
in order to label all nodes, while LabelProp NL takes an additional regulariza-
tion term based on the graph Laplacian into account. In order to estimate the
dependency of node classification problem on graph structures, we similarly need
to neglect the impact of node attributes. We use extremely deep GCNs based
on the fact that representations of nodes converge to a stationary distribution
and the classification results rely no more on the input node features as depth
increases to a certain extent (Appendix C). Known labels play a crucial part in
LabelProp and LabelProp NL algorithms, whereas our method does not involve
known labels in the inference and thus is more close to the way how normal GNNs
utilize graph structure.

As mentioned in the former paragraph, the performance degradation when
stacking many GNN layers has been observed and discussed in [31, 22, 32, 33, 38,
34, 35, 36, 37]. However, they lay the emphasis on finding reasons and overcoming
this phenomenon, while we take advantage of it to evaluate the importance of
graph structures for node classification problems. Along with the fact that MLP
only considers node attributes, hence can be used to evaluate the importance of
node attributes for node classification problems, we present a new concept Graph
Neural Network Necessity that measures the relevance of a dataset with GNNs,
i.e. to what extent the classification problem on this dataset should be solved
with GNNs. To the best of our knowledge, we are the first to design a metric to
assess the relevance of a graph related dataset with GNNs.



Chapter 3

Fixed Point

Numerous theoretical and empirical studies reveal that deep and non-linear archi-
tectures can enhance representation power of deep neural networks [24, 25, 26].
As depth increases, hidden layers of many existing deep sequence models con-
verge towards some fixed point. Finding this fixed point directly is equivalent
to running an infinite depth feedforward network, yet with much less memory
consumption [27, 28, 29].

Likewise, fixed points play an important role in graph analytics problems.
Many graph analytics problems can be solved via iterative algorithms where
solutions are often characterized by reaching a fixed point, e.g. PageRank [51] or
mean field inference.

Inspired by former works on deep sequence models, we propose a method
by adding an additional loss function to minimize the difference between input
and output of last hidden layer. If this additional loss function is optimized to
zero, it implies that node representations reach some fixed point after last hidden
layer. Assuming that the GNN model consists of N layers, Hn and y represent
the node embeddings after n-th layer and the labels respectively. In such a
model, N -th layer should be a classification layer mapping node embeddings to
logits and (N − 1)-th layer is the so-called last hidden layer. To construct the
additional loss function to find the fixed points of (N − 1)-th layer, we replicate
it and concatenate the replica after the original (N − 1)-th layer, where we note
this replica layer as N ′-th layer to distinguish it from the original N -th layer.
Fig.3.1 shows an example structure when N = 3. We use the mean squared error
(MSE) between input and output of N ′-th layer as the additional loss function,

i.e. ‖HN
′
−HN−1‖

2
. The normal classification function should be a negative

log-likelihood (NLL), i.e. − logSoftmax(y,HN ). To construct a meaningful
joint loss function, we then follow the approach proposed by Kendall et al. [52]
to combine MLE with NLL.

6



3. Fixed Point 7

3.1 Background

As the two separate loss functions may have different units and scales, they
need to be combined in a reasonable way, so that GNNs can learn from them
simultaneously and effectively. The most straightforward approach would be to
simply perform a weighted linear sum of the two losses:

Ltotal(W) = ω1L1(W) + ω2L2(W), (3.1)

where W represents model parameters. However, it’s expensive to manually
tune these weight hyper-parameters. To address this issue, Kendall et al. [52]
propose a principled way weighting individual task’s loss with homoscedastic
task uncertainty.

Assume that a model’s multiple outputs are composed of a continuous output
y1 for regression and a discrete output y2 for classification, then the joint loss
L(W, σ1, σ2) is given as:

L(W, σ1, σ2) ≈
1

2σ12
L1(W) +

1

2σ22
L2(W) + log σ1σ2, (3.2)

where we define L1(W) = ‖y1 − fW(x)‖2 as the Euclidean loss of y1 , define
L2(W) = − logSoftmax(y2, f

W(x)) as the cross entropy loss of y2, and optimise
with respect to W as well as σ1, σ2. Weights are discouraged from increasing
too much by the last term in the joint loss, which acts as a regulariser.

3.2 Setup of the Experiment

In this experiment, we train GNNs with the joint loss, which consists of a cross
entropy loss for classification and an additional mean squared error described
formerly, to investigate whether our attempt to find fixed points can improve the
performance.

Among all variants of GNNs, Graph Convolutional Networks (GCNs) is one
of the most representative methods. Thus, we choose to train GCNs on three
established citation datasets [53], namely Cora, PubMed and CiteSeer, to demon-
strate the result. The task is to do node classification and we use the same train-
ing/validation/test splits and follow other experimental setup closely as in [3],
except using 3-layers instead of 2-layer GCN, since we need at least one hidden
layer which has equal input and output feature size in order to compute the ad-
ditional loss function. Fig.3.1 shows the concrete structure of the 3-layers GCN
used in the experiment.
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Figure 3.1: Structure of 3-layer GCN model used in the experiment.

3.3 Experiment Results

Results are summarized in Tab.3.1 and Fig.3.2. Reported numbers denote classi-
fication accuracy in percent. Results of Graph Convolutional Networks (GCNs)
and Steady-State Embedding (SSE) are taken directly from [3, 30] respectively
and serve as baselines.

Our proposed method performs competitively on all of the three citation
datasets. Because the number of random seeds used in experiments was limited,
we cannot exclude the possibility that the slight improvement on PubMed is by
chance. Yet, our proposed method has advantages like reduced complexity, much
less parameters and time-efficient compared to SSE.

Dataset GCN SSE GCN with
additional

Loss

Cora 81.5 79.4 81.2
PubMed 79.0 75.8 79.7
CiteSeer 70.3 72.5 69.0

Table 3.1: Results in table format. Figure 3.2: Results in figure format.



Chapter 4

Identifiability

Identity matters in Deep Learning [40]. In the field of computer vision, residual
networks and subsequent architectures have consistently achieved state-of-the-art
results on various benchmarks [42, 43]. One important reason lies in their ability
to preserve the identity of features. Meanwhile, in the field of natural language
processing, Brunner et al. [1] justified with plenty of evidence that contextual
word embeddings maintain their identity as they pass through successive layers of
a transformer, which is arguably a desirable property, as it affects the replicability
and interpretability of the model’s predictions.

This naturally raises questions for GNNs, whether node embeddings maintain
their identity as well and what impact it has on the performance. To investigate
those questions, we borrow the concept token identifiability from [1] and introduce
a similar one - node embedding identifiability for GNNs.

4.1 Background

Brunner et al. [1] introduce the concept of token identifiability as the existence of
a mapping assigning contextual embedding to their corresponding input tokens,
which can be adapted to node embeddings.

A node embedding hl
i is identifiable if there exists a classification function

c(·) such that c(hl
i) = xi, where xi is the input node feature. Since the graph

structure might be complex, our attempts show that recovering and identifying
node features in the range of whole graph is difficult. Hence, we only require
c(hl

i) to recover xi in a nearest neighbour sense and find the match within one-hop
neighbourhoods, i.e. we define cl(·) = NN(gl(·)) for each layer l , where NN(·) is
the nearest neighbour lookup within one-hop neighbourhoods and gl : Rd → Rd′ is
a continuous function mapping node embeddings hl

i to vectors of real numbers.
In the experiment, gl is approximated by MLP ĝMLP

l (hl
i) = x̂i, trained on a

dataset of (hl
i,xi) pairs.

9



4. Identifiability 10

4.2 Setup of the Experiment

We use GCN [3] and Cora dataset [53] to visualize the experiment results in this
section. In Appendix B.1 we provide results on two additional datasets.

Firstly, we train GCN models with different depth varying from 1-layer to 10-
layer on Cora dataset. Feature size of all intermediate hidden layers is set to 16.
Other hyper parameters for training GCN models are set following [3]. Then, we
extract input features xi and hidden node embeddings eli from each layer of GCN
models and train a 3-layer MLP ĝMLP

l on extracted (hl
i,xi) pairs using cosine

distance as loss function for layer l. The recovered vectors x̂i are subsequently
used to find the nearest neighbourhood within input features of node i ’s one-hop
neighbourhoods. Fig.4.1 shows the example setting for 3-layer GCN model.

Figure 4.1: Example experiment setting when using 3-layer GCN model to integrate
the identifiaility of nodes.

4.3 Experiment Results

In this section we report experiment results on Cora dataset. Node embedding
identifiability defined as the percentage of correctly identified nodes is shown
in Fig.4.2(a). To investigate whether nodes maintain their identifiability across
layers, we compute the overlap proportion between identifiable nodes after 1st
layer and identifiable nodes after n-th layer. We name this value as repeating
rate for n-th layer and present it in Fig.4.2(b). Furthermore, we also report the
classification accuracy of different layers’ GCN models in Fig.4.2(c) and accuracy
on identifiable and non-identifiable nodes respectively in Fig.4.2(d). If node em-
bedding identifiability has impact on the performance, we should expect different
accuracy on identifiable and unidentifiable nodes.

As can be seen from the result, node embedding identifiability rate fluctuates
around 30% and repeating rate remains very high for every layer, which means
about one third of nodes can be identified and most of them maintain their iden-
tifibility across layers. As the accuracy on identifiable nodes and unidentifiable
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nodes almost coincide with each other, we can draw the conclusion that the
performance of GNNs doesn’t rely on node embedding identifiability.

(a) node embedding idetifiability rate (b) repeating rate

(c) classification accuracy (d) accuracy on identifiable nodes and unidentifi-
able nodes

Figure 4.2: Experiment results on Cora.



Chapter 5

Graph Neural Network Necessity

GNNs suffer from performance degradation as piling up many layers and adding
non-linearity. The reason lies in the over-smoothing issue [31, 22, 32, 33]. Node
representations will converge to the same value or be proportional to the square
root of the node degree, which means that the classification results rely more and
more on graph structure when GNN models become deeper.

We observe that for 100-layer GCN model, classification results are no more
related to input features on most datasets, i.e. original input features or any ran-
dom features lead to same results (see Appendix C). However, the performance of
100-layer GCN can vary enormously on different datasets, revealing that predic-
tion on different datasets depends on graph structure to a varying extent. Similar
conclusion can be drawn for node features based on the performance of MLPs,
which rely on node features and neglect the impact of graph structures.

GNNs utilize both node features and graph structure to make inference. Pro-
vided that the problem can be solved purely with graph structure or node fea-
tures, GNNs are not necessary. From this perspective, we introduce a metric
Graph Neural Network Necessity to measure the relevance of a dataset to GNNs
based on the dataset’s dependency on graph structures and node features.

5.1 Methodology

We focus on the node classification problem and define Graph Neural Network
Necessity as the average possibility that a node from one specific dataset needs
to be solved with GNNs, i.e. cannot be solved exclusively with graph structure
or node features. Because only then, GNNs show their advantages by using
information from both graph structure and node features and thus are necessary.

12



5. Graph Neural Network Necessity 13

In mathematical expressions:

GNN -N =
1

N

N∑
i=1

Pi,GNNs (5.1)

=
1

N

N∑
i=1

(1− Pi,graph structure)(1− Pi,features), (5.2)

where Pi,GNNs represents the possibility that GNNs are necessary for node i. On
the other hand, Pi,graph structure and Pi,features represent possibilities that node
i can be correctly classified with graph structure or node features alone. Eq.5.2
uses the second definition of GNN-N and assumes Pi,graph structure and Pi,features

are uncorrelated with each other (see Fig.5.1 Left).

Figure 5.1: Left: Green, blue and orange circles represent Pi,GNNs, Pi,graph structure

and Pi,features respectively. Node i can be solved purely with graph structure or
node features. When neither of them work, GNNs are necessary. Right: We re-
place Pi,graph structure and Pi,features with experimental possibilities P̂MLP

i,features and
P̂ 100-layer GCN
i,graph structure based on the fact that MLP relies only on node features while 100-

layer GCN, on the contrary, relies only on graph structure.

Now the problem becomes how to obtain Pi,graph structure and Pi,features. We
use P̂MLP

i,features, the experimental possibility that node i can be correctly classified
with MLP, to approximate Pi,features, based on the fact that MLP only considers
node features.

For graph structure, we exploit the over-smoothing issue of GNNs: suffi-
ciently deep GNNs no longer contain feature information. This phenomenon has
been discovered in previous research but none of them mentioned how deep one
GNN model should be to reach convergence point. We verify their conclusion
via an experiment and prove that node presentations after 100-layer GCN have
converged to a static distribution on most datasets. Namely, the classification
results of 100-layer GCN with random node features are exactly the same as with
original node features, which means the results are no more influenced by node
features and only depend on the graph structure. More details are provided in
Appendix C. On the premise of this experiment, we choose 100-layer GCN to
compute the dependency of a dataset on graph structure. More precisely, we
replace Pi,graph structure in Eq.5.2 with P̂ 100-layer GCN

i,graph structure representing the experi-
mental possibility that node i can be correctly classified with 100-layer GCN.
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Hence, to compute GNN-N of a dataset, we simply need to experiment with
MLP and 100-layer GCN and compute the experimental possibilities P̂MLP

i,features

and P̂ 100-layer GCN
i,graph structure (see Fig.5.1 Right).

5.2 Setup of the Experiment

We evaluate 7 node classification datasets based on GNN-N defined above. The
details and statistics of these datasets are provided in Appendix A. To compute
P̂MLP
i,features and P̂ 100-layer GCN

i,graph structure, 3-layer MLP and 100-layer GCN are used in the
experiment. The feature size of all GCN and MLP’s intermediate hidden layers
is set to 16. We train and test MLP on each dataset 10 times. For 100-layer
GCN, we train them once and then test with 10 different random features and
repeat this process 10 times on each dataset. After that, we count for each node
how many times it’s correctly classified and compute the experimental possibility
P̂MLP
i,features and P̂ 100-layer GCN

i,graph structure.

5.3 Experiment Results

The obtained GNN-N values of the 7 node classification datasets are presented
in this section. Meanwhile, some auxiliary results, like the test accuracy of MLP
and GCN, are provided in Appendix B.2 and Appendix C.

According to the obtained GNN-N values (see Fig.5.2), CiteSeer is most rel-
evant to GNNs and its GNN-N is about 0.41 followed by Cora and PubMed with
GNN-N values above 0.25. Conversely, almost all nodes in Coauthor physics can
be correctly classified without GNNs and hence GNN are not so necessary for it.
GNN-N values of other datasets vary from about 0.1 to about 0.26.

Figure 5.2:



Chapter 6

Conclusions

We attempt to gain a better understanding of GNNs’ working principles from
three different angles. Firstly, we propose a method to find fixed points of node
embeddings by combining a MSE that minimizes the difference between input and
output of last hidden layer and a NLL for the graph related classification task into
a reasonable joint loss. Our method achieves competitive performance as baseline
methods on three citation datasets yet with less time-consumption and reduced
complexity. Additionally, we introduce the discussion about identity from other
fields of deep learning to GNNs. Our experiment reveal that a number of nodes
retain their identity across GNN models, but node embedding identifiability has
no impact on performance of GNNs. Lastly, we propose a metric graph neural
network necessity for graph related dataset to measure their relevance to GNNs.
We evaluate several datasets with GNN-N and find citation datasets are generally
more related to GNNs compared to co-purchase and coauthor datasets.

There remain some interesting aspects that deserve to be studied further.
For the sake of simplicity, we made the assumption that Pi,graph structure and
Pi,features are uncorrelated to derive Eq.5.2. Taking more complex and realistic
relationships between Pi,graph structure and Pi,features into consideration can be one
of the future research directions. Besides, we mainly focus on node classification
problems in this paper and the discussion should be generalized to other graph
related tasks, such as graph classification and link prediction in the future work.

15
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Appendix A

Description and Statistics of
Datasets

Citation Datasets. We consider three citation datasets[53]: Cora, PubMed
and CiteSeer. The task is to do document classification, where each node in
the citation graph represents the corresponding document. The documents have
auxiliary bag-of-words features. The number of features corresponds to the vo-
cabulary size in each dataset. The undirected edges are formed by the citation
relationship between articles. We use the same training/validation/test splits as
in [3]. During training, only 20 instances per class are provided with correspond-
ing labels.

Co-purchase Datasets. Amazon Computers and Amazon Photo [54] are seg-
ments of the Amazon co-purchase graph [55], where nodes are goods and edges
denote that two goods are frequently bought together. Node features are derived
from bag-of-words representations for product reviews and class labels are given
by the product category. We utilize 20 labeled nodes per class as the training
set, 30 nodes per class as the validation set, and the rest as the test set.

Co-authors Datasets. Coauthor CS and Coauthor Physics [54] are co-authorship
graphs datasets. Nodes denote authors, which are connected by an edge if they
co-authored a paper. Node features represent paper keywords for each author’s
papers. Each node has a label denoting the most active fields of study for the
corresponding author. Likewise, only 20 labeled nodes are used for training.

More detailed statistics of datasets are listed below in Tab.A.1.

Dataset #Classes #Nodes #Edges Edge
Density

#Features #Training
Nodes

#Validation
Nodes

#Test
Nodes

Cora 7 2708 5278 0.0014 1433 20 per class 500 1000
PubMed 3 19717 44324 0.0002 500 20 per class 500 1000
CiteSeer 6 3327 4552 0.0008 3703 20 per class 500 1000

Amazon Photo 8 7487 119043 0.0042 745 20 per class 30 per class rest nodes
Amazon Computers 10 13381 245778 0.0027 767 20 per class 30 per class rest nodes

Coauthors CS 15 18333 81894 0.0005 6805 20 per class 30 per class rest nodes
Coauthors Physics 5 34493 247962 0.0004 8415 20 per class 30 per class rest nodes

Table A.1: Statistics of datasets.
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Appendix B

Additional Experiment Results

B.1 Identifiability

We provide experiment results on CiteSeer and PubMed in Fig.B.1 and Fig.B.2.
Similar conclusions can be drown as in Chapter 4. About one third of nodes from
PubMed or CiteSeer are identifiable and the high repeating rate values imply
that those identifiable nodes retain their identifiability across layers. However,
accuracy on identifiable nodes and unidentifiable nodes coincide with each other,
which means accuracy is not influenced by node embedding identifiability.

(a) node embedding identifiability rate (b) repeating rate

(c) classification accuracy (d) accuracy on identifiable nodes and unidentifi-
able nodes

Figure B.1: Experiment results on PubMed dataset
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(a) node embedding identifiability rate (b) repeating rate

(c) classification accuracy (d) accuracy on identifiable nodes and unidentifi-
able nodes

Figure B.2: Experiment results on CiteSeer dataset



Additional Experiment Results B-3

B.2 GNN-Necessity

We present auxiliary results during computation of GNN-N values for each dataset
here. Results related to node features, i.e. experiment results with MLP, are vi-
sulized and summerized in this section. When computing dependency on graph
structure, we directly use the results from the experiment of 100-layer GCN de-
scribed in Appendix C. To avoid repetition, they are not included in this section.

The test accuracy of MLP on each dataset is presented in percent. Meanwhile
we compute the repeating rate defined as Eq.B.1

repeating rate =
|set1 ∩ set2|

min{|set1|, |set2|}
, (B.1)

where set1 and set2 represent correctly classified nodes from two different
experiment trials, | � | represent the operation calculating the number of elements
inside one set. Results are shown in Fig.B.3.

The test accuracy and repeating rate of the two coauthor datasets are higher
than other datasets, which means they depend highly on node features to classify
nodes. On the other hand, classification on citation datasets is not so closely
bonded to node features.

Figure B.3: Test accuracy and repeating rate on each dataset with standard variance.



Appendix C

The Experiment of 100-layer
GCN

In this section we describe the experiment and results with 100-layer GCN, which
is a premise for the computation of GNN-N value. We train 100-layer GCN 10
times and for each training trial we test the trained model with 10 different
random features as well as with original features. Then we compare the correctly
classified nodes from different tests. The comparison results are processed and
presented via 3 different repeating rates, namely random features-repeating rate
(R-RR), random versus original features-repeating rate (RO-RR) and training
trials-repeating rate (TT-RR).

All of the above mentioned repeating rates can be defined by Eq.B.1, yet with
different interpretations of set1 and set2 (see Tab.C.1) 1. To note is that we only
use the first random feature to compute RO-RR and TT-RR, since we already
know the result that R-RR of all datasets are 1 and the first random feature can
thus represent all the others.

Repeating Rate set1 set2

R-RR arbitrary random feature r
used in training trial t

another random feature r
′

used in training trial t

RO-RR the first random feature used
in training trial t

original feature

TT-RR the first random feature used
in training trial t

the first random feature used
in another training trial t′

Table C.1: Explanation of different repeating rates.

In another word, repeating rates reflect whether it’s always the same set of
nodes that are correctly classified under different test situations (see Fig.C.1).
R-RR compares between two arbitrary random features, while RO-RR compares

1We describe the input node features and the training trial of tests in Tab.C.1, however set1
and set2 represent the correctly classified nodes from the specific test.
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The Experiment of 100-layer GCN C-2

between random features and original ones. If R-RR and RO-RR are both close to
1, it means input node features have little impact on classification results, i.e. the
classification results rely mainly on graph structures. TT-RR compares between
models from different training trials. High TT-RR implies that a number of nodes
can be solved purely with graph structures, whereas low TT-RR indicates nodes
that are correctly classified purely with graph structures are random.

Figure C.1: Explanation of different repeating rates.

Repeating rates and test accuracy are shown in Fig.C.2 and Fig.C.3. The
accuracy is computed separately for random features and original features. R-RR
and RO-RR of all datasets are close to 1, which suggests that node presentations
after 100-layer GCN have converged to a static distribution and classification
results rely no more on input node features. TT-RR of Cora, CiteSeer, Amazon
computers and Coauthor physics are high, hence some nodes inside these four
datasets can be correctly classified purely with graph structure.

Figure C.2: Test accuracy with random/original features, R-RR and RO-RR of several
node classification datasets with standard variance. R-RR and RO-RR of all datasets
are close to 1.
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(a) Cora (b) PubMed

(c) CiteSeer (d) Amazon photo

(e) Amazon computers (f) Coauthor CS

(g) Coauthor physics

Figure C.3: TT-RR visualized with heatmaps. Cora, CiteSeer, AMZ computers and
Coauthor physics have higher TT-RR, which indicates a number of nodes can be correctly
classified purely with graph structures. On the contrary, classification results purely with
graph structure are almost random on PubMed, AMZ photo and Coauthor CS.
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